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A B S T R A C T   

Objectives: Manual or semi-automated segmentation of the lower extremity arterial tree in patients with Pe
ripheral arterial disease (PAD) remains a notoriously difficult and time-consuming task. The complex manifes
tations of the disease, including discontinuities of the vascular flow channels, the presence of calcified 
atherosclerotic plaque in close vicinity to adjacent bone, and the presence of metal or other imaging artifacts 
currently preclude fully automated vessel identification. New machine learning techniques may alleviate this 
challenge, but require large and reasonably well segmented training data. 
Methods: We propose a novel semi-automatic vessel tracking approach for peripheral arteries to facilitate and 
accelerate the creation of annotated training data by expert cardiovascular radiologists or technologists, while 
limiting the number of necessary manual interactions, and reducing processing time. After automatically clas
sifying blood vessels, bones, and other tissue, the relevant vessels are tracked and organized in a tree-like 
structure for further visualization. 
Results: We conducted a pilot (N = 9) and a clinical study (N = 24) in which we assess the accuracy and required 
time for our approach to achieve sufficient quality for clinical application, with our current clinically established 
workflow as the standard of reference. Our approach enabled expert physicians to readily identify all clinically 
relevant lower extremity arteries, even in problematic cases, with an average sensitivity of 92.9%, and an 
average specificity and overall accuracy of 99.9%. 
Conclusions: Compared to the clinical workflow in our collaborating hospitals (28:40 ± 7:45 [mm:ss]), our 
approach (17:24 ± 6:44 [mm:ss]) is on average 11:16 [mm:ss] (39%) faster.   

1. Introduction 

Peripheral arterial disease (PAD) is the clinical manifestation of 
diminished blood flow to the legs due to atherosclerotic plaque 
obstructing the branches of the lower extremity arterial tree. PAD is 
common in the developed world, with > 20% of patients older than 80 
years being affected [48]. Patients either experience leg pain when 

walking (intermittent claudication), or may present with rest pain or 
tissue loss (critical limb ischemia), requiring surgical (e.g. bypass 
grafting) or endovascular (percutaneous transluminal angioplasty 
(PTA)) revascularization. Imaging is required before revascularization 
to confirm the presence and extent of disease, and to accurately localize 
the culprit lesions within the lower extremity arterial tree. 

Computed tomography angiography (CTA) has been routinely used 
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for pre-interventional diagnosis and treatment planning in patients with 
PAD for more than two decades [1,10,35,47,54]. In spite of many 
technical advances in imaging and post-processing technology over the 
last 20 years, accurate visualization and mapping of obstructive lesions 
within the large peripheral arterial tree remains a considerable chal
lenge in clinical practice: The extraction of arterial centerlines—a pre
requisite to the generation of curved planar reformations (CPRs)— 
requires considerable user interaction and is one of the most 
time-consuming post-processing tasks performed in a clinical ‘3D-Lab’. 
Many traditional image processing approaches [6,26,36] work very well 
in non-diseased vessels, but do not provide satisfying results in difficult 
PAD cases. These are usually characterized by:  

• an unpredictable lesion location,  
• the eccentricity of the narrowed flow channels within an arterial 

cross-section,  
• the possibility of complete interruption of the arterial flow channels 

over variable lengths,  
• the presence of atherosclerotic calcifications which obscure the flow 

lumen and have computed tomography (CT) attenuation values 
similar to adjacent bones, and, finally,  

• the presence of imaging artifacts, such as noise, motion, and metal 
artifacts from, e.g. joint implants. 

Neural networks aim to reduce manual efforts from users once they 
are trained with sufficiently well segmented data sets [66]. There is a 
wealth of scientific work on machine learning models for vascular 
tracking and segmentation, but the majority is concerned with retinal 
[49], pulmonary [34,59], carotid [40,45,63], adrenal [66] and coronary 
vessels [28,61,68] or other internal structures [57]. There are only a few 
solutions for peripheral CTA vessel segmentation, as noted by Moccia 
et al. [29]. The lack of scientific research on machine learning for pe
ripheral vessel tracking may be caused by the shortage of accurately 
labeled, i.e., ground truth, training data. 

Our current clinical semi-automated vessel segmentation approach 
[17] is well tested and robust, but also time-consuming (about 30 min 
per case) and requires a considerable amount of user interaction to 
overcome the subsequent specific challenges encountered with PAD:  

• vessels touching bone,  
• discontinuities (e.g. non-uniform opacified vessels),  
• bone-like regions (e.g. calcifications and stents), and  
• metal hardware artifacts (e.g. hip joint implants). 

In order to leverage the possibilities of machine learning, we designed an 
improved approach that replaces some parts of the current workflow 
and generates ground truth data by expert users much faster. To the best 
of our knowledge, there is no semi-automated or automated workflow 
that captures and identifies the relevant arteries for PAD, which is 
deliberately designed to handle difficult cases. Specifically, we provide a 
comprehensive description of these cases and propose an approach that:  

• solves the above-mentioned challenges with PAD,  
• is faster than our current clinical approach,  
• provides similar accuracy and robustness, and  
• requires significantly less user interaction. 

This would not only make clinical use more efficient, but also help us to 
generate labeled ground truth data for a total of almost 7000 data sets 
that we collected over the past years. 

2. Related work 

Our approach concerns bone removal, blood vessel segmentation, 
and tracking. The subsequent paragraphs describe the most relevant 
work in these fields. In the last paragraph, we also relate our work to 

machine learning. 

2.1. Bone removal 

To provide an unobstructed view of blood vessels, bones have to be 
removed beforehand, because the intensity values of bones are usually 
higher or similar to blood vessels in CT and CTA data, respectively. This 
can either be accomplished with a simple threshold, bone-to-bone 
elimination between two series of images [9], registration of two data 
sets with or without contrast agent [25], or simultaneous label fusion 
using atlases [64]. Bone removal is particularly useful for maximum 
intensity projection (MIP), a commonly used visualization technique 
that allows experts to analyze structures with the highest intensity 
values in a data set. 

2.2. Vessel segmentation 

Many vessel segmentation techniques enhance the vessels first, such 
as applying a Gabor or Frangi filter [52], doing a gradient analysis [32], 
or performing anisotropic filtering [4]. Other approaches include fuzzy 
connectedness [58], morphology-based segmentation and intensity 
probability distributions [11], graph-cuts [11,41], particle filtering 
[46], and seeded region growing [19,53]. 

Kirbas and Quek [20] provide a comprehensive review of several 
vessel segmentation approaches. Cetin et al. [7] present a segmentation 
algorithm that is based on a second order tensor model, inspired from 
diffusion tensor image modeling. Hong et al. [14] introduce a localized 
hybrid level-set method for 3D vessel segmentation, integrating both 
local region and boundary information. Multi-scale vessel-specific fea
tures (Frobenius norm of the Hessian Eigenvalues, LoG, oriented second 
derivative, etc.) can be used for segmentation of vessels in confocal 
images [18]. Vascular structures may be described as tubular objects in 
medical 3D data sets and their centerlines are well defined and can be 
extracted [2,3]. Similarly, a tube detection filter for 3D centerline 
extraction based on multi-scale medialness can be used [38]. Ola
barriaga et al. [37] propose a semi-automatic centerline extraction 
technique for coronary arteries in CT images, using a local filter and a 
minimum-cost path algorithm. Manniesing et al. [27] propose a 3D 
vessel segmentation and centerline extraction that is based on con
strained surface evolution. They analyze the skeleton during evolution 
and impose a shape constraint on the topology. Lidayova et al. [23] 
present a 4-tiered algorithm that recognizes centerlines of diseased pe
ripheral arteries. Two tiers deal with the detection of healthy arteries of 
different sizes, while the other two are specialized on calcifications and 
occlusions. 

2.3. Vessel tracking 

Vessel segmentation assigns pixels or voxels to certain tissue classes, 
e.g., vessel, bone, or other tissue. Tracking goes one step further by 
specifying the relations between the elements of the vessel class, orga
nizing the vasculature into a graph or tree structure. Multiple hypoth
eses tracking is used in several works [12,43], but designed for either 
small vessels [12], or only validated on coronary arteries and airway 
trees [43]. A directional fast marching algorithm, improved with a 
multi-model strategy, is used by Jia and Zhuang [16] to extract coronary 
centerlines. Grülsün et al. [13] determine a geodesic path between tree 
shapes using Dijkstra’s algorithm and propose a method that propagates 
labels from an atlas-based coronary arterial tree model to unlabeled 
coronary centerlines. Zhao et al. [65] merge discontinuities in 
segmented vessel trees by employing skeletonization and a nonlinear 
least square fitting. Shim et al. [46] perform tracking by modeling a 
vessel segment as an ellipse moving in 3D space. 

Other approaches represent vessel trajectories as 4D curves, where 
the first three dimensions are used for the spatial coordinates, and the 
fourth dimension is the radius [22,30]. Shahzad et al. [44] present a 
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fully automated algorithm for vessel segmentation and tracking for 
whole body magnetic resonance angiography (MRA) data sets, where 
tree branches are labeled with a combination of graph-based and 
atlas-based approaches. Challenging cases are, however, not discussed. 
A single seed point is required by the approach of Borges Oliveira et al. 
[5] to track the entire vascular networks of the coronary, carotid, and 
pulmonary arteries. Major et al. [24] describe an automatic method for 
detecting the main arteries of three body regions by identifying seed 
points within the aorta, carotid arteries, and iliac arteries. Novikov et al. 
[36] extended this approach with a fully automated framework that 
detects body parts, extracts vessel centerlines, and employs 
anatomy-driven connection rules to track the vascular tree. Arteries 
below the knee—a key clinical requirement for the assessment of 
PADs—are not covered. Moriconi et al. [33] track vessel trees by solving 
a connectivity-optimized anisotropic level-set over a voxel-wise tensor 
field that represents the orientation of the vasculature. Their method 
was evaluated with different imaging modalities, including CTA, but 
only at the cerebral level. The approach of Hu et al. [15] can detect 
vessels even in difficult cases such as stenoses, calcifications, and stents, 
by using training samples on multiple scales. The method was evaluated 
on synthetic vascular data sets, carotid and aortoiliac arteries. Although 
they deal with several pathologies, other difficult cases such as vascular 
discontinuities, which are common in PADs, are not discussed. 

2.4. Machine learning (ML) 

In this paragraph we discuss several ML-based approaches in the area 
of vessel segmentation and tracking. Wu et al. [62] use a convolutional 
neural network (CNN) to learn the appearance and features of the retinal 
vasculature. A nearest neighbor search based on a principal component 
analysis (PCA) is used to estimate the local structure distribution and to 
extract the vessel tree. A stacked fully convolutional network segments 
pulmonary vessels and is followed by an orientation-based region 
growing to track the vasculature [59]. Nardelli et al. [34] use a 3D CNN 
to obtain a first classification of vessels and refine the results with 
graph-cuts. Shi et al. [45] perform slice-based segmentation of 3D 
magnetic resonance brain images with a U-Net-like fully convolutional 
network by hierarchical extraction of low- and high-order convolutional 
features. Another method based on U-Nets is proposed by Xie et al. [63], 
which uses single and multi-path convolutional networks to identify the 
carotid vessel lumen in ultrasound images. Sanchesa et al. [40] intro
duce a cerebrovascular vessel segmentation framework, entitled Ucep
tion, inspired by U-Net 3D and by Inception modules. Mirunalini et al. 
[28] combine a CNN with recurrent neural networks to identify the 
presence of coronary arteries in 2D slices from CTA data sets. Next, they 
apply a U-Net model to segment vessels which are reconstructed into 3D 
coronary arteries using MIP. Another multi-task recurrent CNN is 
applied by Zreik et al. [68] on multi-planar reformatted images of cor
onary arteries to detect and classify artery plaque and stenosis. They also 
analyze coronary arteries in cardiac CTA to detect patients requiring 
invasive coronary angiography [67]. Wolterink et al. [61] extract cen
terlines with a 3D dilated CNN trained to predict the most likely direc
tion and radius of an artery at a given point in a cardiac CTA data set, 
based on a local image patch. Tetteh et al. [55] introduced Deep
VesselNet, a tool that segments vessels, predicts centerlines, and detects 
bifurcations in 3D angiographic volumes. Their method is validated on 
MRA data sets of the human brain and X-ray tomographic microscopy 
scans of rat brains. Transfer learning was used to segment the vascula
ture of mouse brains with high accuracy [56]. 

The current development and early success of ML algorithms applied 
to vascular imaging data address the limitations of clinical visualization 
of diseased arteries in patients with PAD. Due to the specific anatomic 
distribution of the disease within and across patients, the wide vari
ability of atherosclerotic plaque composition, the extent and location 
relative to the residual or completely occluded flow channels, we foresee 
the need for a large amount of ground truth data to be required for the 

development, training, and validation of any new algorithm for clinical 
PAD imaging and visualization. 

The purpose of this work is to improve an existing, clinically used 
semi-automated bone segmentation and vessel tracking algorithm for 
the assessment of PAD. In addition, our approach accelerates the gen
eration of expert derived ground truth data so that new ML algorithms 
can be trained and tested in the future. 

3. Methods 

Accurate assessment of vascular lesions, such as in PAD, requires the 

Fig. 1. Workflow of our proposed approach. A detailed description of Step 10 is 
given in Fig. 3 and Fig. 4. 
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extraction of arterial centerlines. Furthermore, representing the vascular 
system as a tree of vessel centerlines forms the basis for diagnostic 
visualization techniques, such as CPR and multipath curved planar 
reformation (mpCPR) [39]. However, a simple segmentation or classi
fication of bones, vessels, or other tissues is not sufficient. This is even 
more constrained by the fact that not all blood vessels are diagnostically 
relevant and, by the human uniqueness, leading to highly varying 
vascular systems between patients. A vessel detection approach must 
account for all these critical aspects and, additionally, consider vessel 
occlusions, eccentricities of stenoses, calcifications, stents or even arti
ficial joints that are increasingly occurring. 

The evaluation of patients with PAD requires the assessment of the 
entire lower extremity arterial tree. This includes the abdominal aorta as 
its root, the bilateral common and external iliac arteries, the bilateral 
common and superficial femoral arteries, the bilateral popliteal arteries, 
und finally three below-knee arteries for each leg (see bottom-right 
illustration of Fig. 1): right/left arteria tibialis anterior (ATA), right/ 
left arteria interossea (AIO), and the right/left arteria tibialis posterior 
(ATP). To segment these vessels, we extend the approach proposed by 
Morar et al. [31], which is based on active contours without edges (ACE) 

[8]. The workflow of our approach is outlined in Fig. 1 and, subse
quently, all steps are explained in detail. 

3.1. Segmentation 

During CTA, iodinated contrast medium is injected intravenously to 
opacify the blood flowing in the vascular system. This leads to sub
stantially higher CT attenuation values (Hounsfield units) of blood 
vessels compared to soft tissues (see Fig. 2a). However, strong vascular 
opacification often reduces the ability to delineate borders between 
vessel and bone tissue, which is naturally high in attenuation due to its 
calcium content. To address this problem, we map all intensity values, 
slice-by-slice, to a vessel probability between zero and one (see Fig. 1, 
Step 1) [50]. We then smooth this probability data set with a Gaussian 
filter followed by a nonlinear anisotropic diffusion filter (see Fig. 2b, 
Step 2) [51,60]. The former filter removes very small discontinuities 
within the structures of the scanned body, especially near tissue 
boundaries. The latter filter smooths the CTA data set without blurring 
the edges to avoid connecting different foreground structures that are 
close together, such as the aorta next to the spine. Subsequently, vessels 
and bones are enhanced using the approach proposed by Morar et al. 
[31] (Step 3). This results in an enhanced data set E with intensity 
values IE (v) ∈ [0,1] at voxel v (see Fig. 2c). 

The first adaptive threshold (see Fig. 2d, Step 4) is applied to the 
enhanced data set E and leads to a clear delineation between back
ground (other tissue, mask value 0) and foreground (vessel and bone 
tissue, mask value 1), based on abrupt intensity changes at the borders. 
The resulting mask value K1(v) of the first adaptive threshold is defined 
as follows: 

K1(v)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if T1 > IE (v)
0 if (T1 ≤ IE (v) ≤ T2) ∧

(
IE (v) < IE (N)⋅F1

)

1 if (T1 ≤ IE (v) ≤ T2) ∧
(

IE (v) ≥ IE (N)⋅F1

)

1 if T2 < IE (v)

, (1)  

where IE (v) is the intensity value at voxel v in the enhanced data set E , 
and T1 = 0.38 and T2 = 0.57 are two empirically determined threshold 
values. IE (N) is the average intensity within a neighboring window N 
(with a radius of 10 pixels in the proximal upper half of the data set and 
5 pixels in the distal lower half), and F1 is a fixed parameter with a value 
slightly larger than 1 (in our experiments, F1 ∈ [1.03, 1.05]). By multi
plying IE (N) with F1, we ensure that only a few voxels with values be
tween T1 and T2 are set to one. The first adaptive threshold distinguishes 
well between foreground (1) and background (0), but not between 
distinct elements of the foreground. If bone and vessel objects are very 
close to each other, there is a high probability that they will be 
considered as belonging to a single object. This drawback is addressed in 
the subsequent steps. 

The second adaptive threshold (see Fig. 2e, Step 5) discriminates 
between different foreground objects. It uses the intensity values 
(Hounsfield units) of the initial CTA data set, and is defined as follows: 

K2(v)=
{

0 if I(v) < I(N)⋅F2,

1 if I(v) ≥ I(N)⋅F2,
(2)  

where F2 is a fixed parameter with a value slightly larger than 1 (in our 
experiments, F2 = 1.05). 

Combining the mask values of both adaptive thresholds, the slice’s 
voxels are classified into background, weak foreground, and strong 
foreground as follows: 

class(v)=

⎧
⎨

⎩

background if K1(v) = 0,
weak foreground if K1(v) = 1 ∧ K2(v) = 0,
strong foreground if K1(v) = 1 ∧ K2(v) = 1.

(3)  

The background is referred to as other tissue and the foreground (weak 

Fig. 2. Segmentation stage. (a) shows an initial image of the data set. (b) 
presents the image after initial vessel enhancement, followed by smoothing 
with a Gaussian filter and an anisotropic diffusion filter. (c) shows the 
enhancement with ACE. (d) demonstrates the output of the first adaptive 
threshold, differentiating between foreground (blue) and background voxels. 
(e) shows the result of the first and second adaptive threshold, with weak 
foreground voxels in green and strong ones in blue. (f) displays the creation of 
foreground islands with the zoom-ins showing the result of the hole filling step. 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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and strong) as bone + vessel. 
Distinguishing between weak and strong foreground voxels extends 

the approach of Morar et al. [31], which was initially applied only to 
bone segmentation. The reason for this is to correctly handle vessels that 
are smaller than bone and have lower intensity values. Strong voxels 
have a high probability of belonging to the foreground, whereas weak 
ones either belong to the foreground, or were wrongly labeled as such, 
and should belong to the background instead. Voxels that were incor
rectly labeled as weak are removed during the vessel tracking. 
Depending on the transverse slice location within the data set, i.e., 
proximal (in the upper half of the data set) or distal (in the lower half), as 
well as on the intensity value, a voxel is either assigned to the strong or 
weak foreground class. The size of proximal blood vessels is comparable 
with that of bones and their intensity values allow for a clear separation 
between foreground and background, and between distinct foreground 
elements. Vessel voxels in the proximal region are labeled as strong 
voxels, while voxels belonging to the border between vessels and bones 
are labeled as weak, or background. Conversely, distal blood vessels are 
very small and characterized by much lower intensity values than bone. 
This leads to an unclear delineation of vessel voxels from background or 
bone. In such situations, vessel voxels are usually labeled as weak 
foreground. 

Subsequently (Step 6), a set of connected bone + vessel voxels defines 
a foreground island. All background voxels inside a foreground island are 
labeled as weak foreground. This ensures that there are no holes inside 
bone or vessel tissue. After the segmentation stage, every voxel of the 
input data set is classified as background, weak foreground, or strong 
foreground. Fig. 2 presents the output of each of these steps. 

3.2. Vessel tracking 

Vessel tracking is initiated by a user-specified seed point within the 
vessel + bone class, preferably a strong voxel. This seed point is labeled as 
belonging to vessel tissue. When choosing a seed point, large vessels 
(main arteries) should be preferred. Also, vessel tissue in the upper half 
of the data set (closer to the patient’s head) is a better choice than tissue 
closer to the patient’s legs. Once a seed point has been chosen, the vessel 
label is propagated inside the slice (transverse section) to neighboring 
voxels that belong to the same class. 

A set of connected foreground voxels within one slice defines a 
foreground island. Whenever a foreground island is included into the 
vessel tree, it is marked as vessel island. The first vessel island that con
tains the seed point is called seed island. Once such an island has been 
found, the algorithm searches its neighborhood within adjacent slices 
for strong or weak foreground voxels that do not already belong to the 
vascular tree. Such neighboring voxels define a candidate island. 

Let I z
V be the current vessel island on slice z and I z±1

C the candidate 
island on an adjacent slice (i.e., z ± 1). We determine if their sizes differ 
substantially as follows 

ΔS=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

¬substantial if
(
δ ≤ TS

1

)
∧
( ⃒
⃒I

z
V

⃒
⃒ < TS

1

)
,

substantial if
(
δ > TS

1

)
∧
( ⃒
⃒I

z
V

⃒
⃒ < TS

1

)
,

¬substantial if
(
δ ≤ TS

2

)
∧
(
TS

1 ≤
⃒
⃒I

z
V

⃒
⃒ ≤ TS

3

)
,

substantial if
(
δ > TS

2

)
∧
(
TS

1 ≤
⃒
⃒I

z
V

⃒
⃒ ≤ TS

3

)
,

¬substantial if
(
δ ≤ TS

3

)
∧
( ⃒
⃒I

z
V

⃒
⃒ > TS

3

)
,

substantial if
(
δ > TS

3

)
∧
( ⃒
⃒I

z
V

⃒
⃒ > TS

3

)
,

(4)  

δ=
⃒
⃒I

z±1
C

⃒
⃒ −

⃒
⃒I

z
V

⃒
⃒, (5)  

where the size of a vessel island I is defined as the number of contained 
voxels, denoted by |I |. The size threshold values TS

1, TS
2 and TS

3 were 

empirically determined and depend on the axial slice resolution (X, Y) of 
the CT data set (TS

1 = 38⋅10− 5⋅X⋅Y, TS
2 = 2⋅TS

1, TS
3 = 5⋅TS

1). For a typical 
data set with X = Y = 512, this would lead to TS

1 ≈ 100, TS
2 ≈ 200, and 

TS
3 ≈ 500. The size difference ΔS is always not substantial if the candi

date is smaller than the current vessel island, i.e., δ < 0. If the two 
islands do not substantially differ in size and the number of adjacent 
voxel pairs P(x, y, z) and Q(x, y, z±1) with P ∈ I z

V and Q ∈ I z±1
C is 

greater than min(
⃒
⃒I z

V
⃒
⃒,
⃒
⃒I z±1

C
⃒
⃒)/2, the candidate island I z±1

C is labeled 
as vessel island. If the candidate island I z±1

C is labeled as vessel island, i. 
e., belongs to the vessel tree, it is inserted into a queue qvi. In the next 
step, the first element is dequeued and considered as the new current 
vessel island I z

V (Step 9). Its candidate islands are processed next and 
inserted into qvi, if they are regarded as being part of the vessel tree as 
well. 

Usually, the current vessel island has only two neighboring islands, 
one on the upper adjacent slice, and the other one on the lower adjacent 
slice. One of these neighboring islands, undoubtedly, already belongs to 
the vessel tree, since it led to the discovery of the current vessel island. 
This leaves just a single candidate island for the current vessel island, 
unless there is a case of vessel branching or the current island is a seed 
one. The tracking stage continues until there are no more elements in qvi. 

Whenever blood vessels are tracked, starting from a seed point, a 
partial vessel tree is created. To obtain the complete vascular system, 
more than one seed point might be required. If the vessel tracking pro
duces an undesired result, e.g. by propagating into bones, it can be 
reverted (undo operation) and rerun after inserting separation objects to 
prevent tracking towards specific directions. So far, the described al
gorithm works properly if vessels are not touching any bone and the 
vessel tree does not have any discontinuities. Cases of vessels touching 
bone and small discontinuities are handled during vessel tracking, as 
further explained below. Large vascular discontinuities caused by long- 
segment occlusions or artifactual obscuration by metal implants (e.g. hip 
joint implants) are treated later in the graph generation stage. 

3.2.1. Vessels touching bone 
A large difference in size between the current vessel island and its 

candidate island could be caused by a vessel touching bone. To avoid 
tracking the bone instead of the blood vessel, we utilize the character
istics of vessel islands, depending on the transverse slice location within 
the data set, i.e. proximal or distal. As previously mentioned, proximal 
vessel voxels touching bones are usually labeled as strong voxels. Con
trary, distal blood vessels are very small and, apart from calcifications, 
are characterized by much lower intensity values than bone. In such 
situations, vessel voxels are labeled as weak foreground. Fig. 3 illustrates 
these two cases of vessel propagation, from the current slice to one of its 
adjacent slices. 

The first case addresses the proximal part, i.e. upper half, of the data 
set (the upper part of Fig. 3). The current slice contains a vessel island 
and a foreground island. The adjacent slice contains a single island, 
varying substantially from the size of the current vessel island, and being 
composed of strong and weak voxels. Our proposed method eliminates 
all the weak voxels from the adjacent slice, located in the neighborhood 
N of the current vessel island’s border (the area between the island and 
the background). This splits the candidate island into two disconnected 
parts, one that is marked as vessel and another one that remains labeled 
as strong. If there are still strong voxels connecting two distinct 
anatomical foreground elements (in our case bone and vessel), the al
gorithm cannot divide the candidate island and the tracking stops. 

In the distal part, i.e. lower half, of the data set, vessel tissue that 
touches bone contains mostly weak voxels. The lower part of Fig. 3 il
lustrates this case, where the current slice contains a foreground island 
and the current vessel island. The adjacent slice contains a single island, 
again composed of strong and weak voxels, but in this case the vessel 
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consists only of weak voxels. Since the proximal strategy would remove 
the entire vessel tissue on the adjacent slice, we have to choose another 
approach. We compute the center M(I z

V) of the current vessel island as 
the average position of all its contained voxels and radius r1 of its cir
cumscribed circle. This circle is then propagated to the adjacent slice to 
split the candidate island. 

A foreground voxel inside this circle is marked as belonging to a 
vessel island if its intensity value I(v) does not differ significantly from 
those of the current vessel island, i.e., if (Imin(I

z
V) − I(v)≤ 50) and 

(I(v) − Imax(I
z
V)≤ 50); otherwise the voxel remains unchanged. 

Imin(I
z
V) and Imax(I

z
V) represent the minimum and the maximum in

tensity values within the current vessel island, respectively. 
To successfully separate vessels from bone, we have to find the bal

ance between preserving vessels and stopping the propagation of vessel 
tissue to bone. Factors such as the anatomy of the patient, the contrast 
agent, or the imaging modality influence this balance. If vessels cannot 
automatically be separated from bone, user-specified separation objects 
(planes and cylinders) can prevent vessels spreading into bone. 

3.2.2. Small vessel discontinuities 
The second challenge consists of small discontinuities of the vessel 

paths (centerlines), which occur especially in the area below the knee. 
The vessel propagation stops when we encounter a vessel island that has 
no neighboring islands other than the island that led to its discovery. We 
deal with this problem (see Fig. 4) in the vessel tracking stage. Our al
gorithm searches for a new candidate vessel segment in a local neigh
borhood around the point where the propagation was stopped. When a 
candidate is found, we use a cost function to determine whether it can be 
connected to a tracked vessel segment. This function represents the 
probability that two segments belong to the same vessel. If the cost 
function of the candidate and tracked vessel segment is below a global 
threshold, they are connected. To calculate this cost function, we 
propagate the vessel tissue and store per slice the average position, size, 
minimum, average, and maximum intensity for each detected vessel 
island, as well as its connectivity with vessel islands of adjacent slices. 
Before introducing the cost function, however, we describe leaf islands 
and segments and how the direction of a leaf segment is determined. 

A vessel island with a single neighboring island in the tracked partial 
vessel tree is called a leaf island if it does not contain a seed point (it is 
not a seed island). By connecting the last k vessel islands in reverse order 
of the propagation, starting with the detected leaf island, a leaf segment is 
created. Also, by connecting the first k vessel islands, in the order of the 
propagation, starting with the seed island, another leaf segment is 
created. An example of two leaf segments (the first obtained from a leaf 
island and the second from a seed island) is given in Fig. 4. 

For all leaf segments S i of a partial vessel tree, we compute the 
following properties: the center of the leaf segment, the minimum, 
average and maximum intensity, the minimum, average and maximum 
size of the vessel islands within the leaf segment. The direction d of a leaf 
segment S is defined as 

d(S )= (M(I 1) − M(S )) + (M(I 1) − M(I k)), (6)  

where M(S ) is the leaf segment’s center (average position of all con
tained voxels), M(I 1) is the center of the leaf segment’s first vessel is
land I 1, and M(I k) is the center of the last (kth) leaf segment’s vessel 
island I k. 

Our algorithm searches for voxels from the vessel + bone class, in the 
next l slices adjacent to the current leaf island, in the direction of the 
stopped propagation. The search area is determined as follows: on the 

Fig. 3. The left illustration shows how the problem ‘vessel touching bone’ is solved depending on the z-position (proximal vs. distal) in the data set. The corre
sponding pseudocode is shown on the right side. 

Fig. 4. The left illustration shows the linking of ‘small vessel discontinuities’ in 
vessel paths. The corresponding pseudocode is shown on the right side. 
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investigated slice (one of the l adjacent slices), we determine the inter
section point Mint with the ray going from position M(S ) in direction 
d(S ) of the current leaf segment S . We then compute a circle with 
center in Mint and radius r2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
|S I |/π

√
, where |S I | is the average size 

of the current leaf segment’s vessel islands. In case a strong foreground 
voxel is encountered inside this circle, the island containing that voxel is 
extracted. If the size and intensity of this island do not substantially 
deviate from the average size and intensity of the islands contained in 
the leaf segment, the discovered voxel is marked as a seed point and 
inserted into a queue of seed points qsp. After the current vessel tracking 
stage completely stops, i.e., queue qvi does not contain any vessel islands 
anymore, another tracking stage starts with the first element dequeued 
from qsp. 

Another tracking stage starts with a seed point from qsp and extracts 
only a candidate partial tree. A leaf segment is created for this tree by 
connecting the first k vessel islands from the tree in order of propaga
tion, starting with its seed island. After this, it is decided whether the 
parent leaf segment and the candidate one should be connected or not. 

Two orientation measures, ∠ij = ∠(S i,S j) and ∠ji = ∠(S j,S i), are 
computed for the two leaf segments (S i, S j), based on their center 
positions and directions: 

∠
(
S i,S j

)
=

d(S i)⋅
(
M(S i) − M

(
S j

))

‖d(S i)‖⋅
⃦
⃦M(S i) − M

(
S j

)⃦
⃦
. (7)  

As illustrated in Fig. 4, ∠ij represents the cosine of the angle between the 
direction d(S i) of the parent leaf segment and the vector from the center 
M(S i) of the parent leaf segment to the center M(S j) of the candidate 
one. Similarly, ∠ji depicts the cosine of the angle between the direction 
d(S j) of the candidate leaf segment and the vector from the center of the 
candidate leaf segment to the center of the parent. 

We introduce a cost function CD for connecting small vessel discon
tinuities. This cost is defined for the parent leaf segment and the 
candidate one, as the weighted sum of four characteristics, namely the 
difference in distance, orientation, intensity, and size: 

CD =
∑4

n=1
wnCn, (8)  

with wn being the weight of the respective characteristic Cn. 
Leaf segments located closer to each other have a high probability of 

being connected. C1 is the normalized distance between the center po
sitions of the parent leaf segment (S i) and the candidate one (S j), 
defined as 

C1 =

⃒
⃒
⃒
⃒M(S i) − M

(
S j

)⃒
⃒
⃒
⃒

⃦
⃦Vdiag

⃦
⃦

, (9)  

with vector Vdiag = (X,Y,Z) and X, Y and Z being the extent of the data 
set. 

The difference in orientation, C2 is defined as follows: 

C2 =

(
1 − ∠

(
S i,S j

))
+
(
1 − ∠

(
S j,S i

))

2
, (10)  

where ∠( ⋅, ⋅) is defined in Equation (7). A small C2 value indicates a 
direction continuity in the vessel path. 

A vessel path should also be characterized by a continuity in intensity 
distributions. Therefore, C3 depicts the normalized difference in in
tensity between the parent and the candidate leaf segment: 

C3 =

⃒
⃒Imax(S i) − Imax

(
S j

)⃒
⃒+

⃒
⃒Imin(S i) − Imin

(
S j

)⃒
⃒

2⋅Imax(D )
, (11)  

with Imin(S ) and Imax(S ) being the minimum and maximum intensity 
value of the leaf segments. The maximum intensity of the entire data set 
is given by Imax(D ). 

C4, refers to the normalized size difference between two leaf seg
ments, and is defined as 

C4 =

⃒
⃒A(S i) − A

(
S j

)⃒
⃒+

⃒
⃒a(S i) − a

(
S j

)⃒
⃒

2⋅X⋅Y
, (12)  

a(S )=
{
|I | : I ∈S , |I | ≤

⃒
⃒
⃒Ĩ

⃒
⃒
⃒, ∀Ĩ ∈S

}
, (13)  

A(S )=
{
|I | : I ∈S , |I | ≥

⃒
⃒
⃒Ĩ

⃒
⃒
⃒, ∀Ĩ ∈S

}
, (14)  

with a(S ) and A(S ) representing the size of the smallest and largest 
vessel island of segment S , respectively. A small value of C4 indicates 
continuity in vessel size. 

We used the following configuration of weights for the cost function 
CD in the vessel tracking stage: w1 = 1, w2 = 2, w3 = 1, w4 = 1. Since 
the orientation between the parent and candidate segments is an 
important factor, we gave it a higher weight. 

If the orientation measures ∠ij and ∠ji depict a small difference in 
direction between the parent leaf segment and the candidate one, i.e. 
(∠ij > 0.8) ∧ (∠ji > 0.8), and the previously computed cost has a value 
below a chosen threshold, i.e., 0.6, the two leaf segments are connected, 
and the candidate tree is considered a real vessel tree. Otherwise, the 
tracking process for the candidate tree is reverted and all the seed points 
from qsp that were discovered during its tracking stage are removed 
without being processed. 

This entire process continues until qsp is empty. The tracking stage is 
recursive, but all the constraints for propagating the vessel tree ensure 
that the process terminates eventually. Thus, the vessel label will not 
propagate to bone or other tissue. In our experiments, the values of k and 
l were established empirically and set to k = l = 10. 

3.3. Graph generation 

The result of the previous stage is the entire vasculature that is 
composed of one or more partial vessel trees, each containing a number 
of connected vessel islands. However, this representation is not suitable 

Fig. 5. Graph generation. (a) illustrates the linking of partial vessel trees (Step 
12). Disconnected vessel segments are joined, based on the minimum cost to all 
other vessel segments. (b) demonstrates how the main arteries are determined 
(Step 14) for PAD investigations. 
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for an analysis or a visualization such as CPR. Therefore, we organize the 
vessel tree in a graph-like data structure (see Fig. 1, Steps 12 to 16) 
consisting of 3D points belonging to the centerlines of the main arteries. 
Multiple partial vessel trees are linked together (Step 12) to form a single 
vessel tree of the entire relevant vascular system, as outlined in Fig. 5a. 

Linking partial vessel trees is similar to reconnecting small vessel 
discontinuities (recall Section 3.2.2), but with the following difference: 
while the vessel tracking stage performs a local search to find potential 
candidate vessel segments that could be connected to already tracked 
segments, the current stage does not perform a search but connects all 
partial vessel trees. By initially starting from a partial vessel tree and 
iteratively identifying and adding the most likely connection to another 
partial vessel tree, we build the final and complete vessel tree. The most 
proximal seed island is selected as the seed island and its partial vessel 
tree is traversed using a breadth-first search (BFS) heuristic. The cost 
function CG for linking the partial vessel trees to the complete vessel tree 
is defined for all pairs (S i,S j) of leaf segments, with i being the tra
versed leaf segment during the BFS, j the untraversed segment, and i ∕= j. 
The cost function consists of the weighted sum of seven leaf segment 
characteristics: 

CG =
∑7

n=1
wnCn, (15)  

with wn being the weight of the respective characteristic Cn, and the cost 
being inversely proportional to the connection probability, i.e., the 
smallest value indicates the highest probability. The first four charac
teristics are the same as for the cost function for small vessel disconti
nuities, recall Equation 8. 

The fifth characteristic C5 ensures that proximal leaf segments of an 
untraversed vessel tree have a higher probability of being connected to a 
traversed leaf segment than distal leaves: 

C5 =
z(I ) − zmin(v)

zmax(v) − zmin(v)
, (16)  

with z(I ) being the z-coordinate of the leaf island I ∈ S j, zmin(v) being 
the minimum and zmax(v) being the maximum z-coordinate of the partial 
vessel tree v with S j ∈ v. 

The intensity of the voxels located along the path connecting the two 
leaf segments S i and S j is also an indicator of vessel continuity. It is 
computed as follows: 

C6 =

∑max(z(I k),z(I l))− 1
z=min(z(I k),z(I l))+1

[
H(S i) + H

(
S j

)
− 2⋅I

(
I

z
∘

)]

2⋅(|z(I l) − z(I k)| − 1)⋅Imax(D )
, (17)  

H(S )=
Imin(S ) + Imax(S )

2
, (18)  

where I k ∈ S i, I l ∈ S j, I(I ) is the average intensity value of a vessel 
island, and H(S ) is the average of the minimum and maximum intensity 
values of a vessel segment. The path that connects the two leaf segments 
is determined by creating an artificial (i.e., it was neither discovered 
during segmentation nor tracking) circular vessel island I z

∘ on each slice 
between z(I k) and z(I l). The position of this new island is the inter
section point of the current slice with the line passing through the two 
points M(I k) and M(I l). The size of the island is linearly interpolated 
between the average sizes of the corresponding two leaf segments. If the 
average intensity of these artificial islands along the path does not differ 
significantly from the minimum and maximum intensities of the two leaf 
segments, C6 will be small. 

C7, the last characteristic of the proposed cost function, ensures that 
larger leaf segments have priority during linking, as compared to smaller 
ones. Since the main arteries are usually thicker than secondary arteries 
or veins, they should be connected first. It is computed as 

C7 = 1 −
a(S i) + A(S i) + a

(
S j

)
+ A

(
S j

)

4⋅X⋅Y
. (19)  

In our implementation, the following configuration of weights for the 
cost function CG was used: w1 = 3, w2 = 8, w3 = 1, w4 = 1, w5 = 2, 
w6 = 1 and w7 = 1. 

After identifying the two leaf segments with the minimum cost 

Fig. 6. A standard peripheral CTA case. (a) presents a MIP of the entire raw 
data set. (b) shows a MIP without bones, after vessels and bones were 
segmented with our approach. (c) shows the tracked vessel tree (blue) with a 
selected path (green). (d) displays a mpCPR of the entire vessel tree. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Example of a CTA data set with a cross-over bypass and two stents. (a) 
presents a MIP of the entire raw data set. (b) shows a MIP without bones, after 
vessels and bones were segmented with our approach. (c) shows that the vessel 
tree was properly tracked through the bypass and the relevant paths were 
determined correctly. (d) displays a mpCPR of the entire vessel tree. 
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function, we linearly interpolate a path between them. The leaf island of 
the untraversed leaf segment represents the new seed island for the BFS. 
This process is repeated until no more untraversed partial vessel trees 
exist. The result of this step is a single vessel tree that contains all the 
previously tracked partial trees. This solves the problem of large dis
continuities in vessel paths. 

After determining a connected set of voxels belonging to blood ves
sels, we compute the centerlines using skeletonization (Step 13) [21]. 
Subsequently, we determine the relevant blood vessels (Step 14). As it is 
sufficient for PAD to evaluate the vessel tree from the aortic root to six 
distal arteries (three on each side, recall Section 3, second paragraph), 
we model the vascular system as a hierarchical tree structure from the 
abdominal aorta to the feet. The root node is defined as the most 
proximal voxel, i.e., with the minimal z-coordinate. Inspired by the 
human anatomy, our method assumes each leaf node (distal voxel) of a 
main artery is located in the lower third part of the data set. A path 
between the root node and each leaf node is computed with a BFS 
traversal, computing the distance between the two nodes. The leaf node 
with the longest distance to the root node is identified as the last node of 
one of the main arteries. The points on the first determined main artery 
are marked once visited. The next main arteries are identified (and then 
visited) by extracting the leaf nodes with the largest number of unvisited 
voxels located on the path to the root node. Fig. 5b illustrates our 
approach of constructing the paths of the main arteries. If a patient has 
an amputated limb, not all paths can be determined, and a manual 
adjustment is necessary. 

Once the main arteries are determined, the radii along their 
centerlines are computed (Step 15). The data set is re-sampled at each 
node in the tree in order to obtain a cross-section, or slice, perpendicular 
to the direction of the centerline. The voxels on this oblique slice either 
belong to the vessel or other tissue class. The estimated radius is the 
maximal Euclidean distance from the centerline point to the voxels of 
the vessel class. The centerlines of the main arteries, along with their 
associated radii, are converted into a graph representation (Step 16) and 
smoothed using B-spline re-sampling. 

4. Results and discussion 

Our proposed algorithm processes a common peripheral CTA case 
(see Fig. 6 and Entry 7 in Table 1) without any problems. As clearly 
shown in Fig. 6b, the main arteries are properly detected and converted 
to a graph representation (see Fig. 6c). A set of mpCPR images (see 
Fig. 6d) of the extracted vascular system is then generated from multiple 
viewing angles for inspection by a radiologist, as usual in clinical 
routine. The ability to display each of the curved reformatted vessels 
simultaneously is critical for efficient review and diagnosis, since the 
tree-like spatial arrangement provides the visual clue for identification 
of anatomic segments. The familiar spatial arrangement is also main
tained at different viewing angles, which are required to visually gauge 
the severity of eccentric lesions. The mpCPR visualization technique 
facilitates a thorough, yet time-efficient review of the peripheral arterial 
tree [42]. In particular, the diagnostic accuracy of less experienced ra
diologists seems to improve with mpCPRs compared to regular multi
planar reformations (MPRs). 

Another clinical case is presented in Fig. 7 (Entry 8 in Table 1). This 
case comprises two algorithmic challenges, a cross-over bypass (vessel 
of different spatial orientation) and two stents. Both are properly 
handled by our approach, and the resulting mpCPR is presented in 
Fig. 7d. 

Vessels Touching Bone Fig. 8a presents several slices of a data set 
containing vessels that are very close to bone tissue. Even if in some 
slices (see slice 987) vessels are connected to bone in the segmentation 
stage, only the vessel tissue is determined in the subsequent (tracking) 
stage and the vessel is correctly tracked in these slices. To our knowl
edge, this is the first algorithm to solve this problem with minimal user 
interaction. Available solutions either require a high amount of user 

interaction or simply fail to separate bones from adjacent vessels. 
Small Vessel Discontinuities A data set with many small vessel dis

continuities is shown in Fig. 8b. In this example, our proposed method 
reconnected all but one discontinuity in the tracking stage. Only a single 
additional seed point solved this problem and the remaining disconti
nuity was handled during linking (Step 12). 

Bone-like Regions Stents and calcifications do not have the same 
characteristics as vessel tissue. They have much higher intensity values, 

Fig. 8. Solved challenging cases. (a) shows that our approach correctly tracks a 
small vessel even when it touches a bone. (b) presents a correctly tracked vessel 
tree despite many small discontinuities. (c) demonstrates the correct tracking of 
a stent, even if the intensity values of the vessel and stent are quite different. 
The corresponding axial slices are shown on the left, followed by a coronal MIP, 
the segmented vessels, and on the right the vessel centerline, respectively. (d) 
clearly conveys the strengths of our linking approach in dealing with larger 
discontinuities caused by metal implants. The corresponding axial slices are 
shown on the left, followed by a coronal MIP, the segmented vessels with a 
large discontinuity caused by the metal implant, and on the right the correctly 
connected vessel centerline. 
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comparable to those of bone tissue. Fig. 8c shows a data set with a stent 
that is correctly tracked as part of the vessel tree using our proposed 
technique. Since the size of stents and calcified tissue within a single 
slice is comparable (or smaller) to that of vessel tissue, stents can be 
properly tracked. 

Metal Hardware Artifacts Prosthetic hip or knee joint implants or 
other orthopedic hardware such as fixation screws and plates result in 
considerable metal artifacts in CTA data sets (see Fig. 8d). On the left, 
artifacts (dark bands and streak noise) caused by an artificial hip joint 
are presented in three axial slices. In slices 175 and 209, the vessel tissue 
is visible, but in slice 192 it is completely obscured by the artifacts. In the 
event that manual user interaction is necessary, our approach minimizes 
effort. In this difficult case, only one additional user-specified seed point 
was required. During linking (Step 12), the separate vessel segments 
were correctly connected and, subsequently, the vessel tree was suc
cessfully constructed. 

5. Evaluation 

To evaluate our approach, we compared our results with those of the 
semi-automatic approach currently used in cooperating hospitals [17]. 
The latter approach starts with the automatic identification of bone and 
vessel tissue using thresholds, region-growing, and morphological op
erations. The user can then manually adjust the proposed labels slab-
wise (a slab comprises a series of consecutive slices, usually around 30), 
either by assigning them directly or by using a combination of 3D 
region-growing and separation objects that prevent regions from 
growing outside the desired boundaries. Once vessels and bones are 
adequately labeled, the corresponding vessels are traced as the shortest 
path between user-defined source and target points, based on density 
and gradient information. Vascular discontinuities are treated manually 
by interpolating centerlines with many contiguous linear segments, a 
cumbersome and time-consuming procedure. 

We conducted two studies, a pilot study (see Table 1) carried out by a 
computer scientist and a clinical study (see Table 2) performed by a 
radiology technologist. The workflow was designed to resemble the 
clinical environment in a tertiary care facility where subspecialty care is 
routinely provided for patients with PAD. In both studies, we measured 
the  

• segmentation time (Tseg, Step 1 to Step 6),  
• number of seed points (SP, Step 7),  
• number of undo operations (U),  
• tracking time (Ttrack, Step 7 to Step 11),  
• automatic vessel tree generation time (Tgen), and  
• total time (Ttotal). 

The segmentation stage of our approach was implemented on the GPU 
using CUDA, while all the other steps were implemented on the CPU. All 
timings are given in minutes and seconds (mm:ss). 

The aim of the pilot study (N = 9) was a feasibility assessment of our 
proposed approach. It was carried out by a computer scientist, a coau
thor and developer of our algorithm. Since the algorithmic details were 
known, it was clear where to place seed points and how to correct 
problems efficiently. With this in mind, we explicitly designed the pilot 
study in such a way that we only assessed whether the algorithm was 
sufficiently accurate for a larger clinical study. In addition to the usual 
parameters, the following ones were measured as well:  

• true positive rate (TPR) or sensitivity, the percentage of vessel tissue 
identified correctly as vessel,  

• true negative rate (TNR) or specificity, the percentage of voxels 
belonging to other tissue that were correctly labeled as such,  

• positive predictive value (PPV) or precision,  
• negative predictive value (NPV),  
• accuracy (ACC), the number of correctly labeled voxels (either 

belonging to vessels or other tissue) compared to the total number of 
voxels in a data set, and  

• Dice coefficient. 

All measurements were taken on an Intel i7-2600 K 3.40 GHz processor 
with 8 GB RAM and an Nvidia GeForce GTX 590 GPU with 1.5 GB RAM. 
Overall, it took 4:28 ± 2:29 [mm:ss] to segment and track the required 
arteries with only 5 ± 3 seed points on average. The tracking was rarely 
reverted (undo, on average only once) to correct seed points or specify 
separation planes. We achieved a TPR of 92.89 % ± 1.92 %, a PPV of 
88.28 % ± 7.41 %, and a Dice coefficient of 90.39 % ± 4.26 %. The 
reason for the lower PPV is that our method occasionally segmented a 
few secondary vessels as well (false positives), whereas medical experts 
usually focus on finding only the relevant arteries in the vessel tree 
(recall Section 3, second paragraph). However, as these secondary ves
sels do not affect determining the main arteries, the lower PPV is not 
considered an issue in the routine. We obtained a TNR of 
99.99 % ± 0.01 %, a NPV of 99.99 %, and an accuracy of 
99.98 % ± 0.01 %. The reason for the very high TNR and NPV is that our 
approach very accurately identifies true negatives, i.e. other tissue or 
background. As expected, there was a considerable difference in terms of 
completion time between our approach and the timings reported by 
Kanitsar et al. [17] (30–45 min). Therefore, we conducted the larger, 
second study. 

The clinical study (N = 24) was carried out by a radiology tech
nologist (a coauthor) in one of our collaborating hospitals (see Table 2). 
To obtain a satisfactory vessel tree, it is usually adjusted manually by 
adding or removing control points. These points are located either at 

Table 1 
The pilot study was carried out by a computer scientist and compared the accuracy of our approach with the method used by our clinical partners. We assessed the 
segmentation time (Tseg), number of seed points (SP), number of undo operations (U), tracking time (Ttrack), automatic vessel tree generation time (Tgen), total time 
(Ttotal), true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and Dice coefficient. 
Timings are given in [mm:ss].  

No Performance Accuracy 

Tseg SP U Ttrack Tgen Ttotal Size TPR TNR PPV NPV ACC Dice 

1 0:31 6 1 2:57 0:44 4:18 5122 × 1151 0.9165 0.9997 0.8287 0.9999 0.9996 0.8704 
2 0:20 6 0 0:43 0:15 1:24 5122 × 0766 0.9188 0.9998 0.8240 0.9999 0.9998 0.8688 
3 0:35 9 0 1:30 0:32 2:46 5122 × 1236 0.9100 0.9999 0.9527 0.9999 0.9998 0.9309 
4 0:31 4 0 1:43 0:30 2:48 5122 × 1147 0.9057 0.9998 0.8146 0.9999 0.9997 0.8577 
5 0:33 3 1 3:44 0:42 5:02 5122 × 1206 0.9428 0.9998 0.7709 1.0000 0.9997 0.8482 
6 0:36 9 0 3:16 0:41 4:42 5122 × 1170 0.9205 0.9999 0.9067 0.9999 0.9998 0.9136 
7 0:52 1 0 0:50 0:57 2:40 5122 × 1799 0.9328 1.0000 0.9823 0.9999 0.9999 0.9569 
8 0:37 5 2 6:02 0:48 7:33 5122 × 1304 0.9575 0.9999 0.9304 0.9999 0.9998 0.9438 
9 0:38 4 3 8:00 0:23 9:05 5122 × 1250 0.9551 0.9999 0.9347 0.9999 0.9998 0.9448 

μ 0:35 5 1 3:11 0:36 4:28 5122 × 1225 0.9289 0.9999 0.8828 0.9999 0.9998 0.9039 
σ 0:08 3 1 2:27 0:14 2:29 5122 × 0265 0.0192 0.0001 0.0741 0.0000 0.0001 0.0426  
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branches or end points of a vessel. In difficult cases, e.g. a vessel oc
clusion, the vessel centerline is manually defined by inserting consecu
tive control points. Since the correct placement of such control points is 
time-consuming, we made the following additional measurements:  

• number of manually placed control points (CP),  
• number of deleted control points (dCP),  
• time to obtain a satisfiable vessel tree (Tvtree),  
• automatic segmentation time (Taseg), and  
• manual segmentation time (Tmseg). 

All measurements were taken on an Intel i5-7500 3.40 GHz processor 
with 32 GB RAM and an Nvidia GTX 1070 GPU with 8 GB RAM. We 
compared our approach (blue, see Table 2) to the currently employed 
clinical approach (gray) in terms of segmentation time, vessel tree 
construction time, control point addition, control point deletion, and 

total time. We tested all data for normality (Shapiro-Wilk test, p < 0.05) 
and for significant differences between our and the routine approach 
(paired t-test, p < 0.05). We also calculated the mean and standard de
viation, the difference in total time, and the performance factor. In terms 
of segmentation times, our approach was significantly faster (p =

4.17e − 08, on average 8:53 [mm:ss]) than the routine workflow in 22 
of the 24 cases, except cases 4 and 13. There was no significant differ
ence in the vessel tree construction times (p = 0.08571, on average 2:20 
[mm:ss] faster), but our approach required significantly less interaction, 
i.e., control point additions (p = 0.03417, on average 13 less) and de
letions (p = 0.04625, on average 2 less). As in the pilot study, the 
tracking was rarely undone in the clinical study (on average only once). 
This demonstrates that our proposed approach works as intended in 
clinical routine and can therefore be considered robust. Overall, our 
approach poses a substantial improvement, since it requires significantly 

Table 2 
The clinical study was carried out by a radiology technologist and measured the time and number of interactions until a satisfactory result was reached. We compared 
our approach (blue) with the routine approach (gray). We assessed the segmentation time (Tseg), number of seed points (SP), number of undo operations (U), 
tracking time (Ttrack), automatic vessel tree generation time (Tgen), total time (Ttotal), number of manually placed control points (CP), number of deleted control 
points (dCP), time to obtain a satisfiable vessel tree (Tvtree), automatic segmentation time (Taseg), and manual segmentation time (Tmseg). 
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less user interaction and is considerably faster than the routine workflow 
(17:24 ± 6:44 vs. 28:40 ± 7:45 [mm:ss]). 

Fig. 9 shows the completion time histogram of our proposed (blue) 
and the routine approach (gray) using the clinical study data sets 
(N = 24), divided into the following three bins: t < 12 min, 12 ≤ t ≤ 24 
min, and t > 24 min. Most data sets (N = 16) belong to the central bin in 
our approach, while the employed approach usually (N = 18) requires 
more than 24 min per case. As mentioned by the evaluating radiologist, 
one possible reason for the difference in time distribution is that our 
proposed approach can track occluded vessels over longer distances, 
including their collateral vessels. This saves a lot of time because these 
vessels do not need to be defined manually, as in the routine approach. 
This clearly demonstrates that our proposed approach is a reasonable 
alternative to the current approach. 

6. Conclusion and future work 

We presented a method for segmenting and extracting the relevant 
vessels in peripheral CTA data sets. An innovative aspect of our 
approach is the tracking stage, in which the vessel tissue is propagated 
even if vessels touch bone or are disconnected. We evaluated our 
approach in two studies and received positive results, namely that it is 
not only accurate and efficient, but Our approach is also robust, as it 
supports manual adjustments to improve unsatisfactory results. In 
contrast, available solutions often lack sufficient capabilities for manual 
corrections, rendering the produced reformations invalid for clinical 
analysis. Outside of dedicated cardiovascular centers, reading of pe
ripheral CT angiographies is thus often still performed using only MPRs, 
which is not only time-consuming, but bears the risk of missing short, 
aperture-like lesions. Hence, our technique substantially improves the 
current workflow for the assessment of PAD. In difficult clinical cases, 
such as bypasses, metal artifacts, stents, and low contrast in the acqui
sition process, our collaborating physicians rated the outcome of our 
technique as positive, compared to the current clinical workflow, which 
is quite cumbersome and requires extensive user interaction and 
expertise. Our proposed approach solves these situations either auto
matically or with minimal user interaction. We believe that this is a 
particular strength for generating large, expert-annotated data sets 
required for the development of new machine learning algorithms. The 
large undiseased portions of the vessel tree are rapidly and efficiently 
extracted, allowing the expert supervisor to focus on the clinically 
important but often challenging diseased segments. The generation of 
high-quality, well curated databases is a major bottleneck for the 
development of the next generation AI/ML driven image processing 

tools. 
Nevertheless, there are two aspects to consider before our method can 

be incorporated into the daily clinical routine. If the linking does not lead 
to correct results, it might lead to a wrong overall vessel extraction [42]. 
We assume that physicians would feel more comfortable if the output of 
our algorithm could be confirmed after the linking before continuing. 
Physicians are sometimes also interested in the secondary arteries, e.g. 
the internal iliac arteries, in case the main ones are occluded. Our 
workflow allows them to detect the secondary arteries as well, but may 
require additional seed points, separation objects, or manual control 
point placements. 

CRediT authorship contribution statement 

Gabriel Mistelbauer: Conceptualization of evaluation, Methodology, 
Software, Writing – Original draft and final manuscript. Anca Morar: 
Conceptualization of evaluation, Methodology, Software, Writing – 
Original draft and final manuscript. Rüdiger Schernthaner: Data cura
tion, Conceptualization and conduction of evaluation, Writing – Original 
draft. Andreas Strassl: Data curation, Conceptualization and conduction 
of evaluation, Writing – Original draft. Dominik Fleischmann: Writing – 
Original draft, Reviewing – Original draft and final manuscript. Florica 
Moldoveanu: Writing – Original draft, Reviewing – Original draft and 
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