Motivation

- LiDAR (laser scanning) data are very large, but often just a small part of the point cloud is of interest to solve a problem
- A semantic segmentation makes it possible to filter a point cloud smartly before applying algorithms
 - Reducing points to process enormously & eliminating possible sources of errors
- A semantic segmentation of a point cloud can be used for various applications
 - Reconstruction of curb, sidewalk & street geometry as a practical example of application

Method

Semantic Segmentation:
- Developed & trained 3D CNN
- Octree as base data structure
- Data samples = rasterized nodes + neighbours of certain level
- Trained on Semantic3d dataset

Detection of curb points:
- Point cloud features
 - Height difference
 - Height Std. Dev.
 - Curvature
 - Perpendicularity to street

Reconstruction of geometry:
- Filter false-positive curb points
 - Density based clustering
 - Approx. linearity & parallelism to the road
- Reconstruction of polygons
 - 2D fitting of course of the curb
 - Upper & lower 3D curb edges
 - Plane fitting for sidewalk

Results

- **Segmentation accuracy on Semantic3d training set:**
 - Used for training: 93.73%
 - Not used for training: 95.51%

- **Mean reconstruction error:**
 - Curbs: ±1.8 cm
 - Street: ±3.3 cm
 - Sidewalk: ±2.3 cm

Conclusion and Further Work

- Successful proof-of-concept prototype
- Method is quite general
- Method showed a lot of potential
- Can be easy adapted to other applications
- Improving semantic segmentation
 - Hierarchical classification
 - Pointwise segmentation network
 - Transfer learning to add "curb" class
- Improving reconstruction
 - Enhance false-positive filtering
 - Compute degree of fitting function
 - Create geometry not parallel to the road