
Klassifikation Urbaner
Punktwolken Mittels 3D CNNs

In Kombination mit Rekonstruktion von
Gehsteigen

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Visual Computing

eingereicht von

Lisa Maria Kellner, BSc
Matrikelnummer 01428183

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Werner Purgathofer
Mitwirkung: Dipl.-Ing. Dr. Stefan Maierhofer

Wien, 23. Februar 2021
Lisa Maria Kellner Werner Purgathofer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Classification of Urban Point
Clouds Using 3D CNNs

In Combination with Reconstruction of Sidewalks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Visual Computing

by

Lisa Maria Kellner, BSc
Registration Number 01428183

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Dr.techn. Dr.h.c. Werner Purgathofer
Assistance: Dipl.-Ing. Dr. Stefan Maierhofer

Vienna, 23rd February, 2021
Lisa Maria Kellner Werner Purgathofer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Lisa Maria Kellner, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. Februar 2021
Lisa Maria Kellner

v

Danksagung

Es war eine lange Reise vom Beginn meines Studiums bis zu dieser Diplomarbeit und
ich habe währenddessen sehr viel Unterstützung von Familie, Freunden und Kollegen
erhalten. Deshalb möchte ich mich an dieser Stelle bedanken.

Zuerst, möchte ich mich bei VRVis Zentrum für Virtual Reality und Visualisierung
Forschungs-GmbH bedanken, welches mir diese Diplomarbeit ermöglicht hat. Die VRVis
Forschungs-GmbH wird im Rahmen von COMET – Competence Centers for Excellent
Technologies (854174, 879730) durch BMK, BMDW, Land Steiermark, Steirische Wirt-
schaftsförderung – SFG, Land Tirol und Wirtschaftsagentur Wien – Ein Fonds der Stadt
Wien gefördert. Das Programm COMET wird durch die FFG abgewickelt. All meinen
Kollegen am VRVis sei ebenfalls ein Dank ausgesprochen, für die fachliche Hilfe, Dis-
kussionen, Anregungen und Unterstützung während meines Studiums und dieser Arbeit.
Dabei ist ein ganz besonderer Dank an Stefan, Attila, Michi, Harri, Georg, Andi, Thomas,
Lui, Rebecca, Janne, Maria und Dani gerichtet.

Ebenfalls möchte ich mich bei meinen Eltern bedanken, welche mich während des gesamten
Studiums unterstützt haben. Hier sei auch ein großer Dank an meine restliche Familie
und Freunde gerichtet, die mir während meines Studiums zur Seite gestanden haben.

Außerdem möchte ich mich bei CycloMedia Deutschland, LiDAR Point Cloud und
Stadtentwässerungsbetriebe Köln, AöR für das Bereitstellen der Daten aus Köln bedanken.

vii

Acknowledgements

It has been a long journey from the beginning of my studies to this thesis and I have
received a lot of support from family, friends and colleagues during this time. Therefore,
I would like to take this opportunity to thank them.

First, I would like to thank VRVis Zentrum für Virtual Reality und Visualisierung
Forschungs-GmbH for making this thesis possible. VRVis is funded by BMK, BMDW,
Styria, SFG, Tyrol and Vienna Business Agency in the scope of COMET - Competence
Centers for Excellent Technologies (854174, 879730) which is managed by FFG. I would
also like to thank all my colleagues at VRVis for their professional help, discussions,
suggestions and support during my studies and this thesis. Special thanks go to Stefan,
Attila, Michi, Harri, Georg, Andi, Thomas, Lui, Rebecca, Janne, Maria and Dani.

I would also like to thank my parents, who supported me throughout my studies. I would
also like to thank the rest of my family and friends, who have supported me during my
studies.

Furthermore, I would like to thank CycloMedia Deutschland, LiDAR Point Cloud and
Stadtentwässerungsbetriebe Köln, AöR for providing the data from Cologne.

ix

Kurzfassung

LiDAR-Geräte sind in der Lage die physische Welt sehr genau zu erfassen. Daher werden
sie häufig für die 3D-Rekonstruktion verwendet. Leider können solche Daten sehr schnell
sehr groß werden und meist ist nur ein Bruchteil der Punktwolke tatsächlich von Interesse.
Daher wird die Punktwolke vorher gefiltert, um Algorithmen nur auf die für sie relevanten
Punkte anzuwenden. Eine semantische Information über die Punkte kann für eine solche
Filterung verwendet werden. Die semantische Segmentierung einer Punktwolke ist ein
beliebtes Forschungsgebiet und auch hier gibt es in den letzten Jahren einen Trend in
Richtung Deep Learning. Jedoch sind Punktwolken, im Gegensatz zu Bildern, nicht
strukturiert. Daher werden Punktwolken oft rasterisiert, was jedoch in einer Weise
geschehen muss, sodass die zugrunde liegende Struktur gut erhalten bleibt.

In dieser Arbeit wird ein 3D Convolutional Neural Network für die semantische Segmen-
tierung einer LiDAR-Punktwolke entwickelt und trainiert. Dabei wird eine Punktwolke
mittels einer Octree-Datenstruktur repräsentiert, welche es ermöglicht, nur relevante Teile
zu rasterisieren. Denn nur dichte Teile der Punktwolke, in denen sich wichtige Informatio-
nen über die Struktur befinden, werden immer weiter unterteilt. Das ermöglicht es, die
Knoten eines gewissen Levels im Octree zu nehmen und diese als Daten zu rasterisieren.

Es gibt viele Anwendungsgebiete für 3D Rekonstruktionen basierend auf Punktwolken.
In einem städtischen Szenario können das zum Beispiel ganze Stadtmodelle oder einzelne
Gebäude sein. Jedoch wird in dieser Arbeit die Rekonstruktion von Gehwegen untersucht.
Da bei Überflutungssimulationen in Städten eine Erhöhung von ein paar Zentimetern
einen großen Unterschied machen kann und Wissen über die Bordsteinegeometrie hilft
die Simulation genauer zu machen. Bei der Gehwegrekonstruktion wird zuerst, basierend
auf der semantischen Information des 3D CNNs, die Punktwolke gefiltert und dann
werden Punktmerkmale berechnet, um die Punkte des Bordsteins zu erkennen. Mit
diesen Bordsteinpunkten wird die Geometrie der Bordsteins, Gehweges und der Straße
berechnet.

Insgesamt wird in dieser Arbeit ein Proof-of-Concept Prototyp für semantische Punktwolken-
Segmentierung mittels 3D CNNs und basierend auf dieser ein Detektions- und Rekon-
struktionsalgorithmus für Bordsteine entwickelt.

xi

Abstract

LiDAR devices are able to capture the physical world very accurately. Therefore, they
are often used for 3D reconstruction. Unfortunately, such data can become extremely
large very quickly and usually only a small part of the point cloud is of interest. Thus,
the point cloud is filtered beforehand in order to apply algorithms only on those points
that are relevant for it. A semantic information about the points can be used for such a
filtering. Semantic segmentation of point clouds is a popular field of research and here
there has been a trend towards deep learning in recent years too. However, contrary to
images, point clouds are unstructured. Hence, point clouds are often rasterized, but this
has to be done, such that the underlying structure is represented well.

In this thesis, a 3D Convolutional Neural Network is developed and trained for a semantic
segmentation of LiDAR point clouds. Thereby, a point cloud is represented with an
octree data structure, which makes it easy to rasterize only relevant parts. Since, just
dense parts of the point cloud, in which important information about the structure is
located, are subdivided further. This allows to simply take nodes of a certain level of the
octree and rasterize them as data samples.

There are many application areas for 3D reconstructions based on point clouds. In an
urban scenario, these can be for example whole city models or buildings. However, in this
thesis, the reconstruction of sidewalks is explored. Since, for flood simulations in cities, an
increase in height of a few centimeters can make a great difference and information about
the curb geometry helps to make them more accurate. In the sidewalk reconstruction
process, the point cloud is filtered first, based on a semantic segmentation of a 3D CNN,
and then point cloud features are calculated to detect curb points. With these curb
points, the geometry of the curb, sidewalk and street are computed.

Taken all together, this thesis develops a proof-of-concept prototype for semantic point
cloud segmentation using 3D CNNs and based on that, a curb detection and reconstruction
algorithm.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of this Thesis . 3
1.4 Structure of this Thesis . 4

2 Related Work 5
2.1 Semantic Point Cloud Segmentation 5
2.2 Curb Detection . 17

3 Semantic Point Cloud Segmentation 21
3.1 Data Extraction . 22
3.2 Training Dataset . 26
3.3 Network Learning Basics . 28
3.4 Network Architecture . 31
3.5 Point Cloud Segmentation . 34

4 Curb Detection and Fitting 35
4.1 Point Cloud Prefiltering . 35
4.2 Feature Extraction . 36
4.3 False Positive Filtering . 42
4.4 Curb Fitting . 45

5 Neural Network Training 49
5.1 Datasets . 49
5.2 Hyperparameter-Tuning . 50
5.3 Network Using Small Grid Size . 52
5.4 Network Using Middle Grid Size . 54

xv

5.5 Network Using Big Grid Size . 56

6 Results 61
6.1 Semantic Segmentation of the Semantic3d Dataset 61
6.2 Semantic Segmentation and Curb Fitting of the Cologne Dataset . . . 69
6.3 Critical Reflection . 82

7 Conclusion and Future Work 85

A Hyperparameter Tuning 87

B Network Architectures 93
B.1 Network Using Small Grid Size . 93
B.2 Network Using Middle Grid Size . 95

List of Figures 97

List of Tables 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Motivation

3D reconstruction is rebuilding the physical world based on captured data.

Reconstructions have a broad field of applications, like preservation of cultural heritage
as statues from Michelangelo, relicts from Egypt or Buddha statues [GBS14] or serious
games about it [MCB+14]. Further use cases are underwater robotic surveys [JRPWM10]
or indoor scenes like KinectFusion, which can be used for augmented reality [IKH+11].
Also reconstructions of cities are of great interest, because they can be used for planning,
city climate or noise propagation applications [Bre00] as well as emergency management,
disaster control and for movies or computer games [MWA+13].

Such simple city models are used in Visdom [Vis], a simulation and visualization
application for disaster management of floods. A screenshot of this software can be seen
in Figure 1.1. They assist decision making in emergencies of floods caused by heavy
rainfall, tsunamis or other disasters. The impact of short-term protections, like sandbags,
or long-term protections can be simulated in advance to support decisions about safety
arrangements. Based on this, emergency personnel can be trained accordingly and
possible evacuation plans can be explored beforehand. In addition, the sewer system of a
city can be added to the simulation to take their capacity and potential bottlenecks into
account.

In case of floods, an increase in height of a couple of centimetres or a house driveway with
a slope down can make a great difference in safety arrangements. Therefore, a geometric
information about driveways or sidewalks would be of great interest for the Visdom-
team to make their simulation even more accurate. Therefore, this thesis addresses the
detection and reconstruction of sidewalk surfaces.

1

1. Introduction

Figure 1.1: Screenshot of the Visdom flood simulation software. (Source: [Vis])

1.2 Problem Statement

Acquiring respective data for a 3D reconstruction is nowadays probably as easy as never
before. Various technical instruments are available. Mobile phones are able to take
high-resolution photos with meta-data like camera parameters or GPS location. Moreover,
photos are not limited to the ground, because drones allows us to capture the world from
above too. LiDAR devices scan their surrounding with high precision and yield dense
point clouds. This data can then be combined with other information like cadastre data
or with data from Open Streets Maps, an open source map with further geospatial tags.

Each type of data has its own advantages and disadvantages. Everyone can take pho-
tos with their smartphone, but the quality of photos strongly depends on the lighting
conditions and are therefore prone to over- as well as underexposure. Airborne photogra-
phy is not able to capture small structures and has to cope with occlusions from trees.
Although, they are a good extension for terrestrial laser scanning data to close gaps.
Photogrammetric point clouds are not as fine-grained as LiDAR data, but on the other
hand, LiDAR data can become so huge that it can be challenging to process it efficiently.
Geospatial data does not provide enough information for reconstruction, but is a good
enhancement to improve algorithms. Therefore, to solve a problem it is inescapable to
use the type of data as well as data structure fitting best to the problem and to combine
different sources of data.

The reconstruction of sidewalks is based on LiDAR data, because laser scanners are able
to capture subtle structures like an elevation of ten to fifteen centimetres. Laser scan

2

1.3. Aim of this Thesis

data of a whole city has up to several billion points and curbs are just a tiny part of them.
It is therefore not feasible to search curb points in the whole point cloud. This would
not only take many computational resources, but also a satisfying curb detection result
would be hard to achieve. For the simple reason that by applying this problem to the
whole city, it can either be over-modelled, which would result in many false positives or
under-modelled, which would not detect many curb points. Since sidewalks are located
on the ground and besides streets, the majority of points can be filtered beforehand to
reduce the search area. This could either be achieved with some kind of ground plane
filtering or by using semantic information. With semantic information applied to points,
they can be filtered more precisely. For example, a car is on the ground and at or nearby
a street too, but during the detection process, those car points would lead to many false
positive curb points. Therefore, it would be great to remove car points from the point
cloud beforehand too. Another advantage is, that this would not only help to limit the
search area for this problem, since the semantic information could also be used for further
reconstructions, like buildings, or for filtering vegetation and other unwelcome points.
Hence, sidewalks are located near roads; information about the street network would
be another great source of data. OpenStreetMap [Opea] provides it and many further
geospatial information. However, the location of those tags is saved in another coordinate
system as the LiDAR data and has to be converted beforehand. Due to the semantic
filtering of the point cloud and the combination with further data sources, the search
area is insomuch restricted, that detecting curb points can be achieved with basic spatial
features and geometry can be generated with simple algorithms.

1.3 Aim of this Thesis

The aim of this thesis is to develop a proof-of-concept prototype for semantic point cloud
segmentation and based on that, a curb detection and 3D reconstruction algorithm.

Convolutional neural networks are probably the most common deep learning method
nowadays. They are used in a wide range of fields, such as image or speech recognition,
face detection, text or video analysis and self-driving cars. They are outperforming other
supervised classification methods by far, because during the convolutional operations not
only low-level features are detected, but also high-level features and essential structures
are distinguished. The essential processes like convolution or pooling can be easily
adapted to the three-dimensional space. Therefore, a semantic segmentation of point
clouds is achieved by building and training 3D convolutional neural networks. To decrease
memory consumption and training time, the point cloud will not just be represented in a
uniform grid structure, but with an octree. The cells of the octree in a certain level are
then voxelized and used for the segmentation.

For curb detection, just ground points are used, which can easily be selected based on the
semantic information. Multiple geometric features are calculated for each point and if a
point fulfils all features, it is labelled as “curb”. Afterwards a filtering step removes false
positive “curb” points and finally geometry is generated for sidewalks, curbs and street.

3

1. Introduction

Therefore, the work of this thesis can be divided into two parts. First, for a semantic
segmentation of a point cloud, a 3D convolutional neural network will be developed and
trained. Secondly, curb points will be calculated with geometric point cloud features and
based on them, geometry for the curb, sidewalk and street will be computed.

1.4 Structure of this Thesis
First, an overview about related work in point cloud segmentation as well as curb
detection is given in Chapter 2, where section 2.1 discusses semantic segmentation based
on handcrafted features, artificial neural networks and convolutional neural networks.
Convolutional neural networks are categorized in 2D image segmentation networks, where
the point cloud is projected into images first, and 3D convolutional neural networks,
which are directly acting on the point cloud. Section 2.2 describes the curb detection
process in point clouds on which the curb detection steps in this thesis are based on.
In the course of this process, the point cloud is prefiltered, then spatial features are
calculated and based on them a point is classified as curb or not. Afterwards, false
positive labelled points are filtered and finally geometry is computed.

Chapter 3 describes semantic point cloud segmentation and thereby addresses data
extraction in Section 3.1, the dataset used for training in Section 3.2, some network
learning basics in Section 3.3, as well as the final network architecture in Section 3.4.
Furthermore, network classification and segmentation of an unknown point cloud is
shortly depicted in Section 3.5.

Chapter 4 is dedicated to the different steps of the curb detection and fitting process.
Section 4.1 describes prefiltering of a point cloud and Section 4.2 explains and visualizes
spatial point cloud features, including the integration of OpenStreetMap data. Section
4.3 addresses false positive filtering and finally, Section 4.4 discusses geometry fitting.

Chapter 5 addresses the network training process and its results in detail, with the
composition of the training set in Section 5.1 and the hyperparameter tuning in Section
5.2. Furthermore, three networks with different grid sizes are evaluated: a network using
a small grid size in Section 5.3, a network using a middle grid size in Section 5.4 and a
network using a big grid size in Section 5.5.

Chapter 6 shows and discusses the results of the network training and semantic segmen-
tation of the training set in Section 6.1 as well as the semantic segmentation and curb
fitting results of real-world data in Section 6.2. A critical reflection on the work of this
thesis is given in Section 6.3 and finally, Chapter 7 gives a conclusion and short outlook
into future work.

4

CHAPTER 2
Related Work

This chapter gives an overview about related work in point cloud segmentation and
curb detection. Section 2.1 addresses semantic point cloud segmentation based on
handcrafted features as well as artificial neural networks. Thereby a focus is given to
2-dimensional convolutional neural networks, which are mapping the point cloud into
images, 3-dimensional convolutional neural networks, which process the point cloud
directly, as well as special for point clouds developed optimizations, like tree-based
networks for example. Section 2.2 describes research in road boundary and curb
detection of self-driving vehicles. Emphasis is given to the pipeline used in this thesis,
where the point cloud is filtered first, then candidate points are detected and filtered for
false positives, and finally geometry is fitted to the detected curb points.

2.1 Semantic Point Cloud Segmentation
Point clouds are a set of unstructured points either calculated by photogrammetry from
several photos or captured directly by a scanning device.

The basic principle of generating photogrammetric point clouds is computing 2D image-
features and determining their 3D position by finding the same feature in multiple
overlapping photos. The most commonly used feature is the Scale Invariant Feature
Transform (SIFT), which is invariant to translation, scaling and rotation of the image
[Low04]. Structure-from-Motion calculates the location and orientation of the photos as
well as scene geometry, without any prior knowledge about camera positions, by using
bundle adjustment and such image-features. 3D points, and thus the scene geometry, are
computed by knowledge acquired in this process about the same feature in several photos
and by using triangulation [WBG+12]. Figure 2.1 shows such a photogrammetric point
cloud.

5

2. Related Work

Figure 2.1: A photogrammetric point cloud with location and orientation of the photos.
(Source: adapted from [SKMW17])

Light Detection and Ranging (LiDAR) devices, or colloquially called laser scanners, are
able to capture the physical world by shooting out laser beams. When a laser beam hits
an object, it is reflected and returns to the scanning device. The elapsed time, until the
return of the beam, is measured and based on that, the distance from the object to the
laser scanner is obtained and therefore the 3D position of the hit-point as well. Point
clouds captured with LiDAR devices are invariant to illumination, more accurate and
denser than photogrammetric point clouds. Such devices are able to capture huge areas,
but the resulting point clouds could become very large very quickly.

Semantic point cloud segmentation is the assignment of discrete class labels for each point
in the point cloud individually.

In this thesis the main focus is on supervised learning techniques, where a classifier learns
the correlation of set X := {x1, x2, ..., xn} of n data samples to the corresponding set
Y := {y1, y2, ..., yn} of n ground truth labels. A trained classifier takes a data sample xi
as input and predicts a class label yi, where i is the index of the data sample and its
according ground truth value in the sets X and Y respectively.

As mentioned above, the set X is consisting of n data samples, where each data sample
is an m-dimensional feature vector by itself. Therefore, X is nm-dimensional. The set
Y encodes the affiliation of data samples to c classes and is commonly represented by a
one-hot encoding of the categorical class values. Thus, Y is nc-dimensional.

One-hot encoding is the mapping of categorical values to binary feature vectors. An
example is given in Table 2.1, where three categories “building”, “vegetation” and
“terrain” are each encoded into a three-dimensional binary feature vector, where every
category is assigned to a fixed position in the vector. The values in a feature vector are
zero everywhere, except for the position of the represented class, which has value one.
The according feature vectors of our example are [1, 0, 0], [0, 1, 0] and [0, 0, 1] respectively.
This method is not restricted to class labels; it is used to encode categorical values in
data samples as well. Since a numerical encoding for categories, like in our example 1, 2

6

2.1. Semantic Point Cloud Segmentation

and 3, would cause a machine learning algorithm to rate “terrain” higher as “building”,
because of 3 > 1 and one-hot encoding solves this problem.

categorical name numerical encoding one-hot encoding
building 1 1 0 0
vegetation 2 0 1 0
terrain 3 0 0 1

Table 2.1: An example of mapping categories to numerical values and an according
one-hot encoding of them.

2.1.1 Handcrafted Features

Handcrafted features are calculated for each single point individually. They usually
consider information about a point’s neighbourhood, which can be defined by the number
of the nearest k points or a certain radius.

Commonly used features describing the geometric shape of a point’s neighbourhood
are based on the eigenvalues λi, where λ1 ≥ λ2 ≥ λ3, of the covariance matrix. The
covariance matrix Σ of a point p and its neighbourhood consisting of k points is defined
by:

Σ = 1
k

k∑
i=1

(pi − µ)(pi − µ)T

µ = 1
k

k∑
i=1

pi

(2.1)

Such features - amongst many others - are linearity, planarity, sphericity, omnivariance,
sum of eigenvalues, curvature and eigenentropy, which are listed in Table 2.2 [WJHM15]
[HWS16] [TGDM18].

Weinmann et al. [WUH+15] are optimizing their point cloud features by choosing the
best neighbourhood size for a single point. This makes features better distinguishable
and therefore improves the classification. They are calculating the optimal amount of k
nearest neighbours for a point p individually by building the covariance matrix of the
neighbourhood around p with an altering k. The best k is chosen based on the minimum
Shannon entropy [Sha48] of the normalized eigenvalues or features. A downside of this
approach is the increased runtime, since the optimal neighbourhood is computed for
each point individually. Hackel et al. [HWS16] are approximating the neighbourhood by
iteratively downsampling the point cloud to generate a multi-scale pyramid. The features
are then computed per scale with a fixed k. This method computes features very fast and
concurrently achieves high classifications results. Thomas et al. [TGDM18] are using a
spherical neighbourhood based on a radius instead. They use a spherical neighbourhood
instead of a fixed number of neighbours, because features with such a neighbourhood
have a consistent geometrical meaning and the number of points in the neighbourhood

7

2. Related Work

become a feature by themselves. Besides, classifier with those features are performing
better than with features computed with a fixed amount of points.

Linearity λ1−λ2
λ1

Planarity λ2−λ3
λ1

Sphericity λ3
λ1

Omnivariance 3√λ1λ2λ3

Sum of eigenvalues λ1 + λ2 + λ3

Curvature λ3
λ1+λ2+λ3

Eigenentropy −
∑3
i=1 λi lnλi

Table 2.2: Equations of some point cloud features.

2.1.2 Artificial Neural Networks

Besides descriptive features, a classifier is needed to map those features to class labels.
Such classifier could be decision trees [BFOS84], random forests [Bre01], support vector
machines (SVM) [CV95] or artificial neural networks (ANN) for example. Artificial
neural networks, or short neural networks (NN), are inspired by mechanics of mammal’s
brains, where signals are transported between neurons.

The basis for neural networks was Frank Rosenblatt’s perceptron algorithm [Ros58],
which could linearly separate binary data. It calculates a decision boundary between two
classes, which is an (n− 1)-dimensional hyperplane. A weight vector w together with a
bias b represent this hyperplane, where w is normal to the plane and therefore defines its
orientation and b determines its position. The class affiliation of a new data sample x is
defined by y(x) = wTx+ b, where y(x) > 0 means that x lies in front of the separation
plane, respectively y(x) < 0 states that x is located behind. Based on that, the classifier
assigns x to one of the two classes [Bis06].

Feedforward neural networks, also known as multilayer perceptrons (MLPs), are directed
acyclic graphs, where each edge in pointing forward. They are able to approximate a
mapping function f∗ from an input x to its according class label y. This approximated
mapping function is defined as y = f(x; θ), where θ is searched during the training, such
that f becomes as similar to f∗ as possible. This is achieved by composing multiple
functions, where the layerwise graph structure describes how those functions are assembled.
For example, if there is a network with three layers and some functions representing each
layer, say f1 for the first, f2 for the second and f3 for the third layer, the assembled

8

2.1. Semantic Point Cloud Segmentation

functions would look like f(x) = f3(f2(f1(x))). If we want to model a linear function,
θ would consist of w and b, resulting in f(x;w, b) = xTw + b. A loss function, like the
mean squared error (MSE), shown in Equation 2.2, is then minimized with respect to w
and b [GBC16]. Note, Equation 2.2 is adapted from [GBC16].

J(θ) = 1
|X|

∑
x∈X

(f∗(x)− f(x; θ))2 (2.2)

However, common problems are not linear. In order to be able to learn nonlinear models,
an affine transformation and a nonlinear function, named activation function, are used.
Consider a network with a single hidden layer consisting of h = f1(x;W, c), where W are
weights and c are biases, and y = f2(h;w, b), resulting in f(x;W, c,w, b) = f2(f1(x)). By
applying this method to h, this would result in h = g(W Tx+ c), where g is the activation
function and the final network would be defined as f(x;W, c,w, b) = wT g(W Tx+ c) + b
[GBC16]. This example is visualized in Figure 2.2.

Figure 2.2: An example of a feedforward neural network with a single hidden layer
mapping an input x to an output y with an intermediate layer h, where W maps x to h
and w maps h to y. (Source: adapted from [GBC16])

As mentioned above, problems are commonly not linear and by using an activation
function, neural networks are able to learn such a nonlinear mapping. There are many
different activation functions, the most common ones are the binary step, linear, sigmoid,
tanh, ReLu and softmax function, which are shown in Table 2.3. There are so many
different ones, because each activation function has its advantages and disadvantages.
Besides that, the problem a network should solve or in which layer the activation function
is used influences which kind of function is used too. For example, a classification problem
performs better with sigmoid functions, but on the other hand, sigmoid as well as tanh
functions tend to cause gradients to become zero, which we want to avoid. The binary
step function can be used for binary classifier, but its gradient is zero. Linear activation

9

2. Related Work

functions do not have zero gradients, but the network will not perform well on hard
problems. ReLU is widely used and performs better in most cases than other functions,
but it could cause gradients to become zero too. In addition to that, ReLU can only
be used in hidden layers, where sigmoid and tanh are not used there. Furthermore,
the sigmoid function is used for binary classification problems only and for multi-class
problems, the softmax activation function is used instead [SSA20].

The basic graph structure of a feedforward neural network consists of an input layer,
one or multiple hidden layers and one output layer. Figure 2.3 visualizes the simplest
possible network with three layers: an input layer depicted with green nodes, one hidden
layer in blue and the output layer in red.

…
.

𝒙𝟏

𝒙𝒏

𝒚𝟏

𝒚𝒎

…
.

… …

Input Layer Hidden Layer Output Layer

…
…

Figure 2.3: A visualization of a feedforward neural network, also known as multilayer
perceptron (MLP).

Pioneering work in 3D point cloud classification and segmentation using feedforward
neural networks was accomplished by Qi [QSMG17] et al. with the PointNet architecture.
They describe in their work that PointNet processes the whole point cloud directly at once
and returns either a classification for the whole point cloud or a pointwise segmentation
result. Its architecture consists of two transformation networks, which are subnetworks
predicting and applying an affine transformation matrix to make the network invariant
for transformations of the point cloud, followed by a MLP respectively, ensued by a
max pooling layer (see: Figure 2.5) to extract a global feature vector. For point cloud
classification, this global feature is directly processed by a MLP. For segmentation, all
point features are combined with the global feature by concatenation and new point
features are extracted from this combination first. With this method, these new features
are encoding local as well as global information. They achieve with their PointNet
architecture equal or even better classification results than state of the art at that time.

10

2.1. Semantic Point Cloud Segmentation

Binary Step
Function f(x) =

{
0 if x < 0
1 if x ≥ 0

2 1 0 1
2

1

0

1

Linear
Function f(x) = ax

2 1 0 1
2

1

0

1

a=4

Sigmoid
Function f(x) = 1

(1+e−x)

2 1 0 1
2

1

0

1

Tanh
Function f(x) = tanh(x)

2 1 0 1
2

1

0

1

ReLU
Function f(x) = max(0, x)

2 1 0 1
2

1

0

1

Softmax
Function f(x)i = exi∑K

k=1 e
xk

Table 2.3: Most commonly used activation functions. (left) Name of the function, (middle)
function f(x) itself and (right) plot of the function (Source: [SSA20]).

11

2. Related Work

Qi et al. [QYSG17] improved this work, calling it PointNet++, by developing a
hierarchical neural network, which is able to learn local structures as well. They describe
that PointNet++ divides the point cloud into small overlapping regions and extracts
local features by using PointNet. Local features are then grouped together to form
higher-level features and this process is repeated until the whole point cloud is encoded.
Furthermore, to address different densities within the point cloud they introduce a
multi-scale grouping (MSG) and a multi-resolution grouping (MRG) by concatenating
features from different scales or resolutions. Those features are generalizing in different
point densities. Engelmann et al. [EKHL17] also extended PointNet to increase its
classification performance by adding larger spatial context to the network. They achieve
this by either using multi-scale or neighbouring regions in combination with either so-
called Consolidation Units (CU) or Recurrent Consolidation Units (RCU). CU’s and
RCU’s are encoding information about neighbouring features into a feature.

A further method using deep learning is the graph-based approach from Landrieu et al.
[LS18]. They depict in their work that the vertices of their graph are called superpoints,
which are representing basic shapes of the point cloud, and the edges are describing the
relationship of those superpoints. For segmentation, the superpoints are converted to
a descriptor using PointNet and then classified by a convolutional network, which is
specialized for graphs. They chose a superpoint graph-based approach because of several
advantages: objects are easier to classify than single points, relationships between those
objects can be used for the classification as well and the size of the graph is bounded by
the amount of different shapes, which is rather small in comparison to the amount of
points in a point cloud. Furthermore, they are outperforming with their approach the
state of the art at that time.

2.1.3 Convolutional Neural Networks

Handcrafted features in combination with neural networks are a powerful tool for mapping
data samples to their class labels. However, in image classification exist a more sophisti-
cated method called convolutional neural networks (CNNs). CNNs are combining feature
extraction and classification into a single neural network, where specific operations are
extracting high-level features, which are then mapped by an appending neural network
to class labels. Since CNNs are current state of the art in image classification and
segmentation, this approach is used in various ways for point cloud segmentation too.

2D Convolutional Neural Networks

The main parts of a CNN are convolution and pooling operations to extract features
from an image, as well as a neural network, which maps those features to distinct classes
or labels.

The convolution operation consists of a matrix called kernel, which shifts like a sliding
window over the image matrix and computes new image values by performing a convolu-
tion. A convolution is the multiplication of each kernel matrix value with each according

12

2.1. Semantic Point Cloud Segmentation

3 1 4 1

5 9 2 6

5 3 5 8

14 11 12

87 18 22

1 2

0 1
* =

Figure 2.4: An example of a convolution operation. Such an operation conv = m ∗ k
consists of an image matrix m and a kernel k. The kernel shifts like a sliding window over
the image matrix and computes new image values by multiplying and adding according
values. The position of the sliding window is visualized in blue, the kernel in pink and
the resulting value in green, which is obtained as follows: 3 ∗ 1 + 1 ∗ 2 + 5 ∗ 0 + 9 ∗ 1 = 14.

image value inside the sliding window, followed by summing up these values. Figure 2.4
shows an example of a convolution. The image part to be convoluted is coloured blue,
the kernel pink and the resulting value green. The convolution is calculated as follows:
3 ∗ 1 + 1 ∗ 2 + 5 ∗ 0 + 9 ∗ 1 = 14.

As mentioned above, the second main part of CNNs are pooling operations. The most
commonly used pooling operation is max-pooling and its purpose is to reduce image
size. It uses a sliding window too, where the biggest value inside is transferred into the
downsampled image matrix. An example with a pooling size of 2× 2 is shown in Figure
2.5.

3 1 4 1

5 9 2 6

5 3 5 8

9 7 9 3

9 6

9 9

Figure 2.5: An example of a max-pooling operation. Such an operation downsamples
the image matrix by using a sliding window, which only transfers the highest value
inside into the reduced image matrix. (left) Image matrix with four positions of an 2× 2
sliding window and (right) the downsampled image matrix with the transferred values in
according colors.

CNNs are assigning a single class to the whole image, but for semantic segmentation, a
pixel-wise labelling is needed. Segmentation networks, like the U-Net from Ronneberger
et al. [RFB15] use convolution and pooling operations to downsample the image first and
so called up-convolutions (or sometimes also referred to as deconvolutions) to upsample

13

2. Related Work

the image again, whereas a high-resolution segmentation map is received. The down-
and upsampling approach is often denoted as encoding and decoding, like in the SegNet
from Badrinarayanan et al. [BKC17], which is visualized in Figure 2.6. There it can
be seen, that their encoder network consists of 13 convolutional as well as 5 pooling
operations and the decoder network of the same amount of upsampling and convolutional
operations. Those inverse pooling and convolution operations are also called unpooling
and deconvolution respectively [ZTF+11].

Convolutional Encoder-Decoder

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

Figure 2.6: Semantic segmentation network architecture with encoder-decoder structure.
(Source: [BKC17])

Boulch et al. [BGSA18] use such image segmentation methods for semantic point cloud
segmentation and introduce a novel and efficient network named SnapNet. First, they thin
the point cloud and generate a mesh from it. After that, they generate RGB and depth
composite image views in 2D, which they call snapshots, either in a random or multi-scale
way. Then, they segment those images using their own implementations of SegNet and
U-Net. The pixelwise classifications are back-projected to the mesh-vertices, which can
be done easily, because they saved the information if the according mesh-faces are visible
from the snapshot. After that, the classifications are mapped back to the original point
cloud by using the labels of the nearest mesh-vertices. This method performs as good or
even outperforms the state of the art at that time, especially in indoor scenes.

Lawin et al. [LDT+17] have a similar approach, they create multiple views from a point
cloud by rendering it into 2D images. They argue that a 2D image based segmentation
approach results in a better accuracy, because images can have higher resolutions than
voxelized point clouds, due to the increased memory consumption of voxelized data. As
further benefit, they state already existing labelled datasets for image segmentation.
They use RGB, depth and normal images and project the point cloud into images by
using a modified version of point splatting to eliminate noisy foreground and non-visible
points. Convolutional neural networks process all different image types and provide a
semantic segmentation. The final prediction is the sum of those segmentation outputs.
These pixelwise predictions are mapped back into the point cloud and the sum over all
views gives the final classification for the points. This approach outperforms the state of
the art of that time.

14

2.1. Semantic Point Cloud Segmentation

Besides semantic point cloud segmentation, a further field of research is dedicated to 3D
object classification using similar techniques. Su et al. [SMKLM15] are introducing such
a method to classify 3D objects, by rendering a 3D shape into 2D images from multiple
views and classify those images by using a CNN.

3D Convolutional Neural Networks

Since convolution and pooling operations can easily be adapted for 3-dimensional space,
another field of research for point cloud segmentation as well as 3D object classification
has emerged based on 3D convolutional neural networks (3D CNNs).

Ji et al. [JXYY13] introduced 3D convolutions in 2013 for human action recognition in
videos. They wanted to capture motion of people over multiple frames to not only include
spatial, but temporal information too. Thus, they stacked multiple consecutive video
frames and so time became the third dimension. For 3-dimensional convolution operations,
the kernel is 3D as well and the convolution is executed over all three dimensions.

Wu et al. [WSK+15] introduced 3D ShapeNets as well as ModelNet, a 3D CNN and
a large CAD model dataset respectively. They depict data with a 3D volumetric grid
of size 30× 30× 30, where each voxel holds a binary value, representing if it is inside
or outside the mesh. To transform these binary values to a probability distribution -
the representation of a 3D shape - Convolutional Deep Belief Networks are introduced.
Furthermore, they use no pooling layers within this network, because they are not only
classifying objects but also reconstructing them and pooling operations would increase
uncertainty regarding the reconstruction. Additionally, they pre-train the network first
and fine-tune it afterwards to enhance the network’s performance. Besides introducing
a new model dataset, which has by far more categories and objects per category than
datasets at that time, they surpass the state of the art in object classification at that
time too.

A similar approach for object recognition presented by Maturana et al. [MS15] is VoxNet,
which is also a 3D CNN working with voxelized point cloud data, but it is not restricted
to CAD models. In their work they distinguish between free, occupied and unknown
voxels and use ray tracing to calculate these three different types of occupancy values:
A binary value, stating if the voxel is occupied or not; a density value, which is the
probability that a voxel would block a ray and a hit value, which does not distinguish
between free and unknown space. The grid size of the voxelized data is 32× 32× 32 and
the network consists of two convolutional, one pooling and two fully connected layers.

Garcia-Garcia et al. [GGG+16] build their work on ShapeNet [WSK+15] as well as
VoxNet [MS15] and introduce a 3D CNN named PointNet1 for object class recognition.
As they [GGG+16] describe in their work, they use a volumetric occupancy grid to
represent the data and simply map the points into voxels. The occupancy value of a voxel

1Despite the same name, the PointNet from [GGG+16] is a different PointNet than the one from
[QSMG17].

15

2. Related Work

is the normalized number of points in it and the network is composed of a convolutional
followed by a pooling layer, again a convolutional as well as a pooling layer and two
fully connected layers. They are as good as the state of the art at that time, but their
classification is faster, which enables real-time object classification. Qi et al. [QSN+16]
are generating different orientations of the 3D object as input for a 3D CNN and combine
their information within the network to enhance the classification result.

Huang et al. [JS16] focus on segmentation of large point clouds and use 3D CNNs with
binary occupancy values and a resolution of 20× 20× 20 for this purpose. As they depict
in their work, for training, the point cloud is voxelized at a set of center points within a
certain radius. The center points are randomly selected, but balanced across all classes
available in the dataset. For classification, the point cloud is first voxelized as a whole and
those voxels are the input for the network. The class label of a voxel grid is a majority vote
of the labels of all points within it. SEGCloud, introduced by Tchapmi et al. [TCA+17],
is also voxelizing the point cloud before a 3D fully convolutional neural network is used to
classify each voxel. They describe that they apply a trilinear interpolation to interpolate
the voxel prediction to the original point cloud. This interpolation is then combined with
other point features using a fully connected CRF [KK11] to classify each point.

Improved Convolutional Neural Networks for Point Clouds

Conventional CNNs are working with rasterized data, since 2D images are already
rasterized this does not cause any issues. However, 3D point clouds are not rasterized
and vary much in point density, from regions with a very high density to regions with no
points at all. Rasterizing point clouds not only extend the dimension from 2D to 3D,
which is a cubic growth in memory consumption, but empty space is rasterized as well,
which does not include any information and is therefore unnecessarily allocating memory
and slowing down the network. Therefore, many different approaches are developed to
reduce memory consumption and computation time, as for example tree-based methods.
Klokov et al. [KL17] are using feed forward neural networks based on kd-trees instead
of rasterized data and calling it Kd-network. The input to such a network is the point
cloud’s kd-tree and the network is implemented based on a kd-tree data structure instead
of a grid structure. Riegler et al. [ROUG17] are working with shallow unbalanced
octrees and their encoding with a bit-string, stating if a node is split or not. Based on
that data structure they implemented convolutional, pooling and unpooling operations.
Wang et al. [WLG+17] introduced another approach based on octrees, where they use
shuffle keys and labels to store the neighbour- and parenthood of the nodes. Hence, this
information is needed to perform convolution, pooling, unpooling and deconvolutional
operations based on octrees. Recent research tackles this problem by improving the
convolution operation itself in regard of point clouds, like Thomas et al. [TQD+19] or
Boulch et al. [Bou19].

16

2.2. Curb Detection

2.2 Curb Detection

The detection of curbs and road-boundaries is a popular research topic in the field of
autonomous driving vehicles for a long time, since knowledge about street borders is
essential to ensure a safe ride. Over years, various different sensors and techniques were
explored to perceive the road and its properties. Hillel et al. [BHLLR14] described in
their survey that monocular vision, stereo imaging, radar, the combination of GIS, GPS
along with inertial measurement units and LiDAR are among them. However, as they
state further, camera based approaches are prone to occlusions, as from other vehicles,
shadows, weather conditions and illumination. In addition to that, the calculated 3D
information of stereo images is not as accurate as LiDAR data. Radar devices have a
low resolution and are not able to detect fine structures. Therefore, they are used for
obstacle detection and on-/off-road differentiation. The positioning information is just
used as additional data, since they are not as accurate and would need precise as well as
up-to-date maps. Since, LiDAR does not depend on illumination and directly provides
3D data; it is often used for curb detection.

Already in 2010, Zhang et al. [Zha10] presented their work on road-edge detection based
on 2D LiDAR data. Their algorithm contains five stages: candidate point-set selection,
feature extraction, classification, false alarm mitigation and road curb detection. The
basic framework for the curb detection pipeline is formed by these steps, except for the
classification, and can be still found in recent research as well as in this thesis.

2.2.1 Point Cloud Pre-Filtering

Since the following steps in the curb detection pipeline are applied pointwise, the point
cloud is roughly filtered beforehand to reduce the amount of points to process and
therefore computation time. For this case, the filtering does not need to be highly
accurate, because its purpose is to omit regions of the point cloud, where definitely no
curb is located.

Zhao et al. [ZY12] form a regular voxel grid from the point cloud and define the voxel
with lowest altitude as ground data. They use a voxel grid to quickly access points inside
a voxel and to model neighbourhood relations between points. Then, they fit a plane
to points stored in these voxels and the fitting points are determined as ground points.
Zhang et al. [ZWWD18] are using a plane-based method too, which is applied on points
below the scanning device. They use the RANSAC [FB81] algorithm to fit a plane and
ground points are determined based on a loose threshold. Another plane-based method
is proposed by Wang et al. [WWHY19], they are first splitting the point cloud into
multiple segments and fit a plane in all segments, by also using the RANSAC method.
They are using such a segment based approach to be able to handle slopes on the road.

17

2. Related Work

2.2.2 Feature Extraction

Curbs have very distinctive spatial properties; they are between 10 to 15 centimetres
high, roads and curbs are orthogonal as well as parallel to one another and features based
on the covariance in a certain neighbourhood can describe curbs too. Furthermore, the
laserline of a LiDAR device has a different pattern when it hits an obstacle. This and
many more properties are used to find curb points in the pre-filtered point cloud. Usually,
several features are computed per point and if a point satisfies all these conditions, it is
identified as a curb point. Some of these features are described below.

Height difference is probably the most common used spatial feature to describe curbs in
autonomous driving. Zhang et al. [ZWW+15] are using a sliding window approach to
speed up the feature calculation. For each sliding window the maximum and minimum in
height is searched and if the difference between them is greater than a certain threshold,
it probably contains curb points. Zhao et al. [ZY12] are computing the difference in
height for each voxel and are restraining it with an upper and lower threshold too. Wang
et al. [WWHY19] are using, besides the difference between the highest and lowest height
values, also the standard deviation of height values of points in the same laser line. They
constrain the difference with an upper as well as lower and the standard deviation with
an upper threshold.

The spatial structure of curbs can also be described with the distance between two
neighbouring points of the same laser line. Zhang et al. [ZWWD18] are calculating the
horizontal and vertical distance and are bounding them with a lower threshold. Wang et
al. [WWHY19] are using the same method, but they are only verifying the horizontal
distance.

Since roads and curbs are usually orthogonal to each other, the angle between them
is another well describing feature. Therefore, Zhang et al. [ZWWD18] introduced a
feature describing this property, by calculating the angle between two vectors starting at
the same point. They create those vectors by summing up n previous or following points
respectively, along the laser line from the starting point and divide the result by n. If
the starting point lies on a curb, the angle between those two vectors would be smaller
than the angle between vectors originating from a road point. Wang et al. [WWHY19]
are using this method too, but they are not normalizing the sum with the amount of
used points and define the upper threshold with 170 degrees.

Another set of features is based on the eigenvalue decomposition of the covariance matrix
in a certain neighbourhood of points. Zhao et al. [ZY12] compute the normal vector of a
point by using the according eigenvector of the smallest eigenvalue. This normal is then
checked for perpendicularity to the car and if so, the point is probably part of a curb.
Whereas, Fernández et al. [FILS14] are using the eigenvalues of a weighted covariance
matrix to estimate the curvature in the area around a point. They do this by dividing
the smallest eigenvalue through the sum of all eigenvalues and bounding the result with
a lower and upper threshold. Furthermore, they state that, curbs can be categorized into
very small, small, regular and big obstacles with increasing threshold values.

18

2.2. Curb Detection

Smoothness of points in a certain neighbourhood is a further curb descriptor. Wang et
al. [WWHY19] describe how smooth a surface is by taking adjacent points on both
sides of a point and build the norm of the sum of differences between those point and its
neighbours. This norm is then divided through the norm of the point times the amount
of neighbours. The resulting smoothness value is bounded by a lower threshold.

2.2.3 False Positive Filtering

In an urban scenario, besides the self-driving vehicle itself, other cars, pedestrians,
buildings, vegetation and many more obstacles are inside or nearby the road too and
therefore part of the LiDAR point cloud. Some of them are having the same spatial
properties as well as features as curbs and will thus be falsely detected as curb points in
the previous steps. For this reason, a false positive filtering is sometimes applied before
the actual curb fitting to remove those misclassified points. This eliminates possible
sources of error for the following step and can therefore enhance the curb detection
results.

Zhao et al. [ZY12] are applying a short-term memory technique on predicted curbs
to filter wrongly classified points. They incorporate curb points of the current frame
with those of some previous frames. Their curb detection algorithm works on voxels
and if a voxel has already been labelled as road, any vertical unsteadiness will not be
predicted as curb anymore. Fernández et al. [FILS14] are using Conditional Random
Fields [LMP01] with a 4-connected neighbourhood for the filtering process. They are
using the previous result of the Conditional Random Field as prior and curbs found with
spatial features as likelihood.

Another approach splits false positives into inside and outside the road and filters both
individually using methods suitable for them. For example, Hata et al. [HOW14] are
detecting curb points based on the distance between neighbouring laser rings, because
when a laser hits an object this distance becomes smaller. Therefore, they are using a
differential filter to keep points with a height variance by using a convolution operation.
Then, they apply a distance filter to omit curb-like points besides the road, because curbs
are the nearest points to the car. Finally, they use a regression filter to omit obstacles
inside the road, like other cars or pedestrians. This filter estimates the shape of the
curb and removes points not fitting in. Wang et al. [WWHY19] also perform their
filtering with two steps to remove false positives inside and outside the road. They apply
a distance filter to eliminate wrongly classified points outside the road and a RANSAC
filter for inside. The RANSAC filter calculates the parameters for a quadratic polynomial
model, which fits curb points as good as possible. All points further away from the model
than a certain threshold are false positives and therefore removed from the curb point
set.

19

2. Related Work

2.2.4 Geometry Fitting and Tracking

Finally, a geometric model is generated from the calculated and filtered curb points. For
this, several different approaches are used regarding representation and computation of
the model, which are discussed below.

For the representation of the curb as geometric model either a parabolic model [ZY12]
[ZWW+15] [WWHY19] or a B-spline [SZX+19] is used. Zhao et al. [ZY12] achieve
the fitting with the combination of RANSAC followed by a linear least squares method.
Zhang et al. [ZWW+15] are using a root mean square error method to compute the
geometric model and Wang et al. [WWHY19] a least square method. To improve the
curb further, it is tracked over multiple frames. Zhao et al. [ZY12] use therefore a
particle filter [DdFG01] and Wang et al. [WWHY19] as well as Zhang et al. [ZWW+15]
are using a Kalman filtering method [Kal60]. Zhao et al. [ZY12] state, that they are
using a particle filter and not a Kalman filter to avoid a bias towards the cars movement.

Nevertheless, not all research uses this pipeline or this kind of features, for instance Han
et al. [HKLS12] are computing line segments in the untransformed polar coordinates of
the LiDAR sensor to detect the borders of the road. Kumar et al. [KMLM13] are using
parametric active contour models to detect road boundaries in the converted 2D raster
surfaces of elevation, reflectance and pulse width values of the LiDAR. A further method,
introduced by Wang et al. [WLW+15] uses saliency maps and salient points to detect
curbs and Rodríguez-Cuenca et al. [RCGCOA15] base their curb detection algorithm
on 2D raster images of the point cloud, holding the height difference and the amount of
points in each cell.

20

CHAPTER 3
Semantic Point Cloud

Segmentation

When humans look at a point cloud, they can instantly identify objects like houses,
trees or cars, but for a computer a point cloud is just a mass of unstructured points
with no semantic information. An urban point cloud consists of buildings, vegetation,
pedestrians, scanning artefacts and a lot more. However, for most tasks, points of just a
certain category are actually needed. Let us assume the goal is to reconstruct buildings,
it would be great if we already knew where in the point cloud the buildings are located,
to apply further reconstruction algorithms specifically there. This would decrease the
reconstruction time, since many points do not need to be processed. On the other hand, in
some applications it would be an advantage to filter points of a specific class beforehand,
like scanning artefacts or vegetation, to enhance the stability of algorithms.

For this and many other reasons, semantic point cloud segmentation is a well-liked
research topic with a long history. Since CNNs are a great tool to extract and learn
high level features and reach a very high accuracy in various applications as well, it
seems natural to apply the knowledge and algorithms from image classification with
CNNs to the 3D world of point clouds. Therefore, this thesis uses a 3D Convolutional
Neural Network for the point cloud segmentation and this chapter is dedicated how this
is achieved. Section 3.1 explains the process of data extraction of a point cloud and
Section 3.2 describes the used dataset. Then, Section 3.3 gives an overview about neural
network learning basics and Section 3.4 discusses the network architecture. Finally,
Section 3.5 shortly depicts the segmentation process of a point cloud.

21

3. Semantic Point Cloud Segmentation

3.1 Data Extraction

The convolution and pooling operations in conventional machine learning environments
are working on rasterized data and since those operations can be easily adapted from
2D to 3D, they are already supported. Nevertheless, point clouds do not have a regular
structure and the point density can differ from very dense to extremely sparse. In order
that the neural network can process the data, it needs to be rasterized in a way that
the underlying structure of the point cloud is represented well. Furthermore, to train
a well-generalized classifier a great amount of training data is needed, which requires a
lot of memory - especially in the case of 3D data - but graphic cards do not have such
an amount of memory available. Therefore, the data needs to be extracted such that it
contains important information, but regions with too few points should be omitted.

For this reasons as well that LiDAR data can become extremely huge, an appropriate data
structure is needed to visualize and process a point cloud in a proper way. Commonly
used data structures for handling spatial data fast are spatial subdivision trees. Based
on that, an octree is used as underlying data structure. As the name indicates, an octree
node can have up to eight child nodes. In case of LiDAR data, the whole point cloud
is the root node. The root node and recursively all other nodes are subdivided further,
if they contain a feasible amount of points. Figure 3.1 shows a 2D visualization of an
octree, where the root node is coloured black. Dense regions are subdivided more often
and therefore located in lower levels of the tree, like the red nodes of Figure 3.1. Because
of that, the size of those nodes is getting smaller with each subdivision. Contrary to
that, sparse regions are not subdivided further and therefore located in bigger nodes on
a higher level in the tree, as the blue nodes in Figure 3.1. Such data-structures give
information about point density and location of relevant information in a point cloud,
which is a good basis to extract training data.

Figure 3.1: 2D visualization of an octree.

22

3.1. Data Extraction

The visualization and processing of point clouds is done with the algorithms and data-
structures from the Aardvark Platform [Aar]. The out-of-core octree implementation
can handle point clouds very fast and is able to process humongous datasets. In this
octree, the nodes are called cells and they have a property named “exponent” n, which
indicates a fixed cell-size of 2n meters. That makes it is easy to traverse a tree to the
cells with the desired size in meters, particularly because all cells with the same exponent
are on the same level of tree. Since point clouds are stored with a fixed measurement - a
meter has always the same unit - it is possible to extract different datasets of various
sizes with the same procedure. This is important, because the size of the nodes is crucial
to represent the underlying structure of a point cloud. The cells must not be too big,
because it would not be possible to represent fine structures after the rasterization, since
they would be aggregated in the same grid cell. On the other hand, too small nodes
would lose information about the greater context of an object and the classifier would
not be able to distinguishing them well. In this work, the exponent n = 0, which is one
meter, was used, since this exponent established as best cell size in prior attempts.

During data extraction, the octree is traversed to the level with the desired exponent
and the cells of this level are used for training. Nonetheless, if a cell is already a leaf,
but still contains a feasible amount of points, it is subdivided further. For the training
the minimum amount of points in a cell are ten, for the classification, on the other
hand, all cell with any points inside are used. The cells are then rasterized with a fixed
grid size. Used grid sizes are 16 and 32, for example, if a cell with exponent n = 0,
which is one meter, is rasterized with a grid size of 32, then each grid cell has a size of
1
32m = 0.03125m = 3.125cm. Each grid cell is assigned a value, which represents the
information about the points occupying the cell. In this thesis, three different values
where explored:

• a binary occupancy-value, where the grid cell contains 1 if there are any points
inside and 0 if not,

• the absolute amount of all points inside the cell

• and the ratio of the number of points inside the grid cell to the total
amount that can be inside a node.

Besides the data itself, each training sample needs a ground truth to be learned by a
neural network. Since, not all points in a node must have the same class-label; a majority
vote on the class distribution is performed. By empirically exploring the class distribution
for both used grid sizes, it transpired that, either just one class is contained in a node, or
one class is highly represented in comparison to the others. That shows us, a majority
vote is sufficient to portray the correct class of a node and by considering the rather
small size of the nodes of just 1 meter, this seems reasonable.

However, not only the nodes themselves contain important information, their neighbour-
hood can be revealing as well. Therefore, for all six faces of the node, adjacent cells are

23

3. Semantic Point Cloud Segmentation

created and rasterized as well. Figure 3.2 shows the middle-node (left) and the according
six side-cells (right) in matching colours. These six side-cells have the same exponent
and therefore the same size, but the grid size used for rasterization could differ. In this
thesis, grid sizes of 8 and 16 were used for the side-cells.

Figure 3.2: Left: middle-node with coloured faces. Right: adjacent side-cells coloured
according to the faces

3.1.1 Data Augmentation

The generalization of a classifier is the ability to perform as good on unseen as on known
data. That means that the classifier does not suffer from performance loss if it is applied
to new data. A classifier may be afflicted with a bad generalization if it under- or overfits
the training data. The training of a classifier approximates a function y = f∗(x), which
should depict the distribution of the training data well, but in case of under- or overfitting
this function poorly represents the data. Figure 3.3 visualizes under- and overfitting in
the case of polynomial curve fitting from Bishop et al. [Bis06], where the green curve
shows the searched function, the blue dots are the training samples, the red curve is the
fitted function and M denotes the order of the fitted polynomial. In case of M = 1 the
fitted function does not capture the searched function at all (it is too simple) and this is
called underfitting. M = 9 models a function fitting exactly all training samples, but
gives a poor approximation of the searched function, this is called overfitting. Overfitting
will cause a high training accuracy, whereby the validation or test accuracy is low.

To improve the generalization of a classifier, each class should have a nearly equal
amount of training samples. Nevertheless, usually some classes are represented well,
like vegetation or buildings, where others, like for instance natural terrain as meadows,
are not so common in an urban point cloud dataset. To create an equal distributed
training set, the amount of data samples with the least frequent class-label could be
used as maximum size for all other classes too. However, for this method the dataset
must have a certain size, because otherwise the training set would become too small

24

3.1. Data Extraction

Figure 3.3: Example of under- and overfitting (red curves) in the case of polynomial
curve fitting. M is the order of the fitted function. Left: underfitting. Middle: good
representation. Right: overfitting. (Source: adapted from [Bis06])

to train a good classifier. Another method would be to create more data samples from
underrepresented classes artificially. This is called data augmentation and a common
procedure in machine learning. Data augmentation increases the variety of different data
samples inside a class, which leads to a better generalization. It is not restricted to some
classes and can be applied to the whole training set to increase its size and diversity.
However, the training set used in this work is highly unbalanced; some classes have more
samples than could be used for training, where others are underrepresented. Therefore,
data augmentation is used in this work to create an equal distributed training set by
creating various data samples of those underrepresented classes. To create data samples
artificially, random samples from the training set are taken and then rotated, scaled,
horizontally as well as vertically flipped, translated or a combination of some of them.
Since the used augmentation-methods are depending on the use-case of the classifier, a
rotation around the z-axis up to 360 degrees, an arbitrary translation in all directions
about max. 75% of the node-size or a horizontal flip are applied in this work. These data
sample augmentation methods are visualized in Figure 3.4.

B

a) b) c)

Figure 3.4: Data sample augmentation methods: a) rotation around z-axis, b) translation
in all directions, c) horizontal flip.

25

3. Semantic Point Cloud Segmentation

3.2 Training Dataset
As mentioned above, the training set needs to be of a certain size and the data samples
must have a correct ground-truth. For the purpose of this thesis, these would be point
clouds of villages or cities with a certain amount of points, point density and an according
labelling. The labelling should represent classes like the ground, vegetation, buildings,
cars and suchlike.

Therefore, the Semantic3d.net [HSL+17] dataset was used for the training of the classifier.
This is a dataset with around four billion points of urban and rural cities, which was
captured with a laser scanner. This dataset comprises the following classes:

• man-made terrain

• natural terrain

• high vegetation

• low vegetation

• buildings

• hard scape

• cars

• scanning artefacts

The dataset contains 30 laser scans and is equally divided into a training and a test set,
where only the training set is already labelled [HSL+17]. A point cloud of this training
set, captured in a rural area, is shown in Figure 3.5.

The class affiliation of the points is visualized with colours, where each colour represents
one class. Unlabelled points are white, “man-made terrain” is grey, “vegetation” is
coloured with different shades of green, “buildings” are blue, “hard scape” is orange,
“cars” are pink and “artefacts” are visualized with a brown-pink colour. Figure 3.6
shows the dataset from Figure 3.5 coloured according to the class membership. There it
can also be seen that “man-made terrain” is asphalted terrain and “natural terrain” are
meadows. The difference between high and low vegetation is that trees are referred as
“high vegetation” and bushes or flowers as “low vegetation”. “Hard scape” are man-made
structures like low walls, posts or wells.

Exporting the 15 Semantic3d training set point clouds with a cell-size of one meter results
in over 200 000 training samples. Since, this is a dataset captured in the real world
the class distribution is very unbalanced. “Buildings” is the most common class with
nearly 75 000 data samples, followed by “high vegetation” with round 56 000, “natural
terrain” and “man-made terrain” with 39 000 as well as 31 000 samples respectively.

26

3.2. Training Dataset

Figure 3.5: A point cloud of the Semantic3d dataset, captured with a laser scanner in a
rural area.

Figure 3.6: A point cloud of the Semantic3d dataset coloured according the class affiliation
of the points.

27

3. Semantic Point Cloud Segmentation

Whereas “hard scape”, “low vegetation”, “scanning artefacts” and in particular “cars”
are extremely underrepresented. However, for a good generalization all classes should be
equally distributed, otherwise it could occur that the underrepresented labels are prone
to misclassifications. For curb detection, especially cars need to be detected well, because
they are usually placed in or nearby the street and are the most common cause for false
positive curb classifications. Therefore, the classes with too few samples are artificially
increased with data augmentation.

3.3 Network Learning Basics

As mentioned earlier, the training of a neural network approximates a function y = f∗(x)
by learning the mapping y = f(x; θ) with respect to θ [GBC16]. To achieve this, a loss
function and an optimization algorithm are needed.

Loss Function

A loss function L(θ) measures the cost of misclassifications and is therefore also known
as cost or objective function. It compares the network predictions with the ground truth
based on the selected loss function. The probably best-known loss function is the mean
squared error (MSE), where the squared distance between the predicted class probability
ỹ and the ground truth y is calculated as follows:

L(θ) = 1
N

N∑
i=0

(yi − ỹi)2. (3.1)

However, the probably most used loss function is the categorical or binary cross-entropy
for multiple or two classes respectively. The entropy H was introduced by C. E. Shannon
[Sha48] and is the measure for the average information content. In use as loss function,
the cross-entropy is defined as follows:

L(θ) = −
N∑
n=1

K∑
c=1

yi log ỹi, (3.2)

where N is the amount of data samples and K is the number of classes [Bis06]. Note,
Equation 3.2 is adapted from [Bis06].

The goal of the training is to minimize the loss function, because a smaller loss means
a smaller classification error. This is achieved by using optimization algorithms like
gradient descent.

28

3.3. Network Learning Basics

Gradient Descent

Gradient descent was introduced by Cauchy in 1847 [Cau47] and is an iterative opti-
mization algorithm, which searches for the minimum of a function. Starting at a point xk
in a function f(x), it looks where the greatest slope is and makes a step in the opposite
direction. This results in a new point xk+1 and is one iteration of the algorithm. This
process is repeated until a flat region is found. The greatest slope is the derivative f ′(x)
or also known as gradient ∇f(x) of the function f(x). The mathematical expression for
one iteration is as follows:

xk+1 = xk − αf ′(xk), (3.3)

where α is the step size, which is usually known as learning rate. When the gradient
converges near zero ∇f(x) = 0 the algorithm terminates, because a critical point is found.

Many improvements of the gradient descent algorithm were developed, the probably
most known is adding a momentum term to improve the speed of convergence [Qia99].
Further methods are Adam or AdaMax, which are using adaptive learning rates [KB14].

Back-Propagation

The training of a network can be broken down into two parts: The forward pass, where
an input x is propagated through the network to receive a prediction ỹ. Then, the cost
between the output ỹ and the ground truth y is calculated. In the backward pass, the
cost is propagated backwards through the network to compute the gradients for the
gradient descent optimization. The back-propagation algorithm [RHW86] achieves this
in a computational inexpensive way [GBC16].

As Rumelhart et al. [RHW86] described in their work, the gradients are the partial
derivatives of the total network error E with respect to the networks weights w and is
denoted as ∂E

∂w . Considering, xj =
∑
i yiwji, where xj is the input to a neuron j, y are

the outputs of the previous i neurons of j and wji are the according weights. The partial
derivative of the error E with respect to the outputs y is computed first, resulting in
∂E
∂y . Then, the chain rule is used to compute the partial derivative of the error E with
respect to the input x: ∂E

∂x = ∂E
∂y

∂y
∂x . With this technique, the influence of an input x to

an output y, and therefore to the error E, is known. Finally, ∂E∂w = ∂E
∂x

∂x
∂w is determined

by using the chain rule again. All this together results in:

∂E

∂w
= ∂E

∂y

∂y

∂x

∂x

∂w
. (3.4)

The network is updated by using ∂E
∂w to update the weights. As Rumelhart et al. [RHW86]

stated further in their work, they aggregate all results until the update is performed and
they modify the weights by using Equation 3.5, where t is increased by one after each
iteration and α = [0, 1] stating the influence of the gradients to the weights.

∆w(t) = −ε∂E
∂w

(t) + α∆w(t− 1) (3.5)

29

3. Semantic Point Cloud Segmentation

3.3.1 Regularization Methods

Regularization prevents a neural network from overfitting. The most used methods are
L1- or L2 regularization, dropout layer and early stopping, which are shortly discussed
below.

L2 Parameter Regularization

The L2 parameter regularization method adds a norm penalty Ω(θ) = 1
2‖w‖

2
2 to the

loss function L(θ). The regularized loss function L̃(θ) is therefore defined as shown in
Equation 3.6, where α ∈ [0,∞) controls the strength of the regularization. This method
is also knows as weight decay, because it shifts the weights closer to zero [GBC16]. Note,
Equation 3.6 is adapted from [GBC16] to the notation used in this thesis.

L̃(θ) = α

2 ‖w‖
2
2 + L(θ) (3.6)

L1 Regularization

The L1 regularization also adds a norm penalty term Ω(θ) = ‖w‖1 to the loss function
L(θ). The regularized loss function L̃(θ), including the weight factor α, is defined with
this method as shown in Equation 3.7. The L1 regularization has the effect that parts
of the weights become zero and that is why it was used as feature selection method
[GBC16]. Note, 3.7 is adapted from [GBC16] to the notation used in this thesis too.

L̃(θ) = α‖w‖1 + L(θ) (3.7)

Dropout

Another approach to reduce overfitting was introduced by Srivastava et al. [SHK+14]
and is called dropout. As they describe in their work, this method randomly omits
neurons as well as their connections from the network during training, which should
hinder them from becoming too co-adapted. The probability, that a neuron is dropped is
defined by 1− p. They stated, that a dropout value of 0.5 ≤ p ≤ 0.8 is a good value for
hidden neurons, whereas for input neurons p should be near 1. In the tests, they often
used p = 0.5 and p = 0.8 for the hidden and input layer respectively.

Early Stopping

An overfitted classifier achieves a high accuracy on the training set, but generalizes poorly.
This can already be seen during the training by observing the training and validation set
loss. At some point the validation set loss will start to increase, while the training set
loss still decreases - this is the beginning of overfitting. Early stopping traces those values
and terminates the training, if the validation set loss does not decrease over a pre-defined
amount of epochs. In course of this, the parameters of the network are saved at every
improvement of the validation loss and after the training reloaded for classification.

30

3.4. Network Architecture

3.4 Network Architecture

The architecture of a CNN can be broken down into two main blocks, which can be
seen in Figure 3.7. The first block performs feature extraction as well as dimensionality
reduction and is called feature learning block. The second one is a neural network and
referred as classification block.

Figure 3.7: Exemplary structure of a CNN illustrating its two-stage structure with the
feature learning and classification blocks. (Source: [Sah])

3.4.1 Feature Learning Block

The feature learning block is composed of multiple components: A 3D convolution
operation (CONV), followed by a batch normalization (BN), a ReLU activation function
and a 3D pooling operation (POOL). Batch normalization was introduced by Ioffe et al.
[IS15] and is a regularization method, which conducts a normalization for each mini-batch
during the training. They state that this method allows higher learning rates and one
not have to be so careful about initialization. Their normalization transforms for each
activation function x the mean to 0 and the variance to 1 by using Equation 3.8.

x̂ = x− E[x]√
V ar[x]

(3.8)

First, two convolutional operations followed by batch normalization and a ReLU are
stacked. Then, a pooling operation is applied. This sequence of operations is referred as
a feature learning component in this work and can be repeated multiple times to form a
deeper network. Figure 3.8 visualizes the structure of such a component.

The 3D convolution is performed with a kernel-size of 3× 3 and an L2-regularization for
the kernel and bias. The 3D max-pooling is executed with a pooling-size as well as stride
of 2× 2.

This block can be repeated multiple times, until a data sample is scaled down to the
desired size. This is performed onto the middle-cell as well as all six neighbouring

31

3. Semantic Point Cloud Segmentation

side-cells individually. The results are then flattened by a global average pooling and
concatenated afterwards. This final vector is fed into the classification block.

CONV BN ReLU

ReLU BN CONV

POOL

Figure 3.8: A feature learning component is composed of two convolution operations
(CONV), batch-normalization (BN) and ReLU activation functions as well as a pooling
operation (POOL).

3.4.2 Classification Block

The classification block is composed of multiple components too: It consists of a dropout-
layer (DO), a fully-connected layer (FC), a ReLU activation function and then again, a
dropout-layer as well as a fully-connected layer and a ReLU activation function. This
structure is visualized in Figure 3.9 and is called neural network component it this thesis.

The fully-connected layers are regularizing the kernel and the bias with an L2-regularizer.
The dropout-layers are first randomly excluding 20% and then 50% of the neurons.

After this block, the final output-layer is appended, which is a fully-connected layer with
a softmax activation function and the number of classes as amount of neurons.

DO FC ReLU

ReLU FC DO

Figure 3.9: The neural network component of the network with fully-connected (FC),
dropout (DO) layers and a ReLU activation function.

32

3.4. Network Architecture

Figure 3.10 shows the combination all these part resulting in a neural network architecture
with multiple convolution and pooling components, followed by fully-connected and
dropout layers and the final layer with a softmax activation function.

CONV

+

POOL

…

CONV

+

POOL

GLOBAL AVG POOL

SIDE CELLS

MIDDLE

CELL

CONCATENATE

NEURAL NETWORK

SOFTMAX

OUTPUT

Figure 3.10: The entire network architecture.

33

3. Semantic Point Cloud Segmentation

3.5 Point Cloud Segmentation

To apply the trained network onto a point cloud, it needs to be exported the same way
as the training data. However, in this case the minimum amount of points inside a cell
is one, because all points of the dataset must be represented in the exported data to
become classified. The data samples are then fed into the neural network and a class
label is applied. Since the octree nodes are axis-aligned, the min- and max-position of
the cells are exported too. By using that, the classified cell can be mapped back into the
point cloud to its initial position. All points inside this cell are then labelled with the
class prediction of the cell. This results in a pointwise segmentation of the point cloud.

34

CHAPTER 4
Curb Detection and Fitting

Due to the previous segmentation of the point cloud by using a 3D CNN a semantic
information of the individual points is available. This information can be used for various
applications and we are interested in extraction and geometry reconstruction of sidewalks.
To achieve that, curb points are searched in the pre-filtered point cloud first and based
on them, polygons of the sidewalk including the street are calculated. For searching
curb points, only points labelled as “terrain” are used, since curbs are located on the
ground. This chapter addresses the curb detection and geometry fitting process. The curb
detection contains multiple steps: First, a point cloud is roughly filtered in Section 4.1,
then simple geometric point cloud features are calculated and based on them points are
classified as “curb” or “no curb” in Section 4.2. Some of those features need information
about the street. Therefore, this Section covers data we use for that too. Since, every
machine learning method lead to some false positive classifications, which would impair
the final curb fitting, they are filtered in Section 4.3. Finally, the actual polygons are
generated in Section 4.4.

4.1 Point Cloud Prefiltering

To identify curb points in a point cloud, features are calculated for each single point. Since
LiDAR datasets are usually very large, the area in a point cloud for the curb detection
must be narrowed down, to be able to detect curbs in a reasonable time. An obvious
approach would be limiting the search area to the ground, because curbs are usually
located there. Unfortunately, this would result in many false positive curb classifications,
because houses, cars and other objects near or inside the street have similar geometric
properties as curbs. However, with an understanding of the scene, it is possible to filter

35

4. Curb Detection and Fitting

these specific points beforehand and restrict the search area even further. Filtering these
high-risk false positive points, will improve the curb detection result. Therefore, a point
cloud is prefiltered according to the result of the point cloud segmentation and just points
labelled as “terrain” are used.

4.2 Feature Extraction

Curbs have certain geometric characteristics; they are perpendicular to the street, follow
the course of the road and have a particular elevation as well as shape. These properties are
encoded into handcrafted features and computed for each single point of the (remaining)
point cloud. To ensure a proper curb detection result, multiple different spatial features
are used per point and if the point fulfils all descriptors, it is classified as curb. Three
features are used in this thesis: difference in height along with the standard deviation of
the height, curvature and angle of the point normal to the road.

4.2.1 Height Difference and Standard Deviation

The height of curbs usually do not exceed a certain limit and the elevation changes within
a particular range. Therefore, features describing the height or the change of it, within a
certain neighbourhood, are commonly used.

This feature was proposed by Wang et al. [WWHY19] and it calculates the absolute
difference in height in a certain neighbourhood of the current contemplated point p and
looks if this value lies within a certain range. Moreover, it also computes the standard
deviation of the height values and restricts it with a lower bound. If both conditions are
fulfilled, this feature states the point p as curb point.

The nearest neighbours n within half a meter of the point p are used and the height
difference is calculated between the absolute minimum hmin and maximum hmax height
value of the neighbourhood. Hence, the height difference is defined as:

Tlower ≤ hmax − hmin ≤ Tupper (4.1)

where the range is bounded with a lower and upper threshold, Tlower and Tupper respec-
tively. Figure 4.1 depicts this feature.

The standard deviation of the height is calculated as follows:

µ = 1
N

N∑
i=1

ni√∑N
i=1(ni − µ)2

N
≥ Tstd

(4.2)

where N is the amount of nearest neighbours and Tstd is the upper threshold for the
standard deviation. Note, Equations 4.1 and 4.2 are adapted from [WWHY19] to the

36

4.2. Feature Extraction

notation used in this work. The thresholds used for this feature are denoted in meters
and have the following values:

Tlower = 0.03
Tupper = 0.3
Tstd = 0.01

hmax

hmin

Figure 4.1: Height feature: The difference between hmax and hmin indicates weather the
point is a curb or not.

4.2.2 Curvature

The shape of curbs is distinctive and therefore another good feature to detect sidewalks
in point clouds. The curb shape can be transformed into a feature by analysing the point
distribution within a certain neighbourhood.

This feature was introduced by Fernández et al. [FILS14] and it computes the curvature
in the neighbourhood of a point p by creating a weighted covariance matrix with the
nearest neighbours and applying an eigenvalue decomposition. The curvature is then
computed by dividing the smallest eigenvalue by the sum of all eigenvalues. If this value
lies within a certain range, the point is marked as “curb”.

The nearest neighbours n within half a meter of the point p are used in this thesis to
create the weighted covariance matrix, which is computed as follows:

σ = 1
N

N∑
i=1

ni

µ = 1
N

N∑
i=1
|σ − ni|

wi = exp

(
−|p− ni|

2

µ2

)

COV =
N∑
i=1

wi(ni − p)T (ni − p)

(4.3)

37

4. Curb Detection and Fitting

where N is the amount of nearest neighbours n and wi is the weight value for the
neighbour ni.

Then an eigenvalue decomposition is applied to this weighted covariance matrix, which
results in three eigenvalues, where λ0 ≤ λ1 ≤ λ2. Finally, the curvature value is defined
as:

Tlower ≤
λ0

λ0 + λ1 + λ2
≤ Tupper (4.4)

where a lower and an upper threshold, Tlower and Tupper respectively, defies the range
within a point is classified as “curb”. Note, Equations 4.3 and 4.4 are adapted from
[FILS14].

Visually spoken, the covariance matrix encodes the point distribution of the neighbourhood
around the point of interest. The eigenvalue decomposition of this matrix computes a
coordinate system representing the orientation of this distribution. The eigenvectors are
the three orthogonal principal axis of this coordinate system and the eigenvalues are the
length of these vectors, which encodes the underlying point variance along an axis. The
curvature of the neighbourhood then can be described by putting these eigenvalues in
relation to each other. Figure 4.2 illustrates the eigenvectors of a neighbourhood in their
actual length in 2D. Comparing the result from a neighbourhood of a curb point (left) to
the result from a neighbourhood of a road-point (right), it can be seen that the length
of the eigenvectors and therefore the variance in the z-axis is way smaller for the flat
neighbourhood.

λ0

λ0

Figure 4.2: Result of an eigenvalue decomposition, once from a curb point (left) and once
from a street-point (right) in 2D. The eigenvalue λ0 from a curb point is larger than the
eigenvalue λ0 from a street-point.

The threshold values used for this feature are the following:

Tlower = 0.009

Tupper = 1

38

4.2. Feature Extraction

4.2.3 Perpendicularity

Curbs are always perpendicular to the street. Therefore, this characteristic is used to
detect curbs too.

This feature was proposed by Zhao et al. [ZY12] and it verifies if the normal of the
point is perpendicular to the road. In this work, the road is simplified with a continuous
line-strip. Therefore, the direction of the nearest line-segment to the point is taken to
represent the road. The dot product between the point normal n and the direction of
the road d is calculated and bound by an upper threshold. Hence, the perpendicularity
feature is defined as:

n · d ≤ 0.2 (4.5)

This corresponds to a minimum bound of 78.46 degrees between the road direction and
the point normal. Figure 4.3 illustrates this feature.

n

d

Figure 4.3: Perpendicularity feature, where the angle between the point normal n and
the direction of the road d is computed.

Open Street Maps

Since we are dealing with LiDAR point clouds, although they have information about
terrain points, we do not know the course of the road. However, there is a great interest
in collecting geodata - including street data - with projects like OpenStreetMap [Opea].
The geodata is depicted with tags assigned to nodes, ways or relations. Streets are
ways, which are formed by a list of nodes, represented with a key-value tag, like for
example highway=*, where highway is the key. The value describes the type of
the road and can have various classifications, like for example primary, secondary,
residential, pedestrian, footway or cycleway. They can have further tags,
describing properties such as name, speed limit, number of lanes or if the road is in a
tunnel or a bridge [Opeb] and many more. Figure 4.4 shows an overview of Cologne in
OpenStreetMap.

39

4. Curb Detection and Fitting

Figure 4.4: Overview of Cologne in OpenStreetMap. (Source: [Opea])

The OpenStreetMap geodata from an arbitrary area can be exported as an XML. Figure
4.5 shows a small area of Cologne including the Christian-Gau-Straße, which is a way
with five nodes, highlighted in red. The according XML-representation of this street is
as follows:

<way id="110666603">
<nd ref="1263272353"/>
<nd ref="1591118578"/>
<nd ref="1591118581"/>
<nd ref="1591118583"/>
<nd ref="1591168365"/>
<nd ref="250108119"/>
<tag k="cycleway" v="opposite"/>
<tag k="highway" v="residential"/>
<tag k="lit" v="yes"/>
<tag k="maxspeed" v="30"/>
<tag k="name" v="Christian-Gau-Strasse"/>
<tag k="oneway" v="yes"/>
<tag k="oneway:bicycle" v="no"/>
<tag k="sidewalk" v="both"/>
<tag k="surface" v="sett"/>

</way>

40

4.2. Feature Extraction

Figure 4.5: Christian-Gau-Strasse in Cologne with its OpenStreetMap tag coloured in
red. (Source: adapted from [Opea])

This street is represented as a way and has an id as meta-information. Attributes of a
way are the nodes nd with an id as reference ref to them and key-value pairs called tag,
stating the name of the road as Christian-Gau-Strasse, the type as residential,
a speed limit of 30 and among other tags also that this street is an one-way. A referenced
node can look like this:

<node id="1591118578" lat="50.9360153" lon="6.8985179"/>

The node has also an id and GPS coordinates, lat and lon respectively, as meta-
attributes. The latitude and longitude are represented in WGS84, World Geodetic System
1984, but LiDAR data have usually a local coordinate system, like in case of the data used
in this thesis, the EPSG:31467, also known as 3-degree Gauss-Kruger zone 3. Therefore,
the GPS coordinates of the OpenStreetMap nodes must be converted into the other
coordinate system and this is achieved by using the library ProjNET4GeoAPI [Net].

To find streets in an exported OpenStreetMap XML, the file is searched for the tag
way and this tag is then checked for the attribute highway. If the tag contains this
attribute, the value of this key-value pair is inspected to filter ways like footway,
steps, cycleway, pedestrian or service, because such ways are not of interest
for us since they are not streets. Assuming that the tag contains a highway-attribute
with a permitted value, the referenced nodes in this tag are searched in the XML. The
GPS positions of them are extracted, converted into the 3-degree Gauss-Kruger zone 3
coordinate system and saved in a file named with the id of the way. When those roads
are needed later on, the positions of the according file are loaded into the system, where
they form the line-strip of the road. Figure 4.6 shows the LiDAR point cloud of the
Christian-Gau-Straße with its imported OpenStreetMap road data in red.

41

4. Curb Detection and Fitting

Figure 4.6: Christian-Gau-Strasse in Cologne with its imported OpenStreetMap road
data.

4.3 False Positive Filtering

Machine learning is not perfect, the classifier is not performing well on some data samples.
Points misclassified as “curb”, although they are not, are called false positives. Such false
positives can origin from nearby cars, buildings and other objects with a similar geometric
structure to curbs. Hence, this step tries to identify and filter such false positive classified
curb points. The false positives are filtered by these three steps:

• First, the curb points are clustered with a density-based clustering algorithm.

• Then, a line-filter is applied on each cluster and

• finally, the remaining points per cluster are used to fit lines. These lines are checked
for parallelism to the road.

Whereby the first two steps are inspired from the work of Wang et al. [WWHY19]. They
are using a density-based clustering to split the points into the right and left side and a
RANSAC-filter to detect false positives inside the road.

42

4.3. False Positive Filtering

4.3.1 DBSCAN-Clustering

The points classified as curbs are clustered with the density-based clustering algorithm
DBSCAN [EKS+96], which is able to detect cluster of an arbitrary shape and noise.
The following paragraph describing this algorithm including Definition 4.6 is cited from
[EKS+96]. The DBSCAN-algorithm differentiates between three types of points: core
points, border points and noise. Noise are points p of the dataset D with no cluster Ci
assigned and defined as {p ∈ D | ∀i : p /∈ Ci}. Core and border points are both belonging
to a cluster, whereby the latter ones are located at the border of the cluster. The main
difference between them is the amount of neighbours found within the ε-neighbourhood,
which is specified as Nε(p) = {q ∈ D | dist(p, q) ≤ ε}, where dist(p, q) is a distance
function between two points p and q. Border points usually have less ε-neighbours than
core points. To form a cluster some constraint must be fulfilled, namely in a cluster
every point p must be part of the ε-neighbourhood of q with a minimum amount of
point minPts. This directly density-reachability is formal denoted as p ∈ Nε(q) and
| Nε(q) |≥ minPts, where the second one is the core point condition. The next constraint
is the density-reachability of two points p and q, where p is reachable from q over the
points p1, ..., pn, thus every step from pi to pi+1 must be directly density-reachable. The
last constraint is the density-connection between two points p and q, where both of
them are density-reachable from another point g. Finally, they define a cluster C by
using Definition 4.6.

∀p, q : p ∈ C and q is density-reachable from p then q ∈ C
∀p, q ∈ C : p is density-connected to q

(4.6)

The curb points are clustered by using this algorithm, with ε = 0.2 and minPts = 50,
which indicates that an ε-neighbourhood of 20 centimetres must contain 50 points. This
parameters are set relatively low, because LiDAR data are usually very dense and
therefore curbs have more than enough points within these ranges. It is possible that the
DBSCAN-algorithm splits a curb into multiple clusters. This could origin from “holes”
in the point cloud caused by occlusions from other objects during the scanning process.
For example, in an urban point cloud curbs are often occluded by parking cars besides
the street, which cause a disconnected sidewalk. However, this algorithm is used to
filter false positive classified curb points by identifying them as noise. Therefore, it does
not matter if or in how many clusters a curb is split by this algorithm. The resulting
clusters are used in the next steps of the false positive filtering, but discarded afterwards.
Besides that, this step and the following ones are performed only with the xy-position of
the points, since the line-filtering and the validation of the parallelism to the road are
performed in 2D, which simplifies the problem, but is as accurate as in 3D.

43

4. Curb Detection and Fitting

4.3.2 Line-Filtering

The resulting clusters from the previous step are now filtered further with a line-filter.
This filter uses the RANSAC algorithm [FB81], where a random set S of size N is
selected from the dataset D and a model M is fitted with the samples of S. The size
N depends on the minimum amount of points the model needs. Then, the model is
verified by calculating an error function between all points of D to M and all points
within a certain tolerance range are forming the consensus set Sc. If the size of Sc is
greater than some threshold, a new model is computed with the consensus set. If not,
this process is repeated until another random subset S fulfils the condition. In case no
random subset S is greater than the threshold, the algorithm terminates after a defined
number of iterations, there either the best model so far is returned or the algorithm fails.

The RANSAC implementation of this thesis uses a 2D line as model, which needs two
points to be formulated. The problem is transformed from the 3D to the 2D space by
omitting the z-axis and just using x- and y-coordinates of the points. Visually spoken, it
is like looking at the problem from a bird’s eye perspective. This dimensionality reduction
simplifies the problem, but does not influence the overall result in a negative way. As
error function, the distance from the points in D to the line is used and the points in the
consensus set are called inlier. If the number of inlier is greater than the best result so
far, a new model based on the consensus set and a score are computed. The score gives a
measurement about the accuracy of the model and is based on the normalizes squared
error of inlier from Choi et al. [CKY97] denoted as seen in Equation 4.7, where I is
the set of inlier, Err is an error function between a point pi and the estimated model M
or true model M∗.

NSE(M) =
∑
pi∈I Err(pi;M)2∑
pi∈I Err(pi;M∗)2 (4.7)

The score is then calculated as in Equation 4.8, which originates from the RANSAC
implementation of the scikit-learn python library [PVG+11] [BLB+13].

NSE(M) =
∑
pi∈I(pi −M(pi))2∑

pi∈I(pi − µ)2

Score(M) = 1−NSE(M)
(4.8)

The RANSAC-filtering process performs the following steps for each cluster. Considering
that the course of the road is approximated with a line-strip, the cluster is split according
to the nearest line-segments of the road. For the reason that, if the road bends, the
points of the curve will be part of the same cluster, since the conditions of the DBSCAN
algorithm are fulfilled, but a line cannot approximate a curve well. The RANSAC
algorithm is applied to each sub-cluster with a distance threshold of 15 centimetres. If
the resulting model is accurate enough, which is achieved with a Score(M) ≥ 0.8, the
inlier and the model are saved. This again filters points not complying the distance
threshold of the RANSAC algorithm.

44

4.4. Curb Fitting

4.3.3 Parallelism to the Road

All fitted lines of the sub-clusters are combined into a single continuous line-strip by
interpolating the corresponding endpoints of them. This new cluster line-strip is then
checked for parallelism to the road by using the dot product between them, which is 1 if
two vectors are parallel. If any dot product for a line-segment in the cluster is ≥ 0.99 the
remaining inlier points of this cluster are marked as true positives and not filtered.

All remaining possible curb points are labelled as “curb”. In the next and last step, the
geometry is fitted through these points.

4.4 Curb Fitting

The curb fitting is done in multiple steps, where the process orients itself on the course
of the road line-strip. First, each curb point is assigned to its nearest road line-segment
and then allocated to the left or right side of it. Through both sides, a model of a
mathematical function is fitted with the RANSAC algorithm, where it is represented by
a Lagrange polynomial. The standard case uses a polynomial of second degree, but for
streets with a stronger curve, a polynomial of a higher degree is applied. This step uses
polynomial of a higher degree and not a line to represent the course of the road, because
we need a good representation of the curb in this step, since we are now computing
the final geometry. The error function is the distance from the point to the model and
the distance threshold is 0.1 meter. Furthermore, the function only uses the x- and
y-coordinates, because this step calculates the pathway of the curb and not the location of
the height. However, a function of higher degree is not so handy to work with afterwards.
Therefore, it is subdivided into a continuous line-strip with a fixed step-size of two meters
in the standard case. This depicts the actual road even with curves well.

l0

u0

l1

u1

Figure 4.7: A curb segment with the fitted lower and upper edges. u0 and u1 denote the
endpoints of the upper edge and l0 and l1 denote the endpoints of the lower edge.

45

4. Curb Detection and Fitting

To calculate the height of the curb, the best-fit lines themselves and their inlier points
are used. For each curb line-segment, the nearest inlier are taken to find the minimum
and maximum height value in the area of the ends of the line. The point cloud could
have holes in the area of the curb, caused by parking cars for example, but we want to
close those holes and create a continuous curb geometry. Therefore, we start searching
within the neighbourhood of 0.1 meter and as long as we do not find any curb points,
this area is enlarged by 0.1 meter each iteration. With the line-segments representing
the course of the curb and the detected minimum as well as maximum height values
of points constituting the ends of the curb, the upper and lower edges of the curb are
constructed, which can be seen in Figure 4.7.

The final geometry model includes polygons for the curbs, sidewalk and street. Figures
4.7 to 4.10 are showing the curb in green, the sidewalk in blue and the road in grey. For
each side of the road, the polygon line-strip with the upper and lower edges, u as well as l
respectively, are processed. The curb polygons are constructed by the edge points of the
according lines. The endpoints of the lower edge as well as the endpoints of the upper
edge form a curb polygon Ci with the vertices l0, l1, u0 and u1. Figure 4.8 visualizes a
section of a curb with three final curb polygons C0, C1 and C2.

l0

l1,0

u1,0

u0

u1

l1

C0

C1

C2

l1,0

u1,0

Figure 4.8: A section of a curb with the final polygons C0, C1 and C2 of three curb
segments.

For each sidewalk-polygon, the terrain points in a neighbourhood of two meters are
split into pavement and street points by using the middle height of the lower and upper
edges. The points above this height value are sidewalk points and the points below
are street points. A plane is fitted through these points using the RANSAC algorithm
with a distance threshold of 0.005 meter. The sidewalk-polygons are constructed by
using the endpoints of the upper edge, and positions two meters perpendicular to them,
resulting in a polygon SWi with vertices u0, u1, s0 and s1. To create a continuous sidewalk
geometry, the perpendicular points are then interpolated accordingly. The resulting
sidewalk polygons SW0, SW1 and SW2 of this step are visualized in Figure 4.9.

46

4.4. Curb Fitting

s0

s1

s0,1
u1,0

u0

u1

u1,0

s0,1

SW0

SW1

SW2

Figure 4.9: A section of a curb with the final polygons of three curb segments with the
according sidewalk-polygons SW0, SW1 and SW2.

Finally, the road-polygon is created by using the end-points of the lower edge-lines of the
curbs. Figure 4.10 shows this polygon with vertices r0, ..., r1 in pink created from the
according endpoints of the line-segments l0 and l1 respectively.

r0

r1

r4

r2

r5

r7

r8

r9

Road

Figure 4.10: The final polygons of a curb section from three curb as well as sidewalk
segments and the road polygon, which is constituted by the vertices ri.

47

CHAPTER 5
Neural Network Training

Training a Convolutional Neural Networks needs a lot of fine-tuning. Therefore, a
lot of work was put into finding the best datasets sizes, network architecture and
hyperparameters. The results of the network training are shown in this chapter, whereby
Section 5.1 gives a short overview about the assembly of the used dataset, Section 5.2
describes the used hyperparameters and why they were chosen and finally, Sections 5.3,
5.4 as well as 5.5 discuss the training results of three different networks respectively.

The following system setup was used for the training and classification: Intel(R) Core(TM)
i7-9700K CPU @ 3.60GHz, 64 GB RAM and GeForce RTX 2080 Ti. The network was
implemented with Keras [C+15] and Tensorflow [AAB+15] in Python.

5.1 Datasets

The Semantic3d training set is used for the network training. It is split into an actual
training, validation and test set, where the training set is used to learn the data distribution
and the validation set to tune the network’s hyperparameters. The test set is used to
verify the performance of the resulting classifier on unseen data. Hence, for this chapter
we refer to the Semantic3d training set as dataset.

The dataset is split into a training, a validation and a test set. The distribution of the
classes should be equal in size. If there are not enough data samples of a class available,
data augmentation is used to create more samples artificially. In the training set, the
amount of data samples per class is 10.000, in the validation set 3.000 and in the test
set 630. This results in a total set size of 80.000 for the training set and 24.000 as well
as 5.040 for the validation and test set respectively. The composition of these sets are

49

5. Neural Network Training

visualized in Figure 5.1 with the training set including data augmentations in blue, the
validation set as well as its data augmentations in green and the test set in red.

da
ta

sa
mp

les

Data Augmentations (Training Set) Data Augmentations (Validation Set)
Training Set Validation Set
Test Set

man-
made

 ter
rain

nat
ura

l te
rra

in

hig
h v

ege
tat

ion

low
 ve

get
atio

n

bui
ldin

gs

har
d s

cap
e

sca
nni

ng
art

efa
cts car

s
0

2.5k

5k

7.5k

10k

12.5k

Figure 5.1: Class Distribution of the training, validation and test set including data
augmentations.

5.2 Hyperparameter-Tuning

A convolutional neural network includes many hyperparameter, which need to be tuned
individually. This begins with the actual architecture of the network, the amount of
neurons in each layer, grid size, up to dropout or learning rates. To get the very best out
of a network many different combinations were evaluated. Furthermore, in order to be
statistically representative, the network was trained and evaluated ten times with each
setting. The results are an average value of them. Note, that the precise results of these
hyperparameter-tuning tests are listed in Appendix A.

However, some parameters were the same for all different experiments: To improve the
generalization of the network, early stopping was used. It stops the training process
prematurely if the validation loss has not improved over the last seven epochs. Categorical
cross-entropy is used as loss function and every time it improves, the weights of the
network are saved. Therefore, once the training is finished, the weights of the best epoch

50

5.2. Hyperparameter-Tuning

are used for the classification. As optimizer AdaMax with its default parameters, 0.002
for the learning rate and β1 = 0.9 as well as β2 = 0.999 were used.

The most comprehensive tests were made with a grid size of 16 for the middle node and
8 for the side cubes. For the simple reason that this is the smallest dataset, according to
memory consumption, and essential things, like the occupancy values, can be quickly
tested and probably discarded in further experiments.

A feature learning component consists of convolutional and pooling operations and has
the following structure: CONV - BN - ReLU - CONV - BN - ReLU - POOL. First, the
impact of the amount of such components on the middle nodes as well as side cubes was
explored. The pooling operation has a kernel size of 2× 2; this scales the input down by
half. That means for a input size of 16, one pooling operation results in a grid size of 8,
two pooling operations result in a grid size of 4 and so on.

To explore the impact of the amount of feature learning components on the middle
nodes, the network was trained just on them. One component achieved a slightly better
performance, than two or three stacked components. In particular, it was about 0.86%
better than two and 1.26% better than three were. This is also the case for a different
amount of feature learning components in combination with side cubes. Two stacked
components perform slightly worse than just one. The reason for that is probably, that
more components down scale the input too much and loose information in this process.
However, the increase in accuracy between a network trained just on middle nodes and
a network also including the neighbourhood information is 6.47%. In further tests, the
amount of feature learning components was set to one for the middle cube and one for
the side cubes, since this combination works best.

Three different occupancy values were evaluated:

• A binary occupancy value, where the grid cell either contains 1 or 0, depending if
there are any points inside the cell or not,

• the absolute amount of points inside a cell and

• the ratio of the number of points inside the grid cell to the total amount of points
in the node.

Note that the previous tests were performed with binary occupancy values, as it has
been determined very earlier that this mode works best. The total amount of points as
occupancy value performs about 3.75% worse on the test set and the fractional occupancy
value does not work at all. The network is not able to minimize the loss and therefore
cannot learn anything; the accuracy is around 33%. The reason behind this is that
the average amount of points inside a cell is 1.76 and 15.92 for middle and side cells
respectively. The average total amount of points is 7221.31 for middle and 8149.96 and
side cells. Building the fraction with the according values results in nearly zero, which is
probably too small to learn a mapping from data samples to class membership.

51

5. Neural Network Training

Furthermore, additional features describing properties of the middle cell were concatenated
to the resulting feature vector of the feature learning phase and evaluated as well. Those
features involve the absolute height of a cell, average height of all points inside a cell,
average point normal and average point colour. The additional information about the
height of the box center increases the accuracy about 1.49% and the average height of
points inside a box results in a better performance about 1.68%. The average normal
of points in a box does not increase the result much, just about 0.07%. However, the
average point colour has a much higher impact on the accuracy of the network; it is
increased by 2.37% by adding this feature.

Further hyperparameters are the dropout value and amount of neurons in the classification
part of the network. A dropout value of 0.2% for the input and 0.5% for the hidden layer
with 2048 and 4096 neurons works best. Furthermore, 128 neurons in the convolutional
block works best for the middle cube and 64 neurons for the side cubes. L2-Regularization
with a value of 0.0001 is used. This value does not reduce overfitting of the network
much, but on the other hand, it also does not decrease the accuracy too much (about
1%, instead of 7.5% with a regularization value of 0.01).

5.3 Network Using Small Grid Size

This network architecture has a grid size of 16 for the middle cube as well as 8 for the
side cubes and consists of the following layers: CONV - BN - ReLU - CONV - BN -
ReLU - POOL - DO - FC - DO - FC. The convolutional layers have 128 neurons for
the middle and 64 for the side cubes. The first fully connected layer has 2048 neurons
and the second one has 4096. The first dropout layer has a dropout rate of 0.2 and the
second one of 0.5. Furthermore, the binary mode and additional feature of average point
colour were used. The architecture of this network is visualized in Appendix B.1.

The network performance was validated with the metric.py-script from the Semantic3d
dataset [Sem] on the test set. It calculates the Intersection over Union (IoU), Overall
Accuracy (OA) and also a confusion matrix. This network achieves an overall IoU of
72.12% and an OA of 80.87%, which is shown together with the IoU of the eight single
classes in Table 5.1. There it can be seen that the classes “man-made terrain” and
“natural terrain” are classified quite well, but the other classes perform not so good,
especially “low vegetation” and “hard scape”. The confusion matrix is shown in Table 5.2,
where MMT is “man-made terrain”, NT is “natural terrain”, HV is “high vegetation”,
LV is “low vegetation”, B are “buildings”, HS is “hard scape”, A are “artefacts” and
C are “cars”. By taking a closer look on this confusion matrix, it can be seen, that a lot
of misclassification occur between “high vegatation” and “low vegetation”, “buildings”
and “hard scape” as well as “cars” and “hard scape”. Even, if the terrain classes perform
quite well, most misclassification are made between those two classes.

52

5.3. Network Using Small Grid Size

classes 8 classes 6 classes
IoU in %

man-made terrain 83.29 90.6natural terrain 84.55
high vegetation 67.10 82.04low vegetation 54.14

buildings 65.34 66.02
hard scape 51.52 53.4
artefacts 74.93 74.55

cars 68.24 66.09
average over all classes 68.64 72.12

OA in %
overall accuracy 80.87 85.69

Table 5.1: IoU of the single classes, average IoU and OA of the test set classified with
the network using small grid size. Once with the original eight classes and once with the
combined six classes.

MMT NT HV LV B HS A C
MMT 91.75 4.60 0.00 0.32 0.95 1.59 0.16 0.63

NT 3.17 92.06 0.00 3.49 0.63 0.48 0.00 0.16
HV 0.00 0.16 81.27 14.76 1.27 1.11 0.95 0.48
LV 0.79 2.70 15.40 70.63 2.70 4.44 0.95 2.38
B 1.59 0.16 0.95 1.90 78.41 9.84 3.65 3.49

HS 1.59 0.79 1.59 5.56 10.16 67.30 3.17 9.84
A 0.79 0.16 1.75 1.90 2.54 5.87 83.02 3.97
C 2.22 0.32 1.43 2.54 1.75 7.30 1.90 82.54

Table 5.2: Confusion matrix of the test set classified with the network using small grid
size. (Note: values are in %.)

Since, for the purpose of this thesis, the distinction between the classes “man-made
terrain” and “natural terrain” as well as “high vegetation” and “low vegetation” is not
relevant, they are combined into a single class, called “vegetation” and “terrain”. Another
network was trained on these six classes, which performs better than the network using
eight classes. For this network the IoU is 72.12% and the OA is 85.69%, which are
3.48% as well as 4.82% better as with eight classes. The IoU for the single classes are
also visualized in Table 5.1. By looking at this table, it can be seen that the single
class “terrain” performs 6.68% better than the average of the classes “man-made terrain”
and “natural terrain” and the single class “vegetation” performs 21.42% better than the
average of the classes “high vegetation” and “low vegetation” for the IoU. The other
classes perform a little bit better or worse, but in a range that can be accepted. By
looking into the confusion matrix of this network using six classes in Table 5.3, it can

53

5. Neural Network Training

be seen that the single class “terrain” performs 3.72% better than the average of the
classes “man-made terrain” and “natural terrain”. The single class “vegetation” performs
16.83% better than the average of the classes “high vegetation” and “low vegetation” too.
The accuracy for the other classes is up to 3% better or up to 4% worse, but also this
can be accepted due to the nearly 17% performance increase of the “vegetation” class.
Furthermore, it should be mentioned, that for this network using six classes the data
samples of the terrain and vegetation classes were combined, which results in an amount
of data samples twice as big as for the other classes. Moreover, also a network using
six classes with an equal class distribution as well as a network using six classes with
an unequal class distribution, but with class weights were trained. Nevertheless, those
networks performed slightly worse. Therefore, the further networks using six classes in
this thesis are trained with an unequal class distribution without class weights.

terrain vegetation buildings hard scape artefacts cars
terrain 95.63 2.22 0.56 0.87 0.08 0.63

vegetation 1.43 92.78 0.95 2.14 1.43 1.27
buildings 1.90 3.97 75.87 10.32 4.13 3.81

hard scape 3.17 8.25 7.46 68.57 5.40 7.14
artefacts 0.48 3.17 2.06 4.60 86.03 3.65

cars 2.70 6.35 2.38 7.46 2.86 78.25

Table 5.3: Confusion matrix of the test set classified with the network using small grid
size and six classes.

5.4 Network Using Middle Grid Size

This network architecture has a grid size of 16 for the middle as well as side cubes, apart
from that it is the same as for the network with grid sizes 16 and 8 respectively. Except
for the amount of neurons in the dense layer as well as the batch size, they were reduced
due to memory limitations. They are decreased to 1024 for the first and 2048 for the
second dense layer as well as 64 for the batch size. Moreover, the additional feature of
average point colour was used in this network too. The architecture of this network is
visualized in Appendix B.2.

For the network using eight classes, the overall accuracy is 82.14%, which is 1.27% better
than with the network using small grid size and the average IoU is 1.63% better with
the increased grid size for the side cubes. The IoU values for each class are shown in
Table 5.4, they are all better with this network except for the class “natural terrain”;
this one performs 1.27% worse. The confusion matrix for the network using eight classes
is displayed in Table 5.5, there it can be seen that the classes “man-made terrain”,
“high vegetation”, “hard scape”, “artefacts” and “cars” perform better than with the
network using small grid size. Especially the two classes “high vegetation” and “artefacts”

54

5.4. Network Using Middle Grid Size

increased about 4.44% and 5.55% respectively. On the other hand, the classes “natural
terrain”, “low vegetation” and “buildings” performed slightly worse, with a maximum of
2.69% for the class “natural terrain”. However, the most misclassifications occur between
the two terrain and the two vegetation classes as well as between the classes “buildings”
and “hard scape”.

classes 8 classes 6 classes
IoU in %

man-made terrain 83.67 90.00natural terrain 83.28
high vegetation 69.95 83.76low vegetation 56.08

buildings 66.90 67.57
hard scape 53.42 53.91
artefacts 78.59 76.30

cars 70.25 72.06
average over all classes 70.27 73.93

OA in %
overall accuracy 82.14 86.69

Table 5.4: IoU of the single classes, average IoU and OA of the test set classified with
the network using middle grid size. Once with the original eight classes and once with
the combined six classes.

MMT NT HV LV B HS A C
MMT 92.70 3.65 0.00 0.00 0.32 1.90 0.32 1.11

NT 4.76 89.37 0.32 3.17 0.63 0.79 0.16 0.79
HV 0.00 0.00 85.71 11.43 0.32 0.79 0.48 1.27
LV 0.63 2.22 18.10 70.32 1.43 2.70 1.43 3.17
B 1.90 0.48 1.59 1.11 77.30 10.63 3.02 3.97

HS 1.27 0.48 0.95 5.87 9.52 68.10 5.08 8.73
A 0.95 0.16 0.63 1.75 2.06 3.81 88.57 2.06
C 1.27 0.32 0.95 2.06 1.27 6.83 2.22 85.08

Table 5.5: Confusion matrix of the test set classified with the network using middle grid
size. (Note: values are in %.)

This network was also trained with six classes and performs 4.55% better in the OA and
3.66% better in the average IoU. The IoU for single classes are also increased: About
6.53 % for the class “terrain” compared to the average of the classes “man-made terrain”
and “natural terrain” and about 20.75% for the single class “vegetation” compared to
the average IoU values of the classes “high vegetation” and “low vegetation”. Moreover,
“buildings”, “hard scape” and “cars” have a slightly better IoU, up to 1.81% than with
the network using eight classes. The class “artefacts” performs 2.29% worse compared

55

5. Neural Network Training

to the network using eight classes. However, the increase in IoU for all other classes
outweigh this rather small decrease in the class “artefacts”. The precise values of the OA
and IoU are shown in Table 5.4.

The confusion matrix of the network using six classes is displayed in Table 5.6, there it
can be seen that this network performs 4.68% better with the combined class “terrain” and
14.52% better with the combined class “vegetation” compared to the network using eight
classes. The other classes perform either slightly better or worse, to be precise the classes
“buildings” as well as “artefacts” perform both 2.22% worse and the classes “hard scape”
and “cars” have an increased accuracy of about 1.9% and 0.48% respectively. The most
misclassifications of the network using six classes occur between the classes “buildings”
and “hard scape”, which is probably caused of the similar structure of buildings and low
walls. Also between the classes “hard scape” and “cars” is the misclassification rate high,
precisely about 9%.

Compared to the accuracies of the network using small grid size and six classes the
network using middle grid size has an increase in the OA about 1% and in the average IoU
about 1.81%. By comparing the confusion matrices of those two networks, it can be seen
that the accuracy is also increased for most classes: The classes “terrain” and “artefacts”
just perform slightly better than with the network using middle grid size, about 0.08%
and 0.32% respectively. The class “hard scape” performs 1.43% better too and the class
“cars” has an increase about 7.31% in correct classifications. The remaining two classes,
“vegetation” and “buildings”, perform marginal worse than with the network using small
grid size, namely about 0.24% and 0.79% respectively. However, this decrease in the
accuracy is negligible in comparison to the increase for all other classes and especially
the increase about 7% for the class “cars”.

terrain vegetation buildings hard scape artefacts cars
terrain 95.71 1.90 0.32 1.19 0.24 0.63

vegetation 1.67 92.54 0.95 1.98 1.19 1.67
buildings 2.86 4.13 75.08 11.90 3.49 2.54

hard scape 2.86 6.67 6.19 70.00 5.24 9.05
artefacts 0.79 3.02 1.43 5.87 86.35 2.54

cars 2.86 3.33 0.95 5.71 1.59 85.56

Table 5.6: Confusion matrix of the test set classified with the network using middle grid
size with six classes.

5.5 Network Using Big Grid Size

Here, the grid size for the middle cube is 32 and for the side cubes 16. This network is
composed of two stacked feature learning components with 64 and 128 neurons respectively
for the middle cube and one feature learning component with 64 neurons for the side

56

5.5. Network Using Big Grid Size

cubes. The first dense layer consists of 1024 and the second one of 2048 neurons, like
in the network using middle grid size, and a batch size of 64 was used too. The rest of
the network and hyperparameters stayed as in the networks before and the additional
feature of average point colour was used as well.

The network using big grid size achieves for the eight class problem about the same
overall accuracy as the network using middle grid size, it is just 0.7% better. By looking
at the IoU values, which are shown in Table 5.7, it can be seen that, in comparison to the
network using middle grid size, this network performs for the most classes slightly better,
with up to 3.97% for the class “cars”. On the other hand, the classes “high vegetation”
and “artefacts” perform worse, with 0.14% and 0.74% respectively. Furthermore, the
average IoU of all classes for the network using big grid size is about 1.06% better than
with the network using middle grid sized.

classes 8 classes 6 classes
IoU in %

man-made terrain 84.58 90.26natural terrain 84.09
high vegetation 69.81 84.38low vegetation 57.99

buildings 67.88 66.19
hard scape 54.20 51.91
artefacts 77.85 77.42

cars 74.22 73.82
average over all classes 71.33 74.00

OA in %
overall accuracy 82.84 86.81

Table 5.7: IoU of the single classes, average IoU and OA of the test set classified with
the network using big grid size. Once with the original eight classes and once with the
combined six classes.

The confusion matrix of the network using big grid size and eight classes is shown in Table
5.8, there it can be seen that most misclassifications still occur between the classes “high
vegetation” and “low vegetation” as well as “buildings” and “hard scape”. In comparison
to the network using middle grid size and eight classes the accuracies of the single classes
is slightly worse for “man-made terrain”, “high vegetation” and “buildings”, with about
1.27%, 2.38% and 0.16% respectively. On the other hand, the classes “natural terrain”,
“low vegetation”, “hard scape”, “artefacts” and “cars” perform better with the network
using big grid size, with at most 3.97% for the class “low vegetation”.

In addition, the network using big grid size was trained with six classes instead of eight.
As it can be seen in Table 5.7, the network using six classes has an overall accuracy of
86.81%, which is 4.57% better than with the network using eight classes. The IoU-value
for the combined class “terrain” is 5.93% better than the average of the classes “man-

57

5. Neural Network Training

MMT NT HV LV B HS A C
MMT 91.43 4.44 0.00 0.00 0.79 1.59 0.63 1.11

NT 3.17 90.63 0.00 4.44 0.48 1.11 0.00 0.16
HV 0.00 0.00 83.33 13.02 0.63 1.43 1.59 0.00
LV 0.32 2.38 15.56 74.29 1.27 3.49 1.27 1.43
B 1.43 0.32 1.11 2.54 77.14 10.95 3.49 3.02

HS 1.27 0.32 1.27 5.24 7.94 69.68 5.71 8.57
A 0.95 0.16 0.32 1.11 1.27 4.29 89.84 2.06
C 0.95 0.16 1.11 1.75 1.27 5.71 2.70 86.35

Table 5.8: Confusion matrix of the test set classified with the network using big grid size.
(Note: values are in %.)

made terrain” and “natural terrain”. The IoU-value of the combined class “vegetation” is
20.48% better than the average of the classes “high vegetation” and “low vegetation”.
The IoU-values of the remaining classes are slightly worse than with the network using
six classes, with at most of 2.29% for the class “hard scape”. However, the average of all
IoU-values is increased 2.67% with the network using six classes. This can also be seen by
comparing the two confusion matrices (see Table 5.8 for the network using eight classes
and Table 5.9 for the network using six classes), the accuracy of the combined class
“terrain” performs 5.32% better than the average accuracy of the classes “man-made
terrain” and “natural terrain”. The combined class “vegetation” has an increase in the
accuracy of 14.21% compared to the average of the classes “high vegetation” and “low
vegetation”. Furthermore, the class “buildings” performs 3.34% better too, but the classes
“hard scape”, “artefacts” and “cars” perform worse, with 5.08% for the class “hard scape”.
Moreover, it also can be seen that misclassifications between the classes “buildings” and
“hard scape” are still very high for networks using eight and six classes.

terrain vegetation buildings hard scape artefacts cars
terrain 96.35 1.59 0.56 1.03 0.24 0.24

vegetation 2.14 93.02 1.43 1.51 1.11 0.79
buildings 2.70 4.13 80.48 7.30 3.81 1.59

hard scape 3.02 7.30 13.33 64.60 5.24 6.51
artefacts 1.27 2.06 3.02 4.13 88.73 0.79

cars 2.22 3.81 1.27 7.94 2.86 81.90

Table 5.9: Confusion matrix of the test set classified with the network using big grid size
with six classes.

By comparing the network using big grid size and six classes with the network using
middle grid size and six classes, it can be seen that the network using big grid size has an
increase in accuracy of just 0.12% and also the average IoU performs just 0.06% better.
The IoU-values for the network using big grid size are slightly better for the classes
“terrain”, “vegetation”, “artefacts” and “cars”, but the classes “buildings” and “hard

58

5.5. Network Using Big Grid Size

scape” perform worse, with at most about 2% for the class “hard scape”. By comparing
the accuracies of the single classes in the confusion matrices of Table 5.6 for the network
using middle grid size and of Table 5.9 for the network using big grid size, it can be
seen that the classes “terrain”, “vegetation”, “buildings” and “artefacts” perform better
with the network using big grid size. They do this with at most 5.40% for the class
“buildings”, but the remaining classes “cars” and “hard scape” perform worse, with at
most 5.40% for the class “hard scape”.

As it can be seen in Table 5.10 the overall accuracy increases with an increased grid
size, whereby the largest increase is between the networks using small and the middle
grid sizes. This is probably due to the increased grid size of the neighbouring cells.
Besides that, the networks using six classes are performing better than the networks
using eight classes with all three grid sizes, whereby the greatest difference between the
accuracies is from the network using small grid size to the network using middle grid size
too. Since, the network using big grid size performs better than the networks using small
and middle grid sizes, it is used for the semantic segmentation of the point cloud. Figure
5.2 visualizes the architecture of this network in more detail.

8 classes 6 classes differenceOA increase OA increase
network using small grid size 80.87 - 85.69 - 4.82
network using middle grid size 82.14 1.27 86.69 1.00 4.55
network using big grid size 82.84 0.70 86.81 0.12 3.97

Table 5.10: Overall accuracies of the three different networks, increase in the OA between
the networks as well as difference between six and eight class networks (Note: values are
in %).

59

5. Neural Network Training

COLOR FEATURE

BN

CONV 64

k = 3x3x3, s = 1

BN

ReLU

CONV 64

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

INPUT

16x16x16

GLOBAL AVG POOL

DO 0.2

FC 1024

DO 0.5

FC 2048

SOFTMAX

OUTPUT

CONCATENATED FEATURE VECTOR

CONV 64

k = 3x3x3, s = 1

BN

ReLU

CONV 64

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

INPUT

32x32x32

GLOBAL AVG POOL

CONV 128

k = 3x3x3, s = 1

BN

ReLU

CONV 128

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

Figure 5.2: Architecture of the network using big grid size.

60

CHAPTER 6
Results

This chapter is dedicated to results of the semantic segmentation using 3D CNNs as well
as results of the curb fitting. Section 6.1 shows results of the semantic segmentation
on the Semantic3d training as well as test set. Section 6.2 presents the outcome of the
semantic segmentation as well as of the curb fitting on a real world dataset of a city in
Germany. Finally, a critical reflection is given in Section 6.3, whereby 3D CNNs as well
as curb fitting will be discussed shortly.

6.1 Semantic Segmentation of the Semantic3d Dataset

A segmented point cloud can either be evaluated categorically, if ground truth class labels
are available, like for the Semantic3d dataset, or visually, if no ground truth class labels
are existing, like for the Cologne dataset. The numerical evaluation is performed with
the same metrics as in Chapter 5, but pointwise instead of boxes.

For visual evaluation, the points of the point cloud are coloured according to their class
affiliation. “Man-made terrain” is grey, “natural terrain” is light-green, “high-vegetation”
is green, “low vegetation” is dark-green, “buildings” are blue, “hard scape” is orange,
“cars” are pink and “artefacts” are brown-pink. In case of six classes instead of eight, the
combined “terrain” class is coloured grey and the combined “vegetation” class is coloured
green. The classes and their colours are listed in Table 6.1, whereas on the left side are
the colours for eight classes and on the right side are the colours for six classes visualized.

61

6. Results

man-made terrain
natural terrain
high vegetation
low vegetation

buildings
hard scape
artefacts

cars

terrain
vegetation
buildings
hard scape
artefacts

cars

Table 6.1: The points of the point cloud are coloured according their assigned classes.
Left: Colours for eight classes. Right: Colours for six classes with combined “terrain”
and “vegetation” classes.

6.1.1 Semantic3d Training Set

The 15 point clouds of the Semantic3d training set were used for training of the 3D
CNN. However, not the entire point clouds were used for training, but only parts of them.
Since, the positions of the boxes, which were used for training, are known, the points
of a point cloud can be split into two sets: used for training and not used for training.
These two sets can then be numerically evaluated separately.

The results of this evaluation are shown in Table 6.2 and there it can be seen that the
the network using eight classes has nearly the same accuracy for points used and not
used for training, with about 90% and 91% respectively. Most classes perform similar in
those two sets, except of “low vegetation” and “hard scape”; they have a deviation of
about 10% in favour of points used for training. During the training, it became apparent
that the network has problems distinguishing “high vegetation” and “low vegetation”
due to its similarity. However, most misclassifications of “low vegetation” in points
not used for training occur at “hard scape”. The class “hard scape” does not perform
as good as other classes in the training set as well. Misclassifications occur in both
directions, which is evident in the IoU of this class with about 63% too. For points
not used for training this problem does have stronger effects and the IoU is about 24%.
This is probably caused by many different things being labelled as “hard scape”, such as
walls, fences, flagpoles, streetlights and fountains to name a few. All these things have a
diverse structure in the point cloud and the network is probably confused due to this.
A targeted relearning and refinement of this class cloud probably solve this problem.
Furthermore, the classes “artefacts” and “cars” differ of about 4-5% between used and
not used for training. Whereby, “artefacts” perform better in not used for training and
“cars” in used for training. “Cars” have an accuracy around 98% and 93% in used and not
used for training respectively. This class may be slightly overfitted during the training.
“Artefacts” are not performing well in both sets. They have an accuracy of approximately
33% for points used and 38% for points not used for training. In points used for training,
most misclassifications occur between this class and “buildings” as well as “hard scape”.
In points not used for training, most misclassifications occur between this class and

62

6.1. Semantic Segmentation of the Semantic3d Dataset

“man-made terrain” as well as “hard scape”. The misclassifications between “buildings”
and “hard scape” may be caused by the similar structure of exterior walls of buildings
and low walls or fences. The misclassifications between “man-made terrain” and “hard
scape” probably results from the cube data structure. By looking at the classified point
cloud, it becomes apparent that many “artefacts” are caused by passing people and are
thereby located at the ground. If a cube is classified as “man-made terrain” but has
“artefacts” in it, those “artefacts” are wrongly labelled as “man-made terrain”.

used for training not used for training
8 classes 6 classes 8 classes 6 classes

Accuracy in %
man-made terrain 94.05 96.76 94.33 97.71natural terrain 85.43 89.24
high vegetation 92.10 98.69 89.48 96.74low vegetation 96.43 87.27

buildings 93.54 95.39 90.36 92.56
hard scape 81.01 78.02 68.62 59.50
artefacts 33.45 24.39 37.82 40.33

cars 97.71 95.35 92.72 91.64
overall accuracy 90.25 93.73 91.07 95.51

IoU in %
man-made terrain 89.22 95.74 90.78 96.30natural terrain 81.05 84.54
high vegetation 87.32 93.86 89.05 92.39low vegetation 88.11 43.07

buildings 80.43 76.12 88.90 90.89
hard scape 63.87 65.02 24.27 28.95
artefacts 30.26 22.85 20.38 24.99

cars 65.35 68.60 6.84 8.99
average over all classes 73.20 70.36 55.98 57.09

Table 6.2: Final semantic segmentation results of the Semantic3d training set.

Furthermore, it can be seen in Table 6.2, that the network using six classes has nearly
the same accuracy for points used and not used for training too, with about 94% and
96% respectively. “Terrain”, “vegetation”, “buildings” and “cars” are performing almost
equal is both sets, with about 1-4% difference. “Hard scape” and “artefacts” have a
big difference in accuracy too. Whereby “hard scape” performs about 19% better for
points used for training and “artefacts” performs about 16% worse. “Hard scape” points
are misclassified through all classes and have corresponding IoU values of about 65%
and 29% for points used and not used for training respectively. The reason for this is
most probably the same as for the network using eight classes. Points labelled as “hard

63

6. Results

scape” belong to different objects with diverse structures and this problem is enhanced
for unknown points. “Artefacts” are performing in the network using six classes bad
too, with just about 24% and 40% accuracy for points used and not used for training
respectively. Most misclassified “artefacts” in points used for training occur between this
class and “buildings” as well as “hard scape”. However, in points not used for training
most misclassifications occur between this class and “terrain”. The reason for those
misclassifications are most probably the same as for the network using eight classes.

In addition to that, Table 6.2 shows that the network using eight classes and the network
using six classes have a similar overall accuracy, where the network using six classes
performs a couple percent better. In both sets, used and not used for training, the
combined “terrain” and “vegetation” classes outperform the respective single classes.
“Buildings” and “cars” are performing approximately equal in those sets. “Hard scape”
performs similar in points used for training, but in not used for training the network using
six classes performs worse than the network using eight. “Artefacts” are performing for
points not used for training better for both networks, but with a greater difference in the
network using six classes. This difference between the two networks in those classes may
be caused by the diversity in “hard scape” objects too and the problem with “artefacts”
in general.

The semantic segmentation of the Semantic3d datasets “bildstein station 5” and “sg27
station 1” are shown in Figure 6.1 and 6.2 respectively. The top images display
the according scene, the second row shows the ground truth labels, the third row the
segmentation predictions and the bottom row visualizes if the semantic segmentation is
correct (blue points) or not (orange points). The left column depicts a classification with
eight classes and the right column with six classes. In Figure 6.1, it can be seen that, the
overall classification works quite well for eight as well as six classes, whereby the six class
classification is more accurate. Most misclassifications occur due to the representation of
the data in the 3D CNN, since cubes with one meter side length are used as data samples.
For example, if a cube contains mostly car and some terrain points, it will be predicted
as “cars” from the neural network. Thus, all points in the cube are labelled as “cars”
- also terrain points, which is incorrect. Another frequent source of misclassifications
are the confusion between the classes “buildings” and “hard scape”, which can be seen
at the leftmost building and at the barn in Figure 6.2. Furthermore, in Figure 6.2
it can also be seen that misclassifications between the classes “high vegetation”, “low
vegetation” and “natural terrain” occur commonly. In addition to that, it can also be
determined that in this scenario a classification with six classes performs better than
with eight classes.

64

6.1. Semantic Segmentation of the Semantic3d Dataset

Figure 6.1: Semantic3d training dataset “bildstein station 5”. Second row: ground truth,
third row: network predictions, bottom row: correct predicted (blue) or not (orange).
The left column depicts a classification with eight classes and the right with six.

65

6. Results

Figure 6.2: Semantic3d training dataset “sg27 station 1”. Second row: ground truth,
third row: network predictions, bottom row: correct predicted (blue) or not (orange).
The left column depicts a classification with eight classes and the right with six.

66

6.1. Semantic Segmentation of the Semantic3d Dataset

6.1.2 Semantic3d Test Set

By looking at the semantic segmentation of the Semantic3d test set with eight classes in
Figure 6.3, it can be seen that the overall classification works quite well too, with the
same weaknesses as in the Semantic3d training set. Most misclassifications occur between
the classes “buildings” and “hard scape” and besides that, the vegetation classes as well
as “natural terrain” are being mixed up. This can be seen quite well in the pictures of
the second row. Furthermore, in the top row it can be determined that the shopping
windows are labelled as “natural terrain” and not as part of the building; this might be
probably caused by reflections of the opposite meadow. The dataset of the third row is
segmented quite well, but the class affiliation of the vegetation in the background might
not be correct and also some misclassifications between the classes “natural terrain” and
“man-made terrain” might occur due to the cubic representation of the point cloud in
the 3D CNN. The bottom row may also suffer from this, whereby here misclassifications
between the classes “man-made terrain” and “artefacts” occur and the classes “buildings”
and “hard scape” are mixed up at the building on the right side.

These classification results were also submitted to the Semantic3d benchmark, where
an overall accuracy of 85.1% and an average IoU of 51.4% was achieved. By taking a
look at the exact results, which are shown in Table 6.3, it can be seen that the classes
“low vegetation”, “artefacts” and “hard scape” are performing the least well. This has
already become apparent in Table 6.2 at points not used for training, where those classes
produced some of the weakest results too.

Accuracy in %
overall accuracy 85.1

IoU in %
man-made terrain 89.6
natural terrain 77.2
high vegetation 47.7
low vegetation 27.8

buildings 85.5
hard scape 24.7
artefacts 24.5

cars 34.2
average over all classes 51.4

Table 6.3: Final semantic segmentation results of the Semantic3d test set.

67

6. Results

Figure 6.3: Semantic segmentation of datasets from the Semantic3d test set. First row:
“sg27 station 3”, second row: “sg27 station 6”, third row: “st gallen cathedral station 1”,
bottom row: “st gallen cathedral station 6”.

68

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

6.2 Semantic Segmentation and Curb Fitting of the
Cologne Dataset

Cologne is a city in Germany with about 1.1 million inhabitants and an area of around
405 square kilometres, whereby 66 square kilometres are public thoroughfare [Kö].
CycloMedia Deutschland, LiDAR Point Cloud and Stadtentwässerungsbetriebe Köln, AöR
have scanned the streets of the whole city with LiDAR devices, resulting in raw data
of over 1.5 TB. However, for this thesis, not the entire point cloud was processed, but
only individual streets were evaluated. These streets were chosen carefully to provide
representative urban scenarios and are called as follows:

• An der Schanz

• Auenweg

• Augustinerstraße

• Äußere Kanalstraße

• Kleiner Griechenmarkt.

As mentioned above, those streets were chosen carefully to provide meaningful use cases
for a city. They include urban areas with many buildings and parking cars next to the
streets, rural areas with lots of vegetation, roads with curves as well as straight streets.
With this selection, the semantic segmentation with a network using six classes can
be tested thorough, because there are a lot of terrain, vegetation, buildings and cars
present. Furthermore, with this data the network is tested on a different dataset than
the training data, which is evaluated visually, since there is no ground truth available.
Besides that, those selected streets cover the use case of simple straight streets, curves
and partly occluded sidewalks. This is a nice set to evaluate how well this method works
in the simplest (straight streets) and harder use cases (curves) as well as how it manages
missing information about curbs.

For all five streets, the result of a semantic segmentation with a 3D CNN using the big
grid size and six classes, the detection of curb points with geometric point cloud features
and the final reconstructed geometry of the street, curbs and sidewalks are shown and
discussed below. Something that can be said in advance is that, the segmentation with
the trained 3D CNNs works quite well, keeping in mind, that those Cologne data are
different from the training data. The detection of curb points on terrain points of the
semantic segmentation is robust and the final reconstructed geometry is quite accurate
with an error of a few centimetres.

69

6. Results

6.2.1 An der Schanz

The first street of the Cologne dataset is called “An der Schanz” and it is a road with two
separated driving lanes, which are architecturally divided by a railway track. However,
both lanes were evaluated in this thesis and the point cloud of those two lanes are shown
in Figure 6.4.

Figure 6.4: The LiDAR point cloud of the two driving lanes of the street in Cologne
named “An der Schanz”.

A semantic segmentation was applied to the point cloud with the network using big grid
size and six classes. The result is visualized in Figure 6.5. There it can be seen that
the segmentation works quite well for the classes “terrain”, “vegetation” and “buildings”.
However, as it can be seen in the left image of Figure 6.5, there are some misclassifications
at the barriers and the rail wires in the middle of the two lanes.

Figure 6.5: The result of the semantic segmentation of the network using big grid size
and six classes of the street named “An der Schanz”.

70

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

Next, the curb points are calculated by using geometric features. Figure 6.6 shows the
resulting curb points in magenta. In the left image not much curb points are detected,
this might be caused by the rather low curb height. On the other hand, the curb point
computation of the right image works well, but it can be seen that points of the wall in
the background, which are labelled as terrain, are also detected as curb points due to the
similar geometric features.

Figure 6.6: Detected curb points coloured magenta of the geometric feature calculation
of the street named “An der Schanz”.

However, the next steps of the algorithm nevertheless manage to compute reliable
geometry. The geometry of the curbs, street and sidewalk have a mean error of 0.0169m,
0.0146m and 0.0251m respectively. The mean error is the average distance from points
of the point cloud to the final geometry within a distance of 25cm. The points within
this threshold are filtered according to their normal vector to avoid mixing street points
into the calculation of the curb error and vice versa. If the normal is pointing up, the
points belongs either to the street or sidewalk; if not, the points belongs to the curb.
The results can be seen in Figure 6.7, where the reconstructed street is visualized in
green, the curb itself in red and the sidewalk in blue. Furthermore, Figure 6.8 shows the
final calculated geometry of both lanes from a bird’s eye perspective.

Figure 6.7: The reconstructed geometry of the street named “An der Schanz”.

71

6. Results

Figure 6.8: Top view of the reconstructed geometry of the street named “An der Schanz”
of both lanes.

Figure 6.9: The LiDAR point cloud of the street named “Auenweg”.

72

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

6.2.2 Auenweg

The second street evaluated in this thesis is named “Aueweg”, which is near a park, the
river Rhein and big congress buildings. The point cloud of this street captured with a
LiDAR device is shown in Figure 6.9.

The semantic segmentation, which can be seen in Figure 6.10 (a), with the 3D CNN
using big grid size and six classes, works quite well for the class “terrain”, even if there are
some chunks classified as “hard scape”, which are those orange squares on the street. The
classification of the building besides the street is okay, there are some pieces predicted
as “cars”, the pink squares, and some areas, which are labelled as “vegetation”, which is
visualized with the colour green. However, the most important parts for curb detection,
namely terrain and sidewalks, are predicted correct. Thus, the calculation of the curb
features works quite well, even if there is a big gap of not detected curb points, which is
shown in Figure 6.10 (b).

(a) (b)

Figure 6.10: (a) The result of the semantic segmentation with the network using big grid
size and six classes. (b) The result of the geometrically calculated curb feature points of
the street named “Auenweg”.

Nevertheless, the algorithm for the geometry reconstruction is able to handle such gaps
and produces a continuous geometry for the street, sidewalks and curbs. The mean error
for this dataset is 0.0322m, 0.0314m and 0.0157m for the curbs, street and sidewalk
respectively. This final resulting geometry can be seen in Figure 6.11.

73

6. Results

Figure 6.11: The final reconstructed geometry of the street called “Auenweg”.

Figure 6.12: The LiDAR point cloud of the urban street named “Augustinerstraße”.

74

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

6.2.3 Augustinerstraße

An urban street named “Augustinerstraße” is the next street in the dataset and its
LiDAR point cloud is visualized in Figure 6.12. The semantic segmentation with the
3D CNN, which is shown in Figure 6.13 (a), works quite well for the classes “terrain”
and “vegetation” too, but some parts of the buildings are wrongly classified as either
“vegetation” or “hard scape”. By taking a closer look, it can be noticed that this
misclassifications occur most frequent in shopping windows or glass doors. This might
probably be caused by reflections or geometric properties of those windows.

The detection of the curb points by using geometric point cloud features works quite
well, but also in this dataset, there are some misclassifications due to incorrect labelled
terrain points and holes in the curb. The result of the curb point calculation can be seen
in Figure 6.13 (b).

(a) (b)

Figure 6.13: (a) The result of the semantic segmentation with the network using big grid
size and six classes. (b) The result of the geometrically calculated curb feature points of
the street named “Augustinerstraße”.

However, also here the method used in this thesis is able to cope with that and calculated
a continuous geometry, which is shown in Figure 6.14. Furthermore, it can be seen that
the street makes a bend. Nonetheless, the algorithm is able to compute an accurate
geometry along this curve as well. The mean error is 0.0182m for the curb, 0.0390m for
the street and 0.0246m for the sidewalk. The resulting geometry of the whole curve of
the road can be seen from above in Figure 6.15.

75

6. Results

Figure 6.14: The final reconstructed geometry of the street named “Augustinerstraße”.

Figure 6.15: The final reconstructed geometry of the street named “Augustinerstraße”
from above, where the curve of the street can be seen.

76

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

6.2.4 Äußere Kanalstraße

The second last street evaluated is named “Äußere Kanalstraße” and its LiDAR point
cloud is visualized in Figure 6.16. In this dataset are a lot of parking cars besides
the street. It can be seen in Figure 6.17 (a) that their classification works okay for
cars parking directly besides the street, but cars in the second row are all classified as
“vegetation”. These LiDAR point clouds are captured by driving by on the street. By
taking a closer look at the point cloud itself, it can be noticed, that this part of the point
cloud is not as dense as parts directly besides the street. This is most probably the reason
why those points are labelled as “vegetation”, because there is no clear structure of a car
in the data. Nevertheless, the terrain is segmented quite accurate and the vegetation is
classified correct.

Figure 6.16: The LiDAR point cloud of the street named “Äußere Kanalstraße”.

The calculation of the curb points works well in this dataset, which is shown in Figure
6.17 (b). In addition, here are some small holes present, but as already seen above, this
is no problem for the rest of the algorithm. Furthermore, it should be mentioned, that
left and right of the parking cars is an exit of the parking area and the driving lane
is flattened to the level of the street. This is the reason why there are no curb points
detected in this area.

77

6. Results

(a) (b)

Figure 6.17: (a) The result of the semantic segmentation with the network using big grid
size and six classes. (b) The result of the geometrically calculated curb feature points of
the street named “Äußere Kanalstraße”.

The final reconstructed geometry is visualized in Figure 6.18 and there it can be seen
that the algorithm detects the geometry of the street, curb and sidewalks accurately,
with a mean error of 0.0112m, 0.0261m and 0.0253m for the curbs, street and sidewalk
respectively.

Figure 6.18: The final reconstructed geometry of the street named “Äußere Kanalstraße”.

78

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

6.2.5 Kleiner Griechenmarkt

The last street evaluated in this thesis is called “Kleiner Griechenmarkt”, which is a
typical urban street with a lot of parking cars besides the road. The point cloud captured
with a LiDAR device is shown in Figure 6.19 and there it can be seen that he curb is
covered by the cars.

Figure 6.19: The LiDAR point cloud of the street named “Kleiner Griechenmarkt”.

The semantic segmentation, which is shown in Figure 6.20 (a), with the 3D CNN works
well for the class “terrain”, but some parts of the cars and buildings are misclassified as
“terrain”. The cars are mostly classified correct, just the most left one is partly labelled
as “hard scape”. The segmentation of the building works quite well too, but many lower
parts are misclassified as “vegetation”.

The resulting curb points computed with geometric point cloud features are visualized in
Figure 6.20 (b) and there it can be seen that those car and building points, which were
misclassified as “terrain”, are causing false positive curb points, because those points have
the same geometric features as curb points and are inside the street. Nevertheless, the
actual geometry is reconstructed correctly, with a mean error of 0.0117m for the curbs,
0.0743m for the street and 0.0250m for the sidewalk. The mean error of the street about
seven centimetres originates from the horizontal curvature of it. The calculated street
polygon fits the street points well on the sides, where the curbs are, but the distance
between the points and the polygon becomes higher towards the middle of the street.

79

6. Results

(a) (b)

Figure 6.20: (a) The result of the semantic segmentation with the network using big grid
size and six classes. (b) The result of the geometrically calculated curb feature points of
the street named “Kleiner Griechenmarkt”.

What makes the detection of the curbs in this scene even more difficult is that there is no
complete information about the curb available, because the point cloud is captured from
the street. By taking a look at Figure 6.21, which shows the same scene from above, it
can be seen that there are no points behind the parking cars present.

Figure 6.21: The LiDAR point cloud of the street named “Kleiner Griechenmarkt” from
above.

80

6.2. Semantic Segmentation and Curb Fitting of the Cologne Dataset

However, the algorithm is able to compensate both problems: the false positive curb
points and the missing information of the sidewalk behind the parking cars. The resulting
geometries of the street, the curb and the sidewalk is shown in Figure 6.22 and in Figure
6.23 from above, where it can be seen that the geometry is calculated completely behind
the parking cars.

Figure 6.22: The final reconstructed geometry of the street, curb and sidewalk of the
street named “Kleiner Griechenmarkt”.

The mean error of the final calculated geometry of all datasets are a couple of centimetres
each. The overall mean reconstruction error is ±2cm for curbs and sidewalks and ±3cm
for streets. An overview of the exact values for all datasets is given in Table 6.4.

curbs street sidewalk
An der Schanz (1. side) 1.6 1.5 3.4
An der Schanz (2. side) 1.8 1.4 1.6

Auenweg 3.2 3.1 1.6
Augustinerstraße 1.8 3.9 2.5

Äußere Kanalstraße 1.1 2.6 2.5
Kleiner Griechenmarkt 1.2 7.4 2.5

Average 1.8 3.3 2.3

Table 6.4: Overview of mean reconstruction errors of all datasets (Note: values are in
centimetres).

81

6. Results

Figure 6.23: The final reconstructed geometry of the street, curb and sidewalk of the
street named “Kleiner Griechenmarkt” from above.

6.3 Critical Reflection

In this section, a short discussion is conducted about what does not work so well and
what could have been done better in this thesis. Whereby, Section 6.3.1 focuses on the
semantic segmentation with 3D CNNs and Section 6.3.2 on the curb reconstruction
process.

6.3.1 3D CNNs

Voxelizing a point cloud needs a lot of memory and it grows with an increased grid size.
This is the reason that in this thesis a maximum grid size of 32 and a batch size of 32 for
the network using big grid size was used. Otherwise, the network training fails due to
memory exhaustion. Therefore, recent research is dedicated to find methods that are
more efficient, but those approaches are not included in the Tensorflow library yet and
thus not used in this work. By using more efficient 3D convolution and pooling operations,
bigger grid sizes and deeper networks could be generated, which would most probably
result in a more accurate point cloud segmentation. Furthermore, the segmentation is
done by labelling all points in a cube with the overall label of it. This causes some

82

6.3. Critical Reflection

wrong classifications, for example when some terrain points are in a cell with mostly car
points, then the terrain points are misclassified as “cars”. A direct segmentation with an
appropriate segmentation network would not lead to such misclassifications and most
probably increase the overall accuracy of the semantic segmentation.

6.3.2 Curb Fitting

Overall, the curb fitting works quite well, but the calculation of the curb points with
geometric features sometimes produces many false positives, which could lead to inaccurate
geometry. This could be fixed with either exploring or using more geometric point
cloud features as well as enhancing the false positive filtering. Furthermore, the actual
computation of the curb geometry could also be improved by automatically determining
the best degree of the function fitted through the curbs points. In most cases, a parabola
model is sufficient, but for streets with a stronger curve, a higher degree is required to
model the curb geometry well. Moreover, the algorithm is currently just able to calculate
curbs parallel to the street, but that is not always the case in real world data. Besides
that, for this thesis only a handful of streets were tested, even if the selection was made
with care to cover as many special cases as possible, there are certainly more cases where
the algorithm fails to reconstruct the geometry correctly. Therefore, a wider range on
different street scenarios would still have to be tested to find and solve those cases.

83

CHAPTER 7
Conclusion and Future Work

This thesis has shown a proof-of-concept work including a semantic segmentation of
LiDAR point clouds by using 3D CNNs and in combination with that, a detection and
reconstruction of sidewalk surfaces.

Current implementations of 3D CNNs work with rasterized data and to voxelize a point
cloud, such that the underlying structure is represented well, an octree data structure
was used. Therewith, too sparse regions of the point cloud can easily be identified and
omitted in the training stage, which results in a better generalized classifier. Although,
the semantic segmentation leaves room for improvement, it works quite well, especially for
some classes, such as for example “vegetation”. Furthermore, point cloud with a semantic
segmentation could be useful in many applications, because a smart prefiltering, such
that only points of interest are remaining, could decrease the amount of points to process
enormously, especially when working with big datasets. Because of this, computation
time could be reduced and results could be enhanced by eliminating high-risk points for
incorrect results beforehand.

Such a prefiltering was also applied before the sidewalk detection and only points labelled
as “terrain” were used. This excludes especially a lot of high-risk false positive points in
advance, like cars or other objects near the street with a similar geometric structure as
sidewalks. For the simple reason that, curb points are found by traditional point cloud
features, like difference and standard deviation of height as well as curvature in a certain
neighbourhood. Perpendicularity to the street is used too, whereby information about
the road was obtained by using additional data from OpenStreetMap [Opea]. Then false
positives are filtered with a combination of a density based clustering, approximated
linearity and parallelism to the road. Based on those sidewalk points, the curb geometry
is calculated by extracting the lower and upper edges. The upper sidewalk surface is

85

7. Conclusion and Future Work

then computed by fitting planes into terrain points above the mean height of those edges
and finally the street polygon is composed of the vertices of the lower edges.

The semantic segmentation as well as detection of sidewalk surfaces are quite general
approaches. Each point cloud can be stored in an octree and then segmented with a
3D CNN. Once a semantic segmentation is performed, a filtered version of the point
cloud can be used for various tasks and not only for detecting curbs. With this potential,
it is worthwhile to improve the semantic segmentation. Especially, those corner cases,
in which a data sample consists of, for example, mostly car and also some terrain
points, but due to the method used in this thesis, all points within this data sample
are classified as “cars”, which leads to wrong classified terrain points. This might not
cause many misclassified points in a single data sample, but accumulated to all samples
of the point cloud, the classification error lies in a considerable range. Such cases could
be probably eliminated with a hierarchical classification approach or a segmentation
network, which is able to work directly on the points, like the U-Net from Ronneberger
et al. [RFB15], which applies class labels directly to the pixels of an image. Therefore,
such a segmentation network will be implemented and tested in the future to improve
the semantic segmentation of point clouds. Another possible next step, according the
semantic segmentation, will be to use already detected curb points as well as trained 3D
CNN and apply transfer learning to add a new “curb” class to the network. Therefore,
the curb points could be automatically detected within the semantic segmentation step.

By looking at the calculation of the curb points and final reconstructed geometry, every
step could and will be improved in the future. Beginning with testing and applying more
point cloud features, enhancing the false positive filtering and automatically compute
the degree of the function according to the bending of the road. In addition, a deeper
look will be taken on how to fill even bigger gaps in the point cloud accurately, than the
ones caused by parking cars. Furthermore, the algorithm is currently just able to create
geometry parallel to the road, but sometimes parts of the curb are not parallel. The
calculation of those parts will also be addressed in the future. Besides that, the sidewalk
points are calculated with standard point cloud features and which can be simply adapted
to other similar cases by changing some thresholds, like for example detection of railway
platforms, low walls, fences etcetera. Geometrically seen are those examples just very
large curbs and by extending the thresholds of the height feature they could be detected
too.

In conclusion, it can therefore be said, that the development of a proof-of-concept proto-
type was successful and showed a lot of potential. Not only the semantic segmentation
with a 3D CNN works well after this first phase of development, but also the detection
of curb points as well as reconstructing the final geometry. We will therefor continue to
work on these two research questions to improve them further.

86

APPENDIX A
Hyperparameter Tuning

This appendix shows the exact values of the hyperparameter tuning of Section 5.2 on
the training, validation and test set. The Difference values in the tables calculates the
difference in the results for the according test sets. Each result of a test is the average of
ten runs.

Amount of feature learning components for the middle cube:

The amount of the feature learning components for the middle cube with a grid size of
16 were explored first. Note, that the network was not trained with any neighbourhood
information at this point. The results are shown in Table A.1.

Amount of feature learning components for the side cubes:

One feature learning component for the middle cube with grid size 16 was used. The
difference to the network without any neighbourhood information was calculated and the
neighbouring cells had a grid size of 8. The results are listed in Table A.2 and there it
can be seen, that the additional usage of the neighbouring cells gives a great increase in
classification accuracy of the network.

Amount Components Training Set Validation Set Test Set Difference
1 80.76 76.86 80.64
2 80.92 76.51 79.78 -0.86
3 80.42 76.01 79.37 -1.26

Table A.1: Impact of the amount of feature learning components in the middle cube.

87

A. Hyperparameter Tuning

Amount Components Training Set Validation Set Test Set Difference
0 80.76 76.86 80.64
1 89.42 84.13 87.11 +6.47
2 89.02 83.11 86.02 +5.38

Table A.2: Impact of the amount of feature learning components for the side cubes.

Occupancy Values Training Set Validation Set Test Set Difference
binary 89.42 84.13 87.11
total 82.89 80.26 83.36 -3.75

fraction 37.78 37.22 33.73 -55.38

Table A.3: Comparison of different occupancy values.

Additional Features Training Set Validation Set Test Set Difference
none 89.42 84.13 87.11

cube center height 91.38 85.93 88.59 +1.49
average point height 91.31 85.86 88.78 +1.68
average point normal 91.09 84.65 87.18 +0.07
average point colour 92.34 87.88 89.47 +2.37

Table A.4: Impact of different additional features.

Occupancy values:

As Section 5.2 states, three different occupancy values were tested, but as discussed
there, the ratio of the amount of points in a cell to the total amount of points in the
cube does not work well. In fact, it worked so badly that the training was terminated
early, thus the results from the fraction are just from a single run. The results of the
different occupancy values are shown in Table A.3.

Additional features:

The tested additional features are the height of the center of the middle cube as well as
average height, average normal vector and average colour of all points inside a cube. The
results are listed in Table A.4.

88

Middle Cube Side Cubes Training Set Validation Set Test Set
32 32 91.29 84.60 87.33
64 32 90.93 84.84 87.57
64 64 90.86 84.72 87.87

128 64 91.05 84.93 87.94
128 128 90.66 84.73 87.58

Table A.5: Comparison of amount of neurons in middle and side cubes.

Batch Size Training Set Validation Set Test Set
256 90.77 84.90 87.62
128 91.05 84.93 87.94
64 90.72 84.89 87.68

Table A.6: Comparison of different batch sizes.

Amount of neurons in a feature learning component:

The amount of neurons in a feature learning component for the middle together with
side cubes were explored and the results are shown in Table A.5.

Batch size:

Furthermore, three different batch sizes were tested and the results are shown in Table
A.6.

Dropout layer and amount of neurons in fully connected layer:

The dropout rate for the input, hidden and output layer as well as the amount of neurons
in the fully connected layer of the classification part of the network were explored. Note,
that the amount of neurons was doubled for the second fully connected layer. Therefore,
an amount of neurons of 1024 is 1024 for the first and 2048 for the second layer as well
as the amount of 2048 is 2048 for the first and 4096 for the second fully connected layer
in the network. The results of the compared values are listed in Table A.7.

89

A. Hyperparameter Tuning

Dropout Rate Amount Training Validation Test SetInput L. Hidden L. Output L. Neurons Set Set
- 0.2 - 1024 89.73 84.13 86.85
- 0.5 - 1024 89.63 84.37 87.68
- 0.8 - 1024 88.29 83.49 86.95
0.2 0.5 - 1024 90.60 84.75 87.66
0.5 0.5 - 1024 90.41 84.40 87.30
0.8 0.5 - 1024 83.05 80.37 84.48
- 0.2 - 2048 89.66 84.15 87.18
- 0.5 - 2048 89.68 84.35 87.64
- 0.8 - 2048 88.45 83.69 87.48

0.2 0.5 - 2048 90.86 84.72 87.87
0.5 0.5 - 2048 90.73 84.55 87.24
0.8 0.5 - 2048 81.88 79.44 83.77
0.2 0.5 0.2 2048 90.58 84.66 87.29
0.2 0.5 0.5 2048 90.68 84.61 87.31
0.2 0.5 0.8 2048 89.91 84.36 87.48

Table A.7: Comparison of different dropout rates in different layers as well as amount of
neurons used in those layers.

Side Cubes Training Set Validation Set Test Set Overfitting Difference
without 91.55 82.33 81.03 10.52

0.1 66.73 65.98 64.82 1.91 -16.21
0.01 76.13 74.50 73.51 2.62 -7.52
0.001 84.02 78.98 78.47 5.55 -2.56

0.0001 88.32 81.34 79.98 8.34 -1.05

Table A.8: Impact of L2-regularization factors on overfitting and accuracy.

L2-Regularization:

To prevent overfitting and to achieve a good generalization of the network L2-regularization
is commonly used. The impact of the regularization with different factors on overfitting
as well as accuracy of the test set were explored. The results are listed in Table A.8,
the Overfitting column shows the difference between the training and the test set of the
same row, and the Difference column shows the difference between the test set accuracies
without any regularization to the used parameters.
Note, that from this point on the tests were performed on a different assembly of the
dataset than the tests above. Because, the size and composition of the training, validation
and test set was updated in the course of the evaluation process.

90

Amount Components Training Set Validation Set Test Set Difference
1 75.05 72.64 72.00 +0.69
2 80.25 74.64 73.87 +2.56
3 80.29 74.56 73.71 +2.40
4 80.48 74.38 73.55 +2.24

network using middle grid size 75.94 71.54 71.31

Table A.9: Comparison of amount of feature learning components for the middle cell of
the network using big grid size.

First C. Second C. Training Set Validation Set Test Set Difference
64 64 80.25 74.64 73.87 +2.56
64 128 79.75 74.77 73.97 +2.66
128 128 79.47 74.61 73.76 +2.45

network using middle grid size 75.94 71.54 71.31

Table A.10: Comparison of amount of neurons for the two feature learning components
of the middle cell in the network using big grid size.

Number of feature learning components for the middle cube of the network
using big grid size:

Since in the network using big grid size, the grid size of the middle cube is as twice as big
as in the network using middle grid size, the amount of feature learning components for
this grid size were explored. The amount of neurons in each feature learning component
were 64. In order to have a comparison not only among the amount of components
themselves, the Difference between the accuracies of the test sets from this network to
the network using middle grid size was formed. Note, that the networks in this tests
where solely trained on the middle cube and the network using middle grid size consisted
of a single feature learning component with 128 neurons. The results are compared in
Table A.9.

Number of neurons for the middle cube of the network using big grid size:

The previous tests showed that for the network using big grid size two feature learning
components are working best. Therefore, the number of neurons for each component were
explored and not only compared with themselves, but also the Difference in accuracy of
the test set to the network using middle grid size was calculated. Note, that these tests
also used networks just trained on the middle cube.

91

APPENDIX B
Network Architectures

This appendix visualizes the architecture of the networks using small and middle grid
sizes of Section 5.3 and 5.4 respectively.

B.1 Network Using Small Grid Size

The network using small grid size takes as input a middle cube with grid size 16 and
side cubes with a grid size of eight. The part of the network processing the middle
cube consists of one feature learning component with 128 neurons and the side cubes
are processed with one feature learning component, but with 64 neurons. The flattened
output of those components are then concatenated together with the feature vector of the
average point colour in a data sample. The resulting feature vector is then fed into the
classification part of the network, which is composed of a dropout layer, fully connected
layer with 2048 neurons, again a dropout as well as a fully connected layer with 4096
neurons and finally a softmax layer. The architecture of this network is visualized in
Figure B.1.

93

B. Network Architectures

COLOR FEATURE

BN

CONV 64

k = 3x3x3, s = 1

BN

ReLU

CONV 64

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

INPUT

8x8x8

GLOBAL AVG POOL

DO 0.2

FC 2048

DO 0.5

FC 4096

SOFTMAX

OUTPUT

CONCATENATED FEATURE VECTOR

CONV 128

k = 3x3x3, s = 1

BN

ReLU

CONV 128

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

INPUT

16x16x16

GLOBAL AVG POOL

Figure B.1: Architecture of the network using small grid size.

94

B.2. Network Using Middle Grid Size

B.2 Network Using Middle Grid Size

The network using middle grid size takes as input a middle cube as well as side cubes
with a grid size of 16. The part of the network processing the middle cube consists of one
feature learning component with 128 neurons too. The side cubes are also processed with
one feature learning component with 64 neurons. The flatten output of those components
are then again concatenated together with the colour feature. The classification part of
this network consists of two dropout followed by a fully connected layer each followed by
a fully connected layer too, where the fully connected layer have 1027 and 2048 neurons
respectively. The last layer of this network is again a softmax layer.

95

B. Network Architectures

COLOR FEATURE

BN

CONV 64

k = 3x3x3, s = 1

BN

ReLU

CONV 64

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

INPUT

16x16x16

GLOBAL AVG POOL

DO 0.2

FC 1024

DO 0.5

FC 2048

SOFTMAX

OUTPUT

CONCATENATED FEATURE VECTOR

CONV 128

k = 3x3x3, s = 1

BN

ReLU

CONV 128

k = 3x3x3, s = 1

BN

ReLU

MAX POOL

k = 2x2x2, s = 2

INPUT

16x16x16

GLOBAL AVG POOL

Figure B.2: Architecture of the network using middle grid size.

96

List of Figures

1.1 Screenshot of the Visdom flood simulation software. (Source: [Vis]) . . . 2

2.1 A photogrammetric point cloud with location and orientation of the photos.
(Source: adapted from [SKMW17]) . 6

2.2 An example of a feedforward neural network with a single hidden layer mapping
an input x to an output y with an intermediate layer h, where W maps x to
h and w maps h to y. (Source: adapted from [GBC16]) 9

2.3 A visualization of a feedforward neural network, also known as multilayer
perceptron (MLP). 10

2.4 An example of a convolution operation. Such an operation conv = m ∗ k
consists of an image matrix m and a kernel k. The kernel shifts like a sliding
window over the image matrix and computes new image values by multiplying
and adding according values. The position of the sliding window is visualized
in blue, the kernel in pink and the resulting value in green, which is obtained
as follows: 3 ∗ 1 + 1 ∗ 2 + 5 ∗ 0 + 9 ∗ 1 = 14. 13

2.5 An example of a max-pooling operation. Such an operation downsamples the
image matrix by using a sliding window, which only transfers the highest value
inside into the reduced image matrix. (left) Image matrix with four positions
of an 2× 2 sliding window and (right) the downsampled image matrix with
the transferred values in according colors. 13

2.6 Semantic segmentation network architecture with encoder-decoder structure.
(Source: [BKC17]) . 14

3.1 2D visualization of an octree. 22
3.2 Left: middle-node with coloured faces. Right: adjacent side-cells coloured

according to the faces . 24
3.3 Example of under- and overfitting (red curves) in the case of polynomial curve

fitting. M is the order of the fitted function. Left: underfitting. Middle: good
representation. Right: overfitting. (Source: adapted from [Bis06]) 25

3.4 Data sample augmentation methods: a) rotation around z-axis, b) translation
in all directions, c) horizontal flip. 25

3.5 A point cloud of the Semantic3d dataset, captured with a laser scanner in a
rural area. 27

97

3.6 A point cloud of the Semantic3d dataset coloured according the class affiliation
of the points. 27

3.7 Exemplary structure of a CNN illustrating its two-stage structure with the
feature learning and classification blocks. (Source: [Sah]) 31

3.8 A feature learning component is composed of two convolution operations
(CONV), batch-normalization (BN) and ReLU activation functions as well as
a pooling operation (POOL). 32

3.9 The neural network component of the network with fully-connected (FC),
dropout (DO) layers and a ReLU activation function. 32

3.10 The entire network architecture. 33

4.1 Height feature: The difference between hmax and hmin indicates weather the
point is a curb or not. 37

4.2 Result of an eigenvalue decomposition, once from a curb point (left) and once
from a street-point (right) in 2D. The eigenvalue λ0 from a curb point is larger
than the eigenvalue λ0 from a street-point. 38

4.3 Perpendicularity feature, where the angle between the point normal n and
the direction of the road d is computed. 39

4.4 Overview of Cologne in OpenStreetMap. (Source: [Opea]) 40
4.5 Christian-Gau-Strasse in Cologne with its OpenStreetMap tag coloured in

red. (Source: adapted from [Opea]) . 41
4.6 Christian-Gau-Strasse in Cologne with its imported OpenStreetMap road

data. 42
4.7 A curb segment with the fitted lower and upper edges. u0 and u1 denote the

endpoints of the upper edge and l0 and l1 denote the endpoints of the lower
edge. 45

4.8 A section of a curb with the final polygons C0, C1 and C2 of three curb
segments. 46

4.9 A section of a curb with the final polygons of three curb segments with the
according sidewalk-polygons SW0, SW1 and SW2. 47

4.10 The final polygons of a curb section from three curb as well as sidewalk
segments and the road polygon, which is constituted by the vertices ri. . . 47

5.1 Class Distribution of the training, validation and test set including data
augmentations. 50

5.2 Architecture of the network using big grid size. 60

6.1 Semantic3d training dataset “bildstein station 5”. Second row: ground truth,
third row: network predictions, bottom row: correct predicted (blue) or not
(orange). The left column depicts a classification with eight classes and the
right with six. 65

98

6.2 Semantic3d training dataset “sg27 station 1”. Second row: ground truth,
third row: network predictions, bottom row: correct predicted (blue) or not
(orange). The left column depicts a classification with eight classes and the
right with six. 66

6.3 Semantic segmentation of datasets from the Semantic3d test set. First row:
“sg27 station 3”, second row: “sg27 station 6”, third row: “st gallen cathedral
station 1”, bottom row: “st gallen cathedral station 6”. 68

6.4 The LiDAR point cloud of the two driving lanes of the street in Cologne
named “An der Schanz”. 70

6.5 The result of the semantic segmentation of the network using big grid size
and six classes of the street named “An der Schanz”. 70

6.6 Detected curb points coloured magenta of the geometric feature calculation
of the street named “An der Schanz”. 71

6.7 The reconstructed geometry of the street named “An der Schanz”. 71
6.8 Top view of the reconstructed geometry of the street named “An der Schanz”

of both lanes. 72
6.9 The LiDAR point cloud of the street named “Auenweg”. 72
6.10 (a) The result of the semantic segmentation with the network using big grid

size and six classes. (b) The result of the geometrically calculated curb feature
points of the street named “Auenweg”. 73

6.11 The final reconstructed geometry of the street called “Auenweg”. 74
6.12 The LiDAR point cloud of the urban street named “Augustinerstraße”. . . 74
6.13 (a) The result of the semantic segmentation with the network using big grid

size and six classes. (b) The result of the geometrically calculated curb feature
points of the street named “Augustinerstraße”. 75

6.14 The final reconstructed geometry of the street named “Augustinerstraße”. 76
6.15 The final reconstructed geometry of the street named “Augustinerstraße” from

above, where the curve of the street can be seen. 76
6.16 The LiDAR point cloud of the street named “Äußere Kanalstraße”. 77
6.17 (a) The result of the semantic segmentation with the network using big grid

size and six classes. (b) The result of the geometrically calculated curb feature
points of the street named “Äußere Kanalstraße”. 78

6.18 The final reconstructed geometry of the street named “Äußere Kanalstraße”. 78
6.19 The LiDAR point cloud of the street named “Kleiner Griechenmarkt”. . . 79
6.20 (a) The result of the semantic segmentation with the network using big grid

size and six classes. (b) The result of the geometrically calculated curb feature
points of the street named “Kleiner Griechenmarkt”. 80

6.21 The LiDAR point cloud of the street named “Kleiner Griechenmarkt” from
above. 80

6.22 The final reconstructed geometry of the street, curb and sidewalk of the street
named “Kleiner Griechenmarkt”. 81

6.23 The final reconstructed geometry of the street, curb and sidewalk of the street
named “Kleiner Griechenmarkt” from above. 82

99

B.1 Architecture of the network using small grid size. 94
B.2 Architecture of the network using middle grid size. 96

100

List of Tables

2.1 An example of mapping categories to numerical values and an according
one-hot encoding of them. 7

2.2 Equations of some point cloud features. 8
2.3 Most commonly used activation functions. (left) Name of the function, (mid-

dle) function f(x) itself and (right) plot of the function (Source: [SSA20]). 11

5.1 IoU of the single classes, average IoU and OA of the test set classified with
the network using small grid size. Once with the original eight classes and
once with the combined six classes. 53

5.2 Confusion matrix of the test set classified with the network using small grid
size. (Note: values are in %.) . 53

5.3 Confusion matrix of the test set classified with the network using small grid
size and six classes. 54

5.4 IoU of the single classes, average IoU and OA of the test set classified with
the network using middle grid size. Once with the original eight classes and
once with the combined six classes. 55

5.5 Confusion matrix of the test set classified with the network using middle grid
size. (Note: values are in %.) . 55

5.6 Confusion matrix of the test set classified with the network using middle grid
size with six classes. 56

5.7 IoU of the single classes, average IoU and OA of the test set classified with
the network using big grid size. Once with the original eight classes and once
with the combined six classes. 57

5.8 Confusion matrix of the test set classified with the network using big grid size.
(Note: values are in %.) . 58

5.9 Confusion matrix of the test set classified with the network using big grid size
with six classes. 58

5.10 Overall accuracies of the three different networks, increase in the OA between
the networks as well as difference between six and eight class networks (Note:
values are in %). 59

101

6.1 The points of the point cloud are coloured according their assigned classes.
Left: Colours for eight classes. Right: Colours for six classes with combined
“terrain” and “vegetation” classes. 62

6.2 Final semantic segmentation results of the Semantic3d training set. 63
6.3 Final semantic segmentation results of the Semantic3d test set. 67
6.4 Overview of mean reconstruction errors of all datasets (Note: values are in

centimetres). 81

A.1 Impact of the amount of feature learning components in the middle cube. 87
A.2 Impact of the amount of feature learning components for the side cubes. . 88
A.3 Comparison of different occupancy values. 88
A.4 Impact of different additional features. 88
A.5 Comparison of amount of neurons in middle and side cubes. 89
A.6 Comparison of different batch sizes. 89
A.7 Comparison of different dropout rates in different layers as well as amount of

neurons used in those layers. 90
A.8 Impact of L2-regularization factors on overfitting and accuracy. 90
A.9 Comparison of amount of feature learning components for the middle cell of

the network using big grid size. 91
A.10 Comparison of amount of neurons for the two feature learning components of

the middle cell in the network using big grid size. 91

102

Bibliography

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manju-
nath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit
Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:
Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[Aar] Aardvark. Aardvark platform. https://github.com/aardvark-
platform. (Accessed on 04/10/2019).

[BFOS84] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[BGSA18] Alexandre Boulch, Joris Guerry, Bertrand Le Saux, and Nicolas Audebert.
Snapnet: 3d point cloud semantic labeling with 2d deep segmentation
networks. Computers & Graphics, 71:189 – 198, 2018.

[BHLLR14] Aharon Bar Hillel, Ronen Lerner, Dan Levi, and Guy Raz. Recent progress
in road and lane detection: a survey. Machine Vision and Applications,
25(3):727–745, 2014.

[Bis06] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[BKC17] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 39(12):2481–
2495, 2017.

[BLB+13] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas
Mueller, Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre

103

https://github.com/aardvark-platform
https://github.com/aardvark-platform

Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Arnaud Joly,
Brian Holt, and Gaël Varoquaux. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop:
Languages for Data Mining and Machine Learning, pages 108–122, 2013.

[Bou19] Alexandre Boulch. Generalizing Discrete Convolutions for Unstructured
Point Clouds. In Eurographics Workshop on 3D Object Retrieval. The
Eurographics Association, 2019.

[Bre00] Claus Brenner. Towards fully automatic generation of city models. In-
ternational Archives of Photogrammetry and Remote Sensing, 33(B3/1;
PART 3):84–92, 2000.

[Bre01] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[C+15] François Chollet et al. Keras. https://keras.io, 2015. (Accessed on
10/10/2019).

[Cau47] Augustin Cauchy. Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.

[CKY97] Sunglok Choi, Taemin Kim, and Wonpil Yu. Performance evaluation of
ransac family. Journal of Computer Vision, 24(3):271–300, 1997.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[DdFG01] Amaud Doucet, Nando de Freitas, and Neil Gordon. Sequential Monte
Carlo methods in practice. Springer Science & Business Media, 2001.

[EKHL17] Francis Engelmann, Theodora Kontogianni, Alexander Hermans, and
Bastian Leibe. Exploring spatial context for 3d semantic segmentation of
point clouds. In The IEEE International Conference on Computer Vision
(ICCV) Workshops, Oct 2017.

[EKS+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Kdd, volume 96, pages 226–231, 1996.

[FB81] Martin A. Fischler and Robert C. Bolles. Random sample consensus:
A paradigm for model fitting with applications to image analysis and
automated cartography. Commun. ACM, 24(6):381–395, 1981.

[FILS14] C. Fernández, R. Izquierdo, D. F. Llorca, and M. A. Sotelo. Road curb
and lanes detection for autonomous driving on urban scenarios. In 17th
International IEEE Conference on Intelligent Transportation Systems
(ITSC), pages 1964–1969, 2014.

104

https://keras.io

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[GBS14] Leonardo Gomes, Olga Regina Pereira Bellon, and Luciano Silva. 3d
reconstruction methods for digital preservation of cultural heritage: A
survey. Pattern Recognition Letters, 50:3 – 14, 2014. Depth Image Analysis.

[GGG+16] A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S. Orts-
Escolano, M. Cazorla, and J. Azorin-Lopez. Pointnet: A 3d convolutional
neural network for real-time object class recognition. In 2016 International
Joint Conference on Neural Networks (IJCNN), 2016.

[HKLS12] J. Han, D. Kim, M. Lee, and M. Sunwoo. Enhanced road boundary
and obstacle detection using a downward-looking lidar sensor. IEEE
Transactions on Vehicular Technology, 61(3):971–985, 2012.

[HOW14] A. Y. Hata, F. S. Osorio, and D. F. Wolf. Robust curb detection and
vehicle localization in urban environments. In 2014 IEEE Intelligent
Vehicles Symposium Proceedings, pages 1257–1262, 2014.

[HSL+17] Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K. Schindler, and
M. Pollefeys. Semantic3d.net: A new large-scale point cloud classification
benchmark. In ISPRS Annals of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, volume IV-1-W1, pages 91–98, 2017.

[HWS16] T. Hackel, J. D. Wegner, and K. Schindler. Fast semantic segmenta-
tion of 3d point clouds with strongly varying density. ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences,
III-3:177–184, 2016.

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard
Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Free-
man, Andrew Davison, and Andrew Fitzgibbon. Kinectfusion: Real-time
3d reconstruction and interaction using a moving depth camera. In Pro-
ceedings of the 24th Annual ACM Symposium on User Interface Software
and Technology, UIST ’11, pages 559–568, 2011.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 448–456. PMLR, 07–09
Jul 2015.

[JRPWM10] Matthew Johnson-Roberson, Oscar Pizarro, Stefan B. Williams, and
Ian Mahon. Generation and visualization of large-scale three-dimensional
reconstructions from underwater robotic surveys. Journal of Field Robotics,
27(1):21–51, 2010.

105

http://www.deeplearningbook.org

[JS16] Jing Huang and Suya You. Point cloud labeling using 3d convolutional neu-
ral network. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pages 2670–2675, 2016.

[JXYY13] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for
human action recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(1):221–231, 2013.

[Kal60] R. E. Kalman. A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering, 82(1):35–45, 1960.

[KB14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[KK11] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully con-
nected crfs with gaussian edge potentials. Advances in neural information
processing systems, 24:109–117, 2011.

[KL17] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks
for the recognition of 3d point cloud models. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

[KMLM13] Pankaj Kumar, Conor P. McElhinney, Paul Lewis, and Timothy McCarthy.
An automated algorithm for extracting road edges from terrestrial mobile
lidar data. ISPRS Journal of Photogrammetry and Remote Sensing, 85:44
– 55, 2013.

[Kö] Stadt Köln. Zahlen und statistik. https://www.stadt-koeln.
de/politik-und-verwaltung/statistik/?schriftgroesse=
normal. (Accessed on 24/04/2020).

[LDT+17] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg, Goutam Bhat,
Fahad Shahbaz Khan, and Michael Felsberg. Deep projective 3d semantic
segmentation. In Michael Felsberg, Anders Heyden, and Norbert Krüger,
editors, Computer Analysis of Images and Patterns, pages 95–107. Springer
International Publishing, 2017.

[LMP01] John Lafferty, Andrew McCallum, and Fernando C.N. Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. In Proceedings of the 18th International Conference on Machine
Learning 2001 (ICML 2001), pages 282–289, 2001.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, Nov 2004.

[LS18] Loic Landrieu and Martin Simonovsky. Large-scale point cloud seman-
tic segmentation with superpoint graphs. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

106

https://www.stadt-koeln.de/politik-und-verwaltung/statistik/?schriftgroesse=normal
https://www.stadt-koeln.de/politik-und-verwaltung/statistik/?schriftgroesse=normal
https://www.stadt-koeln.de/politik-und-verwaltung/statistik/?schriftgroesse=normal

[MCB+14] Michela Mortara, Chiara Eva Catalano, Francesco Bellotti, Giusy Fiucci,
Minica Houry-Panchetti, and Panagiotis Petridis. Learning cultural her-
itage by serious games. Journal of Cultural Heritage, 15(3):318 – 325,
2014.

[MS15] D. Maturana and S. Scherer. Voxnet: A 3d convolutional neural network for
real-time object recognition. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 922–928, 2015.

[MWA+13] Przemyslaw Musialski, Peter Wonka, Daniel G. Aliaga, Michael Wimmer,
Luc van Gool, and Werner Purgathofer. A Survey of Urban Reconstruction.
Computer Graphics Forum, 32(6):146–177, 2013.

[Net] NetTopologySuite. Projnet4geoapi. https://github.com/
NetTopologySuite/ProjNet4GeoAPI. (Accessed on 18/10/2019).

[Opea] OpenStreetMap. Openstreetmap. https://www.openstreetmap.
org. (Accessed on17/10/2019).

[Opeb] OpenStreetMap. Openstreetmap wiki. https://wiki.
openstreetmap.org/wiki/Main_Page. (Accessed on 17/10/2019).

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[Qia99] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145 – 151, 1999.

[QSMG17] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[QSN+16] Charles R. Qi, Hao Su, Matthias Niessner, Angela Dai, Mengyuan Yan,
and Leonidas J. Guibas. Volumetric and multi-view cnns for object
classification on 3d data. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[QYSG17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric
space. In Advances in Neural Information Processing Systems 30, pages
5099–5108. Curran Associates, Inc., 2017.

107

https://github.com/NetTopologySuite/ProjNet4GeoAPI
https://github.com/NetTopologySuite/ProjNet4GeoAPI
https://www.openstreetmap.org
https://www.openstreetmap.org
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page

[RCGCOA15] Borja Rodríguez-Cuenca, Silverio García-Cortés, Celestino Ordóñez, and
Maria C. Alonso. An approach to detect and delineate street curbs from
mls 3d point cloud data. Automation in Construction, 51:103 – 112, 2015.

[RFB15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, pages
234–241. Springer International Publishing, 2015.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. nature, 323(6088):533–536,
1986.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[ROUG17] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning
deep 3d representations at high resolutions. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[Sah] Sumit Saha. A comprehensive guide to convolutional neural
networks — the eli5 way. https://towardsdatascience.
com/a-comprehensive-guide-to-convolutional-neural-
networks-the-eli5-way-3bd2b1164a53. (Accessed on
06/12/2019).

[Sem] Semantic3D. Semantic3d - results. http://semantic3d.net/view_
results.php?chl=1. (Accessed on 04/07/2020).

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27(3):379–423, 1948.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.

[SKMW17] Michael Schwärzler, Lisa-Maria Kellner, Stefan Maierhofer, and Michael
Wimmer. Sketch-based guided modeling of 3d buildings from oriented
photos. In Proceedings of the 21st ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pages 9:1–9:8. ACM, February 2017.

[SMKLM15] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
Multi-view convolutional neural networks for 3d shape recognition. In
The IEEE International Conference on Computer Vision (ICCV), 2015.

108

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://semantic3d.net/view_results.php?chl=1
http://semantic3d.net/view_results.php?chl=1

[SSA20] Siddharth Sharma, Simone Sharma, and Anidhya Athaiya. Activation
functions in neural networks. International Journal of Engineering Applied
Sciences and Technology, 04:310–316, 05 2020.

[SZX+19] P. Sun, X. Zhao, Z. Xu, R. Wang, and H. Min. A 3d lidar data-based
dedicated road boundary detection algorithm for autonomous vehicles.
IEEE Access, 7:29623–29638, 2019.

[TCA+17] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese. Segcloud: Se-
mantic segmentation of 3d point clouds. In 2017 International Conference
on 3D Vision (3DV), pages 537–547, 2017.

[TGDM18] H. Thomas, F. Goulette, J. Deschaud, and B. Marcotegui. Semantic
classification of 3d point clouds with multiscale spherical neighborhoods.
In 2018 International Conference on 3D Vision (3DV), pages 390–398,
Sep. 2018.

[TQD+19] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Mar-
cotegui, Francois Goulette, and Leonidas J. Guibas. Kpconv: Flexible and
deformable convolution for point clouds. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019.

[Vis] Visdom. Visdom - combining simulation and visualization. http://
visdom.at/. (Accessed on 05/12/2019).

[WBG+12] M.J. Westoby, J. Brasington, N.F. Glasser, M.J. Hambrey, and J.M.
Reynolds. ‘structure-from-motion’ photogrammetry: A low-cost, effective
tool for geoscience applications. Geomorphology, 179:300 – 314, 2012.

[WJHM15] Martin Weinmann, Boris Jutzi, Stefan Hinz, and Clément Mallet. Seman-
tic point cloud interpretation based on optimal neighborhoods, relevant
features and efficient classifiers. ISPRS Journal of Photogrammetry and
Remote Sensing, 105:286 – 304, 2015.

[WLG+17] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong.
O-cnn: Octree-based convolutional neural networks for 3d shape analysis.
ACM Trans. Graph., 36(4):72:1–72:11, 2017.

[WLW+15] H. Wang, H. Luo, C. Wen, J. Cheng, P. Li, Y. Chen, C. Wang, and
J. Li. Road boundaries detection based on local normal saliency from
mobile laser scanning data. IEEE Geoscience and Remote Sensing Letters,
12(10):2085–2089, 2015.

[WSK+15] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015.

109

http://visdom.at/
http://visdom.at/

[WUH+15] M. Weinmann, S. Urban, S. Hinz, B. Jutzi, and C. Mallet. Distinctive 2d
and 3d features for automated large-scale scene analysis in urban areas.
Computers & Graphics, 49:47 – 57, 2015.

[WWHY19] G. Wang, J. Wu, R. He, and S. Yang. A point cloud-based robust road
curb detection and tracking method. IEEE Access, 7:24611–24625, 2019.

[Zha10] W. Zhang. Lidar-based road and road-edge detection. In 2010 IEEE
Intelligent Vehicles Symposium, pages 845–848, 2010.

[ZTF+11] Matthew D Zeiler, Graham W Taylor, Rob Fergus, et al. Adaptive
deconvolutional networks for mid and high level feature learning. In ICCV,
volume 1, page 6, 2011.

[ZWW+15] Y. Zhang, J. Wang, X. Wang, C. Li, and L. Wang. A real-time curb
detection and tracking method for ugvs by using a 3d-lidar sensor. In
2015 IEEE Conference on Control Applications (CCA), pages 1020–1025,
2015.

[ZWWD18] Y. Zhang, J. Wang, X. Wang, and J. M. Dolan. Road-segmentation-
based curb detection method for self-driving via a 3d-lidar sensor. IEEE
Transactions on Intelligent Transportation Systems, 19(12):3981–3991,
2018.

[ZY12] G. Zhao and J. Yuan. Curb detection and tracking using 3d-lidar scanner.
In 2012 19th IEEE International Conference on Image Processing, pages
437–440, 2012.

110

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of this Thesis
	Structure of this Thesis

	Related Work
	Semantic Point Cloud Segmentation
	Curb Detection

	Semantic Point Cloud Segmentation
	Data Extraction
	Training Dataset
	Network Learning Basics
	Network Architecture
	Point Cloud Segmentation

	Curb Detection and Fitting
	Point Cloud Prefiltering
	Feature Extraction
	False Positive Filtering
	Curb Fitting

	Neural Network Training
	Datasets
	Hyperparameter-Tuning
	Network Using Small Grid Size
	Network Using Middle Grid Size
	Network Using Big Grid Size

	Results
	Semantic Segmentation of the Semantic3d Dataset
	Semantic Segmentation and Curb Fitting of the Cologne Dataset
	Critical Reflection

	Conclusion and Future Work
	Hyperparameter Tuning
	Network Architectures
	Network Using Small Grid Size
	Network Using Middle Grid Size

	List of Figures
	List of Tables
	Bibliography

