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Kurzfassung

Die Sichtbarkeitsberechnung ist ein typisches Problem im Feld der Computergraphik.
Beispiele sind Occlusion Culling, bei dem verdeckte Teile der Szene verworfen werden,
um die Performance zu steigern, oder auch die Berechnungen von globalen Beleuchtungs-
effekten, die auf der Sichtbarkeiten von Punktpaaren basieren. In dieser Arbeit wird ein
aggressiver Sichtbarkeitsalgorithmus, Guided Visibility Sampling++, der die Sichtbarkeit
von einer Fläche ausgehend berechnet, vorgestellt. Der Algorithmus basiert auf Guided
Visibility Sampling und verbessert diesen, wodurch eine genauerere Lösung in kürzerer
Zeit berechnet werden kann. Eine Kombination von verschiedenen Algorithmen und
intelligenten Abtaststrategien werden verendet, um mittels Raycasting eine Menge an
Dreiecken zu ermitteln, die von einer flachen oder volumetrischen Region aus sichtbar
ist. Diese gefundene Menge an Dreiecken wird Potentially Visible Set (PVS) genannt.
Der vorgestellte Algorithmus findet Dreiecke effizient durch initiales Zufallsabtasten der
Szene und anschließend ausgeführte intelligente Erkundungsstrategien. Der Algorithmus
terminiert durch ein Abbruchkriterium. Eine moderne Implementierung, basierend auf
der Vulkan API und RTX Raytracing wird präsentiert. Unsere GPU-basierte GVS++ ist
über vier Größenordnungen schneller als die ursprüngliche CPU-basierte Implementierung
von GVS. Experimente auf verschiedenen Szenen zeigen, dass die vorgestellte Technik
schneller und genauer ist als vergleichbare Techniken.
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Abstract

Visibility computation is a common problem in the field of computer graphics. Examples
include occlusion culling, where parts of the scene are culled away, or global illumination
simulations, which are based on the mutual visibility of pairs of points to calculate lighting.
In this thesis, an aggressive from-region visibility technique called Guided Visibility
Sampling++ (GVS++) is presented. The proposed technique improves the Guided
Visibility Sampling algorithm through improved sampling strategies, thus achieving low
error rates on various scenes, and being over four orders of magnitude faster than the
original CPU-based Guided Visibility Sampling implementation. We present intelligent
sampling strategies that use ray casting to determine a set of triangles visible from a
flat or volumetric rectangular region in space. This set is called a potentially visible set
(PVS). Based on initial random sampling, subsequent exploration phases progressively
grow an intermediate solution. A termination criterion is used to terminate the PVS
search. A modern implementation using the Vulkan graphics API and RTX ray tracing
is discussed. Furthermore, optimizations are shown that allow for an implementation
that is over 20 times faster than a naive implementation.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Visibility is a fundamental problem, not just in computer graphics but also in robotics,
computer vision, and architecture, to name a few. There are various approaches for
applications that rely on visibility calculations. Examples in computer graphics include
global illumination simulations, which are based on the mutual visibility of pairs of points
in the scene to calculate lighting, and shadow generation, where the visibility of a point
to a light source has to be calculated. In real-time rendering applications, visibility from
a viewpoint is commonly determined using the z-buffer. Visibility may also be solved
using ray casting, where rays are shot from a viewpoint through each pixel, finding the
closest primitive along each ray.

Another common application for visibility algorithms is occlusion culling. Occlusion
culling is an acceleration technique where parts of the scene–that are hidden by other
parts in the scene–are culled. This way, hidden geometry does not have to go through
the graphics pipeline. In general, occlusion-culling techniques can be categorized into
methods that calculate visibility from a point or from a region [BW03]. From-region
visibility is more expensive to compute since it is necessary to determine a point’s
visibility from any position of a given region. Therefore, from-region visibility is often
precomputed. Some approaches utilize well-known real-time rendering techniques, such
as the hierarchical z-buffer [GKM93]. At the same time, other methods use techniques
such as ray casting to determine the visibility of objects and primitives, such as the
aggressive from-region sampling-based visibility approach Guided Visibility Sampling
(GVS) by Wonka et al. [WWZ+06].

Due to the recent developments in hardware-accelerated ray tracing, it is worth revisiting
ray casting-based approaches such as GVS. In late 2018, Nvidia introduced the first
GPU architecture, Turing [NVI18], that supports hardware-accelerated ray tracing. Two
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1. Introduction

years later, Nvidia released their second generation of GPUs [NVI20] that support real-
time ray tracing, that also allows compute workloads, such as hardware-accelerated ray
tracing, as well as graphics workloads, to be executed concurrently. Both architectures
employ dedicated hardware units to accelerate ray-tracing tasks such as bounding volume
hierarchy traversal and ray/triangle intersection testing. Recent graphics APIs, such as
Vulkan and DirectX, offer ray-tracing APIs that allow developers to utilize hardware-
accelerated ray tracing.

In this work, we present an aggressive from-region visibility algorithm called Guided
Visibility Sampling++ (GVS++) that uses ray casting and intelligent sampling schemes for
visibility determination and works on general 3D scenes. Our algorithm builds upon the
work of Wonka et al. [WWZ+06]. We provide a publicly available Vulkan implementation
that uses Vulkan’s ray tracing API. We analyze the efficiency of the algorithm on various
test scenes and provide a comparison to similar approaches. Our contributions can be
summarized as follows:

1.2 Aim of the Work

This work aims to improve the original GVS algorithm and offers an analysis of the per-
formance that can be achieved when hardware-accelerated instead of software emulation-
based ray tracing is used. Furthermore, an implementation of the improved algorithm
using the Vulkan graphics API is provided. The efficiency of the algorithm on various
test scenes is analyzed, and a comparison to the original GVS implementation, as well as
a rasterization-based from-region visibility approach, is provided.

The contributions of this thesis can be summarized as follows:

• Guided Visibility Sampling++, an aggressive from-region sampling-based visibility
approach based on Guided Visibility Sampling (GVS) [WWZ+06]. GVS++ is more
accurate and offers more flexibility than GVS. Low error rates are achieved by
intelligent sampling schemes that find new triangles and parallelize well.

• A publicly available Vulkan implementation of our algorithm that uses hardware-
accelerated ray tracing. Our algorithm, using RTX ray tracing, is over four orders
of magnitude faster that the original CPU-based GPU implementation.

• An in-depth analysis of GVS++ on multiple scenes and a comparison to a brute-force
random sampling approach, a rasterization-based from-region visibility technique,
and the GVS algorithm by Wonka et al. [WWZ+06].

1.3 Structure of the Thesis

This thesis is structured as follows. In Chapter 2, fundamental knowledge that this thesis
is based on is revised. This includes the concept of visibility in the field of computer
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1.3. Structure of the Thesis

graphics, and methods such as occlusion culling. Furthermore, the basics of ray tracing
with a focus on acceleration structures and ray tracing with the Vulkan graphics API is
provided. Later chapters require basic knowledge of the Vulkan API. Therefore, a brief
introduction to important concepts of the graphics API is given. Chapter 3 reviews related
work of visibility algorithms in chronological order based on the taxonomy presented
in Chapter 2. Furthermore, an overview of recent advances of hardware-accelerated
ray-tracing architectures is given.

Chapter 4 provides information about Guided Visibility Sampling (GVS), the from-region
visibility technique that this thesis builds upon. In Chapter 5, modifications of the
original GVS technique are explained and presented as the Guided Visibility Sampling++
(GVS++) algorithm.

In Chapter 6, a modern implementation of GVS++ using the Vulkan graphics API and
RTX ray tracing is presented. The source code is freely available on GitHub1. Important
design decisions are discussed regarding the Vulkan API. In addition to the available
source code, this chapter provides pseudo-code of the main algorithms.

Results are presented in Chapter 7, where GVS++ is compared to the original GVS
algorithm, brute-force random sampling and a rasterization-based visibility algorithm
on various scenes. The asymptotic behavior of GVS++ as well as the impact of different
parameter choices are discussed. Chapter 8 shows how GVS++ could be used in a
practical use case.

The thesis is concluded in Chapter 9, where the main contributions are summarized and
possibilities for future work are provided.

1https://github.com/einthomas/GVSPP, last accessed 30. November 2020
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CHAPTER 2
Background

In this chapter, background information about core concepts used in the remainder of
this thesis is provided. Section 2.1 provides a general overview of the visibility problem,
and discusses visibility culling and different visibility techniques. Section 2.2 gives a brief
introduction to ray tracing with a focus on acceleration data structures. In Section 2.3, a
quick Vulkan primer is given, providing essential background information and concepts
of the graphics API, including Vulkan’s ray tracing API.

2.1 Visibility

Visibility is a fundamental part of computer graphics. Given a scene and a viewpoint,
the solution to the visibility problem is the set of primitives that are visible from a given
viewpoint. There are different techniques to solve the visibility problem. In real-time
computer graphics, commonly, a z-buffer is used to solve visibility, where each pixel
contains the depth of the currently closest primitive [AMHH19]. Another technique
to solve the visibility problem is ray casting: Through each pixel, a ray is shot and
intersected with the scene. This way, along each ray, the closest primitive is found.

2.1.1 Visibility Culling

Visibility culling is an acceleration technique that aims to discard invisible parts of a
scene. The goal is to avoid rendering geometry that does not contribute to the final image.
Visibility culling usually happens before or in the early stages of the graphics pipeline to
prevent executing expensive stages, such as fragment processing, for invisible geometry.
There are three main visibility culling techniques (see Figure 2.1): View-frustum culling,
back-face culling, and occlusion culling [AMHH19]. This thesis focuses on the latter.

5



2. Background

Eye

Back-face
culling

View-frustum
culling

Occlusion
culling

Figure 2.1: Three different visibility culling techniques (view-frustum, back-face and
occlusion culling). Culled geometry is dashed. Adapted from Cohen-Or et al. [COCSD03].

View-frustum culling Before the rasterization stage in the graphics pipeline, triangles
are tested against the view-frustum and are discarded if they are outside of the volume.
Clipping handles triangles that intersect the view-frustum.

Back-face culling Back-face culling happens before the rasterization stage and elimi-
nates triangles that face away from the viewer. A triangle is considered to be front- or
back-facing depending on the order of the vertices of a triangle after it is projected onto
the screen.

Occlusion culling Occlusion culling aims to eliminate geometry occluded by other
geometry in the scene. Occlusion culling is typically more computationally expensive
than view-frustum and back-face culling since it is necessary to calculate how different
parts of a scene affect each other. Occlusion culling is especially important for heavily
populated scenes where only a fraction of triangles are visible from a given viewpoint.
This typically includes indoor as well as outdoor city scenes.

Occlusion culling algorithms determine a set of primitives that are visible, called the
potentially visible set (PVS). Depending on the type of PVS that is calculated, occlu-
sion culling algorithms can be classified as aggressive, conservative, approximative or
exact [NBG02] (see Table 2.1). Aggressive algorithms can underestimate the visibility,
resulting in a PVS missing geometry. This can lead to holes in the geometry in the
final image. Conservative culling algorithms can overestimate the visibility, resulting
in a PVS containing geometry that is invisible. When rendering a scene, no image
errors are visible. However, rendering performance is suboptimal compared to a PVS
computed by an aggressive algorithm due to the inclusion of triangles that are invisible.
Approximative visibility algorithms can include triangles that are invisible but may also

6



2.2. Ray Tracing

leave holes. The extent of the image error produced by aggressive, conservative, and
approximative techniques largely depends on the type of scene. Exact methods neither
over- nor underestimate the visibility, resulting in a PVS without errors and optimal
rendering performance.

Runtime Rendering Performance
Image Errors Optimal Suboptimal

No Exact Conservative
Potentially Aggressive Approximative

Table 2.1: The four classifications of culling algorithms. Recreated from Nirenstein et
al. [NBG02].

Occlusion culling algorithms can further be distinguished by whether visibility is calculated
from a point or from a region [BW03, COCSD03]. From-region visibility algorithms
compute a PVS that is valid from any point of a given region. Such a region is also
called view cell and can be flat (2D) or a volume (3D). From-region visibility methods
are more computationally expensive than from-point visibility techniques since it is
necessary to determine whether the geometry of the scene is visible from any point of
the view cell. Therefore, from-region visibility solutions tend to compute the PVS in
a pre-processing step, typically by subdividing the scene into multiple view cells and
loading the stored PVS depending on the location of the viewer during runtime. Also,
due to the pre-computation of the PVS, from-region visibility methods do not handle
dynamic scenes as well as from-point visibility algorithms. Alternatively, fast from-region
visibility algorithms can be executed on servers that stream the resulting PVS to clients.
Depending on the application, the PVS may be valid for multiple frames.

2.2 Ray Tracing

Ray tracing is a technique to realistically simulate the propagation of light. The ray-
tracing algorithm involves following paths that represent rays of light originating at the
viewer’s location through a scene. In the early days of computer graphics [Whi80], it
has been shown that a number of natural phenomena, such as reflection and refraction
of light as well as sound propagation, can be simulated realistically. The core of the
ray-tracing algorithm is the interaction of rays with objects in a scene. Whitted et
al. [Whi80] note that up to 95% of the rendering time is spent calculating the intersection
of rays and triangles. That is, when a brute-force approach is used, where each ray
is tested against each object in a scene. In order to accelerate the process of finding
ray/triangle intersections, acceleration data structures have been developed. There are
different classes [Gla89] of acceleration data structures that aim to accelerate the ray
casting process in different ways. Acceleration data structures may aim to reduce the
number of intersections that are computed, reduce the number of rays that are traced, or

7



2. Background

replace rays as a whole with more general concepts. In the following section, acceleration
structures of the first category are discussed.

2.2.1 Acceleration Data Structures

The major acceleration data structures to reduce the number of intersection tests are
bounding volume hierarchies (BVHs) and binary space partitioning (BSP) trees [PJH16,
DNL+17]. The commonality of both techniques is that a tree is recursively built that
stores primitives in the leaves. BVHs group primitives, whereas BSPs split the space into
subspaces. When casting a ray, the tree is traversed, resulting in intersection tests with
primitives that are along the path of the ray. An example for a BSP tree is a k-d tree.

Bounding volume hierarchies The BVH is based on the idea that bounding boxes
of individual objects or primitives can be enclosed into larger bounding boxes, thereby
forming a hierarchy. Then, if a ray does not intersect a bounding box, it is guaranteed
that the ray does not intersect any of its inner bounding boxes. A BVH is structured
as a tree, where primitives are stored in the leaves, and bounding boxes that enclose
all primitives of the respective subtree are stored in the nodes (see Figure 2.2). The
bounding boxes of nodes on the same level in the tree may overlap. The advantage of
BVHs over BSP trees is that they can be constructed more rapidly [DNL+17]. A typical

Figure 2.2: An example 2D scene (left) and its respective BVH (right). Objects (P )
are grouped into hierarchies of bounding boxes (N). Figure adapted from Deng et
al. [DNL+17].

traversal algorithm [Gla89] starts at the root bounding box, which encloses the whole
scene. The tree is descended level by level, testing the ray against the bounding boxes
stored in the nodes. If there is an intersection, the respective subtree is traversed. If a
bounding box is missed, traversal of the respective subtree is skipped.

8



2.2. Ray Tracing

Binary space partitioning trees BSP trees recursively partition space using splitting
planes. One type of BSP tree is the k-d tree, where axis-aligned splitting planes are
used to subdivide space into smaller subspaces (see Figure 2.3). The subdivision process
continues until the number of primitives within a subspace is below a certain threshold.
This has the effect that primitives may only partially be contained within a subspace,
intersecting a splitting plane. Similar to the BVH, a k-d tree is organized as a binary

Figure 2.3: An example 2D scene (left) and its respective BSP k-d tree (right). Space is
subdivided by axis-aligned splitting planes (N) as long as each subspace contains more
than one object. Figure adapted from Deng et al. [DNL+17].

tree, where each node splits the space into two subspaces. Primitives are stored in the
leaves, depending on the subspaces they are in. Primitives that intersect splitting planes
are stored in multiple leaves. In contrast, a primitive in a BVH is stored in at most one
leave. A similar type of BSP tree is the octree, where each node divides space into eight
octants.

2.2.2 Sampling

For different ray casting tasks samples have to be generated. Examples include anti-
aliasing, where multiple rays are traced through a single or when distributing ray origins
on the surface of an object. Often pseudo-random sampling strategies that distribute
samples uniformly are preferred. Several techniques [Shi91] have been developed to
generate uniformly distributed samples: Jittered, Poison disk and N-rooks sampling, to
name a few. Another sampling strategy uses the Halton sequence [Nie92] for generating
uniformly distributed samples. One important property of this technique is that it is
hierarchical [WLH97], meaning that for n generated samples, the first k samples are the
same for all n ≥ k. This allows generating samples incrementally. The generation of the
Halton sequence is based on the following principles [Nie92, WLH97]: Any integer n ≥ 0

9



2. Background

with terms aj ∈ {0, 1, . . . , b− 1} in a base b ≥ 2 can be expressed as:

n = . . . a2a1a0 =
∞∑

j=0
aj b

j (2.1)

The radical-inverse function φb(n) reflects the terms aj of the integer n around the
decimal point and is defined by:

φb(n) = 0.a0a1a2 · · · =
∞∑

j=0

aj

bj+1 (2.2)

To generate s-dimensional Halton points, s different bases b are chosen. Typically, the
bases are chosen to be coprime [FKP15]. The n-th s-dimensional Halton point xn is then
given by:

xn = (φb1(n), . . . , φbs(n)) (2.3)

Multiple Halton points xn form the Halton sequence.

2.3 The Vulkan API
Vulkan is a modern low-level graphics API that aims to keep the driver overhead to
a minimum. The consequence is that, by default, the error checking is very limited.
Compared to more high-level graphics APIs such as OpenGL, Vulkan requires the
developer to do much of the resource management, including allocating and freeing device
and host memory, and offers a wealth of parameters to be set, which also lead to a
more verbose API. Due to the low-level approach, Vulkan provides more control over the
graphics hardware, potentially allowing it to achieve better hardware utilization.

2.3.1 Instances, Devices, and Queues

Vulkan is initialized by creating a VkInstance handle, which stores application-
specific state. In contrast, in OpenGL, the state is modified and stored globally.
When creating a Vulkan instance, it can be specified which extensions should be
used. Extensions are used to add additional functionality, such as ray tracing with
VK_NV_ray_tracing or VK_KHR_ray_tracing, which may be provided by a Vulkan
implementation. As initially mentioned, Vulkan does not provide extensive error checking
by default. Vulkan uses layers, which allows intercepting Vulkan function calls to add
additional functionality. Error checking capabilities are added via validation layers, such
as VK_LAYER_KHRONOS_validation. This allows to easily remove any debug error
checking implemented as a layer from the production build. Layers are specified during
the instance creation.

GPUs are exposed as physical devices (VkPhysicalDevice), which can be queried and
selected according to their properties and supported features. Multiple physical devices
can be used in an asynchronous manner. Physical devices expose different queues where
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2.3. The Vulkan API

work can be submitted to, as discussed in the next section. Each queue is of a queue
family that defines which type of work a queue is suited for. Queues can be capable
of a combination of graphics, compute, data transfer or sparse memory management
operations. Work submitted to different queues may be executed in parallel. Therefore,
it can be beneficial in terms of performance to use a transfer-only queue, if available, for
host/device transfer operations. This is because some GPUs have special hardware that
maximizes transfer rates for such queues1. Table 2.2 shows the queue families available
on an Nvidia RTX 2080.

Queues Flags

16

GRAPHICS_BIT

COMPUTE_BIT

TRANSFER_BIT

SPARSE_BINDING_BIT

8
COMPUTE_BIT

TRANSFER_BIT

SPARSE_BINDING_BIT

2
TRANSFER_BIT

SPARSE_BINDING_BIT

Table 2.2: The queue families of an Nvidia RTX 2080.

A logical device (VkDevice) is the interface to communicate with a physical device.
When creating a logical device handle, device features such as geometry shaders, as well
as the queues that will be used, have to be specified.

2.3.2 Command Buffers

Command buffers (VkCommandBuffer) are used to record commands, such as drawing
or transfer commands. Suitable functions are prefixed with vkCmd. Command buffers are
executed by submitting them to a suitable queue via vkQueueSubmit. The concept of
command buffers has a number of advantages: Applications that do not require to rebuild
a command buffer repeatedly, e.g., every frame, may only record a command buffer once
and submit it multiple times. This way, the cost of rebuilding is avoided. Also, command
buffers promote the use of host-side multithreading to maximize CPU utilization, since
Vulkan allows populating separate command buffers per thread. Multiple threads can
also be used to build a single command buffer by combining multiple secondary to one
primary command buffer. Command buffers allocate memory from command pools
(VkCommandPool). Since each command pool must only be used by a single thread

1https://gpuopen.com/performance/, last accessed 21. October 2020
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2. Background

simultaneously, there is no implicit synchronization mechanism built-in, which also
benefits performance.

2.3.3 Memory Management

Explicit memory management is a large part of Vulkan, especially when compared to
higher-level APIs such as OpenGL. After creating a resource, e.g., a buffer or a texture, a
suitable memory type has to be queried. Once a memory type is found, a block of memory
can be allocated, which is then bound to the initially created resource. Depending on the
platform and hardware, different memory types and heaps are available. The memory
type and heap has to be chosen such that it is compatible with the resource and suitable
for the intended usage. Table 2.3 shows the different memory types and heaps available
on an Nvidia RTX 2080.

Memory Type Memory Heap

DEVICE_LOCAL_BIT 0
HOST_VISIBLE_BIT

HOST_COHERENT_BIT
1

HOST_VISIBLE_BIT

HOST_COHERENT_BIT

HOST_CACHED_BIT

1

DEVICE_LOCAL_BIT

HOST_VISIBLE_BIT

HOST_COHERENT_BIT

2

Table 2.3: Memory types and heaps available on a Nvidia RTX 2080 on Windows 10.

Memory heap 0 represents memory that is residing on the GPU, therefore allowing for
fast access from the GPU. Heap 1 corresponds to memory on the host side, which is
accessible to the CPU, and memory heap 2 represents memory on the GPU that can also
be mapped into memory on the host side but is limited to 256MB. Memory with the
HOST_COHERENT_BIT set does not require explicit flushing for host writes to memory.

When a memory type is used, such as memory allocated from heap 0, that cannot be
mapped to the host, an intermediate staging buffer is required to transfer data between
device and host. A staging buffer is usually allocated from host memory. Data that
should be transferred to device local memory is first copied into the staging buffer. Via
the copy command vkCmdCopyBuffer, the content of the staging buffer is then copied
to the target device local memory. For such an operation, a transfer-only queue should
be preferred (Section 2.3.1).
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2.3.4 Pipelines and Shaders

A pipeline (VkPipeline) in Vulkan is a monolithic object describing all shader and
fixed-function stages. Many parameters cannot be changed dynamically, which either
requires to rebuild the pipeline or create and store multiple pipelines beforehand. Vulkan
offers three types of pipelines: A graphics pipeline, a compute pipeline, and a ray tracing
pipeline. A graphics pipeline contains shader stages such as a vertex and a fragment
shader as well as a description of the render pass, which describes the render targets.
A compute pipeline contains a single shader stage–a compute shader. A ray tracing
pipeline contains multiple shader stages such as programmable ray generation, hit and
miss stages, and a fixed-function traversal stage.

Each pipeline has a pipeline layout (VkPipelineLayout) that contains a description
of the resources shaders can access. The binding of a specific resource is described using
a descriptor. Descriptors are grouped to form a descriptor set (VkDescriptorSet).
Each descriptor set is described by a descriptor set layout (VkDescriptorSetLayout),
which contains the binding location of the resource in the shader and the type of resource
that is bound. When creating a pipeline, a descriptor set layout has to be specified. The
descriptor set layout acts as a template for descriptor sets that can then be bound before
binding the pipeline.

During the pipeline creation, shader modules have to be specified that contain shader
code in the SPIR-V format. SPIR-V is an intermediate binary format. The advantage
of using a binary format is that any shading language for which a compiler to SPIR-V
exists can be used to write shaders for Vulkan. This includes GLSL and HLSL. GLSL
has been extended to support Vulkan-specific features, such as the ability to specify a
descriptor set in the layout specifier as well as the concept of push constants. The latter
provides a fast way to transfer small amounts of uniform data to the GPU.

2.3.5 Synchronization

Due to the parallel nature of the GPU itself but also the parallel execution of CPU and
GPU, it is important to ensure correct synchronization to avoid working with partial or
unfinished results. Most functions in Vulkan must be externally synchronized, meaning
that the application has to ensure correct synchronization between multiple threads or
devices accessing the same resource simultaneously. Synchronization in Vulkan is an
extensive topic, with Vulkan providing various different mechanisms.

Fences can be used to notify the host once a task on a device is finished. This is
suitable for scenarios where generating work for the device depends on the result of the
task the device is currently executing. This is also called execution dependency. The
vkQueueWaitIdle command represents a coarse-grained special case of a fence. The
command blocks the current thread until the specified queue finishes execution. Waiting
for a queue to be idle until a thread can continue may be too coarse for most application
scenarios since the goal should be to constantly submit work to the queue such that the
device is always busy and best utilized.
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Semaphores can have two states, signaled and unsignalled, and can be used to synchronize
commands or access to resources between queues. A thread waits until the semaphore
becomes signaled to continue execution.

Pipeline barriers provide a means to specify execution dependencies between individual
pipeline stages. When creating a pipeline barrier, a source and a target stage have to be
provided. The target stages wait for the source stage to be finished before being executed.
Each shader stage “in between” is not blocked by the execution of the source stage.

2.3.6 Ray Tracing

Ray tracing has first been made available through the VK_NVX_raytracing
extension developed by Nvidia. Later, the cross-vendor ray tracing extension
VK_KHR_ray_tracing has been added and offers similar functionality. The Vulkan
API is extended by new shaders as well as functionality to build and manage acceleration
structures. In the scope of this thesis, Nvidia’s extension is used since the latter was
not yet released when this thesis was started. In the remainder of this document, “the
ray-tracing extension” refers to VK_NVX_raytracing.

Acceleration structures Acceleration structures (AS) are organized into a two-level
hierarchy (see Figure 2.4). The bottom-level AS contains the geometry, while the top-
level AS contains references to bottom-level AS nodes together with transform and
shading information. When building an AS, it can be specified if updates are allowed and
whether faster build or faster ray tracing performance should be preferred. This two-level
hierarchy has multiple advantages. If a scene contains multiple instances of some object,
the object’s geometry is only stored once in the bottom-level AS, and multiple references
are stored in the top-level AS. This also allows faster rebuilds, because if transformation
or shading information or an object’s geometry changes, only the respective acceleration
structure has to be rebuilt.

Ray-tracing pipeline Vulkan’s ray tracing pipeline (see Figure 2.4) consists of five
different shader stages: The ray generation, intersection, any hit, closest hit, and miss
shader stage.

• RayGen shaders are programmable shaders and are the starting point of the ray
tracing pipeline on the device side. Rays are generated, and the traceNV command
is used to start the acceleration structure traversal.

• Intersection shaders compute ray/primitive intersections. Ray/triangle intersection
shaders are built-in. Additional intersection shaders can be added for custom
ray/primitive intersection logic.

• Any hit shaders are invoked whenever a ray/primitive intersection is registered.

14
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Figure 2.4: Vulkan’s ray tracing API (VK_KHR_ray_tracing). The ray-tracing pipeline
(left) consists of different shader stages that are invoked based on the traversal of the
acceleration structure. Using the shader binding table (middle), geometry-specific shaders
can be specified. Ray queries (right) offer an alternative to the ray-tracing pipeline and
allow casting rays from any type of shader. Figure c©Khronos Group, Inc.

• Closest hit shaders are invoked for the closest ray/primitive intersection along a
ray.

• Miss shaders are invoked if there is no ray/primitive intersection.

Shaders are specified via the shader binding table (SBT). Multiple shader stages of the
same type can be specified such that different shaders are invoked depending on the
intersected geometry, e.g., to be able to handle different materials.

An application-defined ray payload struct can be used to carry information along with
the ray (see Figure 2.5). It is populated in the ray generation shader and can be read
and modified in any and closest hit shaders. An example use case is to return the ID of
the intersected primitive and the intersection position to a RayGen shader. Intersection
shaders use a hit attribute vector to pass data to any hit and closest hit shaders (see
Figure 2.5). The built-in ray/triangle intersection shader stores barycentric coordinates
of the registered ray/triangle intersection in the hit attribute. Barycentric coordinates
may then be used for shading calculations in hit shaders.

Ray queries Ray queries (see Figure 2.4) have been introduced with the cross-vendor
ray tracing extension VK_KHR_ray_tracing. Ray queries are an alternative to the
ray tracing pipeline and allow casting rays from any type of shader. The acceleration
structure is traversed iteratively. A set of functions is available to access intersection
data such as the hit position and the ID of the intersected primitive. This allows making
decisions based on the geometry that is intersected. One use case is to use ray queries
in existing fragment shaders to add effects such as ray traced shadows. Since no shader
binding table is used, any overhead caused by the binding table is avoided.
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Figure 2.5: Inter-shader communication. Ray payloads (left) and hit attributes (right)
are used to transfer data between shader stages. Figure adapted from Nvidia [SW18].

Watertightness One important property of ray/triangle intersection algorithms is
that of watertightness. Woop et al. [WBW13] presented a novel ray/triangle intersection
test that is watertight at edges and vertices. This means that it is guaranteed that a ray
does not pass through shared edges or vertices. This especially concerns large scenes,
where triangles are small and far away. In such a case, a non-watertight intersection test
could pass through triangles due to numerical instabilities. In the algorithm by Woop
et al., the ray/triangle intersection problem is simplified using affine transformations.
The transformed problem is then solved in 2D. For problematic cases, double-precision
floating-point arithmetic is used to avoid precision issues. Intersection testing is watertight
in Vulkan with Nvidia’s hardware-accelerated ray tracing implementation.
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CHAPTER 3
Related Work

This chapter covers work related to the topics of this thesis. In Section 3.1, from-region
visibility algorithms are reviewed. Conservative, aggressive, approximative, and exact
techniques are discussed in chronological order within each section. Methods operating
in image- as well as object-space are covered. In Section 3.3, recent research efforts of
dedicated ray-tracing hardware architectures are reviewed, starting with one of the first
works in this area up to current consumer-level hardware.

3.1 From-Region Occlusion Culling Techniques

3.1.1 Conservative Techniques

Durand et al. [DDTP00] presented a conservative visibility technique for general scenes.
The authors introduced an extended projection operator to calculate the PVS. The idea is
based on point-based visibility approaches. The visibility of an object can be determined
by testing whether its projection onto the image plane lies within an occluder’s projection.
The authors extended this idea for volumetric view cells. Occludees and occluders are
projected onto a plane. Let A be the union of an ocludee’s projection onto the plane and
B the intersection of an occluder’s projection onto the plane. An occludee is regarded as
hidden if it is behind an occluder, and A is contained in B.

The conservative visibility algorithm by Schaufler et al. [SDDS00] classifies regions in
space as occluded by fusing occluders and also extending occluders into empty space.
The algorithm operates on a discretized version of the scene. Therefore, an octree is used
to subdivide the scene into voxels. A voxel is classified as empty, opaque, or a boundary
that separates empty and opaque regions. Determining the PVS of a given view cell
starts by selecting an opaque voxel, i.e., an occluder. The occluder is then extended along
the coordinate axis as long as there are adjacent opaque voxels. Since an observer within
a view cell cannot distinguish between empty and opaque for hidden voxels, an occluder
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is also extended into hidden space. Figure 3.1 shows a scene and its extended occluders.
The PVS is then calculated by testing whether the bounding box of the scene’s objects
intersects occluder voxels. During an interactive application, this approach also allows
checking whether moving objects or objects that were not part of the original scene are
visible.

Figure 3.1: A city scene with a view cell placed between buildings. Blue boxes represent
occluded voxels. Reprinted from Deng et al. [SDDS00].

Wonka et al. [WWS00] compute the visibility for a view cell using point samples. The
approach is based on the idea that visibility can be computed by computing the joint
umbra of all samples points on the view cell. To avoid missing triangles that are only
visible from locations between sample points occluders are shrunk by ε. A triangle
occluded by a shrunk occluder is also occluded by the original occluder within an ε-
neighborhood of the sample point. A triangle is considered occluded if it lies in the
intersection of the umbrae from all the sample points on the view cell.

Leyvand et al. [LSCO03] note that from-region visibility is inherently 4D. This is because
a ray effectively leaves and enters the view cell and a target region through 2D surfaces.
Therefore, the authors presented a factorization of the 4D visibility problem into 2D
vertical and horizontal components. The horizontal component gives the horizontal
direction of a ray. The component is defined by two concentric squares at the view
cell’s position, whereas one square is the top-down projection of the view cell onto the
ground. The horizontal direction of a ray is given by two intersections of the concentric
squares (see Figure 3.2). Each horizontal direction defines a vertical plane that gives the
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vertical direction of the ray. For each object intersected by a vertical plane, its umbra is
calculated and merged with the other umbrae associated with the current vertical plane.
This is comparable to the occlusion fusion in the approach by Schaufler et al. [SDDS00].
The merged umbrae are then stored in an occlusion map.

Figure 3.2: Ray space factorization. Intersections (s, t) with the concentric squares give
a horizontal ray direction and define a vertical plane P (s, t), which gives a horizontal ray
direction. Reprinted from Leyvand et al. [LSCO03].

In a recent approach, Hladky et al. [HSS19] describe a conservative visibility algorithm
that operates in image-space. The authors introduce the camera offset space to calculate
under which camera offsets within a view cell a stored triangle is visible. To calculate
the PVS, first, a fragment list of triangles that a ray through a fragment’s center would
intersect is stored. To also find triangles that cover a fragment from a different viewpoint
of the view cell, each triangle is enlarged before creating the fragment list. Each triangle
in the fragment list is then transformed into camera offset space, where each triangle’s
visibility is determined.

3.1.2 Aggressive Techniques

Nirenstein et al. [NB04] presented an aggressive visibility algorithm that operates in
image-space. In this approach, the PVS of a given view cell is determined by rendering
the scene from multiple viewpoints of the view cell. For each pixel, the ID of the rendered
primitive is stored in a framebuffer. The buffer is then read to gather stored primitive IDs
and to populate the PVS. Since aggressive techniques can underestimate the exact visible
set, visibility errors by missed triangles can arise. Therefore, the authors developed error
metrics and error minimization heuristics. To avoid under- or oversampling regions, the
hemicubes from which the scene is rendered are placed on the view cell adaptively. The
hemicube placement resembles a quad-tree structure (see Figure 3.3). An error metric is
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used to decide whether further hemicubes should be placed. The simplest error metric
calculates the difference between the PVS of four corner hemicubes. Further hemicubes
are placed if the difference is above a specified threshold

Figure 3.3: Left: Uniform hemicube placement. Right: Adaptive hemicube placement
used by Nirenstein et al. Reprinted from Nirenstein et al. [NB04].

Wonka et al. [WWZ+06] developed Guided Visibility Sampling, an aggressive visibility
algorithm that uses ray casting and intelligent sampling strategies to determine the PVS
of a view cell efficiently. More detail is given in Chapter 4.

Bittner et al. [BMW+09] presented Adaptive Global Visibility Sampling (AGVS) [BMW+09],
an aggressive solution that also uses ray casting. In this approach, the PVS of multiple
view cells are calculated simultaneously. The idea is to let a ray contribute to each view
cell it intersects. Whenever a ray intersects an object, the object is inserted into the
PVS of each view cell intersected by the ray. The authors developed intelligent sampling
strategies to adapt the visibility sampling to the scene. Initially, rays are chosen that are
independent of other rays. A mutation-based strategy is then used to mutate previously
used rays to sample the scene nearby. Guided Visibility Sampling [WWZ+06] follows a
similar idea, where rays are mutated to penetrate unexplored regions. AGVS employs
a visibility filter to alleviate errors by extending the PVS by objects that are likely
to be visible. To this end, the error within a region is taken into account to focus on
undersampled parts of the scene. The filter adds objects nearby other objects that are
already visible and merges the PVS of adjacent view cells.

In a recent approach, Ho et al. [HCCL12] developed an image-space sampling algorithm
that builds upon the work of Nirenstein et al. [NB04]. The authors present an importance
sampling scheme in image-space that places hemicubes on the view cell such that new
primitives are more likely to be found. Based on the image-space sampling results, the
algorithm builds a reliability function on the view cell boundary. Samples are placed at
points of minimum reliability. The reliability of a point is measured by calculating the
size of visibility portals seen from this point. A visibility portal is a gap of depth as seen
from a point. Its size is approximated by calculating the difference of depth values of
adjacent pixels in the rendered image. Figure 3.4 shows a scene and a resulting reliability
function.
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Figure 3.4: A scene with a view cell and the resulting reliability function on the view cell
boundary resulting from nine samples (dots). Reprinted from Ho et al. [HCCL12].

3.1.3 Approximative Techniques

Early on, Airey et al. [ARBJ90] proposed a from-region visibility algorithm for indoor
architectural scenes. A scene is automatically subdivided into view cells, e.g., such that
each room is covered by one view cell. The idea is that the set of visible primitives is
mostly the same for most viewpoints within a room but changes more rapidly near portals,
e.g., doors or windows. A spatial subdivision technique such as a k-d tree or an octree is
used to place view cells automatically and to find the view cell containing the current
viewpoint during rendering. A portal is represented by a polygon. To find the primitives
visible from a portal, only the primitives visible from a portal’s polygon have to be
computed. The authors find that this problem is equivalent to finding the primitives that
receive light from an area light source. This formulation led to two different algorithms
to solve the problem. One algorithm uses point sampling to find visible primitives, while
another algorithm calculates shadow volumes.

Gotsman et al. [GSF99] presented an approximate visibility algorithm for general scenes.
Similar to previously discussed techniques, ray casting is used for visibility computation.
In this approach, visible objects instead of individual primitives are stored. Each ray
is defined by a 3D position and a 2D direction giving a 5D space of possible rays that
are traced. This space is subdivided using a k-d tree, where each leaf represents a
view cell. The scene objects are then sampled using rays that originate at uniformly
distributed random positions within the view cell. Rays are cast at each object at
uniformly distributed random locations. An object is regarded as visible only if it is
visible from a non-negligible part of the view cell.
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3.1.4 Exact Techniques

Teller and Séquin [TS91] presented a visibility algorithm for indoor architectural scenes
that builds upon the ideas of Airey et al. In this approach, visibility between cells
is determined in a preprocessing step. First, an adjacency graph is built to store the
neighboring cell reachable through portals. Based on the adjacency graph, portal sequences
are found through which unobstructed sightlines can be constructed. Next, a stab tree
is built for each view cell, storing the cells that are visible through portal sequences.
During the runtime of an interactive application, cells visible from the current viewpoint
are determined based on the stab tree of the current cell. Cells visible from a viewpoint
are determined by testing whether an unobstructed sightline that contains the viewpoint
can be constructed through the portal sequences stored in a given stab tree. Figure 3.5
shows an example.

Figure 3.5: An indoor scene showing a viewpoint with its associated view cone. Cells
intersected by the view cone are visible from the viewpoint. Reprinted from Teller and
Séquin [TS91].

More recently, Bittner et al. [BWW05] presented an exact from-region visibility approach
for 2.5D urban scenes. Similar to the approach by Teller and Séquin [TS91], the concept
of portals and finding stabbing lines are used to calculate visibility. The authors use
line space, a dual space in which each line in primal space corresponds to a point. The
rays that intersect an occluder form a blocker polygon in line space. The idea is that
the intersection of blocker polygons form a subdivison of line space. Such a subdivision
represents all the rays in primal space that intersect the corresponding occluders in
primal space. Visibility is then calculated by constructing 3D portals for each occluder
and testing if there is a line originating at the view cell that intersects a portal.

An analytical solution was presented by Bittner [Bit02]. Line space and Plücker coor-
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dinates are used to calculate exact from-region visibility for 3D scenes. The idea is to
construct an occlusion tree that captures the visibility of a polygon and also represents
the lines that are blocked by polygons in the scene. Plücker coordinates are used to
describes the lines from the view cell blocked by a polygon in the scene.

3.2 View Cell Placement
The placement and size of view cells themselves can have a significant impact on visibility
computation times and memory requirements for storing PVS data. Furthermore, the
size of a view cell’s PVS impact rendering performance. Therefore, intelligent view cell
placement strategies were developed. Mattausch et al. [MBW06] present a view cell
partitioning strategy that aims to construct view cells that minimize rendering costs.
A three-step algorithm is presented. Rays are cast to estimate visibility in the scene.
The resulting information is used to estimate the rendering cost. Based on the estimated
rendering cost, the view space is hierarchically subdivided using a BSP tree. The number
of view cells is then reduced by a bottom-up merging process. A similar approach is
presented by Mattausch et al. [MBWW07]. In this approach, the view space and the
object space are partitioned while minimizing rendering and memory cost. Approximate
visibility information is acquired by sampling the scene which is then used to guide
the subdivision process. View space and object space are subdivided simultaneously by
splitting either a view cell or an object.

3.3 Hardware-Accelerated Ray Tracing
Deng et al. [DNL+17] generalized the ray-tracing process into a ray-tracing pipeline (see
Figure 3.6). The pipeline consists of an acceleration structure construction stage as well
as a traversal stage where rays are generated, the acceleration structure is traversed and
intersection tests are executed. Recently, various ray-tracing hardware architectures have
been proposed to accelerate parts of the ray-tracing pipeline, mainly the traversal of the
acceleration structure and the ray/primitive intersection itself.

Schmittler et al. [SWS02, SWW+04] introduced one of the first dedicated hardware
architectures for real-time ray tracing, called SaarCOR. SaarCOR comprises three units:
One unit for ray generation and shading, one ray-tracing core, and one unit for memory
management. The ray-tracing core traverses the acceleration structure and calculates
the ray/triangle intersection. The SaarCOR chip traces bundles of rays, allowing to
exploit coherence between rays. This is based on the observation that similar rays likely
intersect similar nodes in the acceleration structure, which reduces the number of memory
fetches. This approach corresponds to a single instruction, multiple data (SIMD) [Fly72]
processing pattern.

StreamRay [RGD09] also follows a SIMD processing pattern of the rays. In this approach,
the ray-tracing algorithm is reformulated as several stream filtering operations applied to
a stream of rays. The architecture consists of a ray engine that generates a stream of rays
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Figure 3.6: A general ray-tracing pipeline showing all main building-blocks of the ray-
tracing process. Reprinted from Deng et al. [DNL+17].

and a filter engine that applies programmable filters to a ray stream. Each building-block
of the ray-tracing pipeline, such as the traversal and the intersection process, is realized
as stream filters. A stream filter partitions the incoming ray stream into coherent subsets
of rays. This benefits the SIMD processing pattern by always processing sets of rays that
require the same operations.

Woop et al. [WSS05] presented a successor architecture to SaarCOR that is comparable to
modern GPUs. A hardware design based on a combination of SIMD and multithreading,
known as single instruction, multiple threads (SIMT) [MRR12], is used. This architecture
increases hardware utilization by better hiding memory latency. Furthermore, this
architecture allows for programmable material, geometry, and illumination shaders.

Nah et al. [NPP+11] developed a multi instruction, multi data (MIMD) [Fly72] architec-
ture that consists of a fixed traversal and intersection pipeline. Programmable shaders
are used for ray generation and shading. In contrast to SIMD architectures, single rays
are independently traced, which results in less performance degradation when incoherent
rays are traced. The ray/intersection process is split into multiple phases to detect misses
early. This reduces unnecessary operations, and memory fetches.

In late 2018, Nvidia introduced the Turing GPU architecture [NVI18], which is the first
product to support hardware-accelerated ray tracing aimed at the mass market. Nvidia’s
second generation [NVI20] of GPUs, Ampere, capable of real-time ray tracing builds
upon the Turing architecture, and further increases ray tracing performance. Special
ray-tracing cores accelerate BVH traversal and ray/triangle intersection computations.
Since both architectures are closed source, only a high-level overview of the architecture
is published by Nvidia (see Figure 3.7).
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Figure 3.7: The Turing architecture contains multiple streaming multiprocessors, each
containing a ray-tracing core. The ray-tracing cores are responsible for traversing the
BVH and calculating intersections. This design offloads the SM such that it can be used
for other workloads such as shading calculations. Figure adapted from Nvidia [NVI18].
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CHAPTER 4
Guided Visibility Sampling

In this chapter, the from-region visibility technique Guided Visibility Sampling (GVS) is
explained. The main contribution of this thesis, an improved GVS algorithm, is based
on the ideas that are discussed in this chapter.

4.1 Introduction

Wonka et al. [WWZ+06] presented an aggressive visibility solution called Guided Visibility
Sampling (GVS). The algorithm uses ray casting to precompute a set of triangles that are
visible from a rectangular region in space. GVS does not rely on additional information
about the scene and does not need additional memory, apart from the storage requirements
of the PVS itself. The general idea of GVS is to rapidly find triangles, which are then
used as seed points in a subsequent exploration phase that grows the intermediate PVS.
This can alternatively be seen as a flood-fill strategy where, starting from a seed point, a
region is expanded.

The main application scenarios of GVS are real-time rendering applications and games.
GVS is well suited for such applications since it does not depend on scene-specific
properties, and the resulting PVS is independent of the output resolution. The PVS is
precalculated and is therefore intended to be used for static geometry. Further application
scenarios include online and networked visibility, where the GVS algorithm is executed
on a server, and the resulting PVS is streamed to a client.

4.2 Algorithm Overview

The Guided Visibility Sampling algorithm consists of two main parts: Initial random
sampling and a subsequent exploration process. An initial seed point is placed via random
sampling. If a new triangle has been found, the exploration process is started. The

27



4. Guided Visibility Sampling

subsequent exploration process efficiently samples the neighborhood of triangles that
have previously been found to gradually grow the PVS. The process of random sampling
and the subsequent exploration is repeated until the rate of convergence of the PVS falls
below a certain threshold.

The idea of GVS is to intelligently place samples such that new triangles are likely to be
found. In contrast, a pure regular sampling approach would sample the same triangles
over and over again. Figure 4.1 illustrates a regular sampling strategy using ray space.
A pure random sampling strategy shows the same problem: The higher the degree of
convergence of the PVS, the higher the probability of a random ray to intersect a triangle
that has already been intersected. GVS alleviates this problem by using an intelligent
sampling scheme in the exploration phase to increase the likelihood of intersecting new
triangles.

Figure 4.1: An example 2D scene (left) is sampled using regular sampling. A subset of
the rays is shown in object space (middle) and in ray space (right). Rays are traced from
the view cell (bottom red line parameterized with s) to a plane behind the scene (top
red line parameterized with t). The ray space is defined by all the rays emanating from
the view cell. Figure from Wonka et al. [WWZ+06].

4.2.1 Random Sampling

Random rays are generated with a pseudo-random sampling strategy using Halton points
(see Section 2.2.2). Halton points are mapped to the view cell to get uniformly distributed
ray origins:

u = ha,i, v = hb,i, φ = 2πhc,i, θ = arcsin(hd,i),

where ha,i is the i-th point of the Halton sequence ha with base a. Intersected triangles
are treated as “seed points” for the subsequent exploration phase and are stored in a
queue (see Figure 4.2).
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4.2.2 Exploration Phase

The exploration phase is a combination of two algorithms that implement intelligent
sampling strategies. The first algorithm is adaptive border sampling (ABS), which is
motivated by the goal of finding new triangles in the neighborhood of a triangle that has
already been sampled. Additionally, a recursive subdivision strategy is employed to find
triangles that may have been missed. The second algorithm of the exploration phase is
the reverse sampling (RS) algorithm, which efficiently handles discontinuities.

Adaptive border sampling The adaptive border sampling algorithm (see Figure 4.2)
iteratively processes the triangles in the queue, which initially only contains triangles
found by random sampling. The current triangle t is enlarged to get a new polygon
t′. t′ is constructed to be as tight as possible to avoid missing any adjacent triangles.
Furthermore, the distance between t and the border polygon t′ should be constant in ray
space. Therefore, instead of simply using an enlarged triangle, t′ is constructed using nine
vertices. The vertex positions of t′ are sampled from the position on the view cell from
where t has initially been found. Since the sample positions are all close to the vertices of
t, triangles along the edges of t′ can be missed. Furthermore, sampling different triangles
through the position of two adjacent border polygon vertices indicates that there may be
further triangles along the vertices’ connecting edge. This is addressed by recursively
subdividing the edge between two vertices xa and xb of t′ if sampling xa intersects a
different triangle than sampling xb. An edge is recursively subdivided up to a threshold.
Any triangle that is found during this process is added to the queue. This leads to a
behavior similar to a flood fill algorithm.

Reverse sampling The reverse sampling algorithm is used to sample discontinuities
and regions of space that have not been discovered. The idea is that once a discontinuity
is detected during the adaptive border sampling, the origin of the respective ray is
mutated such that the ray penetrates the discontinuity.

Let t be a triangle that is currently processed by the adaptive border sampling algorithm.
A discontinuity is present if a ray through a vertex of the border polygon t′ of t intersects
a triangle to that is closer than a predicted hit point:

|xpredicted − xorigin| − |xhit − xorigin| > ∆

The predicted hit point is calculated by intersecting the current ray with the plane of t.
If there is a discontinuity, the ray origin is mutated on the view cell such that the ray
passes by the occluding triangle t0. Checking if a hit point is farther than the predicted
hit point is not necessary since this discontinuity is detected during the adaptive border
sampling of the farther triangle. Figure 4.3 gives a thorough overview of the algorithm.
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a)

View Cell
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t t'
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xorigin

x0

x1
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Figure 4.2: Random sampling is used to find initial triangles (seed points) (a). Adaptive
border sampling enlarges the boundary of the current triangle t to get a 9-vertices polygon
t′ (b). Starting from xorigin, the point on the view cell from which t has been found
during the random sampling, rays are traced to the vertices of t′ (c). If the rays of two
samples that form an edge of t′ intersect different triangles, the edge is subdivided and
a new sample (x0) is placed. Further samples may be placed (x1, x2), by the recursive
edge subdivision process, up to a given threshold (d). Figure adapted from Wonka et
al. [WWZ+06].
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Figure 4.3: Triangle t0 and t1 are sampled and added to the queue (a). Adaptive
border sampling is executed for t1, sampling xtarget of the border polygon t′1. The ray
intersects the closer triangle t0 at position xhit. A discontinuity is detected, since the
intersection point is closer to the ray origin than the sample point xtarget (b). A plane P
is constructed though the sample point xt1 of t1, xhit and xorigin. P is then intersected
with t0 to compute new sample points x and y that are just outside the occluding triangle
t0 (c). The point of intersection xmutated of a line through xtarget and x or y with the
view cell is then the new mutated origin of the initial ray r (d). Figure adapted from
Wonka et al. [WWZ+06].
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CHAPTER 5
Guided Visibility Sampling++

In this chapter, an improved Guided Visibility Sampling algorithm is presented, which
builds upon the ideas of the original algorithm. The main focus is on improving the
accuracy of GVS by modifying the deterministic sampling strategies, i.e., the adaptive
border sampling and reverse sampling algorithm.

5.1 Introduction

Guided Visibility Sampling++ (GVS++) builds upon the original GVS algorithm. Various
changes and improvements were made to increase the overall efficiency of the algorithm.
Changes are motivated by shortcomings of the original algorithm and the fact that current
hardware is more capable and offers different features such as hardware-accelerated ray
tracing than hardware during the time of the development of the original GVS algorithm.
Our sampling schemes take the highly parallel nature of modern GPUs into account. The
sample location computation is independent of the sampling result of other samples. This
allows a modern GPU implementation to rapidly sample in parallel. The main advantage
of GVS++ over GVS is that the resulting PVS is a more accurate estimation of the exact
visible set, resulting in lower average and maximum pixel errors in the final image.

The general procedure of GVS++ is similar to that of GVS (Section 4.2): Initially, the
scene is randomly sampled to find triangles that act as seed points for the subsequent
exploration phase. Newly found triangles that are not part of the PVS are added to
a queue. The exploration phase processes the triangles in the queue using intelligent
sampling strategies. The whole process is repeated until a termination criterion is
fulfilled (see Algorithm 5.1). Improvements and changes to the two building blocks of
the exploration phase (adaptive border sampling (ABS) and reverse sampling (RS)) are
discussed in the following.
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5. Guided Visibility Sampling++

5.2 Random Sampling
The scene is sampled using a pseudo-random sampling approach. Rays emanating from
uniformly distributed pseudo-random locations on the view cell are intersected with the
scene. A positions on the view cell is determined by mapping Halton points onto the
view cell:

xorigin = vp + ha,i ∗ vsx ∗ vx + hb,i ∗ vsy ∗ vy, (5.1)

where vp is the position of the view cell, ha,i is the i-th point of the Halton sequence
ha with base a, vs is the size of the view cell and vx and vy form the two-dimensional
coordinate frame of the view cell. Similar to the random sampling approach of GVS,
Halton points are also used to calculate a pseudo-random direction [Shi20]:

φ = 2πhc,i

θ = arccos(1− hd,i)
xdir = (sin θ cosφ, sin θ sinφ, cos θ)

(5.2)

Unnecessary sin and arccos calculations are avoided by the following transformation:

m = 1− hd,i

θ = arccos(m)

x = sin θ cosφ = sin(arccos(m)) cosφ =
√

1−m2 cosφ

y = sin θ sinφ = sin(arccos(m)) sinφ =
√

1−m2 sinφ
z = cos θ = sin(arccos(m)) = m

(5.3)

5.3 Exploration Phase
Similar to GVS, the exploration phase is a combination of the adaptive border sampling
and reverse sampling algorithms. The ABS algorithm has been changed to address
shortcomings of the original algorithm, where in some cases neighboring triangles can be
missed. The original reverse sampling algorithm has been replaced by a new approach
that is more robust and samples discontinuities more thoroughly.

5.3.1 Adaptive border sampling

Changing the adaptive border sampling was motivated by the fact that in specific cases,
neighboring triangles were missed. In such scenes, as illustrated in Figure 5.2, the
recursive subdivision is not executed due to the suboptimally formulated condition: An
edge of the border polygon is only then recursively subdivided if sampling two vertices
of an edge results in two different triangles (Section 4). This can lead to undersampled
edges of the border polygon and may therefore miss neighboring triangles.

The problem of undersampled border polygon edges is alleviated by replacing the condi-
tional recursive subdivision by a fixed number of samples that are placed along edges
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Figure 5.1: Left: Random sampling is used to find initial triangles (seed points) (a).
Adaptive border sampling enlarges the boundary of the current triangle t to get a 9-
vertices polygon t′ (b). Additional samples are placed along the edges e0, e1 and e2
of t′. Starting from xorigin, the point on the view cell from which t has been found
during the random sampling, rays are traced to the vertices of t′ (c). Right (adapted
from [WWZ+06]): Close-up of the border polygon t′, illustrating the placement of the
border polygon vertices x1,i.

of the border polygon. This way, the edges of the border polygon are always sampled,
independently of the sampling result of other border polygon samples. This procedure
is shown in Figure 5.1. As in the GVS [WWZ+06] approach, a triangle t is enlarged
to get the border polygon t′. The nine vertices of the border polygon are placed as in
the original approach (see Figure 5.1). Close (ε) to each corner pi of a triangle t, three
vertices xi,1, xi,2 and xi,3 are placed. xi,1 and xi,2 are placed on vectors (di,1 and di,2)
perpendicular to the ray. xi,0 is placed on the angle bisector d1,0.

r = pi − xp

di,i+1 = normalize(r × (pi+1 − pi))
di,i−1 = normalize(r × (pi − pi−1))

di,i =
{

normalize(di,i−1 + di,i+1) if di,i−1 · di,i+1 > 0
normalize(r × di,i−1 + di,i+1 × r) else

xi,j = pi + ε · di,j

(5.4)

The position of a sample si along an edge e with end points xa and xb is calculated by
linearly interpolating between the end points:

si = (1− t) · xa + t · xb (5.5)

Instead of placing a fixed number of samples along an edge, the number of samples could
be chosen adaptively depending on the length of edge e.
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5. Guided Visibility Sampling++

5.3.2 Reverse sampling

The original reverse sampling approach mutates the starting point of a ray on the view
cell such that the ray passes by an occluding triangle. Up to two mutated starting points
are computed and rejected if one is outside of the view cell. It cannot be guaranteed that
the mutated ray penetrates the actual discontinuity, since it may intersect other triangles
along its path. The discontinuity is not sampled at all if none of the two mutated starting
points are within the boundaries of the view cell. This is commonly the case when very
narrow view cells are used, which is illustrated in Figure 5.2. The fact that discontinuities
may not be sampled due to mutated ray origins being outside of the view cell motivated
working on an improved reverse sampling approach.

t0

t1 t2

r0

r1

s1

s0

xpredicted

r

t

Figure 5.2: Left: An example scene illustrating the problem of a missed adjacent triangle
due to an undersampled border polygon edge. Triangle t0 is intersected by the rays r0 and
r1 through the samples s0 and s1 of the border polygon of t0. The edge between s0 and
s1 would only be subdivided if rays r0 and r1 would intersect different triangles, which
does not apply in this case. Therefore, the neighboring triangle t1 is not found. Right:
An example scene illustrating the problem of the original reverse sampling algorithm
when using narrow view cells. The rays are mutated such that the occluding triangle
t0 is passed, however, neither ray intersects the view cell and are therefore discarded.
Region r on the view cell would contain valid positions to sample xpredicted.

The reverse sampling approach in GVS++ combines the idea of mutating the starting
point of the ray on the view cell as well as choosing mutated ray starting points such
that the occluding triangle t0 is not intersected. Instead of computing sample locations
which may not be within the boundaries of the view cell, sample locations are directly
distributed on the view cell. Sample locations are distributed along the edges and on the
corners of the view cell. Additionally, points are uniformly distributed on the surface of
the view cell based on the Halton sequence. To avoid intersecting the occluding triangle
t0 again, t0 is projected onto the view cell. If a sample point lies within the projected
triangle p0, any ray from such a point to xtarget would intersect t0. Therefore, rays are
only traced from points that are not within the boundaries of p0 (see Figure 5.4).

The occluding triangle t0 is projected onto the view cell, by constructing lines originating
at xtarget through the vertices of t0. The lines are intersected with the plane of the view
cell to get the projected triangle p0 with coordinates (A,B,C). Baryzentric coordinates
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are used to determine whether a sample point on the view cell is within p0, since any
point P of a triangle (A,B,C) can be expressed as P = uA+ vB + wC, where (u, v, w)
are barycentric coordinates and u + v + w = 1 [Eri04]. The barycentric coordinates
(u, v, w) of each sample point are calculated. A sample point is within p0 if

0 ≤ v ≤ 1, 0 ≤ w ≤ 1, v + w ≤ 1. (5.6)

Similar to the original reverse sampling approach, a discontinuity is detected, if the
ray/triangle intersection point xhit is at least ∆ closer than xtarget:

|xtarget − xorigin| − |xhit − xorigin| > ∆ (5.7)

The improved reverse sampling approach also handles discontinuities, where sampling a
vertex of a border polygon during the adaptive border sampling does not intersect any
triangle. This helps finding triangles that are neither found by random sampling nor by
adaptive border sampling (illustrated in Figure 5.3).

a)

t1
s0

xorigin

t1
t0

xorigin

t0

b)

r0

r1

s1

Figure 5.3: An example scene illustrating sampling discontinuities where no triangles
are intersected. Triangle t0 is sampled by a ray with origin xorigin (a). Sample s1 of
the border polygon of t0 is sampled. Since no triangle is intersected, a discontinuity is
detected and handled by reverse sampling. Reverse sampling constructed a ray with a
muted starting points s0 that samples s1 and intersects t1.

5.4 Termination Criterion
A termination criterion is used to decide when the visibility sampling should be terminated,
and the PVS is considered to be converged. Different termination criteria may be used
that take the PVS size, the total number of traced rays, or the rate at which the PVS
grows into account. In our implementation, the termination criterion is checked after the
exploration phase. We test whether the number of found triangles is below a threshold T ,
e.g., 10 or 50. If the number of found triangles is below T , the algorithm is terminated,
and the PVS is considered converged. Otherwise, the algorithm starts anew by, again,
randomly sampling the scene followed by an exploration phase. A different termination
criterion where the number of newly found triangles per n rays is checked may be used
instead. The termination criterion may also be checked more frequently, for instance,
after each execution of adaptive border sampling and reverse sampling.
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Figure 5.4: Triangle t0 and t1 are sampled and added to the queue (a). Adaptive border
sampling is executed for t1, sampling xtarget of the border polygon t′1. The ray intersects
the closer triangle t0 at position xhit. A discontinuity is detected, since the intersection
point is closer to the ray origin than the sample point xtarget (b). The occluding triangle
t0 is projected onto the view cell from the viewpoint of xtarget to get the projected triangle
p0 (c). Samples are distributed uniformly on the view cell and along its edges. For each
sample on the view cell that is not within the bounds of p0, a ray is traced to xtarget (d).

5.5 3D View Cells

GVS as well as GVS++ can be used to compute the PVS of three-dimensional view
cells by running the algorithm on each polygon of its boundary. In the simplest form,
rectangular cuboids can be used that are formed by six two-dimensional view cells. As
previously illustrated, GVS++ handles narrow view cells better than GVS due to the
new reverse sampling algorithm. Therefore, our algorithm is better suited for scenarios
in which long and narrow view cells are used. An example is given in Chapter 8, where
three-dimensional view cells are placed along streets.
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5.6 Data Structures and Optimizations
We execute the main workload of our algorithm, i.e. the sampling of the scene, on the
GPU. This is possible since our intelligent sampling algorithms can easily be parallelized
to be executed on the GPU.

We show that a naive implementation significantly impedes performance. In a naive
implementation, whenever a triangle is intersected on the GPU, its ID and accompanying
intersection data is stored in a buffer on the device. Once the shader finishes execution,
the buffer is transferred to the host. Note that this buffer may contain duplicate elements.
On the host-side, a set data structure is used to store the PVS. The intersected triangles
are inserted into the PVS. Newly intersected triangles are also inserted into a queue
for further processing in an exploration phase. This naive approach is over 20 times
slower than our optimized implementation. This is due to the expensive set operations
on the host-side during which the GPU is in an idle state, since further exploration phase
shader dispatches depend on the result of the set operations. Therefore, to maximize
performance, the goal should be to minimize idle times of the GPU.

In our optimized implementation, which is discussed in further detail in Chapter 6,
we achieve minimal GPU idle times by by keeping the frequency and amount of data
transferred between the CPU and the GPU to a minimum. Furthermore, we avoid
expensive set operations on the CPU-side by ensuring uniqueness of stored elements on
the GPU.

Instead of storing the PVS on the CPU, we store it in VRAM on the GPU to allow for
fast read and write access by the shaders. Furthermore, the buffer storing the intersected
triangle IDs and intersection data is allocated from memory on the host system that also
allows access from the GPU. This way less data has to be transferred between the device
and the host resulting in a 3× speedup compared to keeping this buffer in VRAM and
frequently transferring it between Whenever a triangle is intersected, our implementation
checks whether it is already stored in the PVS via an atomic compare-and-swap operation.
If the triangle is sampled for the first time, it is inserted into the PVS and into the buffer
that is later accessed by the host. This buffer’s content is inserted into a queue on the
CPU-side. The queue is realized as a dynamic size array to allow efficient insertion of
the whole buffer at once. No set is required since the content of the buffer does not
contain any duplicate elements. We further reduce CPU-GPU communication times by
submitting data transfer workloads to a transfer-only queue to ensure maximum transfer
speeds.
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5. Guided Visibility Sampling++

Algorithm 5.1: Guided Visibility Sampling++
1 function main():
2 while checkTerminationCriterion() do
3 for ray in generateRandomRays() do
4 processRay (ray)
5 end
6 for x in queue do
7 adaptiveBorderSampling (x)
8 end
9 end

10
11 function processRay(ray):
12 primitiveID, hitPoint = trace(ray)
13 if primitiveID not in PVS then
14 PVS += primitiveID
15 queue += { primitiveID, hitPoint, origin(ray), direction(ray) }
16 end
17 return { primitiveID, hitPoint }
18
19 function adaptiveBorderSampling(x):
20 t’ = enlarge(primitiveID(x))
21 for xtarget in t’ do
22 result = processRay({ origin(x), xtarget - origin(x) })
23 if checkDiscontinuity(result, xtarget) then
24 reverseSampling (x, sample)
25 end
26 end
27
28 function reverseSampling(x, xtarget):
29 p = projectPrimitiveOntoViewCell(primitiveID(x))
30 samples = generateSamplesAlongViewCellEdges() +

generateUniformViewCellSamples()
31 for sample in samples do
32 if sample not withinBoundaries(p) then
33 processRay({ sample, xtarget - sample })
34 end
35 end
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CHAPTER 6
Implementation

An application has been developed that implements the GVS++ algorithm. It consists of
host- and device-code. The main parts of GVS++ are implemented on the device using
shaders. Data is stored in system memory on the host and the device depending on usage
and size. This allows keeping data on the device that is not modified by the host, such
as a buffer storing the PVS. This way, expensive data transfer between the host and the
device is kept to a minimum. Wavefront OBJ files containing the scene are loaded by the
application and a file containing various parameters is read. The file is user-specified and
contains settings to alter the behavior of the GVS++ algorithm, such as sample counts.
GVS++ samples the scene and creates a PVS per view cell. After the visibility sampling
terminates for a view cell, the PVS is transferred from the device to the host, where it
may directly be used for rendering or stored into a file or database for later use. In this
chapter, this application, with a focus on the implementation of GVS++, is presented.
The source code is freely available on GitHub1. Section 6.1 lists the software and libraries
the implementation is based on. In Section 6.2 the implementation is discussed in detail,
including pseudo-code of the main parts of the GVS++ algorithm.

6.1 Software and Libraries
The reference implementation of GVS++ is written in C++11 and GLSL and uses a few
well-known libraries:

• Vulkan SDK2 version 1.2.135.0 is used. Hardware-accelerated ray-tracing function-
ality is accessed through the VK_NV_ray_tracing extension.

• GLFW3 version 3.3.2 is used to manage windows and handle input events.
1https://github.com/einthomas/GVSPP, last accessed 30. November 2020
2https://www.khronos.org/vulkan/, last accessed 20. October 2020
3https://www.glfw.org/, last accessed 20. October 2020
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6. Implementation

• GLM4 version 0.9.9.7 is used for vector and matrix operations on the host side.

• tinyobjloader5 version 1.0.7 is used to load scenes stored as Wavefront OBJ.

• glslc6, included with the Vulkan SDK, is used to compile GLSL shaders down to
SPIR-V.

6.2 GVS++ Implementation
A high-level overview of the whole system, including the GVS++ algorithm that has been
implemented, is given in Figure 6.1. First, the Vulkan API is initialized, and settings and
a model is loaded. After initializing the GVS++ algorithm, Halton points are generated
that are then consumed by the random sampling process. The PVS is stored on the
device. Whenever the random or ABS and RS shader intersects a new triangle, an
identifying triangle ID is inserted into the PVS. If the triangle was previously not part of
the PVS, its ID along with additional data such as the ray/triangle intersection position
is stored in a buffer. After the shader has finished its execution, the buffer’s content is
inserted into a queue on the host-side. The adaptive border and reverse sampling shader
processes the elements of the queue, which are transferred back to the device. This
process repeats until the queue is empty. If the queue is empty, a termination criterion
is checked. If execution is terminated, the PVS is transferred from the device to the
host and is stored, e.g., into a file. Otherwise, the GVS++ algorithm starts anew by
generating new Halton points. A high-level overview of the communication between the
host and the device is given in Table 6.1.

6.2.1 Vulkan Specifics

The system starts with initializing the Vulkan API. The validation layer
VK_LAYER_KHRONOS_validation that is included in the Vulkan SDK is used. The
extension VK_NV_ray_tracing is loaded in order to access ray-tracing functionality.

Acceleration structures The top- and bottom-level acceleration structures are
built, using the previously created vertex and index buffer of the loaded model.
The creation of the acceleration structures deserves attention. The geometry of
the bottom-level acceleration structure is described by a VkGeometryNV struc-
ture, where the VK_GEOMETRY_OPAQUE_BIT_NV flag is set. This signals the ray
tracer that there is no transparent geometry, and therefore no any-hit shaders
should be invoked. Furthermore, both acceleration structures are created with
the VK_BUILD_ACCELERATION_STRUCTURE_PREFER_FAST_TRACE_BIT_NV flag
set, which indicates that BVH traversal performance should be preferred over BVH
update or rebuild speed.

4https://glm.g-truc.net, last accessed 20. October 2020
5https://github.com/tinyobjloader/tinyobjloader, last accessed 20. October 2020
6https://github.com/google/shaderc, last accessed 20. October 2020
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6.2. GVS++ Implementation

Figure 6.1: An overview of the implementation of GVS++. Green boxes represent
components that are implemented on the device. Blue boxes are components that are
implemented on the host side. The Halton point generation as well as the random
sampling are implemented as separate shaders. The adaptive border and reverse sampling
are realized as a single common shader. D→H and H→D shows that data is transferred
from device to host and vice versa.

Pipelines and shaders Since the Halton point generation, random sampling, and
ABS and RS components are implemented as separate shaders, multiple pipelines have
to be created. A compute pipeline is created for generating Halton points, and two
ray-tracing pipelines are created for random sampling and for the exploration phase, i.e.,
ABS and RS. The main logic of the random sampling, and adaptive border sampling
and reverse sampling shaders are implemented in ray generation shaders, where ray
tracing is started. A common closest hit shader is implemented that uses the ID of the
intersected primitive to access an index and vertex buffer to get the vertex position of the
intersected primitive. Barycentric weights of the intersection are accessible in the shader
and are stored in hitAttributeNV. The barycentric weights and the vertex positions
of the intersected primitive are used to calculate the world position of the ray/primitive
intersection. The world positions and the primitive ID are then stored as the ray payload
rayPayloadInNV. The ray generation shader can then access the ray payload. Also,
a common miss shader is used that stores −1 as the ray payload, indicating that no
primitive is intersected.

Queues Compute workloads, including Halton point generation and ray-tracing shader
dispatches, are submitted to the queue with the compute bit set that is not capable of
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CPU GPU

Dispatch Halton

Generation Shader
Idle

vkWaitForFences
Halton sequence

generation

Dispatch Random

Sampling Shader
Idle

vkWaitForFences Random sampling

Add result to queue Idle

Dispatch ABS & RS

Shader
Idle

vkWaitForFences ABS & RS

Add result to queue Idle

Table 6.1: High-level overview of the communication between the CPU and the device.

graphics workloads (see Table 2.2). Data transfer tasks between the device and the host
are submitted to a transfer-only queue.

Synchronization Only basic synchronization between the host and the device using
fences is required since the tasks on the host-side, such as filling the queue or generating
compute workload, directly depend on the results of the shaders on the device. Therefore,
whenever compute or transfer workload is submitted, a VkFence handle is passed to
vkQueueSubmit. vkWaitForFences is then used to wait for the execution of the
submitted command buffer to be completed (see Table 6.1).

Buffers

Well thought-through memory management is crucial to achieving good performance
when using Vulkan. When choosing the memory type of a buffer, its usage and size, as
well as the available memory, should be taken into consideration.

In the implementation of GVS++, a storage buffer on the device (device local) is used to
store the PVS. The size of the buffer is equal to the number of primitives of the current
scene. The buffer stores primitive IDs pi as integers and is initialized with −1. This
allows efficiently determining if a primitive is part of the PVS by checking if the value of
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the buffer at position pi is equal to −1. The disadvantage is that the storage requirement
of the buffer depends on the number of primitives of the loaded model.

Halton points are generated on the device and are stored in a storage buffer that resides
in device memory (device local). Storing the Halton points directly on the device avoids
unnecessary transfer operations between the host and the device. Furthermore, device
access times to device local memory is lower than when accessing system memory.

The random sampling, and the ABS and RS shader share a single buffer residing in
system memory (host visible) to store results. In this case, device local memory would
not give much of a performance advantage since the device only executes write operations
on the buffer. This also helps saving device memory, which is typically more limited than
system memory. Since the buffer is shared between both shaders, sufficient memory has
to be allocated during the initialization step. Memory is allocated such that a maximum
of min(max(nrand, nABS ∗ nRS), N) elements, where N is the number of primitives of the
scene, can be stored. The actual number of occupied indices is tracked via a counter.
In contrast to OpenGL, atomic counter variable types are not supported by Vulkan.
Therefore, the counter is realized as a storage buffer, and atomicAdd is used to increment
the counter.

The queue of primitives that are to be processed by the ABS and RS shader is kept on
the host. A std::vector of the C++ standard library is used. Queue elements are
transferred to the device into a device local storage buffer for further processing by the
ABS and RS shader.

Memory mapping In order to be able to read or write to host visible memory, a
pointer to the memory has to be acquired by using vkMapMemory. To avoid repeated
mapping and unmapping memory whenever data is transferred between the host and
the device, memory is kept persistently mapped, meaning that memory is mapped once
during the initialization and unmapped before the memory is freed.

6.2.2 Parameters

After initializing the Vulkan API, a settings file is loaded where various parameters
controlling the behavior of GVS++ can be set:

• The number of random rays nrand that are traced during the random sampling step,
e.g., 500 000 random rays.

• Parameters that control the behavior of adaptive border sampling: The distance
∆ABS that dictates the enlargement of the original triangle to get the border
polygon, e.g., 0.001, and the number of samples nABSEdge placed along the three
long edges of a border sampling polygon, e.g., 5. The total number of samples on
the border polygon is then calculated as nABS = nABSEdge ∗ 3 + 9, since the border
polygon is formed by nine vertices and consists of three long edges.
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• Parameters that control the behavior of reverse sampling: The number of samples
nRSEdge placed along each edge of a view cell, e.g., 20, and the number of samples
nRSArea uniformly distributed on the surface of the view cell, e.g., 10. The total
number of samples on the view cell for reverse sampling is then nRS = nRSEdge ∗
4 + nRSArea.

• Whether 3-dimensional view cells are used.

• The threshold T is used as a termination criterion. If less than a total of T new
triangles are found during one iteration of the algorithm, i.e., during random
sampling and subsequent processing of the queue, GVS++ is terminated.

After loading the settings file, tinyobjloader is used to load the scene.

6.2.3 Halton Points Generation

The first component of the GVS++ implementation is the generation of Halton points,
which are used to generate random rays. The Halton point generation is implemented
as a compute shader, which is faster than a host or a CUDA implementation. The
random sampling shader traces nrand random rays for which a random position on the
view cell and a random direction is calculated. Therefore, nrand ∗ 4 Halton points are
computed. The calculated Halton points are stored in a storage buffer, which is later used
by the random sampling shader. Since new Halton points may be generated repeatedly,
randomized Halton [Bha03] sequences are used. The idea is that a random number
µ ∈ [0, 1] drawn from a uniform distribution is added to all Halton points hi:

hi = mod(hi + µ, 1),

where hi is the randomized Halton point.

Halton points are generated on the device and are stored in a storage buffer that resides
in device memory (device local).

6.2.4 Random Sampling

The random sampling algorithm, implemented as a shader, uses the previously generated
Halton sequences that are already stored on the device. This saves unnecessary H→D
transfer oprations. Algorithm 6.1 gives an overview of the implementation. The body of
the loop is implemented in the GLSL shader, which is invoked nrand times. The function
traceNV is used to trace rays. It takes several parameters, such as the acceleration
structure that is traversed. The ray flags gl_RayFlagsOpaqueNV, indicating that no
any-hit shaders should be invoked, and gl_RayFlagsCullBackFacingTrianglesNV
are used. RTX ray tracing is watertight and therefore guarantees that a ray does not
pass through shared edges or vertices (see Section 2.3.6), however, backfacing triangles
can still be registered as visible when a silhouette edge is hit. If the model at hand is
watertight, this is avoided by using the gl_RayFlagsCullBackFacingTrianglesNV

46



6.2. GVS++ Implementation

Algorithm 6.1: Random Sampling
1 for i← 0, i < nrand do
2 vp, vs ← get view cell position and size
3 ha,i, hb,i ← get i-th Halton point from base a and base b sequence
4 vx, vy ← calculate view cell frame
5 xorigin = vp + ha,i ∗ vsx ∗ vx + hb,i ∗ vsy ∗ vy . See Equation 5.1
6
7 hc,i, hd,i ← get i-th Halton point from base c and base d sequence
8 r ←

√
max(1− hd,i ∗ hd,i, 0)

9 xdir ← (r ∗ cos (2π hc,i), r ∗ sin (2π hc,i), hd,i) . See Equation 5.3
10
11 primitive id, hit point p← trace ray (xorigin, xdir)
12 if id not in PVS then
13 insert id into PVS
14 store tuple (id, xorigin, p) in output buffer
15 end
16 end

flag, which enables back-face culling. We found that with disabled back-face culling 1-2%
more triangles are found, i.e., back-facing triangles.

Once a triangle is hit, a tuple consisting of the intersected primitive ID, the ray origin,
and the intersection point, are stored in a storage buffer residing in system memory, as
previously described (Section 6.2.1). The content of the storage buffer is appended to
the queue on the host-side, without requiring further set operations to ensure uniqueness.
This is possible since the shader guarantees that the buffer does not contain duplicate
primitives or primitives that are already in the queue.

The actual method used for inserting primitive IDs into the PVS on the device deserves
attention. In order to prevent inserting tuples with equal id into the output buffer, the
PVS is checked if it contains id. If it does not contain id, it should be inserted into the
PVS and into the output buffer. This requires an atomic operation due to the parallel
execution of the shader. atomicCompSwap is used to compare and insert a primitive
ID into the PVS. If the original value returned by the function is −1, id has successfully
been inserted into the PVS, and the shader can proceed to insert into the output buffer.
An alternative strategy is discussed in Section 6.2.7.

6.2.5 Adaptive Border Sampling and Reverse Sampling

The adaptive border sampling and reverse sampling are implemented as a single mutual
shader. The ABS and RS algorithm processes the queue stored on the host where new
found triangles are added. On the host side, elements are taken from the queue and are
transferred to the device. Algorithm 6.2 is implemented such that the host dispatches
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Algorithm 6.2: Adaptive Border Sampling
1 s← get current sample
2 for i← 0, i < 3 do . Calculate border polygon vertices
3 for j ← 0, j < 3 do
4 xi,j ← calculate j-th border polygon vertex at the i-th vertex of the

original triangle . See Equation 5.4
5 end
6 end
7
8 for i← 0, i < 3 do
9 xi, xi+1 ← get border polygon vertices adjacent to edge ei . See Figure 5.1

10 for k ← 1, k < nABSEdge do . Sample border polygon along edge
11 a← lerp(xi, xi+1, k/(nABSEdge + 1))
12 xorigin ← get ray origin from current sample s
13 xdir ← normalize(xorigin − a)
14
15 primitive id, hit point p← trace ray (xorigin, xdir)
16 if id not in PVS then
17 insert id into PVS
18 store tuple (id, xorigin, p) in output buffer
19 end
20
21 if |a− xorigin| − |p− xorigin| > ∆RS then . Check for discontinuity
22 reverse sampling . See Algorithm 6.3
23 end
24 end
25 end

the shader nABS times, i.e., the shader is dispatched for each sample on the border
polygon. This way, border polygon samples are processed in parallel, improving hardware
utilization. In each shader launch, a single border polygon vertex or sample along an
edge of the border polygon is computed, and a ray is traced. If there is a discontinuity,
reverse sampling rays are traced in a loop within the same shader execution. Note that
the reverse samplig algorithm is implemented as part of the ABS shader (Algorithm 6.3).
After the shader has finished execution, the content of the storage buffer (Section 6.2.1)
is appended to the queue on the host-side.

6.2.6 Comparison to the Original GVS Implementation

The original implementation of the GVS algorithm does not utilize the GPU for visibility
sampling. A CPU ray tracer, the multi-level ray tracing algorithm (MLRTA) [RSH05], is
used for ray/primitive intersection computation. One key idea of MLRTA is to exploit
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Algorithm 6.3: Reverse Sampling
1 oid ← get occluding triangle id
2 S ← {}
3 for i← 0, i < 4 do . Generate sample points along view cell edges
4 ci, ci+1 ← get i-th and adjacent i+ 1-th view cell corner
5 for j ← 0, j < nRSEdge do
6 S ∪ lerp(ci, ci+1, j/nRSEdge)
7 end
8 end
9 for i← 0, i < nRSViewCell do . Generate sample points on view cell area

10 S ∪ get Halton point and project onto view cell . See Algorithm 6.1
11 end
12
13 if oid = −1 then . Handle discontinuity without an occluding triangle
14 for s ∈ S do
15 primitive id, hit point p← trace ray (s, normalize(xtarget))
16 if id not in PVS then
17 insert id into PVS
18 store tuple (id, xorigin, p) in output buffer
19 end
20 end
21 else . Handle discontinuity with an occluding triangle
22 for i← 0, i < 3 do . Project occluding triangle onto the view cell
23 v ← get i-th vertex position of occluding triangle xorigin ← xtarget
24 xdir ← xtarget − v
25 hit point pi ← intersect ray (xorigin, xdir) with the plane of the view cell
26 end
27 for s ∈ S do
28 b← calculate baryzentric coordinates of s in respect to the vertices pi of

the projected triangle
29 if b is within the projected triangle then
30 primitive id, hit point p← trace ray (s, normalize(xtarget))
31 if id not in PVS then
32 insert id into PVS
33 store tuple (id, xorigin, p) in output buffer
34 end
35 end
36 end
37 end
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the spatial coherence between rays by tracing packets of rays at once. A k-d tree is used
as an acceleration structure.

The general structure of the original implementation of GVS is similar to the modern
Vulkan implementation of GVS++. The key difference is that the GVS++ implementation
utilizes the GPU for the main parts of the algorithm. Limitations posed by the device, as
well as the communication and synchronization between host and device, increases the
complexity of the modern implementation compared to the host-side-only code of the
original implementation of GVS. One main difference is that the GVS implementation
uses dynamic arrays on the host-side, such as vector of C++’s standard template
library, to store the PVS and the queue of primitives that are to be processed in the
exploration phase. After a packet of rays has been traced, the queue and the PVS are
updated. In contrast, the GVS++ implementation uses fixed-size buffers on the device-
and on the host-side that are allocated at the start of the application.

6.2.7 GPU Hash Set Approach

An alternative way to store the PVS on the device side is to use a hash set data structure
instead of an array. The main advantage is that a hash set potentially requires less
memory than an array. In the latter case, the memory required is proportional to the
number of triangles in a given scene, while a hash set can grow dynamically and ensures
that each stored element is unique. Since the PVS is stored on the device, measures
have to be taken to ensure consistency of the data structure under highly parallel access.
This is commonly implemented by using locks to guarantee that sections of code are
only executed by one thread at a time. In a highly parallel environment such as a GPU,
having multiple threads blocked can lead to heavily degraded performance. Therefore, a
lock-free GPU hash set implementation is used, based on the work by Farrell [Far].

The GPU hash set implementation employs a linear probing approach: To insert an
element x, its hash h(x) is calculated. If there is no element stored at h(x), x is
inserted at that position of the set. Otherwise, an empty position is searched. This
process is also described in Algorithm 6.4. The lock-free approach is realized by using
GLSL’s atomicCompSwap(mem, compare, data) function. The function compares
atomically whether mem is equal to compare. If that is the case, mem is replaced by
data. In any case, the previously stored value is returned.

Initially, a storage buffer of fixed size is allocated which stores the elements of the hash
set. Before a random sampling or ABS shader, which potentially store elements into the
set, is dispatched, it is checked whether the set should grow. The set is grown by first
transferring its content from the device to the host. The occupied memory by the initial
storage buffer is then freed, and more memory is allocated. The original values of the set
are then re-inserted into the larger buffer using Algorithm 6.4.

The main advantage of this approach compared to a simple array approach where a
triangle ID i is stored at position i is that potentially less memory is required. However,
this might most often not be the case. Let N be the number of elements in the
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queue for which the ABS shader is executed. For each element, the shader is executed
nABSEdge ∗ 3 times, potentially tracing nRSEdge ∗ 4 + nRSArea RS rays. Therefore, up to
N ∗ (nABSEdge ∗ 3 + nRSEdge ∗ 4 + nRSArea) triangles may be intersected. With typical
parameter values (Table 7.2), N must be kept small to avoid the set to consume as much
memory as the simpler array approach. For example, for the parameters in Table 7.2
and the CANYON scene the initial random sampling finds 122 482 triangles. Since
nABSEdge = nRSEdge = nRSArea = 20, up to 160 rays and therefore up to 160 triangles
may be intersected for each of the 122 482 triangles in the queue. Dispatching the ABS
shader for each element in the queue, the hash set would therefore have to be resized to
be able to fit up to 19 × 106 triangles. However, the CANYON scene consists only of
2× 106 triangles, causing the hash set to use as much memory as a simple array approach.
Alternatively, the ABS shader could be dispatched only for a fraction of the elements in
the queue, which would however negatively impact performance. Therefore, the simpler
array approach is found to be more viable for storing the PVS.

Algorithm 6.4: Linear Probing GPU Hash Set Insert using MurmurHash3
Input: An element x which should be inserted.

1 i← calculate MurmurHash3 hash
2 while true do
3 v ← atomically store x at position i, if the set at i is empty, and return the

previously stored value
4 if v = empty then
5 return true . x was successfully stored at i

6 else if v = x then
7 return false . x is already in the set
8 end
9 i← mod(i+ 1, set capacity)

10 end
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CHAPTER 7
Results and Evaluation

In this chapter, the GVS++ algorithm is evaluated on several different scenes. Results
are presented in the form of graphs that show the algorithm’s behavior over the number
of traced rays and execution time. The focus is on the former, since this gives results
that are largely independent of implementation specifics and the underlying hardware.

In order to quantify the quality of the resulting PVS, the pixel error [NB04] is measured.
The pixel error is determined by calculating the number of incorrect pixels from 2000
different viewpoints on the view cell rendered in a resolution of 1000×1000. The viewpoints
on the view cell are pseudo-randomly distributed, using randomized Halton sequences.
The maximum pixel error over all viewpoints and the average pixel error of each view
cell are calculated. A connected region of incorrect pixels may be more noticeable than
individual incorrect pixels that cause the same pixel error. Therefore, the average and
maximum number and size of connected pixel error regions are calculated as well. Table 7.1
contains statistics of the scenes that have been selected for the evaluation: CANYON, a
model of the Grand Canyon, PPLANT, the UNC powerplant model1, GERMANY, a
city model c©VIRES Simulationstechnologie GmbH, and BISTRO [Lum17], which has
been modified to include the hairball model by Laine et al. [LK10]. The PPLANT scene
consists of the most triangles of the four scenes and includes heavily occluded regions.
GERMANY is a typical city scene with long streets. This scene is used to cover the
case of far away triangles, i.e., triangles at the other end of a street. BISTRO is a small
but detailed excerpt from a city. Due to the hairball model’s placement, this scene
also contains highly occluded regions of small structures. In Figure 7.1, renderings of
the scenes themselves are shown. Ten view cells are used for each model. The exact
parameters of each view cell are listed in Table 4 to simplify reproducing the results.

The results were produced using a system constisting of an AMD Ryzen 9 3900X CPU,
Nvidia GeForce RTX 3080 GPU, and 32GB of RAM. For the detailed parameter analysis

1http://gamma.cs.unc.edu/POWERPLANT/, last accessed 20. October 2020
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7. Results and Evaluation

Scene Triangles

CANYON 2242 504

PPLANT 12 748 210

GERMANY 3667 284

BISTRO 5657 097

Table 7.1: Statistics of the scenes used for the evaluation.

in Section 7.3 and for the rendering performance impact measurements in Section 7.4, an
RTX 2080 GPU was used.

7.1 Results Overview

In this section, GVS++ is compared to other from-region visibility sampling algorithms
on four different scenes. GVS++ is compared to the original CPU-based implementation
of GVS that uses MLRTA [RSH05] for ray tracing (CPU-GVS), and a GPU-based
implementation that uses hardware-accelerated ray tracing via the Vulkan API for the
visibility sampling (GPU-GVS). Furthermore, we compare our approach to a brute-
force random-sampling algorithm (RAND) and a rasterization-based visibility sampling
algorithm RASTER. RAND is based on the implementation of the GVS++ algorithm but
does not use any intelligent sampling mechanisms. RASTER is based on the visibility
sampling algorithm by Nirenstein et al. [NB04]. In this approach, the scene is rendered
from hemicubes that are intelligently distributed on the view cell. The IDs of the
rendered primitives are gathered to populate the PVS. One notable difference between
RASTER and GVS++ is that the runtime of the former approach inherently depends on
the render resolution of the framebuffer that is used. On our four test scenes, however,
we found that distributing hemicubes uniformly based on Halton points gives results that
are on-par or better than when the adaptive placement is used. Therefore, RASTER
places hemicubes uniformly on the view cell, according to Halton points. There are
numerous techniques to render multiple views efficiently [UKS+20]. In our RASTER
implementation, multi-view rendering is used, which is supported by Vulkan and allows
rendering to multiple viewports simultaneously.

Pixel error and runtime measurements of the four algorithms on our scenes can be seen in
Table 7.2. Average pixel error measurements over time for the PPLANT and CANYON
scene are shown in Figure 7.2. GVS++ produces the most accurate PVS and achieves
the lowest average and maximum pixel errors on every scene among all of the tested
algorithms. As seen in Table 7.2, the largest connected error region is, on average, 46%
smaller than the maximum reported pixel error. This shows that in a given rendering,
there are, on average, multiple smaller error regions instead of a single error region that
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(a) CANYON (b) CANYON close-up

(c) PPLANT (d) PPLANT close-up

(e) GERMANY (f) GERMANY close-up

(g) BISTRO (h) BISTRO close-up

Figure 7.1: Scenes used for the evaluation.
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Figure 7.2: Comparison of GVS++, GPU-GVS, CPU-GVS, RAND, and RASTER on
the PPLANT (a-c) and CANYON (d) scene. A representative view cell is used for both
scenes. GVS++, GPU-GVS, and CPU-GVS use the same parameters as in Table 7.2.
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contains all of the incorrect pixels. We argue that a single large region is more noticeable
than multiple smaller erroneous regions.

Comparing GVS++ to GVS shows that GVS++ achieves significantly lower average and
maximum pixel errors. This result is not surprising since GVS++ uses more samples
during the exploration phase and therefore samples neighborhoods and discontinuities
more thoroughly than GVS. Figure 7.2 shows the difference between the two algorithms
in more detail. It can be seen that GVS++ outperforms GPU-GVS. This is due to the
new sampling schemes that allow for a better parallelization of the sampling procedure
and therefore sample the scene more efficiently.

Our approach also outperforms the rasterization-based technique RASTER across all
scenes. It should be noted that the times in Table 7.2 reported for RASTER only show
the render times of the hemicubes to avoid distorting the result. The calculation time
of RASTER inherently depends on the resolution of the framebuffer that is used and
requires a dense placement of hemicubes on the view cell to avoid missing subpixel
triangles. The latter is especially a problem in large scenes, where far away triangles are
likely to cover less than a pixel.

Comparing GVS++ to the brute-force ray-tracing approach RAND shows the effectiveness
of our intelligent sampling schemes, since RAND is based on the same implementation
as GVS++ but does not use any intelligent sample placement. The time complexity of
both algorithms, and the convergence of the PVS they produce, mostly depends on the
complexity of the scene itself. Therefore, scenes with a high primitive count and highly
occluded regions will lead to longer computation times than simpler scenes.

The performance uplift through hardware-accelerated ray tracing can be observed when
comparing our GPU implementation of GVS, GPU-GVS, to the original CPU imple-
mentation, CPU-GVS, which uses MLRTA [RSH05] for ray tracing. GPU-GVS uses
hardware-accelerated ray tracing via the Vulkan API. Figure 7.2 shows a significant
speedup of the GVS algorithm when hardware-accelerated ray tracing is used (GPU-
GVS). When comparing a single iteration of GVS, i.e., random sampling followed by an
exploration phase, GPU-GVS is 63 times faster than CPU-GVS. Also, GVS++ is over four
orders of magnitude faster than CPU-GVS to compute a PVS on the CANYON scene
with comparable pixel errors. It is important to note that a direct runtime comparison is
difficult since the CPU-GVS implementation is not watertight and therefore also finds
triangles that are not visible. In contrast, our GPU-GVS implementation uses watertight
RTX ray tracing. We found that, on the CANYON scene, the PVS of CPU-GVS is 4-6%
larger after the first GVS iteration than the PVS of GPU-GVS when terminating the
algorithm after 1000 seconds.

7.2 Asymptotic Behavior

In the following, the asymptotic behavior of the GVS++ algorithm is analyzed in terms
of PVS size and pixel error. The same parameters for GVS++ were used for all view
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Algorithm
Avg.

Err.

Max.

Err.

Avg. Num.

Err. Regions

Max. Err.

Region Size

Calc.

Time

PVS

Size

C
A
N
Y
O
N

GVS++ 0.09 14 0.08 8 100ms 8.60%

GPU-GVS 29.15 507 11.08 64 100ms 8.39%

RAND 234.79 5143 87.26 910 100ms 7.84%

RASTER 2219.51 29052 249.24 1192 100ms 7.27%

PP
LA

N
T

GVS++ 2.85 77 2.37 55 1000ms 1.64%

GPU-GVS 21.98 296 13.58 100 1000ms 1.51%

RAND 34.49 879 27.72 95 1000ms 0.93%

RASTER 442.28 5110 243.43 3681 1000ms 0.54%

G
ER

M
A
N
Y GVS++ 0.50 16 0.45 9 500ms 4.35%

GPU-GVS 2.87 150 2.51 23 500ms 4.03%

RAND 19.56 667 15.11 146 500ms 2.84%

RASTER 84.74 3856 44.08 714 500ms 2.24%

B
IS
T
R
O

GVS++ 5.39 84 4.89 27 2000ms 6.82%

GPU-GVS 36.61 643 21.54 53 2000ms 5.94%

RAND 84.91 1924 67.86 169 2000ms 5.23%

RASTER 41.32 1803 34.33 652 2000ms 5.56%

Table 7.2: Statistics of different from-region visibility algorithms. The error measurements
and the PVS size are averaged over ten view cells per scene. Errors are measured on
1000× 1000 pixel renderings. For each scene, each algorithm had the same time budget.
GVS++ and GVS used the same parameters for all view cells and scenes: ∆ABS = 0.001,
and nrand = 10 000 000. Furthermore, nABSEdge = nRSEdge = nRSArea = 20 was set for
GVS++. Also, GVS recursively subdivided an edge of a border polygon up to three
times. The column for the calculation time shows times for GVS, GVS++, and RAND
without the time to generate Halton sequences. Calculation times for RASTER solely
show render times of the hemicubes. GVS++ outperforms the other algorithms, giving a
low average and maximum pixel error across all scenes.
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Figure 7.3: Logarithmic scales of the random rays (red), ABS rays (blue), and RS rays
(green) (a, c), and of the triangles found by random sampling (red), ABS (blue), and RS
(green) over the number of total traced rays.

cells across all scenes: nrand = 10 000 000, nABSEdge = 40, nRSEdge = 40, nRSArea = 40,
∆ABS = 0.001 and T = 10. This simplifies comparing the behavior of the algorithm
across multiple scenes.

Examining the behavior of the algorithm in more detail (Figure 7.3), it can be seen that
most triangles are found early on—that is during the initial random sampling and the
subsequent exploration phase. 99.5% of the triangles of the resulting PVS are found
during the initial random sampling and the subsequent exploration phase. After that,
the PVS is already highly converged for most scenes. Examining Figure 7.3, it can be
seen that after the first execution of the exploration phase, triangles found by the ABS
and RS shader drops sharply, which also shows the high convergence of the PVS. The
number of newly found triangles and the number of traced rays is then dominated by the
random sampling algorithm. After the first exploration phase, most (60.2%) of the new
triangles are found by random sampling, followed by ABS (35.6%) and RS (4.2%). This
indicates that mostly smaller, disconnected regions of triangles or regions that are only
visible from a fraction of the view cell are missed during the first random sampling and
exploration phase and are found afterwards by repeated random sampling.

The average and maximum pixel errors are shown in Figure 7.5. Comparing the pixel
error graphs to the graphs showing the PVS size over traced rays, it can be seen that the
average and the maximum error correlate to the PVS size. Also, the average and the
maximum pixel error behave very similarly for all scenes and view cells. When comparing
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the graphed errors across the scenes, it can be seen that in the PPLANT, GERMANY,
and BISTRO scene, the decline of the average pixel error starts to stagnate within the
first third of the graph, before decreasing more rapidly again. The fact that the maximum
pixel error of the same view cells shows a very similar behavior indicates that the error is
likely to be caused by regions that are “hard to find”, i.e., regions that are only visible
from a small portion of the view cell. This claim is supported by the graphs for the
PPLANT scene in Figure 7.3c and 7.3d. The graphs show that around 1.2× 109 rays
are traced during the initial random sampling and exploration. This is also the point
where the pixel error starts to stagnate. The error declines faster again after the first
exploration phase, when the scene is repeatedly random sampled. Comparing the average
pixel error (Figure 7.5) to the average number of connected error regions (Figure 7.6),
it can be seen that they correlate strongly. This indicates that the size of a connected
error region is not significantly larger than a few pixels. The graphs also show that the
maximum size of an error region is smaller than the maximum pixel error, especially in
more converged stages. This shows that the pixel error is caused by multiple smaller
regions instead of a single, more noticeable error region.

7.2.1 Comparison to Random Sampling

In the following, the asymptotic behavior of the GVS++ algorithm is compared to RAND.
Figure 7.7 shows the PVS size and found triangles in comparison to GVS++. The overall
behavior in terms of PVS growth is similar. Both the GVS++ algorithm as well as brute-
force random sampling show logarithmic growth of the PVS. Right at the beginning,
RAND finds more triangles using fewer rays compared to GVS++. This is due to the
more uniform distribution of the samples. However, GVS++ converges quicker on all
view cells and scenes. The quick convergence is due to the exploration phase. As seen in
the right column of Figure 7.7, while brute-force random sampling finds new triangles
quickly in the beginning, already intersected triangles are found repeatedly in subsequent
iterations, causing the rate of finding new triangles to drop sharply. Due to the intelligent
sampling strategies (ABS and RS) of GVS++, new triangles are more likely to be found.
Thus a better convergence rate is achieved.

The average and maximum pixel error of both approaches are shown in Figure 7.8. It
can be seen that the measured pixel errors decrease faster across all scenes and view cells
when GVS++ is used, resulting in a pixel error that is several orders of magnitude lower
for the same number of traced rays. The error for the green view cell of the BISTRO
scene decreases quicker for the first third of the traced rays when the scene is randomly
sampled. As previously discussed (Section 7.2), this is due to regions that are only visible
from a fraction of the view cell and are only sampled after the first exploration phase.

7.3 Parameter Analysis
In the implementation of GVS++, various parameters are exposed to set the number
of samples used for random sampling, adaptive border sampling, and reverse sampling.
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Figure 7.4: PVS size (left column) and found triangles (right column) over the number
of traced rays for GVS++. Each line represents a view cell. A dot represents an example
termination criterion of 10.
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Figure 7.5: Average (left column) and maximum pixel error (right column) over the
number of traced rays for GVS++. Each line represents a view cell. A dot represents an
example termination criterion of 10.

62



7.3. Parameter Analysis

10−2

10−1

100

101

102

av
g.

n
u
m
b
er

of
er
ro
r
re
gi
on

s

1×109 2×109 3×109

rays

(a) CANYON

100

101

102

103

m
ax

.
er
ro
r
re
gi
on

si
ze

1×109 2×109 3×109

rays

(b) CANYON

100

101

102

av
g.

n
u
m
b
er

of
er
ro
r
re
gi
on

s

1×109 2×109 3×109

rays

(c) PPLANT

100

101

102

m
ax

.
er
ro
r
re
gi
on

si
ze

1×109 2×109 3×109

rays

(d) PPLANT

10−1

100

101

102

103

av
g.

n
u
m
b
er

of
er
ro
r
re
gi
on

s

1×109 2×109 3×109

rays

(e) GERMANY

101

102

103

m
ax

.
er
ro
r
re
gi
on

si
ze

1×109 2×109 3×109

rays

(f) GERMANY

100

101

102

103

av
g.

n
u
m
b
er

of
er
ro
r
re
gi
on

s

1×1010 2×1010 3×1010

rays

(g) BISTRO

100

101

102

103

m
ax

.
er
ro
r
re
gi
on

si
ze

1×1010 2×1010 3×1010

rays

(h) BISTRO

Figure 7.6: Average number of error regions (left column) and maximum error region
size (right column) over the number of traced rays for GVS++. Each line represents a
view cell. A dot represents an example termination criterion of 10.
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Figure 7.7: PVS size (left column) and found triangles (right column) over the number
of traced rays for brute-force random sampling. Each line represents a view cell. Dotted
lines represent the result of GVS++ for comparison.
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Figure 7.8: Average (left column) and maximum pixel error (right column) over the
number of traced rays for brute-force random sampling. Each line represents a view cell.
Dotted lines represent the result of GVS++ for comparison.
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In this section, the impact of different parameter choices on runtime and pixel error is
analyzed. To gauge the impact on the behavior of GVS++, the algorithm is executed for
the PPLANT and BISTRO scene with different random, ABS, and RS sample counts.
The scene choice is motivated by the fact that for both scenes, the longest runtimes were
reported in Table 7.2. Table 7.3 and 7.4 show the results. In the last two sections of
the tables, sample counts are shifted from nRSEdge to nRSArea, while keeping the total
RS sample count to 100, 120, 180, and 240, respectively. For each run, a termination
criterion of 10 was used.

Both scenes show that with an increasing number of random samples, the measured pixel
errors decrease while the calculation time increases. The average pixel error decreases
almost linearly with increasing sample count. The largest sample count gave the lowest
errors and the highest runtime. The high runtimes are justified by the fact that more
random rays are more likely to find new triangles even in a fairly converged state. Also,
the termination criterion is only checked after tracing nRand random rays.

In the second section of Table 7.3 and 7.4, the number of samples for exploring the
neighborhood of a triangle (ABS) is varied. Increasing the number of ABS samples
reduces the pixel errors and the algorithm’s runtime until a point of diminishing returns
is reached. For the PPLANT scene, the configurations with 40 and 80 ABS samples give
a good combination of low pixel errors and runtimes.

The sample counts for the reverse sampling algorithm are varied in the last two sections
of the tables. In section three, the number of samples along the view cell’s edges is varied,
while in the last section, the number of samples distributed on the view cell is varied.
The corresponding lines of the two sections use the same total number of RS samples.
It can be observed that increasing the number of total RS samples minimally lowers
the average and maximum pixel error, while the runtime of GVS++ is not impacted
significantly. Also, using more RS samples along the edges of the view cell instead of on
the area, and vice versa, gave roughly the same results.

In summary, increasing the number of samples for the adaptive border sampling signifi-
cantly lowers the average and maximum pixel errors while also lowering computation
times. However, there is a point of diminishing returns when excessive sample numbers
are used. Furthermore, increasing the number of RS samples on the area or on the edges
of a view cell mostly helped lowering the maximum pixel error. This result shows that,
for a given scene, these parameters can be used to fine-tune the behavior of the GVS++
algorithm.

7.4 Render Performance Impact

With the capabilities of current graphics hardware, the question arises, how much
performance can be gained through occlusion culling. Table 7.5 shows frame times,
i.e., time measurements of vkCmdDraw, with and without occlusion culling. It can be
observed that occlusion culling reduces frame times by at least a factor of eight across all
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Parameters

nRand nABSEdge nRSEdge nRSArea
Avg.

Err.

Max.

Err.

Calc.

Time [ms]

PVS

Size

500 000 20 20 20 11.67 93 228.1 0.90%

5 000 000 20 20 20 1.82 32 724.2 0.93%

50 000 000 20 20 20 0.28 22 5 187.2 0.98%

10 000 000 5 20 20 1.34 36 1 716.4 0.92%

10 000 000 15 20 20 1.08 31 1 352.0 0.94%

10 000 000 40 20 20 0.97 25 959.4 0.96%

10 000 000 80 20 20 0.80 19 961.9 0.97%

10 000 000 20 5 20 1.13 21 1 313.8 0.93%

10 000 000 20 10 20 1.10 20 1 145.8 0.94%

10 000 000 20 25 20 1.06 15 1 157.2 0.95%

10 000 000 20 80 20 0.94 16 1 283.3 0.95%

10 000 000 20 5 20 1.11 20 1 310.7 0.93%

10 000 000 20 5 40 1.01 21 1 361.1 0.94%

10 000 000 20 5 100 1.10 22 1 113.2 0.94%

10 000 000 20 5 160 1.01 19 1 228.5 0.95%

Table 7.3: GVS++ run with different parameter variations on the PPLANT scene. The
highlighted rows show configurations that offer a good combination of pixel error and
runtime.
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Parameters

nRand nABSEdge nRSEdge nRSArea
Avg.

Err.

Max.

Err.

Calc.

Time [ms]

PVS

Size

500 000 20 20 20 22.05 284 1 555.3 10.44%

5 000 000 20 20 20 3.40 82 5 760.5 10.76%

50 000 000 20 20 20 0.43 21 48 731.9 11.16%

10 000 000 5 20 20 2.11 60 13 417.7 10.72%

10 000 000 15 20 20 1.95 52 10 728.6 10.84%

10 000 000 40 20 20 1.72 58 10 504.2 10.96%

10 000 000 80 20 20 1.52 40 12 232.7 11.07%

10 000 000 20 5 20 1.87 60 11 445.5 10.75%

10 000 000 20 10 20 1.88 55 11 129.4 10.81%

10 000 000 20 25 20 1.80 53 10 722.1 10.90%

10 000 000 20 40 20 1.82 54 10 331.7 10.94%

10 000 000 20 5 20 1.89 67 11 516.5 10.77%

10 000 000 20 5 40 1.88 44 10 830.8 10.78%

10 000 000 20 5 100 1.75 54 11 452.8 10.83%

10 000 000 20 5 160 1.55 52 12 889.8 10.89%

Table 7.4: GVS++ run with different parameter variations on the BISTRO scene. The
highlighted row shows a configuration that offers a good combination of pixel error and
runtime.
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scenes. Frame times were reduced significantly in the PPLANT scene. In summary, it
can be said that occlusion culling significantly reduces frame times for all tested scenes,
especially for heavily occluded scenes consisting of millions of triangles.

Avg. Frame Times [ms]
Without

Occ. Culling
With

Occ. Culling Speedup Avg. PVS
Size

CANYON 1.72 0.21 x8.09 5.09%
PPLANT 9.63 0.18 x53.50 0.94%
GERMANY 2.81 0.29 x9.77 4.40%
BISTRO 4.36 0.44 x9.91 10.90%

Table 7.5: Frame times (vkCmdDraw) with and without occlusion culling.
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CHAPTER 8
Use Case

In this chapter, a practical use case scenario of GVS++ is described, showing how it
could be used in an application, such as a driving-simulation application. The idea is
that especially applications that use highly populated models, such as city scenes, where
a significant amount of primitives are occluded from any given position, could benefit
the most from occlusion culling. In the following, it is assumed that such an application
is given and that the viewer’s possible locations, e.g., a car, are along streets. In a dense
city, naturally, from the relatively low viewpoint of a car, many primitives are occluded.
In this chapter, the JAPAN model, a city scene c©VIRES Simulationstechnologie GmbH,
consisting of 4,483,926 triangles, is used.

8.1 Application Overview
The application into which GVS++ is implemented is responsible for initializing the
Vulkan graphics API and loading and providing all the necessary inputs for GVS++.
The algorithm consumes various parameters that may be read from a simple settings
file or a database. Parameters that modify the behavior of the algorithm are listed in
Section 6.2.2. Also, a scene and one or more view cells have to be provided for which
GVS++ computes a PVS. The specific format in which the scene’s model is stored is not
relevant. The loaded model is used to build the acceleration structure that is used for
ray tracing. In Vulkan, an acceleration structure is built from an index and vertex set of
the loaded model. The view cells are defined by a position, size, and orientation, such as
a normal vector.

8.2 GVS++ Usage
To compute the visibility along the streets of a scene, using GVS++ involves the following
tasks:
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1. Place 3D view cells along streets.

2. Run GVS++ to calculate the PVS for each view cell.

3. Store the PVS of each view cell for later use.

4. When rendering, load a stored PVS depending on the position of the viewpoint.

In the following sections, these tasks are discussed in more detail.

8.2.1 View cell placement

In this section, different strategies for view-cell placement strategies are discussed, each
having advantages and disadvantages. Both strategies follow simple heuristics. More
intelligent strategies [MBW06, MBWW07] that subdivide space driven by visibility
information can be used instead (see Chapter 3).

The first strategy is motivated by the idea of placing as few view cells as possible.
Therefore, each view cell covers a large part of the street. Straight parts of a street are
covered by a single view cell. Figure 8.1 shows the result of this strategy on the JAPAN
model. This strategy’s main disadvantage is the relatively large size of the resulting PVS
since a large view cell is also associated with a larger PVS. In this case, the PVS contains
13% of all triangles. This is unfavorable since the viewer might only visit a fraction of the
view cell. A viewpoint might move along the street and take the first intersection on the
JAPAN scene, as seen in Figure 8.1. Primitives visible from the other part of the view
cell would be unnecessarily loaded. This problem can be alleviated by using multiple
smaller view cells. Furthermore, a large part of the reverse sampling algorithm’s mutated
rays might not sample the detected discontinuity. This is due to the large distance of
some mutated rays’ ray origin to the point x on the view cell from which the discontinuity
was detected. Such mutated rays are not “wasted”, since other, not previously found
primitives might be intersected. This problem could be alleviated by only using mutated
rays whose origin is not farther than a given threshold to the point x. However, this is
similar to using multiple smaller view cells in the first place.

In the second strategy, multiple smaller view cells are used. The idea is that many smaller
view cells better represent the path that a viewer might take. In our use case, instead of
using a single view cell for the whole straight part of a street, multiple view cells are used.
Such a view cell placement is shown in Figure 8.2. Unnecessarily small view cells along
the street are also unfavorable. In such a case, the application would have to load and
switch view cells frequently. Also, due to the overlap in terms of primitives of the PVS,
more storage space is required. In this case, the PVS associated with the single large
view cell contains 582 910 primitives, while the total number of primitives stored for the
four smaller view cells is 1 158 202, which is almost double the number of primitives of
the large view cell.

In conclusion, it can be said that the best strategy is a balance between the two strategies.
As seen in later sections, both strategies require a similar number of total rays to get
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(a) Overview of JAPAN. (b) Close-up of the view cell.

Figure 8.1: A single view cell is used to cover the whole straight part of a street. The
resulting PVS contains 13% of all triangles.

(a) (b)

(c) (d)

Figure 8.2: Multiple view cells are used to cover the straight part of a street. The
resulting PVS contain 5.8% (a), 6.1% (b), 6.4% (c) and 7.4% (d) of all triangles.
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similar average and maximum pixel errors. However, in this scene, the multiple view cell
strategy resulted in significantly higher rendering performance due to the smaller PVS.
The goal should be to balance the size and the number of view cells such that the view
cell covers large parts of the area a viewer visits while keeping the number of view cell
switches, storage requirements, and samples to a minimum.

8.2.2 Running GVS++

Once the model and the view cells are loaded, the visibility sampling process can be
started, calculating the PVS of each view cell sequentially. GVS++ can either be run on
a client or a server. The PVS is calculated off-screen since the algorithm does not write
to any framebuffers that are meant to be presented to a display. Vulkan is well suited
for applications that exclusively render off-screen and may also be used with devices
that are only capable of processing compute workloads. Since each view cell is processed
sequentially, the algorithm may be executed on multiple devices simultaneously, where
each device would process a different scene or view cell.

8.2.3 Storing and Loading PVS

After a PVS is calculated, it is stored for later use, e.g., in a real-time rendering application.
It may be stored in a file or database. The specific way a PVS should be stored mainly
depends on the specific application. One way to store a PVS is to simply store the
primitive IDs. When loading a PVS, the primitive IDs can then be used to index vertex
and index buffers. Instead of storing primitive IDs, vertex data such as vertex positions,
colors, and normals could directly be stored. Furthermore, the view cells have to be
stored such that each PVS can be associated with its view cell. This is necessary since
the PVS that should be used is determined by the view cell the viewpoint is located in.
The fact that the PVS of adjacent view cells usually overlap in terms of visible primitives
can be used to store the PVS in a compressed way by only storing the difference between
two adjacent PVSs.

There are different strategies to load the PVS that are associated with the view cells of a
scene. One strategy is to load all PVSs at the start of the application and keep them in
memory. This allows fast switching between different PVS. Another strategy, which may
be preferable for devices with very limited memory, is to only load the current PVS into
memory. Depending on the size of the stored PVS, the PVS associated with view cells
adjacent to the current view cell may be loaded as well. This way, loading times can be
hidden. A combination of both strategies may also be used, where only the PVS of the
view cells within a certain radius of the viewer is loaded.

Depending on the application, it may be necessary to load and store object-based PVSs
instead of PVSs that store individual triangles. This saves memory but also introduces
overdraw since whole objects are rendered.
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8.3 Render Performance Impact
The impact on frame times of both view cell placement strategies is listed in Table 8.1.
It can be seen that both strategies result in significant performance uplift. However, a
larger performance increase can be observed when smaller view cells are used due to the
smaller PVS size.

Avg. Frame Times
View Cell
Strategy

Without PVS
[ms]

With PVS
[ms] Speedup Avg. PVS

Size
Large view cell 3.43 0.46 x7.46 13.00%
Small view cells 3.43 0.24 x14.29 6.45%

Table 8.1: Frame times (vkCmdDraw) with and without occlusion culling for the two
view cell placement strategies.

8.4 Asymptotic Behavior
In this section, the behavior of the GVS++ algorithm for the two view cell placement
strategies (see Section 8.2.1) is analyzed and compared. The following parameters for
the GVS++ algorithm were used for each view cell in Figure 8.2: nrand = 12 000 000,
nABSEdge = 40, nRSEdge = 30, and nRSArea = 30. For comparison reasons, the same
parameters used for the large view cell in Figure 8.1. For the large view cell, the reverse
sampling parameters scaled, such that the same number of reverse sampling points on the
view cell per meter were used as for the smaller view cells: nRSEdge = 120, and nRSArea =
120. Also, the number of random samples scaled accordingly (nrand = 48 000 000). Note
that similar results may be achieved with fewer samples.

For both strategies, the PVS size and the newly found triangles are plotted over the
number of traced rays in Figure 8.4. It can be seen that the asymptotic behavior across
all view cells is similar. Most of the triangles are found in the early stages, where the
exploration of triangle neighborhoods rapidly finds new triangles. Comparing the PVS
size and the pixel error measurements over the number of traced rays (Figure 8.5), it can
be seen that both, the average and the maximum pixel error, correlate to the size of the
PVS. Terminating the PVS calculation for both strategies using the smaller termination
thresholds (10 and 3) gives a similar average and maximum pixel error for both view
cell placement strategies. Also, both strategies require a similar number of total traced
rays (26 × 109). Larger termination thresholds may be used such that the algorithm
terminates earlier. However, this can lead to large maximum pixel errors and may only
be useful for generating a quick preview. For a production-ready PVS, the threshold may
be set as low as possible to minimize the pixel error.

The largest remaining error region of the large view cell with a termination threshold of
10 can be seen in Figure 8.3. The error is caused by a heavily occluded region, which is
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8. Use Case

Figure 8.3: Largest error region of the first view cell placement strategy when a termination
threshold of 10 is used.

only visible from a very small area on the view cell. Such an error may be negligible in
production-use, especially when the PVS is used to accelerate rendering. The error can
further be reduced by using a smaller termination threshold.
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Figure 8.4: Asymptotic behavior of the PVS of the two view cell placement strategies.
The vertical lines show possible thresholds (50 and 10 (a, c), 10 and 3 (b, d)) for the
termination criterion.
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Figure 8.5: Pixel error measurements of the two view cell placement strategies.
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CHAPTER 9
Conclusion and Future Work

In this final chapter, a summary of the proposed approach and the main contributions
are given. Furthermore, limitations and opportunities for future work are discussed.

9.1 Summary

In this thesis, we presented an aggressive from-region visibility algorithm to compute the
potentially visible set from a view cell in a general 3D scene. GVS++ calculates a more
accurate solution in a shorter timespan compared to brute-force random sampling, GVS,
and a comparable rasterization-based visibility sampling technique. The focus was on
improving the intelligent sampling strategies to miss less triangles in edge cases. Our
algorithms take the highly parallel nature and new features of modern GPUs, such as such
as hardware-accelerated ray tracing, into account and allow for an efficient parallelization
of the sampling procedure. The adaptive border sampling algorithm was improved to
miss fewer triangles by sampling the neighborhood more thoroughly, and the reverse
sampling algorithm was replaced by a different strategy that increases the likelihood of
sampling discontinuities and unexplored regions.

The algorithm was implemented using the Vulkan graphics API. Hardware-accelerated
ray tracing functionality is accessed through the ray tracing API of Vulkan. To this
end, the main parts of the algorithm were implemented as GPU shaders. The presented
implementation stores the PVS on the device in a buffer. An alternative implementation
that uses a GPU hash set to store the PVS was discussed as well.

The presented reverse sampling algorithm allows GVS++ to efficiently handle narrow
view cells. A practical use case where narrow three-dimensional view cells are placed
along streets was presented. In a practical use case, the question of the best view cell
placement arises. Therefore, two different strategies, where either a single large view
cell is used or multiple smaller view cells that cover the same region, were discussed and
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compared. Both strategies showed advantages and disadvantages, with the best strategy
being a combination of both. Other practical problems concerning storing and loading a
PVS were discussed as well.

Various scenes were used to evaluate the proposed algorithm. Results show that GVS++
is significantly faster than a comparable GPU-based implementation of GVS (GPU-GVS)
and the original CPU-based implementation of GVS (CPU-GVS). On average, GVS++ is
one order of magnitude faster than GPU-GVS. Furthermore, GVS++ is over four orders
of magnitude faster than CPU-GVS. This result shows a significant performance uplift
through hardware-accelerated ray tracing. Combined with the rapid development of
recent products for hardware-accelerated ray tracing, sampling-based techniques are
becoming more feasible, making it worth revisiting such approaches.

9.2 Limitations and Future Work
One of the main limitations of the proposed algorithm stems from the use of random
sampling to find new seed points. The initial random sampling does find a good set of
seed points. Once the first execution of the exploration phase does not find any more
triangles, the PVS typically is already highly converged, and the algorithm proceeds with
randomly sampling the scene. In such a highly converged stage, further triangles are
mostly found through random sampling. Said triangles often are highly occluded and
are only visible from a fraction of the view cell. Therefore, finding such regions may
require a significant number of rays to be traced. This problem could be alleviated by
employing an importance sampling approach similar to Ho et al. [HCCL12]. In the case
of GVS++, initially, random sampling could still be used. In later, highly converged
stages, a reliability function on the view cell boundary based on previously traced samples
could be calculated. This function would then encode locations on the view cell from
which highly occluded regions can be seen. The scene would then be sampled from these
locations to improve the likelihood of finding missed triangles in later stages.

Another area of improvement may be the adaptive border sampling algorithm. Currently,
the edges of a triangle’s border polygon are sampled using a fixed application-defined
number of samples. This could be suboptimal, especially in scenes that consist mostly
of very large triangles. To avoid the need for fine-tuning GVS++ for such scenes, the
adaptive border sampling algorithm could be changed to sample border polygon edges
every x meters. This would alleviate the problem of possible large distances between
samples in some cases.
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Scene Data

CANYON View Cells
Position (x y z) Rotation [deg] Size (x y z)

4998.78 2120.44 1600 0 90 0 100 100 0
3872.56 2027.55 -703.876 179.401 -101.599 0 200 40 0
8736.88 2757.98 -349.664 26.4636 -160.693 0 200 200 0
6598.41 2195.44 2997.27 0 180 0 100 80 0
6548.41 2692.12 3593.96 180 0 0 100 80 0
5752.93 2716.2 3035.93 53.7863 87.7553 0 100 80 0
5248.77 2045.44 2747.72 0 180 0 200 50 0
5048.79 2345.44 3745.9 0 180 0 100 30 0
2699.39 2045.44 2747.72 0 180 0 200 100 0
4010.12 2991.36 2720.37 162.2 52.7259 0 100 80 0

Table 1: CANYON view cells used in Chapter 7.
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BISTRO View Cells
Position (x y z) Rotation [deg] Size (x y z)

67.0595 8.58343 56.0716 7.06132 220.1035 0 3 2 0
67.0595 8.58343 56.0716 7.06132 41.1035 0 3 2 0
-11.1363 25.1356 0.38519 13.6135 45.6555 0 5 5 0
-11.1363 16.1356 0.38519 13.6135 45.6555 0 5 5 0
-14.8352 18.7713 -6.90301 2.04186 39.7178 0 6 6 0
2.19484 18.1663 -27.4158 2.1989 126.2234 0 4 7 0
4.30133 37.9113 -75.8382 58.5697 64.917 0 10 10 0
-4.66192 13.9506 8.5468 24.6563 64.174 0 3 1 0
76.8341 18.0458 61.6924 32.5462 221.6245 0 5 1 0
47.9899 6.66673 31.0112 177.8 70.415 0 1 1 0

Table 2: BISTRO view cells used in Chapter 7.

GERMANY View Cells
Position (x y z) Rotation [deg] Size (x y z)

-151.024 0.2 106.585144 0 90 0 5 4 0
-151.024 0.2 106.585144 0 98 0 5 4 0
-65.7659 16.6493 -306.949 10.8123 267.8159 0 10 9 0
-59.1915 7.95323 103.275 -0.785388 89.8 0 30 4 0
-344.3 28.5307 103.343 17.1728 14.0529 0 40 50 0
-151.024 0.2 106.585144 10 20 0 5 4 0
-344.3 48.5307 103.343 17.1728 14.0529 0 40 50 0
-344.3 28.5307 103.343 17.1728 14.0529 0 40 50 0
-349.865 14.7674 101.32 14.3893 11.2484 0 10 6 0
-59.1915 27.95323 103.275 -0.785388 89.8 0 30 4 0

Table 3: GERMANY view cells used in Chapter 7.

PPLANT View Cells
Position (x y z) Rotation [deg] Size (x y z)

-175.305 64.4371 122.255 10.0322 64.8687 0 70 20 0
-191.334 62.8204 25.8898 21.0101 83.0 0 20 40 0
-68.208 30.3286 -25.0804 6.74809 34.0 0 40 40 0
83.2512 28.115 12.9271 8.00049 258.9445 0 30 20 0
-26.2082 52.6414 78.7562 17.9431 47.0044 0 35 25 0
94.906 75.8755 187.143 21.773 240.0173 0 40 20 0

-42.6588867 39.8894287 95.0234497 0 180 0 20 20 0
-72.6588867 139.8894287 95.0234497 0 -45 0 50 50 0
-72.6588867 39.8894287 95,0234497 0 180 0 50 50 0
-42.6588867 70.00894287 95.0234497 -90 0 0 20 20 0

Table 4: PPLANT view cells used in Chapter 7.
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View Cell
Scene Position (x y z) Rotation [deg] Size (x y z) Used For

JAPAN

312.102 0.151144 -930.0 0 0 0 2.5 2 600 View cell placement
strategy one

312.102 0.151144 -930.0 0 0 0 2.5 2 150
View cell placement
strategy two

312.102 0.151144 -780.0 0 0 0 2.5 2 150
312.102 0.151144 -630.0 0 0 0 2.5 2 150
312.102 0.151144 -480.0 0 0 0 2.5 2 150

Table 5: View cells used in Chapter 8.

89


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Structure of the Thesis

	Background
	Visibility
	Ray Tracing
	The Vulkan API

	Related Work
	From-Region Occlusion Culling Techniques
	View Cell Placement
	Hardware-Accelerated Ray Tracing

	Guided Visibility Sampling
	Introduction
	Algorithm Overview

	Guided Visibility Sampling++
	Introduction
	Random Sampling
	Exploration Phase
	Termination Criterion
	3D View Cells
	Data Structures and Optimizations

	Implementation
	Software and Libraries
	GVS++ Implementation

	Results and Evaluation
	Results Overview
	Asymptotic Behavior
	Parameter Analysis
	Render Performance Impact

	Use Case
	Application Overview
	GVS++ Usage
	Render Performance Impact
	Asymptotic Behavior

	Conclusion and Future Work
	Summary
	Limitations and Future Work

	List of Algorithms
	Bibliography
	Scene Data

