
Thomas Bernhard Koch
Visual Computing

Visibility Precomputation with
RTX Ray Tracing TU Wien Informatics

Institute of Visual Computing & Human-Centered Technology
Research Unit of Computer Graphics

Supervisor: Univ.Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Wimmer Michael
Contact: thomas-koch@kabelplus.at

Introduction
Visibility is a fundamental problem in computer graphics and computer
vision and is typically computed from a point or from a region.From-
region visibility is often precomputed due to its higher computational
complexity. Some approaches utilize well-known real-time rendering
techniques, such as the z-buffer, while other methods use ray casting
to determine the visibility of objects and primitives, such as the from-
region visibility approach Guided Visibility Sampling (GVS) [1].
In this work, we are revisiting Guided Visibility Sampling to find out how
efficient it can become when hardware-accelerated ray tracing is used.
Furthermore, we improve upon it and present a new approach, called
Guided Visibility Sampling++. Our approach uses hardware-accelerated
ray tracing and is over four orders of magnitude faster than the original
CPU-based implementation of GVS.

Contributions

Method - Guided Visibility Sampling++

Our contributions can be summarized as follows:
> Guided Visibility Sampling++ (GVS++), an aggressive from-region visi-

bility sampling approach. Our approach improves upon Guided Visibi-
lity Sampling. GVS++ is more accurate and offers better parallelizabili-
ty than GVS. This makes an efficient implementation, where the main
sampling workload is executed on the GPU, possible.

> A publicly available Vulkan implementation of GVS++ that uses hard-
ware-accelerated ray tracing.

> An in-depth analysis of GVS++ on multiple scenes and a comparison to
a brute-force random sampling approach, a rasterization-based from-
region visibility technique, and GVS.

[1] Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd Hesina, and Alexander Reshetov. 2006.
Guided visibility sampling. ACM Transactions on Graphics (TOG) 25, 3 (2006), 494–502

Our approach combines multiple intelligent sampling strategies to efficiently construct a set of visible triangles, called potentially visible set (PVS):

t

...

t

...

1 2 3

Random Sampling Adaptive Border
Sampling

Reverse Sampling

View Cell

1 An initial set of triangles is constructed by randomly sampling the scene.

2 Adaptive Border Sampling samples along the borders of previously found triangles to find adjacent triangles.

3 Reverse Sampling samples discontinuities that can occur while a triangle is processed by the Adaptive Border Sampling algorithm. A disconti-
nuity is detected if an intersected triangle t0 is closer than the current target sample location (3.1). Reverse Sampling then computes new ray
origins on the view cell from which the discontinuity can be sampled without intersecting t0. To get such positions, Reverse Sampling projects
t0 onto the view cell (3.2) followed by uniformly distributing points on the view cell that are not within the projected triangle (3.3). These points
are then used as mutated ray origins to sample the discontinuity.

Results

3.1 3.2 3.3

101

102

103

104

a
v
g
.
p
ix
el

er
ro
r

10 20
seconds

GVS++ GPU-GVS
RAND CPU-GVS
RASTER

1×105

2×105

3×105

tr
ia
n
g
le
s

1 2 3 4 5
seconds

Our approach calculates a more accurate solution in a
shorter timespan than brute-force random sampling (RAND),
GVS, and a comparable rasterization-based visibility
sampling technique (RASTER). GVS++ typically computes
a well-converged PVS under one second. This result is
attributed to our efficient sampling strategies that enable
efficient parallel execution on the GPU.
A significant performance difference can be observed
when comparing our Vulkan GVS++ implementation with
hardware-accelerated ray tracing to the original CPU-based
implementation of GVS, where GVS++ is over four orders of
magnitude faster than CPU-based GVS.

The right data structures and optimizations are crucial for the performance of our algorithm. We store the PVS on the GPU and only transfer it to
the host once our algorithm terminates. This allows our ray-casting shaders to distinguish whether a triangle is intersected for the first time. This
way, no expensive set operations on the host-side are necessary. A naïve implementation where set operations on a host-side PVS are executed
is over 20x slower than our optimized implementation.

t0

Scene ©VIRES Simulationstechnologie GmbH

View Cell

Visible
Triangles

Occluded
Triangles

