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Abstract
Comparative analysis of multivariate datasets, e.g. of advanced materials regarding the characteristics of internal structures
(fibers, pores, etc.), is of crucial importance in various scientific disciplines. Currently domain experts in materials science
mostly rely on sequential comparison of data using juxtaposition. Our work assists domain experts to perform detailed
comparative analyses of large ensemble data in materials science applications. For this purpose, we developed a comparative
visualization framework, that includes a tabular overview and three detailed visualization techniques to provide a holistic view
on the similarities in the ensemble. We demonstrate the applicability of our framework on two specific usage scenarios and
verify its techniques using a qualitative user study with 12 material experts. The insights gained from our work represent a
significant advancement in the field of comparative material analysis of high-dimensional data. Our framework provides ex-
perts with a novel perspective on the data and eliminates the need for time-consuming sequential exploration of numerical data.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Physical sciences and engineering;

1. Introduction

For complex material systems such as fiber-reinforced compos-
ites (FRP), which are used in safety-critical industries, like auto-
motive or aeronautics, the analysis of the material’s performance
in terms of durability or strength is essential for quality assur-
ance [NKUC20]. To facilitate the discovery and optimization of
novel material systems, detailed knowledge about the internal
structure is of utmost importance. FRPs typically consist of a base
matrix material and various reinforcements, i.e., the fibers. Among
other characteristics of these reinforcements, the placement, length
and orientation have a significant influence on the FRP material’s
properties. Consequently, domain experts are interested in detailed
analyses of the respective features in the material, as well as how
these features are distributed in terms of their various characteris-
tics [FHG∗09]. To achieve comprehensive conclusions about how
the various manufacturing and optimization processes affect the
materials’ properties, domain scientists need to compare the in-
ternal structure of different specimens with each other or execute
in situ tests. During these tests, a composite is exposed to stress.
The changing of its microstructures is recorded in discrete time
steps, resulting in time-varying datasets of a specimen (see Fig-
ure 1) [NKUC20].
In this work, we refer to the weight, strength, etc. of a specimen,
i.e., the sample, as its properties. We refer to its inner structures,

such as pores or fibers, as features and to the attributes describ-
ing the features, like length or orientation, as characteristics. In
our work, a dataset represents a single specimen, or a part of it, at
a particular time step. The quantity of datasets to be compared is
considered as an ensemble, where an individual dataset is called an
ensemble member (see Figure 1).
The comparison of various table-based datasets is an inherent part
of the material scientist’s workflow. So far domain experts rely on
juxtapositions such as side-by-side views or superpositions of ba-
sic charts, as histograms, bar charts, scatterplot matrices (SPLOM),
parallel coordinate plots (PCP) etc., to analyze individual charac-
teristics of a specimen. Analyzing several datasets based on these
representations can become quite complex for materials scientists.
Especially if charts of many specimens have to be explored, the
workflow is imposing high cognitive loads to experts.
To support experts in analyzing materials and following the open
research challenges in visual computing concerning materials sci-
ence as outlined by Heinzl and Stappen [HS17], the goal of this
work is to make a comparison of hundreds to thousands of
features from dozens of datasets possible by providing CoSi,
an interactive visualization framework. CoSi enables experts to
perform a visual Comparison of Similarities of individual features
(i.e., fibers or pores) according to their characteristics within an
individual dataset. More importantly a comparison across several
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specimens and all features at once is possible. We developed CoSi
in close collaboration with material experts and we see our main
contributions in the following points:
C1: Design study of a visual analysis framework to compare
ensembles and ensemble members by using feature and charac-
teristic based similarity, with several key aspects. We provide an
overview visualization, the ensemble similarity explorer, that pro-
vides a holistic summary of the individual features of the entire
ensemble. Interaction is provided to the user via: a linear zooming
function, a non-linear zooming interaction, and a ranking operation.
For a detailed numerical investigation, a similarity widget offers the
users similarity scorings for characteristics via bar charts, as well
as their summarized distributions via a box plot. Additionally, we
visualize potential linear correlations between the individual char-
acteristics in the correlation widget.
C2: Evaluation of the visual analysis framework is done through
two use cases from the X-ray computed tomography (XCT) domain
showing the result of an in situ test of a fiber specimen and an in-
depth comparison of two pore specimens. Furthermore, a qualita-
tive user study with 12 material experts was performed.

Our paper is organized as follows: Section 2 describes the data
structure and tasks. In Section 3 we review the related work. In
Section 4 we address our framework CoSi. In Section 5 we describe
two usage scenarios and our user study. In Section 6 we provide a
discussion and illustrate future work in Section 7.

2. Data Characterization and Task Abstraction

Material ensemble data is generated as follows: XCT data, also
referred to as primary data, is acquired from a sample of interest.
When the sample is analyzed in an in situ tensile test, XCT scans
are triggered consecutively while stepwise increasing the force on
the specimen. Each individual XCT image, i.e., time-step, consists
of a three-dimensional volume that stores intensities. By apply-
ing segmentation and extraction, individual features can be identi-
fied and quantification can be used to calculate different numerical
characteristics for each feature, resulting in a multivariate, tabular
dataset, also referred to as secondary data [WAL∗14].The structure
of ensemble datasets, generated in an in situ tensile test experi-
ment is shown in Figure 1. Each ensemble, e1 and e2, integrates
M members, each consisting of secondary datasets recorded for T
time steps. With our framework it is possible to compare different
compilations of ensembles, consisting of a specimen over a defined
period of time (see Figure 1 A) and of different specimens (see Fig-
ure 1 B). Also the combination of both is possible.
Three tasks were identified after several discussions with three ma-
terial experts about their daily workflow and analysis goals:
T1: Comparative visualization of the similarity among individ-
ual ensemble members (feature based similarity) – Domain ex-
perts need to evaluate the similarity of the ensemble members in
terms of internal structures. For example, they should be able to
determine whether the members contain groups of the same type of
fibers, such as very short or very long fibers (see Figure 1 T1).
T2: Comparative visualization of the similarity among the en-
semble member’s characteristics (characteristic based similar-
ity) – For groups of similar features it is important to visualize why
they are similar. Domain experts require to accurately identify in

Figure 1: Data generation and tasks: During an in situ test of
a specimen m j, several time-varying secondary datasets si can be
computed. Various specimens, with all their time steps, form an en-
semble ek. Our framework is capable of: (T1) comparing different
compilations of ensemble members consisting of (A) a specimen
over time and (B) various specimens, (T2) the comparison of mul-
tiple features, and (T3) the analysis of pairwise correlations.

which characteristics, like length, orientation, etc., the features are
similar or dissimilar (see Figure 1 T2).
T3: Visualization of pairwise correlations based on the ensem-
ble members’ characteristics – A simple representation is re-
quired by material scientists to determine whether the similarity
in different characteristics can be inferred, if, for example, features
are similar in one specific characteristic (see Figure 1 T3).

3. Related Work

In this section, we provide an overview of visualization techniques
used in the field of materials science. Few approaches address the
visualization of many characteristics or the comparison of different
or changing materials. Nevertheless, we reviewed these methods to
learn from the experience and advantages of the techniques used.
We also examined techniques published in the field of ensemble
visualization and comparative visualization to learn from the expe-
riences in different domains.

3.1. Visualization and Analysis for Materials Science
Applications

As discussed in the study by Heinzl and Stappen [HS17], a body
of research already exists in the field of visualization that is dedi-
cated to improve representations for materials science data. Zhang
et al. [ZFS∗19] presented an approach to analyze pores in rock
formations by applying a segmentation on XCT scans, followed
by the classification of porous structures based on their morphol-
ogy and geometry. In the survey by Hergl et al. [HBK∗21], the
authors summarized various methods of how to combine tensor
information with the specimen’s spatial representation. Chiverton
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et al. [CIBP17], visualized the arrangement of fibers in concrete
by using multiscale entropy to aggregate the orientation and spa-
tial distribution of the structures in the volume. Weissenböck et
al. [WFG∗19] introduced an analysis tool that allows material sci-
entists to do a voxel-based comparison of many different XCT-
datasets. By linearizing the scans with a Hilbert line curve, the
differences in the voxel intensities are visualized with Hilbert line
plots.
The methods and techniques presented so far have concentrated on
the visualization of spatial data or the presentation of a few charac-
teristics in the spatial data. The visualization of many, such as tens
to hundreds of characteristics, has not been the primary focus of re-
search to date. FiberScout [WAL∗14] is an approach dealing with
the visualization of secondary data for a single specimen. To get an
overview of all characteristics, a SPLOM is used, and for the ori-
entation distribution a polar plot is shown. The concepts developed
for visualizing a few characteristics in a single material cannot be
easily adopted to compare multiple samples with many character-
istics. This is because the inherent structure of the ensemble data
induces an additional member dimension [WHLS19]. To develop
suitable visualization techniques, we investigated approaches used
in ensemble visualization.

3.2. Ensemble Data Analysis and Visualization

Wang et al. [WHLS19] gave a detailed definition of ensemble data.
Although such data has naturally very different meanings in the
different domains, the overall workflows of respective approaches
follow similar paths: either an aggregation technique is applied on
the data prior to the actual data visualization or a visual compo-
sition approach is used when the data visualization is performed.
The combination of both procedures is also found in a various tech-
niques [WHLS19].
Aggregation. In ensemble visualization, various aggregation meth-
ods are used to convert high-dimensional data into a form that can
be transformed into visual encodings [WHLS19]. Statistical meth-
ods, e.g., from descriptive statistics, can be utilized to achieve a
summary of the data. Another method of aggregation is to sub-
divide the data into groups using cluster-based techniques. When
the data does not allow a well-defined subdivision, ambiguous so-
lutions are the result [LMW∗17]. To reduce the high dimension-
ality of the data to that of the visual channels, dimensionality re-
duction methods can be used. These are classified into linear and
non-linear methods. The first type uses linear functions to project
high-dimensional data into lower space, while the second meth-
ods use non-linear approximations for the projection. Currently
popular non-linear techniques are t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) and Uniform Manifold Approximation
and Projection (UMAP). Both compute clusters of similar features,
but do not guarantee that inter-cluster distances are correctly pre-
served [LMW∗17]. In contrast to t-SNE and UMAP, Multidimen-
sional Scaling (MDS) is a method that preserves the global dis-
tances of pairs of data points [AHT20].
Comparative Visualization. In ensemble visualization, as well as
in the domain of visual comparison of time series data, the compar-
ison of multivariate non-spatial data is typically achieved by line
charts, PCPs, SPLOMs, or heatmaps, as well as variants thereof
[WHLS19, AAJX19]. PCP and SPLOM based representations of-

ten suffer from overplotting or from scalability issues as they be-
come harder to read the more attributes are visualized. Heatmaps
adapt better to large datasets and can be used very well as align-
ment visualizations, as Albers et al. [ADG11] show in their work.
The ease of integrating human perceptual concepts into this type of
visualization makes it particularly simple to find similar areas in the
data and to identify patterns. Therefore, the design of our analysis
framework is based on such visualizations.

4. CoSi

For CoSi, we followed the design study methodology proposed by
Sedlmair et al. [SMM12] separated in a preconditioning, a core,
and an analysis phase. All methods and techniques have been de-
signed and implemented along these phases and in close collabo-
ration with our domain specialists. To efficiently explore ensemble
members regarding specimens of interest, our analytic framework
(see Figure 2) is designed to enable a holistic comparison of all en-
semble members. The ensemble similarity explorer (see Figure 2
A) presents all ensemble members in a high-level abstraction to
allow experts to determine at one glance which members exhibit
similar features (T1). Through the abstraction applied on the data
in this overview visualization, details about the individual features
and their characteristics are lost. Our similarity widget (see Figure 2
B) presents this information by providing a similarity rating of the
characteristics and exact specifications of groups of features (T2).
Finally, the correlation widget (see Figure 2 C) visualizes pairwise
correlations of the characteristics (T3). All three widgets are inter-
active and linked with each other.

4.1. Ensemble Similarity Explorer

The ensemble similarity explorer is a 2D overview visualization
and illustrates a summarized representation of the individual en-
semble members. The members are defined by their n-dimensional
features (e.g., fibers which are described by n different characteris-
tics) and have to be reduced into a 2D space to apply a visual encod-
ing. Since we want to avoid overlapping of features that do not be-
long to the same member, we chose the vertical axis (y-dimension)
to represent the affiliation to a certain ensemble member and there-
fore to aggregate the high-dimensional features into the horizontal
axis (x-dimension). To generate the ensemble similarity explorer,
we first apply an aggregation step. As an unambiguous classifica-
tion of features such as fibers in subgroups is usually not possi-
ble, we decided against a cluster-based approach. Furthermore, we
did not use linear dimensionality reduction methods, as we cannot
generally assume linearity in material datasets. For our overview
visualization, it was important that the aggregation method repre-
sents the similarity of features based on the distance between them.
Features, that have similar characteristics, like the same length,
should be mapped close to each other, while dissimilar features
should have a greater distance in 1D space. We renounced from
using t-SNE and UMAP, since the distances between the result-
ing clusters do not encode any similarity information. We chose
the non-metric MDS technique, because this method fulfills our re-
quirement that similar features are positioned closer together than
dissimilar ones. The MDS computation results in a 1D similarity
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Figure 2: CoSi Framework: (A) The Ensemble Similarity Explorer shows the similarity of the ensemble members S1 to S8, (B) the Similarity
Widget presents the similarity of the characteristics C1 to C9 via a bar chart and box plot, (C) the Correlation Widget reveals pairwise
correlations between the characteristics. The black boxes show the changes happening in (B) and (C) when a selection in (A) is performed.

measure, storing for each feature in the ensemble a single similar-
ity value. All features are ordered according to their attribution to a
certain member (vertical axis) and are mapped as points along a 1D
horizontal line (horizontal axis), positioned according to their sim-
ilarity value (Figure 3 B). The different datasets of an ensemble are
drawn below each other. This procedure yields a point based repre-
sentation as overview of the similarities in the complete ensemble.
As all datasets are taken into account for the MDS computation
at once, features lying close to each other on the same horizon-
tal position are similar within the ensemble member (representing
intra-member similarity). Features lying on the same vertical po-
sition but in different ensemble members are similar as well (rep-
resenting inter-member similarity). So, features positioned close to
each other are similar (Figure 3 B (light green)), while features at
great distance are dissimilar (Figure 3 B (light red)). The numerical
values, calculated by the MDS, cannot be interpreted as absolute
values, merely the differences between them are meaningful for
the analysis. Therefore, we have omitted concrete horizontal axis
labels in the visualization to not distract the viewer during the anal-
ysis. Due to the distance representing the similarity between the
features, the efficient use of available space depends on the current
scenario. If members with similar features are compared, the screen
space is used efficiently. If a member is very different from the oth-
ers, the similar members have many features on one side and the
dissimilar one on the other side. Since there are thousands of fea-
tures to be visualized, assigning each item to a specific position
leads to visual clutter in the pointbased representation. To avoid
overplotting, each line is therefore subdivided into areas of equal
size and the number of features inside each area is color-coded. By

Figure 3: Aggregation Procedure: (A) Each nD feature (red) of
the ensemble is aggregated to a 1D similarity value. (B) Features
are positioned according to their similarity values and dataset at-
tribution. Light green indicates similar features, while light red il-
lustrates dissimilar ones. (C) Through binning the point represen-
tation is composed to a histogram-table to avoid overplotting.

partitioning the lines into adjacent bins, similar features are con-
nected using colors encoding their frequency. We summarize by
binning as this discretization technique ensures that all bins in each
row have exactly the same boundaries. This allows the viewer to
make a consistent and easy comparison. After binning has been
performed, the ensemble similarity explorer represents a histogram
heat map, where areas that lie in close proximity are similar while
areas located far apart are dissimilar. A sequential color map from
yellow to red has been chosen to encode the number of features in
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a bin, since it is best suited to identify differences in neighboring
areas. Each line representing a dataset in the line based representa-
tion is transferred to a row in the histogram heat map. Similar color
patterns in different rows reveal that in these members the distri-
bution of features is similar to each other. Figure 2 A displays an
ensemble with eight members in the ensemble similarity explorer.
The ensemble members S1, S2 and S3 are similar to each other,
while they are dissimilar to the others.
By providing various interaction possibilities, we ensure that the
users can inspect different levels of abstraction in the ensemble. In
the overview visualization, each row is partitioned into ten indi-
vidual bins. Even though this coarse subdivision provides a com-
pact overview of the feature distribution, important details are lost.
To make an identification of smaller collections of similar features
possible, we integrate a linear zooming function with three differ-
ent levels, where the number of partitions is increased to 20, 40, and
finally to 80 bins. Since a comparison across zoom levels should be
possible, the same color scheme is retained for each level. In linear
zoom mode, all datasets are enlarged or reduced simultaneously. To
inspect areas of interest individually, a non-linear zoom mode has
been added. Users can select any bin at any zoom level, no matter
whether they want to inspect a single area or several areas at once,
in the same dataset or in multiple datasets (see Figure 4 C). Individ-
ual features located in the selected bins are visualized in a separate
area, drawn below the original row. Hence, single bins as well as
groups of bins or even complete datasets can be compared in de-
tail. As we are still dealing with hundreds to thousands of selected
features, the partitioning into individual areas is also applied to the
zoom rows and can be adjusted. In addition to switching between
the three zoom levels, users can zoom in on the underlying point
representation in the zoom rows, where each individual feature is
depicted as a point. As binning causes blockiness and position in-
accuracies, these introduced errors should be compensated by the
point based representation [ADG11]. In the case of highly similar
datasets in an ensemble, it is difficult for the users to visually de-
termine, which of the datasets are most similar to each other. To
address this issue, we integrated a statistical computation of the
similarity in the datasets. Since the ensemble similarity explorer
is a depiction of several histograms, each shown as colored bars,
we chose the chi-squared distance metric to measure the similar-
ity between the individual datasets [Cha08]. This statistic measures
the difference between the frequencies of a reference dataset and
a test dataset which results in a similarity score. As observed by
Naik et al. [NPJ09], the chi-square measure does provide very ac-
curate results when comparing very similar multimodal histograms.
Since our analysis tool is intended to help determine the similar-
ity of materials that may share a very similar distribution of fea-
tures, we chose this measure. To start the ranking procedure, users
only need to select the dataset according to which the other datasets
should be ranked. As a result, the datasets are rearranged, first the
reference dataset is drawn, then the datasets follow in descending
order of similarity to the reference one.

4.2. Similarity Widget

Strong aggregation by assigning a 1D similarity value to a mul-
tidimensional feature, leads to a considerable loss of information.
In the ensemble similarity explorer the users can recognize similar

groups of features, but they can no longer infer, in which charac-
teristics these groups are similar, or which range of values similar
characteristics share (T2). Therefore, we added the similarity wid-
get to the CoSi framework. It provides the experts with a similarity
score for each characteristic and allows to examine their interval
ranges in more detail.
Similarity Score. It is important for experts to be able to perceive
at a glance, in which characteristics the similarity is highest. This
specification should be evident from a single score per characteris-
tic and its calculation should be easily comprehensible for experts.
Therefore, we decided to use the empirical coefficient of variation.
This statistic is a relative measure of variation. A bar chart has
been chosen to visualize this information, as this chart is consid-
ered as one of the most efficient ways to compare multiple 1D val-
ues. Moreover, experts are familiar with bar charts, so the learning
curve for using our framework is low. The bar chart visualizes the
similarity within each characteristic (Figure 2 B). While each grey
bar represents an individual characteristic, the heights of the bars
represent the similarities in percent, between 0% (dissimilar) and
100% (identical). Once the user makes a selection of one or more
bins in the ensemble similarity explorer, the coefficient of variation
is recalculated solely on the characteristic’s values of the selected
features. The result of each characteristic is then superimposed as
green bar on the original grey bar (Figure 2 B). Thus, a compari-
son between the similarity of the selected features and all features
in the ensemble can be performed. In addition, the characteristics
are rearranged from the most similar to the most dissimilar one.
The width of the green bars is variable. It is defined by the ratio
between the number of selected features and the number of all fea-
tures in the ensemble. The fewer features are selected, compared
to the total number of features, the thinner the bars are drawn with
respect to the grey bars.
Interval Similarity. Furthermore, it is important for experts to
get an overview of how the interval ranges of the characteristics
are distributed. Methods from descriptive statistics were chosen to
compute a statistical summary for each characteristic’s distribution,
since these are known to the experts. The statistical summary con-
sists of the minimum, the median, the first and third quartile, and
the maximum value. These measures give enough information to
get an idea of the dispersion and skewness of the distributions. For
the visualization of these measures we provided a box plot repre-
sentation, since this chart is again familiar to most material scien-
tists. We discussed more detailed charts, like violin plots or bean
plots with the experts, but they argued that the level of detail is
enough and that they would favour the simpler representation of the
box plots [TGU20]. The box plots show the statistical summary for
every characteristic in the ensemble (Figure 2 B). Since the distri-
butions of the characteristics can have very diverse units, the values
of each characteristic are mapped to the interval [0,1]. Thus, all box
plots can be displayed side by side in one chart. The order of the
box plots is linked to the similarity order of the bar chart, so the
position of the characteristics in both charts is the same. The box
plots are also recomputed based on selections made in the ensem-
ble similarity explorer. Green box plots, representing the selected
features, are superimposed on the original grey box plots, allowing
a comparison of the selected features with all features.
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4.3. Correlation Widget

Based on the information provided by the similarity widget, ex-
perts may address the question of whether features that share one
characteristic are also similar in another one (T3). In our applica-
tion, we compute pairwise linear correlations based on the Pearson
product-moment correlation coefficient [Coh13]. Since m charac-
teristics result in O(m2) correlation pairs, visualization techniques
such as correlation matrices, can quickly become large and confus-
ing. Although the perception of correlations is improved by encod-
ing the correlation coefficients with color and brightness, Zhang et
al. [ZMZM15] argue that position and size are preferable for inter-
preting quantitative information. Hence, we base our visualization
on their work and represent the correlation information in a graph-
based layout, called correlation map (Figure 2 C). Each vertex in
the correlation map represents a characteristic. It is positioned ac-
cording to a force-directed layout algorithm. Characteristics that
have a strong correlation are positioned close to each other, while
characteristics that have no correlation are positioned further away
from each other. The edges are color coded according to the type
of correlation using a discrete color scheme running from red (pos-
itive correlation), to white (no correlation), to blue (negative cor-
relation). This color scheme causes edges with weak or no corre-
lation to become invisible, minimizing the problem of overlapping
lines and bringing important correlations into focus. To make all
edges visible, the user is able to alter the color scheme by replacing
white with grey. The length of the grey circular segments, arranged
around the correlation map, represent the ratio of the number of
features of each member. Since the correlation coefficient can be
significantly affected by the number of features selected for the
calculation, the circular segments represent the number of features
used for the computation. This visual representation can assist users
in selecting an appropriate subpopulation of datasets for a balanced
correlation calculation. The correlation map is recalculated after se-
lecting specific bins in the ensemble similarity explorer. Then, the
correlation calculation is based solely on the selected features, and
the circular segments depict only the selected ensemble members.

5. Results

CoSi is tested on two different ensemble compilations: one for
comparing various specimens (Scenario 1, see also Figure 1 B) and
one for comparing the changes of a specimen over time (Scenario 2,
see Figure 1 A). In Scenario 1, two different samples are compared
based on their internal pore structure to determine whether they are
similar, and if so, in which region. The ensemble consists of six
members. The first member describes the pores of a small material
sample. The other five members represent adjacent subregions of
one big pore specimen. The small material scan contains roughly
1.700 pores, while each region of the big material scan contains
around 1.500 pores. The pores are described by 23 different char-
acteristics.
In Scenario 2 the ensemble describes a fiber reinforced composite
specimen which is modified through loading during an in situ test.
The material was scanned after a subjection to a shear force for 10
minutes and again after 60 minutes. To facilitate a detailed anal-
ysis for the user, the fiber specimen was divided into four areas in

each of the two scans. Each of the individual regions contains about
2.500 fibers, which are described by 13 different characteristics.

5.1. Usage Scenarios

Scenario 1 - Compare Various Specimens. At first glance, the two
materials smallMat and bigMat are very similar due to the distribu-
tion of their pores (Figure 4 A). Therefore, the ranking function is
invoked in the ensemble similarity explorer to find the most similar
region of the large material with respect to the small one. It turns
out that bigMat_1 is the most similar one (Figure 4 B). Now, we
are interested in finding the group of pores that is predominantly
present in smallMat. Therefore, we zoom in to the most detailed
zoom level and see that there is a larger number of pores located
on the right side of the center (Figure 4 C). We select the four dark
yellow bins, the nonlinear zoom is activated, and we zoom down to
the point representation to check if the pores are clustered in a par-
ticular location. However, we find that the pores are fairly evenly
distributed across the bins. Now, we want to investigate in which
features the selected pores are similar. We therefore take a look at
the green bars in the bar chart (Figure 4 D). The pores are most sim-
ilar in the direction tensors a33,a13,a22, phi, flatness, and volume.
Next, we examine the exact value ranges of the characteristics, thus
we look at the green box plots. Here, we notice that the direction
tensors all take on very small values, additionally these types of
pores are very flat and very small in volume (Figure 4 E).

Figure 4: Scenario 1 - Comparison of two pore materials. An
overview of the pore distributions is given in (A) and (B) with differ-
ent zoom levels. (C) shows the most detailed zoom level of smallMat
and the point representation of the pores selected by the user. (D)
and (E) give information about the characteristics’ similarities.

Scenario 2 - Compare the Changes of a Specimen over Time.
The initial order of the datasets in the ensemble similarity explorer
shows all regions of the scan taken after 10 minutes and then all
regions of the scan taken after 60 minutes of shearing (Figure 5 A).
Each region contains a very specific group of fibers, as only two
bins in each member are darker in color. We are interested in region
_4 since it contains the most fibers in a bin. We activate the rank-
ing function to find the dataset that is most similar to 10min_4. As
suspected, the most similar region is 60min_4, which represents the
same region at a later time (Figure 5 B). We can see a change in the
distribution of the fibers, as many of them have changed their posi-
tion by one bin to the left. We now want to investigate, which char-
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acteristics have changed to produce this shift in position. There-
fore, we first select the darkest bin in 10min_4, and then the dark-
est bin in 60min_4 (Figure 5 C). The comparison of the box plots
shows the characteristics volume, surface area, and straight length
(Figure 5 D). According to the maximum and median marks, these
characteristics have become shorter over time. Finally, we look at
the correlation map (Figure 5 E). There, these three features are
positively correlated, as they are very close to each other and are
connected by red edges.

Figure 5: Scenario 2 - Comparison of four regions of a fiber
material after being exposed to a force for 10 (10min_X) and 60
(60min_X) minutes. (A) gives an overview of the fiber distribu-
tions. (B) shows the ensemble after a ranking was performed ac-
cording to 10min_4. (C) presents the bins that were selected suc-
cessively by the user. (D) shows the box plots illustrating that the
fibers in 60min_4 have smaller maxima in volume, surface area,
and straight length. (E) shows the correlation map.

5.2. Evaluation

Procedure. To evaluate the comprehensibility and applicability of
our analytical framework, we conducted a qualitative user study
with 12 material experts, who study the microstructures of polymer
materials. We began the study by introducing CoSi to each partici-
pant in a 10-minute demonstration, explaining how to interpret the
visualizations. The participants were given 20 minutes to explore
the ensemble from Section 5.1. Meanwhile, the participants were
asked to explain how they interpreted each representation. We pre-
pared qualitative tasks in advance, which are based on the tasks
T1-T3, to ensure that all interactions and visual encodings were
observed. Figure 6 shows the defined tasks and whether they were
answered correctly, partially correctly, or wrongly.
Results. The ensemble similarity explorer was found to be an intu-
itive tool to get an overview on complex ensembles. The valuation
is supported by the number of participants who correctly under-
stood this visualization technique (Figure 6 (1)). Merely two par-
ticipants could not recognize which datasets were similar to each
other. They had difficulties in understanding the strong abstraction
of the data. The bar chart was rated as helpful, since it was possi-
ble to see at a glance, in which characteristic the fibers were most
similar. This positive feedback is reflected in the results of Task 2
(Figure 6 (2)) and Task 3 (Figure 6 (3)). Two participants only par-
tially solved Task 2, since they claimed to "prefer to look at the box

Figure 6: Defined tasks and their correctness.

plot rather than the bar chart, as it shows way more information".
Besides the ensemble similarity explorer, the box plot was the visu-
alization that participants were most interested in. The readability
of the box plot was strongly dependent on the previous experience
of the test persons. Task 4 (Figure 6 (4)) and Task 5 (Figure 6 (5))
could be solved without problems. The correlation map received
the best feedback concerning its visual encoding. According to the
participants, the color coding of the linear correlations was intu-
itive, which is confirmed by the good results concerning Task 6
(Figure 6 (6)) and Task 7 (Figure 6 (7)).
Performance Measurements. CoSi was developed as module for
the open-source application open_iA [FWS∗19]. Both usage sce-
narios were evaluated on the same test setup, i.e., a laptop equipped
with an Intel i7-6820HK CPU with 16 GB RAM and a screen size
of 17 inches. A total of about 20.000 features were compared in
each case. The calculation of the representations took about 15
minutes for each scenario. A bottleneck with respect to memory
consumption and runtime arises from the use of the dimension
reduction method MDS, which is based on the SMACOF algo-
rithm [dLM09]. To calculate the pairwise distances between s fea-
tures, a matrix of dimension s2 is required, which is why the num-
ber of features to be compared is currently limited by the size of the
RAM. The computation time is bound to the computation time of
the SMACOF algorithm, which is O(s3×k), where k is the number
of iterations. These performance issues could be solved, by using a
more effective implementation of the MDS [Bae08].

6. Discussion

Reflection of the Method. Throughout the development of CoSi,
we regularly reviewed the mock-ups of each widget with the mate-
rial experts. We discussed with all participants whether the strong
data reduction would make an exploration problematic. All agreed
that CoSi would mainly be used to give an overview of the data, so
for them the data reduction was appropriate. One respondent noted
that "This tool is a great work relief because I no longer have to look
at the datasets individually to group the materials. It helps enor-
mously to make a pre-selection of the data. Instead of two hours
I can now perform this task within a quarter of an hour". During
the evaluation, we noticed that the experts were using the tool not
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only to compare features across members, as it was intended by our
tasks, but also to examine groups of features within a single dataset
in more detail.
Scalability. The ensemble similarity explorer can handle datasets
consisting of a large number of characteristics and features, since
all are aggregated into one similarity value. The only limiting fac-
tor is the size of the memory. Visualizing a large number (~50)
of members is possible, as the ensemble similarity explorer is a
space-filling table visualization, where each member is assigned to
a single row. Since the colored patterns of the rows indicate the
similarity of the members, the height of the rows can be reduced to
a certain extent, so only the height of the screen limits the number
of ensemble members.
Generalizability. Our framework can handle high-dimensional
data ensembles from all kinds of disciplines, since our computa-
tional methods are not based on specific domain-related informa-
tion. Any data ensemble containing features with a set of numerical
attributes can be loaded into CoSi (see supplemental material).

7. Conclusion and Future Work

We presented CoSi, a visual analysis framework for the comparison
of material data ensembles. We focus on the visualization of sim-
ilarities between various ensemble members at different levels of
detail. We evaluated the functionality with two usage scenarios and
conducted a quantitative evaluation with domain experts. In our ap-
proach, the focus was on the comparison of selected features with
all features of the ensemble. But a comparison among the selected
groups of features would also be of importance and is planned as
future work.
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