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Figure 1: Hornero: Tornado outbreak March 3rd, 2019, Southeastern US. Hornero shows one of the thunderstorm clusters captured by
the radar NEXRAD:KVAX near the city of Valdosta, United States. On the center, (a) shows the intensity of a given storm, (b) the storm
trajectories, and (d) the storm graph structure as detected by Titan [DW93]. On the left, (f) shos the temporal evolution of the storm intensity,
and (g) a multivariate analysis of all available properties. On the right, (c) shows a detailed view of one storm cell and (e) the probability
distributions associated to characteristics of a storm cell to develop (nowcasting).

Abstract

Analyzing the evolution of thunderstorms is critical in determining the potential for the development of severe weather events.
Existing visualization systems for short-term weather forecasting (nowcasting) allow for basic analysis and prediction of storm
developments. However, they lack advanced visual features for efficient decision-making. We developed a visual analytics tool
for the detection of hazardous thunderstorms and their characterization, using a visual design centered on a reformulated expert
task workflow that includes visual features to overview storms and quickly identify high-impact weather events, a novel storm
graph visualization to inspect and analyze the storm structure, as well as a set of interactive views for efficient identification
of similar storm cells (known as analogs) in historical data and their use for nowcasting. Our tool was designed with and
evaluated by meteorologists and expert forecasters working in short-term operational weather forecasting of severe weather
events. Results show that our solution suits the forecasters’ workflow. Our visual design is expressive, easy to use, and effective
for prompt analysis and quick decision-making in the context of short-range operational weather forecasting.

CCS Concepts
• Human-centered computing → Visual analytics; Visualization application domains;

1. Introduction

According to the UN Office for Disaster Risk Reduction (UNDRR),
the indirect economic losses caused by climate-related disasters in-

creased by over 150% during 1998–2017 in comparison to 1978–
1997 [WH18]. Among the most prominent high-impact weather
events are thunderstorms capable of rapidly developing flooding,
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large hail and strong surface winds. Forecasting such effects of
thunderstorms is still a challenge. During a thunderstorm outbreak,
expert forecasters need to analyze in detail a large amount of data.
Observation systems (like satellites and radars) provide new in-
formation at time frequencies in the order of seconds to minutes
and with relevant events taking place simultaneously at different
locations over the region of interest. Moreover, some relevant thun-
derstorm characteristics are difficult to detect and require careful
inspection of multidimensional radar features and their temporal
evolution over a particular storm cell or cluster. Currently, there are
two groups of operational techniques that can be used and com-
bined to provide human forecasters with an adequate guidance for
issuing short-time warnings [SXW∗13]: numerical weather predic-
tion and data-driven prediction (also known as nowcasting). The
latter is based on the extrapolation of weather radar data in time us-
ing different approaches like optical flow [PNPH∗19], tracking of
individual convective cells or convective cell clusters [DW93], ana-
log forecasting [AZ15] or deep learning [FSN∗19, ASH20]. Ana-
log forecasting and deep learning not only allow nowcasting the
storm’s movement, but also the anticipation of changes in its inten-
sity or shape.

However, despite the high degree of automation involved in
these forecasting techniques, the final decision of issuing a severe-
weather warning for a particular region is always taken by human
forecasters who detect potentially dangerous thunderstorms and de-
cide which area will be imminently affected by them. In this work,
we present a visual analytics framework for the visualization of
thunderstorms based on weather radar data, storm tracking by a
storm cell identification and tracking software (i.e., Titan [DW93]),
and probabilistic forecast generated by an analog-based nowcasting
system (e.g., Atencia Zawadzki [AZ15]).

Several efforts have been undertaken in both the meteorology
community and the visualization community [RBS∗18, AHG∗19]
to visualize meteorological data. Most of them concern analytical
tasks, but not operational weather forecasting. In an operational
setup, the human forecaster needs to analyze huge amounts of data
in an efficient way, make quick decisions, and communicate fast
alerts in the range of minutes to hours. In particular, only a few
works [UCAb, UCAa, Nin] address the visualization of very-short-
term weather forecasting that takes place between a few minutes
and six hours. Although these tools visualize weather radar data
and trajectories, there is still a need of integrating storm tracking
results and basic radar data and their properties at different levels
of abstraction and with enough simplicity to make quick decisions
in the context of nowcasting.

To address forecasters’ needs, we designed Hornero, a web-
based visual analytics system that integrates storm tracking data
and weather radar data to facilitate the detection and nowcasting
of thunderstorms. The novelty of our approach mainly resides in
the balanced combination of visualization techniques. The selected
techniques are not novel per se, but they are novel in this context of
operational weather forecasting. Our contributions consist of:

1. A new visualization framework for operational nowcasting com-
bining overviews of the recent evolution of thunderstorms, storm
cells, and cell clusters, seamlessly integrated with a visualiza-
tion of 2D fields of radar data, interactive multivariate analysis

of different storm parameters (e.g., intensity, vertical height, hail
production probability, etc.), and past storm cells analysis.

2. A novel visual representation of storms using an abstract graph
structure with a geographic cluster-based layout and collapsible
nodes to cover a large temporal storm evolution.

3. A visualization overview of analog-based nowcasting results.
The overview is performed by the inspection of past storm cells
similar to the current state of the latest available time step, or a
selected storm cell of interest.

We evaluated our system with domain experts in an iterative pro-
cess. In the first round, we gathered feedback on our visual design
choices and the usability of our tool. This feedback helped us to re-
fine the users’ requirements, to improve our design, and to incorpo-
rate important functionality needed for the forecasters. We accord-
ingly adjusted our visualization tool, and reevaluated in a second
round of interviews the expressiveness, easiness, and effectiveness
of our visual design, task abstraction, and provided functionalities.
This approach helped us to adjust our visual design to the specifics
of the domain tasks, such as rapid detection, prompt analysis, and
quick decision making.

2. Related Work

The related work covers two main areas: visualization techniques
for spatio-temporal and atmospheric data sets, and visualization
tools for nowcasting and issuing of severe weather warnings.

2.1. Visualization Techniques for Spatio-temporal and
Atmospheric Data Sets

A recent survey from Afzal et al. [AHG∗19] provides a compre-
hensive overview of the state of the art covering the most popu-
lar visual approaches for ocean and atmospheric data sets. The au-
thors present several taxonomies with respect to application area,
visualization technique, interaction, and data type. Covered are, for
example, visual abstractions and annotations for uncertainty visu-
alization of weather ensembles [ME18, LPCRH18], clustering al-
gorithms [FKRW16,KRRW18], isosurfaces, histograms, and time-
series [HMC∗13, HMZ∗14], among others.

Akiba et al. [AM07] introduced the use of parallel coordinates
and time series in the interface for analyzing time-varying multi-
variate volume data, and studied their usefulness analyzing a hur-
ricane simulation. Inspired by these previous designs, we included
parallel coordinate plots (PCP) and time series as part of our de-
sign, to help the experts in studying the behavior of storms and
their cells. Ma and Entezari [ME18] presented an interactive vi-
sualization framework to address the complexity of interpretation
of spaghetti plots, for the analysis of uncertainty. They created a
visualization named “mode plot” to visually encode high-density
clustering results and provide an effective summary of the distri-
bution of ensemble isocontours. Although the focus of this work is
on uncertainty analysis and visualization of ensembles, their mode
plot abstraction shares similarities with our storm graph structure.
However, we differentiate from their work in the visual mapping of
2D clustered regions, named storm structures, into a graph diagram
with a geographically clustered and temporally arranged layout.

Kumpf et al. [KTB∗17] presented a visual analytics solution to
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analyze the sensitivity of clustering results with respect to changes
of a selected region. Among the visualization components of their
solution, they provide 2D maps and spaghetti plots, as well as two
abstract views: a cluster-centric view and a member-centric view.
The member-centric view shares some similarities with our ap-
proach. The authors also used a circular structure and a cluster-
based layout based on the two first principal components from a
principal components analysis. Contrary to this work, we employ
a two level clustering approach. The first clustering pass is done
by Titan, which identifies the storm clusters. We show the storm
clusters as a connected graph. The second clustering pass is done
geographically. We group sub-graphs that are close to each other
in geographic space. Later Kumpf et al. [KRRW18] developed a
visualization framework based on Met.3D for ensemble sensitivity
analysis (ESA) of particular regions, visually encoding statistically
coherent regions, automatically tracking them in time, and visual-
izing the trajectory paths and geospatial evolution of the sensitives.
Our approach shares with the work of Kumpf et al. that we extract
and represent geographic structures. While they focus on correla-
tion structures, our primary target are storm structures. We also an-
alyze splitting and merging of trajectory paths. However, we do the
automated tracking using Titan, and then we post-process and visu-
alize the results. Furthermore, we add a new 2D level of abstraction
using a storm graph structure, and we do not use 3D visualizations
because they impose a higher cognitive load and therefore are less
suitable for an operational forecasting setup.

Andrienko et al. [AAB∗13] presented a comprehensive overview
of visualization techniques for movement data. Additionally, An-
drienko et al. [AAF∗15] also presented a novel algorithm for sup-
porting event stream monitoring of spatio-temporal events, their
clusters, and their evolution in real-time. The main goal of the pa-
per is the on-the-fly separation of event clusters from noise and
the immediate presentation of significant clusters and their evolu-
tion. They support the analysis by a visual analytics system with
trajectory visualizations, timeline views, and space-time cube visu-
alizations. Contrary to [AAF∗15, FKRW16], in our approach, the
cell identification, clustering, and tracking of storms us done us-
ing Titan’s Storm Cell Identification and Tracking (SCIT) [DW93].
Moreover, some of the techniques and the general approach for
spatio-temporal events do not directly fit our users’ needs. For
example, 3D visualizations such as isosurfaces used by Ferstl et
al. [FKRW16], or the space-time cube [AAF∗15] have a high cog-
nitive load. Therefore, they may not be the most suitable option
for quick analysis and decision making that operational forecast-
ers need to perform in the context of nowcasting. While Andrienko
et al. [AAF∗15] and Ferstl et al. [FKRW16] target a similar appli-
cation area, the main difference is that our visual design and task
workflow are focused on decision-making. Our storm graph struc-
ture is an abstract representation of the storm clusters as detected
by Titan, which facilitates and complements a forecasters’ quick
analysis and decision making.

2.2. Visualization Tools for Nowcasting and Issuing Severe
Weather Warnings

Rautenhaus et al. [RBS∗18] covered vast related work in visual-
ization tools used for meteorological data analysis. Some of the

most frequently used tools in meteorology include general pur-
pose plotting tools (e.g., matplotlib [Hun07]), and more dedicated
visualization tools like GrADS [KI93], VAPOR [Nata, LJP∗19],
Met.3D [RKSW15], etc. Although these are very powerful tools,
they are too complex for the purpose of nowcasting where the fo-
cus is on prompt analysis and quick decision making. More specific
tools for nowcasting and warning of severe weather hazards in-
clude AWIPS [UCAa] (the Advanced Weather Interactive Process-
ing System), a meteorological decoding, display, and analysis pack-
age originally developed by the United States’ National Weather
Service. WarnGen [UCAb] is a tool based on the AWIPS CAVE
platform for creating and issuing weather warnings. WarnGen al-
lows for the visualization of radar data and offers storm tracking
functionality. However, it does not provide information about the
storm structure and topology. NinJo [Nin] is a client-server sys-
tem for processing and displaying meteorological data. It allows
for the visualization of data layers using information coming from
station measurements, radar echoes, and model data. NinJo is clos-
est to our work, providing visualization components for the display
of Storm Cell Identification and Tracking (SCIT) data. However, it
aims to facilitate a distinct set of tasks and thus uses a quite dif-
ferent visual design. We use abstract visualizations such as a di-
rected graph visualization to show storm graph structures, and par-
allel coordinate plots to easily and quickly provide an overview of
storm properties and their relations. Our complementary abstract
views have shown to be expressive, easy-to-use, and effective for
domain experts. Moreover, NinJo and AWIPS, which have proven
to be good tools for analysis and decision making, are currently in
use by several national weather services as desktop applications,
while Hornero brings the analysis and decision making process to
the web.

3. User Tasks

Hornero is designed as a visualization tool for meteorological data
to support real-time decision making concerning severe weather
warnings. Currently, it is available for weather radar data, but it
is extensible to other data types. We work with meteorologists and
operational weather forecasters that on a daily basis need to ana-
lyze and make quick decisions about severe weather events. The
complexity, i.e., spatial resolution, time resolution, and diversity,
of data that need to be considered by an expert forecaster to issue a
severe weather warning has increased significantly in recent years.

The main goal of Hornero is to provide expert forecasters with
a tool that allows them to analyze storms at different levels of ab-
straction in a limited amount of time. We followed an iterative and
participatory design process. We centered our design on the vi-
sual analysis of thunderstorms. We collaborated in all stages of the
project with a primary domain expert, who is also a co-author of
this paper. Then, we interviewed two domain experts for an initial
feedback about the visual design. In a second stage, we evaluated
our approach with three other domain experts that did not partici-
pate in the first interviews. With the help of the domain experts, we
identified key tasks that expert forecasters perform on a daily basis,
when facing a potential severe weather event associated with thun-
derstorms (see Figure 2). We summarized the visualization tasks
and created a new task workflow based on this information:
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T1-Surveillance: visualize data coming from different weather
radars to get an overview of which locations are affected by thun-
derstorms now and will potentially be affected in the near future.

T2-Ranking: visualize additional properties, identify, and rank
high intensity storms.

T3-Analysis: visualize further information for a particular storm
cell or storm cluster and explore its properties in more detail
looking for possible indications of severe weather potential. This
task includes the inspection of the recent history of storm cells
and storm clusters.

T4-Forecast: based on available nowcasting tools, produce an es-
timate of the near future evolution of the storm (usually for the
next minutes to a few hours) and quantify its uncertainty. Task
T4 also implies the decision making itself, generation of reports,
and communication to decision makers.

                   

Yes

No

T1: Surveillance 
Storms in the operative weather radars

T2: Ranking
Identify high intensity storms

T4: Forecasting
Decision making and reports

T3: Further Analysis
Structure and associated phenomena

Figure 2: Hornero’s tasks workflow adapted from the domain ex-
perts’ feedback and task workflow.

4. Hornero’s Working Processes

Hornero is a visualization system that integrates information com-
ing from weather radars, storm identification and tracking systems,
as well as nowcasting data through the use of interactive visual
analysis.

In the following, we describe the processes and methods used
to generate and analyze the data being visualized (i.e., radar data,
storm trajectories, and their forecast).

4.1. Storm Identification and Tracking

We use storm identification and tracking data generated by Ti-
tan [DW93]. In Titan, a storm structure is described as an object
composed of connected pixels in a weather radar reflectivity image
(see also Figure 3). Radar reflectivity is a measure of the backscat-
tering produced inside clouds. It depends on the amount of wa-
ter and its shape contained in the volume illuminated by the radar

beam. Titan uses minimum and maximum reflectivity thresholds to
identify a storm object also referred to as a storm cell. Once the ob-
ject is defined, several geometric characteristics, like the position of
the centroid, its area and orientation are computed. Titan also pro-
vides more specific characteristics that are derived from the radar
data. These characteristics include storm cell properties such as the
maximum cell reflectivity measured in dBZ (Max dBZ), the height
of the maximum cell reflectivity (Height Max dBZ), the cell top
height (Cell Top), the cell volume (Cell Volume), the cell projected
area (Projected Area), the cell mean area (Mean Area), the Verti-
cally Integrated Liquid Water (VIL), and the hail mass (Hail Mass)
contained in the storms.

Tracking of storm cells is conducted using an optimization ap-
proach in which the solution of the tracking problem is found by
minimizing a cost function designed to penalize large storm dis-
placements and abrupt changes of storm properties in time. Partic-
ular attention should be paid to the merging and splitting of storm
cells since these events are usually associated with relevant phys-
ical processes. Titan handles merging events using a two step cri-
terion that involves an extrapolation of terminated trajectories at
time t and the superposition of extrapolated trajectories with cells
detected at time t + δt. In the case of splits, all terminated trajec-
tories are extrapolated in time, and if new objects are within the
area of the extrapolated objects, then these events are treated as a
split. Sometimes storm tracks obtained by Titan result in several
short-lived splits followed by merging. This is due to the threshold
based cell identification algorithm implemented in Titan. In order to
remove these spurious features, when many close storm cells con-
verge into one average centroid, we merge them into one trajectory
line.

Storm cell identified by Titan 

Weather Radar Reflectivity

Figure 3: Radar reflectivity at a specific time step and correspond-
ing to a given storm cluster.

4.2. Analog-based Nowcasting

Forecasting systems are essential tools on which expert forecast-
ers rely when issuing severe weather warnings. In this work, we
generate a probabilistic forecast for the properties of each storm
cell or cluster (e.g., maximum reflectivity, hail production po-
tential) based on an analog regression approach inspired by the
work of Atencia and Zawadzki [AZ15]. Given the properties of
a storm cell detected in the latest available radar data, we search
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for similar storms in a database of past events. We use a simi-
larity metric based on the storm cell properties provided by Ti-
tan and inspired by the SALdEdA (Structure, Amplitude, Loca-
tion, difference in Eccentricity, and difference in Area) variables
and algorithm presented by Shah et al. [SNB15]. In Equation 1,
the similarity metric is defined as a weighted sum of the differ-
ences between two consecutive storm cells i and j, of volume
dV = |Cell_Volumei −Cell_Volume j|, maximum altitude dAl =
|Cell_Topi − Cell_Top j|, max reflectivity dL = |max_DBZi −
max_DBZ j|, eccentricity dE = |Eccentricityi−Eccentricity j|, and
mean area dA = |Areai−Area j|:

Ci, j(x) = w1dVi, j +w2dAli, j +w3dLi, j +w4dEi, j +w5dAi, j. (1)

In the current implementation, the variables are equally weighted
and normalized. In our approach, the similarity metric relies only
on storm properties extracted from radar data, however, other
choices are possible including for example a characterization of the
storm’s environment as in the work of Atencia et al. [AZ15].

Based on the similarity metric, the N most similar storm cells
are identified as the analogs. N is a parameter that can be chosen
by the user to optimize the method, a value of 20 is used in the
examples discussed in this work. The optimal value for this pa-
rameter may depend on the database size and on the climatological
characteristics of the precipitation systems. Then an ensemble of
possible future storm states is obtained from the posterior evolu-
tion of the identified analogs. This ensemble provides a forecast for
the future storm cell properties and an estimation of its uncertainty,
thus allowing for the estimation of the probability associated with
future events (e.g., an intensifying storm, an enhancement of hail
production potential, etc.). Since the focus of our work is on the
integrated visualization of radar data, trajectory data, and nowcast-
ing data, the analog technique is implemented in a rather simplified
way. The database of past storm cells and clusters detected by Titan
consists of three months of radar data. Given the characteristics of
the analog regression, this is not large enough to provide meaning-
ful results in operational applications, but is sufficient to show the
advantages of the developed visualization framework.

5. Visualization Design

Our visualization task workflow is based on the task workflow rec-
ommended by the Warning Decision Training Division, NOAA,
National Weather Service [fEIb], and the specific task workflow
identified with our collaborating domain experts (see Figure 2). We
adapted their workflow and defined visualization tasks based on
Brehmer and Munzner’s typology of tasks [BM13].

5.1. Visualizing Radar Reflectivity

In task T1 (Surveillance), forecasters first need to see the horizontal
distribution of radar reflectivity and other properties derived from
the radar data as a basis for their analysis. They progressively add
properties and associated parameters such as intensity, presence of
hail, topological structure, and others, to understand the severity of
the storms. To provide them with a familiar overview of the thun-
derstorms, we designed a storm map visualization. By using the
storm map, users can focus on the visualization of radar reflectiv-
ity, and overlay extra information as part of the data presentation

context. Figure 3 shows the radar reflectivity as a basis for the anal-
ysis (focus) and the contour lines corresponding to the complete
storm evolution (context). Forecasters can add other properties such
as cell volume, hail, etc., as new layers to the map. The user can
click on any other geolocated area inside the storm contour lines
and see the identified storm cells. Additionally, using a storm an-
imation slider, the user can follow the complete storm evolution.
The domain expert can also switch the analyzed property through
elements in the user interface. Currently, the application can visual-
ize most of the properties computed by Titan. We selected comple-
mentary color schemes that are sufficiently different to distinguish
between weather properties such as intensity, volume, and hail
mass, following well-established guidelines for color visualization
of environmental variables [Dat, QM15]. We use the HCL Color
Advisor [ZFH∗20] for generating colorblind-safe color schemes.
We chose a colormap visualization for this task because (1) storms
are inherently spatial and (2) our experts are highly trained in spa-
tial visual analysis. They can quickly identify changes on the map,
make rough estimations of distances between storm cells or time
steps (for example identify rapidly growing storms), and quickly
review the temporal evolution of storms over a geographic area,
such as areas of recently developed storms. To visualize the storm
cell areas, we employed color and contour lines, because our do-
main experts are familiar with these visual variables, which they
utilize on a daily basis.

5.2. Visualizing Storm Tracking Paths

The visualization of storm paths can reveal important aspects of a
storm, related to its potential for generating severe weather con-
ditions. Persistent and strong storm cells are often responsible for
several high-impact weather events. Also, the split of a storm cell
may be indicative of its potential to become a "supercell" [Natb],
which is a kind of thunderstorm that is frequently associated with
high-impact weather events such as large hail, heavy precipitation,
and tornados. The occurrence of merging events can reveal the
upscale growth of individual convective cells into storm clusters.
These are known as mesoscale convective systems, sometimes as-
sociated with events of widespread strong winds and heavy precip-
itation. Therefore, this view is useful for tasks T2 (Ranking) and
T3 (Further Analysis). We designed a trajectory view using the in-
formation of storm cells and storm cell paths pre-processed by Ti-
tan [DW93]. To visualize the storm paths, we use gray polylines
and employ opacity to indicate the passage of time, and line thick-
ness to visualize acceleration. We decided not to use color again
for the trajectories, or other visual variables such as texture to re-
duce the cognitive load of each visual component as required by
domain experts. We found simple polylines appropriate to depict
storm trajectories since most of the times, thunderstorms follow
smooth paths with soft turns. Figure 4 shows an example of a con-
glomerate of storms that bifurcates to the NE and develops into a
supercell storm.

5.3. Identifying Interesting Storms

Forecasters need to quickly identify storms that can turn into haz-
ards, for example based on their large volume, presence of hail, or
high intensity. For task T2, we describe them as interesting storms.
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(b) Zoom in - Trajectory view

Supercell

(c) Zoom in - Backward flow

30 km3 17047 km3

(a) Cell Top map overview

Figure 4: (a) Storm height overview (cell_top) and two zoom ins (b) and (c) of the trajectory view for one of the storm branches identified by
Titan during the tornado outbreak, May, 27, 2019. (c) shows abrupt changes of direction in the storm path, depicted as black dashed arrows.

We found parallel coordinates plots (PCP) to be a suitable option
since they visualize pairwise relationships between multiple storm
properties. We designed the characteristics view that allows fore-
casters to easily filter multiple properties of potentially dangerous
storms and to inspect potential relations between them. Figure 5(c)
shows a filtered geolocated branch.

5.4. Analyzing Storm Splitting and Merging Behavior

Analyzing the splitting and merging of storms together with other
properties such as intensity allows forecasters to gain a better un-
derstanding of the storm development. Questions concerning which
branches grow faster, are new, die, or merge with other branches
can be answered. The analysis task T3 helps the experts to iden-
tify and focus on the storms that are developing into dangerous
phenomena. For example, under certain conditions, the transition
of a storm cell into a supercell is preceded by a storm bifurca-
tion. The advantage of the storm graph structure is that the splitting
and merging of storm cells can be seen and identified at a glance
by the analysts. We designed a graph layout using information of
geographic clusters, as it is shown in Figure 6. Storm and storm
branches that are closer geographically will be closer in the graph
as well, and vice-versa. The designed layout, named cluster-based
graph layout, helps the user to easily identify storm branches that
are geographically close to each other. This layout is supported by
the perceptual Gestalt law of proximity. It especially helps when
the storm structure is large, and contains multiple branches com-
ing from different geographic areas. Moreover, the graph provides
the option to collapse consecutive time steps into one single glyph.
This feature is particularly useful when dealing with large tempo-
ral storm structures (see Figure 6). Each graph node is colored
by using information of a selected storm property under analysis
(e.g., maximum reflectivity, hail production potential, etc.). We de-
veloped our visual design with a focus on simplicity and aesthet-
ics provided by the Gestalt laws of proximity (clustered layout),
similarity (color encoding), and continuity (collapsible features).
By filtering a subset of interesting storm cells, the analyst can in-
spect their properties, temporal evolution, and topological struc-
tures. More details of the algorithms implemented for the storm-
graph structure can be found in the appendix.

5.5. Analyzing the Temporal Evolution of Storms

The domain experts expressed the need for simple visualizations as
a baseline for their analyses. We provide a line-chart component,
named temporal-evolution view. It depicts the temporal evolution
of storm cells as detected by Titan, for any of the available storm
properties. The storm map visualization, the graph-storm structure,
and the temporal-evolution view share the same color encoding,
associated to the property in analysis. For example, Figure 7(a) de-
picts the hail mass evolution over time. This view displays the tem-
poral development of a tornado outbreak, presenting hail mass on
different branches with a peak at 02:54 UTC, and a small peak at
03:17:54 UTC. The peaks can be visualized on the map for further
analysis. By looking at the horizontal axis, it is possible to detect
splits and joins of different storm cells that share the same time but
have different properties values (see Figure 7(a) and (b)). Together
with the temporal animation, these views help to reconstruct the
complete evolution of the storms in analysis.

5.6. Forecasting

Expert forecasters need to communicate potentially dangerous
storm structures that can transform into severe hazards as outlined
in T4 (Forecasting). To support this critical task, we developed a
visualization component named analogs view. The analogs view
consists of series of histograms displaying the frequency distribu-
tion of future storm properties estimated from its analogs, as de-
fined in Section 4. The main purpose of the analogs view is to en-
able the expert forecaster to evaluate how likely it is that the cur-
rent storm cell will develop into a dangerous phenomenon, based
on the analysis of its analogs. For the i− th analog, we consider its
time evolution after the time frame it was identified as an analog of
the current storm under analysis. Then we compute the maximum
value of a given storm property during that time period (P(i)max).
Finally, we construct the histogram of P(i)max. We selected a his-
togram visualization because it is a familiar visualization for the
domain experts. The color encoding chosen for the histogram is the
same as the color encoding chosen for each available storm prop-
erty. The bin containing the value of the property for the current
storm under analysis is indicated by a shaded/textured bar. This en-
coding helps to rapidly compare the expected future values of the
property, as provided by the analogs, with the current value. Our vi-
sualization component supports all ensemble-based techniques that
provide samples of the possible storm evolution. The probability
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(a) Max DBZ (Reflectivity - Intensity visualization) (c) High Intensity reflectivity(b) Multivariate Analysis: Overview
Cell 

Volume
Mean 
Area VIL Hail 

Mass
Max 
DBZ

Projected
 AreaCell Top

Selection of interesting 
storm property values

Selected storm cells

Figure 5: Using the Characteristics view (b), forecasters can filter storms to analyze the May 27, 2019 outbreak. The left plot (a) shows a
storm intensity overview (Max_DBZ). (b) shows the selection of cell volume, intensity (Max_DBZ), and VIL for filtering potentially dangerous
storm cells. The right plot (c) shows the resulting query on the map by brushing on the Characteristic view.

Collapsible
nodes 

Branch 1

Branch 1

(a) Storm map and trajectory view

40.69 dbz 68.69 dbz

Branch 2

Branch 3

Branch 2

Branch 3

(b) Storm graph structure

Figure 6: Storm structure overview. (a) shows the storm map and
trajectory view revealing three storm structures with SW-NE di-
rection, (b) shows the corresponding storm-graph structure. High-
lighted are the three aforementioned branches. Large chains of
nodes belonging to the same storm branch are collapsed

distribution function can be computed from them and future values
for these properties can be approximated.

6. Implementation

Hornero is composed of a backend server and a frontend client,
which consumes the information provided by the server (see Fig-
ure 8) The server provides a set of API endpoints where requests
can be made from the frontend. The basic endpoints provide infor-

Time step: 02:45:00 UTC

0 kg 2.92734 kg

Hail Mass

(a) Temporal evolution

(b) Selected storm cells

Figure 7: Temporal-evolution view. Tornado outbreak, May, 27,
2019. The timeline shows at time 02:45:00 UTC three storm cells
with a significant estimated hail mass. The most significant storm
cell, highlighted in dark blue, can be observed near Dayton, one of
the areas most affected by the tornados.

mation about storm structures, storm cells (or nodes), and edges.
The frontend is written in Javascript, jQuery, and D3.js. It has sev-
eral well-defined and extendable view components. Each visualiza-
tion component can also open a dialog for presenting information.
Hornero uses Leaflet [Vla] for rendering the underlying map. El-
ements that are drawn on top of the map are composed of native
leaflet objects. The visualization endpoints can, when displaying
information in their corresponding dialog window, use the render-
ing backend that is best suited. We use weather radar data coming
from the Next-Generation Radar (NEXRAD) stations provided by
the NOAA [fEIa]. NEXRAD provides radar reflectivity data with
a spatial resolution of 460 km since June, 1, 1991. For the present
study, we use data from selected cases on March 3, 2019, captured
by the radar NEXRAD:KVAX near the city of Valdosta, and on
May, 27, 2019, captured by the radar NEXRAD:KILN near Cincin-
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Figure 8: System architecture. Hornero has a client-server ar-
chitecture, with visualization components containing frontend and
backend layers. It provides endpoints for the retrieval of basic in-
formation, such as storm properties and time steps. This informa-
tion is consumed by a frontend which provides different views and
interactions to the user.

nati, Ohio. The source code and web application are available at
http://stormtrack.cg.tuwien.ac.at/.

7. Use Cases

We analyze a tornado outbreak that took place on March 3rd, 2019
over the course of approximately six hours, with a total of 41 torna-
dos spreading over Alabama, Georgia, Florida, and South Carolina.
We selected this event due to its devastating power and constitution
with several storm clusters happening simultaneously [Sto].

Tornado outbreak, time step: March 3, 2019, 23:55:21

(a) Radar overview (b) Latest time step

(c) Max DBZ - Reflectivity Intensity Overview (d) Storm cell properties

30 km3 17047 km3

39 DBZ 77 DBZ

DBZ

Figure 9: Thunderstorm that extends towards Florida’s coast near
Savannah. An overview of the radar data for the latest time step
(March 03, 2019 23:55:21) can be seen. (a) the radar reflectivity
corresponding to the selected time step, (b) the storm cell detected
by Titan at the selected time step, (c) the complete reflectivity inten-
sity evolution (max dbz), and (d) the storm cell properties.

We first look at the latest radar data, corresponding to T1
(Surveillance). The storm map view enables the analysis of radar
data coverage, as shown in Figure 9(a), with Figure 9(b) showing
the location of a selected storm cell at the same time step as in Fig-
ure 9(a). By using the storm animation along the contour lines, we

(a) Cell top distribution

(b) Storm Graph Structure

Time step before splitting
2019-03-03 19:55:08 UTC

Filtering storm cells with large height

Cell Volume Mean Area VIL Hail MassMax DBZCell Top Projected Area

0.975 km 8.575 km

(c) Multivariate Analysis

Figure 10: Analysis of storm cells that can reach the highest alti-
tudes: (a) shows the cell top distribution after applying a filtering
to the characteristics view, (b) and (c) show the time step before the
bifurcation into the Northeast and the Southeast branch that leads
to the development of high altitude storms. All views are linked and
color encoded based on the selected variable.

continue with the analysis of the storm development. The storm-
system path starts to the north of Tallahassee. This is possible to see
by using the trajectory view shown in Figure 9(c) and Figure 10(a).

By analyzing the storm map and trajectory view, facilitating T2
(Ranking), it becomes apparent that most of the storm structures
maintain a SW-NE trajectory. However, the southernmost branch
slowly turned into a WSW-ENE trajectory possibly indicating a
transition into a thunderstorm supercell as shown in Figure 10(a).
Its trajectory consisted of two branches that touched each other at
19:50:31 (see Figure 10(b)), and then split again into other three
branches: one of them heading towards Georgia, another one to-
wards Evergreen Forest Land, and the Southeast one towards the
coast near Savannah. The integrated analysis of reflectivity fields
and storm tracking results, by using the storm map together with
the trajectory view and storm graph structure, helps the expert to
efficiently verify if the behaviour detected in a particular storm cell
represents a relevant aspect of the evolution of the storm, or just a
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(a) Map view - Hail mass distribution

(b) Hail mass: Time chart selection

(c) Hail mass: Temporal distribution

11.2192 kg0 kg

Figure 11: (a) Hail mass development during the tornado outbreak,
March 3rd, 2019. (b) Analysis of hail mass in a thunderstorm. Sev-
eral independent branches joined and converged into a big struc-
ture. (c) Temporal evolution of the selected thunderstorm showing
two peaks with high concentrations of hail mass.

spurious effect associated with the limitations of the tracking sys-
tem. The interactive visual analysis using the multiple coordinated
views offers additional information for the detection of important
features in the evolution of storms. For example, a change in the cell
movement combined with an intensification in terms of reflectivity
provides more certainty on the possible transition into a supercell
structure. This analysis corresponds to task T3 (Further Analysis).

Figure 10 reveals that after splitting of the storm, the southeast
branch gains height. This information adds to the high intensity
shown in the storm intensity visualization in Figure 9(c). Higher
storms are associated with stronger updraft, which also increases
the potential of the storm to produce severe weather events such as
large hail or strong surface winds. This phenomenon can also be
seen in Figure 10(b) as the chain of storm cells that increases in
height (cell top), highlighted in the storm map. This investigation
corresponds to T3 (Further Analysis) and T4 (Forecasting) tasks.

We continued with the analysis of potential large hail in the thun-
derstorm. Figure 11(a) overviews of the development of hail mass
over time and space. Figure 11(b) shows a detailed view for the
selected thunderstorm. By the interactive analysis of the tempo-
ral evolution view and the storm map view, we notice two peaks
associated with a large hail potential (see Figure 11 (b) and (c)).
The color encoding and interactive brushing over both views facili-
tates the quick spatio-temporal analysis of hazardous events, in this

case hail. The coordinated and linked views facilitate the analysis
of consistency in the evolution of different storm properties. For
example, an increasing hail production potential associated with an
increasing height or storm intensity provides more certainty to the
analysis. If all these attributes were to be analyzed using individual
views at different times, the task would be highly time consuming.

(a) Storm cell - latest time step

(b) Past analog storm cells - all variables statistics

42.36 dbz 67.31 dbz

Cell Volume (km3) Mean Area (km2)

VIL (kg m-2) Hail Mass (kg)Max DBZ (dbz)

Projected Area 
(km2)

Cell Top (km MSL)

Height Max DBZ 
(km)

High intensity probability Presence of hail

Figure 12: Probability distributions associated to the latest time
step (23:55:21 UTC) affecting the Florida coast near Savannah:
(a) shows the selected storm cell used to search for past analogs
while (b) shows the frequency distributions among analogs,
P(i)max, for cell volume, cell top, projected area, mean area, max-
imum reflectivity, height of maximum reflectivity, vertically inte-
grated liquid and hail mass, corresponding to the storm cell in (a).

The primary intended use of Hornero is the rapid investigation of
possible relevant storm cells by expert forecasters for warning issu-
ing applications. Domain experts indicated that the system can also
be useful in the context of a post-factum analysis of past storms.
One application is the validation of warnings issued in the past
by comparing them with the observed storm trajectories and be-
haviour. Hornero enables the efficient identification of the spatial
and time locations associated with intense storms, thus providing
valuable information for the comparison with the time frame and
region included in a particular warning. Moreover the characteris-
tics and trajectory view can help to characterize storm behaviour
prior to the occurrence of a high impact weather. This visual inter-
active features provide valuable data to elaborate better forecasting
rules or better variables that can be useful for forecasting thunder-
storms (e.g., by defining better metrics for analog selection).

Finally, we chose the latest radar data available for the selected
storm cell (see Figure 12(a)). We visualize the potential hazard of
this cell by showing the probability distributions of similar past
storm cells (see Figure 12(b)). The probability distributions indi-
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cate a high likelihood that the storm will continue to grow in in-
tensity and that hail mass is present. The histograms shown in Fig-
ure 12(b) present a summary of how analogs behaved in the past.
The forecaster can use this information to forecast the behavior of
the selected storm cell (Forecasting task).

Analog-based forecasting produces a large amount of data in-
cluding several possible future storms evolution for each particular
storm detected by Titan. The histogram efficiently summarizes this
information avoiding a time consuming analysis of each individual
analog. This is a crucial aspect of the design since nowcasting of
storms usually is issued for lead times in the order of a few minutes.

8. Domain Expert Evaluation

We evaluated our visual design using two rounds of semi-structured
interviews with expert meteorologists at the National Weather Ser-
vices (NWS) in Argentina, all of them with more than three years
in operational weather forecasting. One of them is the head of the
operational forecasting team at the NWS, and has strong experi-
ence in its operational workflow, two of them work as operational
forecasters, and another two are researchers working at the NWS as
well. We followed the guidelines by Lam et al. [LBI∗12] and Sedl-
mair [Sed16] to sharpen the focus and context of our evaluations.
Both interview rounds consisted of a pre-experiment questionnaire,
pair analytics session, and post-experiment questionnaire. The in-
terviews lasted approximately one hour. The evaluation form is pro-
vided as supplementary material. In the first round of interviews the
goals were: (1) to validate the domain experts’ requirements previ-
ously identified by working with our main domain expert, (2) to
evaluate our design choices, and (3) to test the usefulness of our
prototype. We presented the initial prototype to two independent
domain experts working in operational weather forecasting. Dur-
ing the interviews we followed a “think-aloud” protocol where the
interviewees could freely explore the tool and provide us with their
feedback. We adapted our visual design and functionalities based
on this feedback. In the second round of interviews, three weather
forecasters of the NWS participated, including two males and one
female researcher, all of them working on operational weather fore-
casting on a daily basis. The objective was to evaluate the im-
provements of our visual design, and assess its expressiveness, eas-
iness, and effectiveness. Our solution introduced methodological
changes to the weather forecasting workflow, such as the analogs
view, which is a first step towards forecasting thunderstorm evo-
lution based on analogs. The interviews were done via video con-
ference with screen and audio recording. We gave the interviewees
access to the tool’s URL to use it. We recorded their screens and
audio with minimal intervention from our side to reduce possible
biases. Afterwards, the participants completed an offline question-
naire and provided detailed feedback about the tool. Domain ex-
perts found the tool suitable for their daily task workflows. Results
from the interviews showed that domain experts found the visual-
izations very to extremely expressive, very easy, and very useful.
They also mentioned in the questionnaire that the tool could be ex-
tended to at least the following scenarios:

1. To perform real-time analysis and post-factum analysis. The do-
main experts foresee the use of our solution in the storm analysis

process, prior to issuing alerts or warnings, and in post-factum
situations to analyze data and verify alerts issued.

2. To monitor the meteorological situation and to carry out an anal-
ysis of the severity potential.

3. To estimate the near-future displacement of thunderstorms
within a particular region.

In the future our collaborators would like to evaluate the tool
with real-time data, and add additional data sets coming from other
sensors (e.g., satellites) and numerical weather prediction models.
To do such an evaluation will require the development of high-
performance computing algorithms, for example, to query in real-
time large historical data sets, and to retrieve multiple storm prop-
erties from past situations interactively. Regarding the data vol-
umes, the Nexrad II data for a month requires 5.4GB, while the
Titan’s post-processed output about 540MB. Currently, the geospa-
tial storm structure is queried through a PostgreSQL database us-
ing PostGIS, and the responses are obtained at interactive rates.
Future work will include an extensive performance evaluation of
the analog-based nowcasting using a larger database. Our tool is
extensible and allows for the integration of new data sets and new
visualizations components, as described in Section 6.

9. Lessons Learned and Conclusions

Some of the lessons learned during our project reinforce previ-
ous research [DPD∗15,DPD∗17,AHG∗19] and discussions during
the recent IEEE VIS 2019 “Application Spotlight" session on “Vi-
sualization in Meteorology & Climate Sciences” [IEE19]. Visual
design for quick and high-impact decision making requires user-
centered, easy, expressive, and effective visualizations. Following
these guidelines, we focused on the domain experts’ requirements,
and tried to understand their task workflows (see Section 3). Iter-
ating over two rounds of interviews was very useful to refine our
design choices. The participants responded positively and provided
constructive feedback, as discussed in Section 8. In summary, all
experts stated that the tool is suitable at many levels to comple-
ment their daily work. A next challenge will be to integrate Hornero
into their operational infrastructure that includes working with their
radar data sources, additional data sets, and current tools in use.

In conclusion, this paper presents a complete visual analytics
framework designed for thunderstorm analysis and characteriza-
tion, visual storm tracking, and nowcasting based on analogs. Our
main contributions are (1) a set of interactive views (the storm
map view, characteristics view, temporal evolution view, and storm
animation) to overview storms and quickly identify high-impact
weather events, (2) a novel storm graph visualization to inspect and
analyze the storm structure, and (3) an overview visualization of
analog-based nowcasting results.
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