
Foot Tracking in Virtual Reality

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Media and Human-Centered Computing

eingereicht von

Alexander Bayer, BSc
Matrikelnummer 00726255

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Mitwirkung: Projektass. Dipl.-Ing. Dr.techn. Christian Schönauer

Wien, 14. Oktober 2021
Alexander Bayer Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Foot Tracking in Virtual Reality

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media and Human-Centered Computing

by

Alexander Bayer, BSc
Registration Number 00726255

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.techn. Hannes Kaufmann
Assistance: Projektass. Dipl.-Ing. Dr.techn. Christian Schönauer

Vienna, 14th October, 2021
Alexander Bayer Hannes Kaufmann

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Alexander Bayer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 14. Oktober 2021
Alexander Bayer

v

Kurzfassung

Die Visualisierung der Gliedmaßen in Virtual Reality (VR) Umgebungen erlaubt den
Benutzern eine höhere Immersion und gibt ihnen auch mehr Vertrauen in ihre eigenen
Bewegungen. Leider werden diese Visualisierungen oft weg gelassen. Ein Grund liegt
darin, dass große VR Umgebungen und solche mit mehreren Benutzern schwer mit
sogenannten „outside-in“ Trackingmethoden zu realisieren sind, aufgrund von einer
möglichen Verdeckung der Sensoren. Ein anderer Grund ist, dass Entwickler nicht ihre
ohnehin kleine Benutzergruppe noch mehr eingrenzen wollen, indem sie ihnen teure
Zusatzhardware aufzwingen, die so viel kostet wie normale Hand-Controller aber nur in
einer Handvoll von Applikationen Verwendung finden.

Diese Diplomarbeit will diesem Problem Einhalt gebieten indem eine einfache Tracking-
methode vorgestellt wird, die nur eine Kopfposition von außen erhält und daher sowohl
für „outside-in“ als auch „inside-out“ Trackingmethoden geeignet ist. Das System wird
mittels einer RGB-Tiefenkamera realisiert, die auf dem VR Headset montiert wird.
Fiducial-Marker- und Tiefen-Tracking sowie Inertialsensoren werden gemeinsam zur
Abfrage der Fußposition verwendet. Diese, voneinander unabhängigen Systeme, werden
dann zusammengeführt um die Vorteile der einzelnen Methoden zu vereinen. Die so
erhaltenen Fußpositionen werden dann verwendet um einen virtuellen Avatar mithilfe
von inverser Kinematik zu animieren.

vii

Abstract

The visualisation of limbs in Virtual Reality (VR) helps to get a better immersion in the
virtual world and it creates better confidence in movement. Sadly a lot of VR applications
omit the visualisation of limbs. One reason lies in technical difficulties with bigger scale
VR environments and multi-user VR environments where you can not rely on outside-in
tracking methods because of the size and possible occlusion that hinders accurate tracking
data. Another reason is that developers do not want to exclude parts of their already
small user base by demanding special hardware for foot tracking that costs as much as
the hand controllers but is only usable in a small number of applications.

This thesis tackles these problems by generating a lightweight tracking system that only
relies on the correct tracking of the head position so that either inside-out or outside-in
tracking can be used with it. To achieve this, a RGB depth camera is mounted on the
VR headset. A combination of fiducial marker tracking, depth tracking and inertial
measurement units (IMUs) are used to track the user’s feet. These individual tracking
signals are then fused to one signal that combines the advantages of the single tracking
systems. This tracking information can then be used to animate the feet of a virtual
avatar with an Inverse Kinematics (IK) algorithm.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Aim of the Work . 2
1.4 Methodology and Approach . 2
1.5 Structure of the Work . 3

2 State of the Art 5
2.1 VR Immersion . 5
2.2 Inertial Navigation . 7
2.3 Fiducial Marker Tracking . 9
2.4 Depth Camera . 10
2.5 Sensor Fusion . 11
2.6 Inverse Kinematic . 12

3 Methodology 15
3.1 System Architecture . 15
3.2 Inertial Navigation . 17
3.3 Fiducial Marker Tracking . 18
3.4 Depth Camera . 19
3.5 Sensor Fusion . 20
3.6 Inverse Kinematic . 23

4 Implementation 25
4.1 System Architecture . 25
4.2 Inertial Navigation . 26
4.3 Fiducial Marker Tracking . 30
4.4 Depth Camera . 32

xi

4.5 Sensor Fusion . 33
4.6 Inverse Kinematic . 36

5 Evaluation 41
5.1 Technical Evaluation . 41
5.2 User Study . 45

6 Summary and Future Work 57
6.1 Summary . 57
6.2 Future Work . 58

List of Figures 59

List of Tables 61

Acronyms 63

Bibliography 65

CHAPTER 1
Introduction

1.1 Motivation

As Virtual Reality (VR) equipment gets cheaper and more widespread on the consumer
market, more people get a chance to immerse themselves in VR environments. Products
like HTC Vive and the Oculus Rift are among the first examples for affordable VR
solutions that are still technically advanced enough to deliver an immerse VR experience.
A lot of factors are important for a good experience in VR. Some of them are already in
place, like removing latency and getting screen resolutions where you can’t distinguish
every pixel. These advancements in hardware help gradually in smoothing out these
factors. This also minimises the risk of motion sickness, because the experience feels
more real.

Another factor for a better VR immersion can be found in the VR software itself. Adding
a virtual avatar for the user that represents his real life body adds a lot to the immersion
and the natural movement of the user. The animation of arms and hands are relatively
easy because there are already controllers in the user’s hands that are tracked by the
system. So for the animation a simple reverse kinematic algorithm can be used. But
animating the user’s feet is not as trivial.

1.2 Problem Statement

In a lot of modern VR games and applications, the representation of feet is omitted. The
reason for this is most of the times that additional hardware is needed to get tracking
for the feet. This additional hardware is an extra cost for the consumer that is as high
as the standard controllers for the hands, but with a lot less games and applications
that support them. So to not exclude some parts of the already small user base, most
developers omit the tracking of the feet. The hardware that is already available, like the

1

1. Introduction

HTC Vive Tracker, relies on additional hardware in the room, so called base stations, for
the tracking signal. Because of hardware limitations, the usage of outside-in tracking
with base stations is not possible in bigger VR environments. The reason for that is the
maximum distance between the base stations that limits the size of the trackable space.
So a tracking device is needed that also functions with inside-out tracking. This kind
of setup is also often used for multi-user VR environments because of the possibility of
occlusion that hinders reliable tracking data with inside-out tracking methods.

1.3 Aim of the Work

In this thesis, I want to develop and evaluate a lightweight method for foot tracking with
an inside-out tracking system that does not rely on any stationary hardware in the room.
To be independent from the tracking system, the only tracking point that should be
available to this system is the head position. A RGB-Depth camera will be mounted on
the VR headset to enable tracking of the feet through fiducial marker tracking. If the
signal from the marker tracking is lost because of partial occlusion of the markers, an
approximation of the foot position should be found with the help of the depth camera.
In case fiducial marker tracking is lost completely, inertial sensors, mounted on the feet,
should take over and approximate the foot position. To get better overall tracking data,
all three tracking methods should get fused if they are available. Using the position of the
feet, the program can then animate the feet of a virtual avatar using reverse kinematic
algorithms. Finally, I will evaluate the developed system and its effect on immersion and
compare the performance and usability against the state of the art.

1.4 Methodology and Approach

The first step is to get a state of the art overview of the topics needed to create a
prototype. The first topic is inertial navigation that is needed to get a reliable position
signal from the inertial sensors that are mounted on the user’s ankles. The second topic,
sensor fusion, shows methods on how to fuse the tracking signals from different sources
to one reliable signal. The topic on inverse kinematic has some of the algorithms to
animate the feet as a whole, especially the position of the knees. The last topic about
VR immersion shows the importance of feet for a better experience in the VR world.

The setup for the prototype is as follows: For the VR environment a HTC Vive is
used. The fact that this system uses outside-in tracking instead of inside-out tracking is
irrelevant for this thesis because only the head position and rotation is used from the
HTC Vive. So this setup can easily be used with an inside-out tracking environment as
well. An Intel Realsense Depth Camera D435 (Intel Realsense) is mounted on the headset
of the HTC Vive pointing downwards to the feet. Two fiducial markers are mounted on
the tip of the user’s toes as well as two Bosch BNO080 inertial sensors that are mounted
somewhere at the side of the user’s ankles. With this setup in place, the software uses
the fiducial marker tracking as it is reliable but a bit jittery and slow source for the foot

2

1.5. Structure of the Work

position. When the fiducial marker tracking is lost because of occlusion, then the values
of the depth camera are used to approximate the marker position with the previously
known depth values. The position data of the inertial sensors tends to drift a lot over
time but it has a high refresh rate. Therefore, it generates a smooth position value over
time. All of the three advantages of the three signals are combined and the disadvantages
are cancelled out by fusing the signals. So, the final position value should be reliable and
smooth over time. This value is used to animate the virtual avatar in the Unity engine
using a reverse kinematic algorithm.

To evaluate the prototype, it was compared to the HTC Vive Tracker that uses an
outside-in approach to track the feet. Values like the accuracy of the position signal, the
jitter of the signal, the drift and the overall latency of the system got evaluated.

A user study was conducted where users tested the implemented prototype by doing
little movements. Movements like single steps in different directions and movements
where an occlusion of the feet is possible were done by the users. The performance of the
prototype was then compared to the HTC Vive Tracker. This user study gave more real
life data than the technical evaluation. Due to the COVID-19 pandemic, the number of
participants was limited to guarantee the safety of the users.

1.5 Structure of the Work
In chapter 2 the research about the parts of the tracking system are presented. This
contains literature about VR immersion, inertial navigation system (INS), fiducial marker
tracking, depth camera tracking, sensor fusion and Inverse Kinematics (IK). Chapter
3 shows the overall design of the system and its used algorithms. The implementation
chapter 4 goes into detail about the implementation of the system itself and its used
libraries. In chapter 5 the system is tested against the HTC Vive tracking system, and a
user study is done. In the last chapter, chapter 6, the proposed system is summarised
and an outlook to future work is given.

3

CHAPTER 2
State of the Art

In this chapter, I present the fundamental technologies needed for this research project.
First I want to present the impact of virtual avatars and especially virtual feet to the
immersion in a Virtual Reality (VR) world. The second part about inertial navigation
contains information about how to use inertial sensors for position estimation and how to
detect and minimise errors. Next I want to give an overview on fiducial marker tracking
methods and the usage of a depth sensor. Then I present some algorithms to fuse signals
from different sources to one signal that combine the advantages of its sources and
minimises its disadvantage. The section about inverse kinematic contains algorithms to
calculate the joints of a kinematic chain when start and end position are predetermined.

2.1 VR Immersion
To find the importance of foot tracking for the immersion in VR, we have to first look at
the definition of immersion. The immersion can be described as the Sense of Embodiment
(SoE). Fribourg et al. describe the SoE as a composition of 3 parts: appearance, control
and point of view [FALH20].

The appearance of the avatar influences the Sense of Ownership of the user. The structure
of the virtual body, the shape and dimensions of the body parts and the render method
all contribute to the avatars realism. The Sense of Ownership gets higher if the avatar is
modelled after the user’s real body and clothes. A possible approach to realistic avatar
models is the use of 3D scanning, although this requires complex 3D capture equipment.

The Sense of Agency is impacted by the control of the avatar. The actions the avatar
can perform are judged by the user with several factors. They check if the avatar can do
what they want it to do and if their actions are related to the actions of their avatar.
Animation techniques like Inverse Kinematics (IK) can impact the Sense of Agency with
their more realistic avatar movement.

5

2. State of the Art

And lastly, the point of view represents the spatial relationship of the user and its virtual
avatar. The placement of the point of view alters the Sense of Self-Location.

These three factors of SoE are deeply correlated. For example, the usage of a less detailed
hand model for the avatar would reduce the appearance and therefore the Sense of
Ownership but it also can increase the control of the avatar because the user would not
overestimate the functionalities of its limbs. Another example would be that extra body
parts would get a higher Sense of Ownership by the user if they actually have control
over this new body part. The exact impact of these three components on SoE can not be
easily described. That is why a lot of studies only focus on one subcomponent at a time
and describe its impact on the SoE as a whole.

Some studies tried to show the importance of foot tracking for VR immersion. Kosmalla
et al. made a user study to show the impact of virtual hands and feet for VR climbing
[KZT+20]. The users had to test a virtual climbing wall with different types of limb
visualisations: With no limbs at all, with feet only, with hands only and with both, feet
and hands at the same time. The visualisation of both, hands and feet, was of course
the preferred visualisation by the users, but on the second place was the visualisation of
the feet alone. The users said that feet visualisation was more important for the task of
climbing than the visualisation of the hands.

A study by Pan and Steed tests the advantages of foot tracking when solving jigsaw
puzzles where the tiles are scattered around the room and the user had to move back
and forth from the puzzle to the tiles [PS19]. They had 3 types of participants: one
without virtual avatars at all, one with a virtual avatar but without feet and one with
a virtual avatar with feet. Participants with a virtual avatar where faster at solving
the puzzle compared to participants without a virtual avatar. Participants with virtual
feet where not faster at solving the puzzle, compared to the participants without virtual
feet, but they had better foot placement and therefore could avoid obstacles more easily.
Also participants with tracked feet felt more immersed in the virtual world than the
participants without tracked feet.

There are also other VR use cases where foot tracking is indirectly needed to create
better immersion. Boletsis and Cedergren compared three VR movement methods to
each other: Walking-in-place (WIP), Controller/joystick and Teleportation [BC19]. WIP,
the method that uses foot tracking to generate movement in the VR environment as long
as the user is moving in place, has the highest immersion rate of the three tested methods.
Sikström et al. present a within-subjects study where they are testing different audio
feedback when walking on a virtual bridge [SNdS16]. There are two types of bridges in
their study, one that looks perfectly safe and one that looks damaged and unsafe. The
user not only sees the bridge they are standing on, but also gets audio cues with every
step. This is again only possible with foot tracking.

Foot tracking enables the usage of the feet for use cases like rehabilitation and training
in an VR environment. But a lot of times somewhat bulky hardware is used for these
applications. For example Tierney et al. show VR can be used in gate rehabilitation to

6

2.2. Inertial Navigation

better serve the needs of the patient [TCG+07]. They are using a treadmill to detect
the movement of the user. They claim to use relatively inexpensive and unobtrusive
hardware. With using a more compact foot tracking solution, this project could be even
easier to use.

2.2 Inertial Navigation
An inertial navigation system (INS) uses accelerometers and gyroscopes for position,
orientation and velocity calculations that depend on formerly known values. The work
by Woodman gives an overview of the techniques and hardware needed for such an
INS [Woo07]. There are different types of gyroscopes and accelerometers but only the
micro-electromechanical systems (MEMS) variants are small enough and cheap enough
to be feasible for inertial navigation in our context. The problem with this smaller and
cheaper hardware is that it is not as accurate as its mechanical or optical counterparts.
These errors get worse when double integrating the signals to get the position data. When
we classify the errors, we could then set countermeasures to minimize the impact on the
position data. According to Hussen and Jleta there are five main types of errors: [HJ15]

• Angle or Velocity Random Walk occurs because of noise that fluctuates at a
higher frequency than the sample rate of the sensor. This noise becomes noticeable
as white-noise. The angle random walks standard deviation grows with the square
root of time, and the velocity random walks standard deviation grows proportionally
to time to the power of three halves.

• Rate Random Walk has an uncertain origin. It is random noise that has the
characteristics of Brownian noise.

• Bias Instability arises from components that are susceptible to random flickering.
This flicker noise is mainly observable at lower frequencies as it is overshadowed by
white noise at high frequencies.

• Quantization Noise is the error that is introduced because of the conversion
from analogue data to digital data. It arises from the differences from the actual
amplitude of the sampled points and the resolution of the digital values.

• Drift Rate Ramp is a deterministic error that represents a slow and monotonic
change of the signal over a long time period.

These 5 main types of errors can be measured with the Allan variance analysis. This is
done by fixing the inertial measurement unit (IMU) in place and collecting the data for
several hours. In Figure 2.1 Hussen and Jleta show where the errors can be located in
the results plot of the Allan variance [HJ15].

To get the position estimation from the IMU data in an ideal environment without any
errors, one has to subtract the gravity from the acceleration data with the help of the

7

2. State of the Art

Figure 2.1: A sample plot of the Allan variance results
Source: [HJ15]

orientation data and then the remaining acceleration needs to be integrated twice to
get velocity and displacement [Woo07]. This is easily done with the rectangular rule as
shown in equation 2.1 and equation 2.2 [Bak15a].

vn+1 = vn + an ∗ dt (2.1)

pn+1 = pn + vn ∗ dt (2.2)

When used in real world environment the earlier described errors from the IMU grow
quadratically with time because of the double integration. The biggest source of error is
the fluctuation of the orientation which leads to acceleration from gravitation leaking
into the acceleration measurements. Position estimation with IMU alone leads to a drift
of hundreds of meters after less than a minute [Woo07].

A way to counter this gigantic drift is by not using the position estimation from the IMU
as is. It is possible to use the accelerometer data to detect a step of the user and with that
estimate the user’s position. Abadleh et al. propose a novel step detection method where
the error is fixed and will not grow with the travelled distance [AAAA17]. The steps are
being detected by peaks on the accelerometers acceleration data. Peaks that are falsely
detected as steps are filtered out. Every detected step is then categorised as shorter,
equal or longer than the average step length. The moved distance is then calculated by

8

2.3. Fiducial Marker Tracking

adding together all the steps. The variable step length allows for better results when the
user changes its walking style. Yang and Huang use the basic principles for step detection
as Abadleh et al. but they add the usage of gyroscope and magnetometer so that the
exact placement of the device on the user’s body is not necessary any more [YH15].

2.3 Fiducial Marker Tracking
Fiducial marker tracking works on the premise of finding reference points of an object
in an image and estimate its position relative to the camera position and orientation.
To achieve that, the camera has to be calibrated so that possible distortions from the
lenses are taken into account as well as to get a sense of the size of the objects seen in the
image. Daftry et al. give an overview of current calibration methods and propose their
own method to simplify the process for the user [DMWB13]. The process of calibrating
the camera is well defined. There are a lot of different methods of calibration, each with
their own advantages and drawbacks. The most common method to calibrate the camera
is with a chequerboard printed on a piece of paper with known dimensions. This method
requires only a few images of the chequerboard and is very robust. The drawback is that
because of the usage of the chequerboard the algorithm can not detect correspondence
of the detected features between views. The proposed method by Daftry et al. tries
to overcome this drawback by using fiducial markers for the calibration process. There
are three major problems with the chequerboard methods. The precision of the edge
detection is susceptible to lens distortion effects, which results in a lot of pictures that
are needed for a good camera calibration. The second problem is the sensibility to partial
occlusion of the chequerboard. The uncontrolled environments where user calibrate their
camera can result in bad illumination that results in bad detection of the feature points.
The last problem is that traditional methods are bad for cameras with a wide viewing
angle. Because of the constraint to detect the whole chequerboard image, the feature
points are not well distributed over the image. The method by Daftry et al. eliminates
these problems by using fiducial markers that are printed on several sheets of paper and
placed on the floor in an approximate grid placement. So not all markers have to be
visible in the final image and every feature point is unique. This means the feature points
can be detected from different views. This method also has a better distribution of the
markers, because the user does not have to check that every marker is in the image; it is
sufficient when the image contains most of the markers.

When the camera is properly calibrated and the image is deskewed, the detection of the
marker in the image takes place. Kato and Billinghurst describe a general method of
how to detect the marker and get its transformation matrix [KB99]. First the image gets
segmented into regions with a threshold function. Then the algorithm tries to fit four
line segments around the regions to find the marker regions. After a normalisation of the
found marker regions, a template matching with the known pattern from a dictionary is
done. The normalisation is done with a perspective transformation. With a estimated
transformation matrix, the marker can be transformed from image space to camera
space. This transformation includes some errors that can be reduced by optimising the

9

2. State of the Art

rotation components. It would be possible to optimise all six independent variables from
the transformation matrix, but due to computational costs the algorithm limits this
optimisation to rotation.

For robust marker tracking, the fiducial marker have to be reliable. In the work of Kahn
et al. they show the importance of robust markers and how to create them [KUY+18].
A reliable marker should have the following properties:

• it should be distinct from the context background.
• it should be unique in the marker library.
• it should be passive (e.g. not electronically enhanced).
• it should be detectable in a fast manner.
• it should be robust in low and high light conditions.
• it should be detectable in noisy environments.

It is a big challenge in Augmented Reality (AR) applications to meet all these criteria.
That is why Kahn et al. propose a method to rate the markers reliability and to take
steps to strengthen the robustness of the marker. For every marker they test for four
criteria: the black to white ratio of the marker; the information complexity from black
objects in the white area; the edge sharpness which is the abruptness of intensity change;
and lastly the inter-marker confusion from the markers currently in the marker library.
Their experiments show that the measurements to strengthen the marker design increased
the correct identifications of the enhanced marker in contrast to the original marker. It
also reduced the false detections of markers.

2.4 Depth Camera
A depth camera adds an additional layer of information to the marker tracking. Langmann
et al. provide an overview of the used technologies of depth cameras and they also compare
the performance of consumer products with professional ones [LHL12]. The classical
depth cameras measure the Time-of-Flight of a light source. There are two methods: A
pulsating light where the time is measured when the light hits an object. This method
has to calculate very short time intervals, especially when the object is near to the camera.
The other method is a continuous wave modulation approach where only a phase shift
between the emitted and received light is measured. This phase shift directly corresponds
to the Time-of-Flight and therefore to the depth of a pixel. For a long time these sensors
had a low resolution or could not provide affordably high frame rates for real time image
analysis. In contrast to these classical approaches, cheaper consumer products like the
Microsoft Kinect had a totally different approach: An irregular point pattern is projected
into the room with an infrared laser LED. The depth of the objects is calculated by the
displacements of the known dot pattern. When the displaced dots are identified, the
distance to the object can be triangulated.

There exist a lot of tracking approaches for objects that use depth cameras. For example
Akkaladevi et al. propose a real-time tracking method for rigid objects using only depth

10

2.5. Sensor Fusion

data [AAFP16]. Their tracking approach uses only the depth data from a RGB depth
camera. The algorithm combines a slow global object localisation algorithm with a fast
local object tracking algorithm. RANdomized Global Object localozation (RANGO) is
the random sampling algorithm that is used for the global localisation of the object in
the depth data. The algorithm approximates the scene with a 3D grid and every voxel of
the 3D grid is hashed into a single 32bit number. This 3D voxel grid is used to verify
candidate transformations. A filtering approach is used to sort out all candidate solutions
to determine the best fitting candidate solution. The local tracking algorithm used is a
multi-forest tracking algorithm that is modified to already return good results with only
a training set of six random forests. To get better results in the tracking approach, the
movement of the last frame is used as a starting guess. This allows for better tracking
when the objects move fast between two frames. The tracking framework uses the two
algorithms as follows: Initially the global object localisation is used with the input depth
data to find the object. Then the fast object tracking is used until tracking of the object is
lost. If the tracking is lost the algorithm reverts back to the global object localisation and
repeats these steps. The framework is robust against occlusion and capable of real-time
usage.

Another tracking approach with a depth camera is presented by Zhou and Koltun [QK15].
They extract contour cues from noisy and incomplete depth inputs to better track smooth
surfaces that are normally prone to drift. They limit their approach to depth camera input
without colour image to also work at low lighting and be more versatile. The foundation
of the approach is that occluding contours have a known normal that is orthogonal to
the view ray. The framework is build upon KinectFusion. From the received depth data,
a volumetric representation of the scene is generated. Then the occluding contours in the
depth image are detected, but first the depth image is prepared to fill in missing depth
information. In the next step, the corresponding contours in the volumetric representation
of the scene are searched. To identify the corresponding contours, the normals of the
points of the synthesised scene have to be estimated. They evaluated their method
against KinectFusion and an extension of KinectFusion. Their approach was significantly
better than the output of prior techniques on various benchmark data. This approach is
also better against some approaches that also use colour images as a second data source.

2.5 Sensor Fusion
To get better results from the position estimation with IMU a filtering algorithm is needed
[KHS17]. Especially a combination of more than one source of information improves
the position estimation significantly. With the Kalman Filter (KF) it is possible to fuse
more than one source of data by describing the underlying system. This allows it to
combine the advantages of the sensors while minimizing their disadvantages. The KF
is an optimal linear estimator which means that it will return an optimal estimation of
the system when certain assumptions are taken into account [May79]. The algorithm
uses its knowledge of the system with its dynamics, the description of the system noises,
errors and uncertainties, as well as any initial information of the variables to estimate the

11

2. State of the Art

current value. The system is described by linear functions that describe how to get from
one state to another. Noises, errors, and uncertainties are represented in these functions.
The KF combines all this information that is given to it to estimate the desired variable
while statistically minimizing the errors. The assumptions made by the KF are that the
underlying system is linear, that the noise functions has to be some type of white noise
and has to be normally distributed.

Because most relevant systems are not linear in its transitions, the Extended Kalman
Filter (EKF) was implemented [WB06]. The EKF no longer has the restriction that its
transition functions have to be linear but the assumptions for the noise functions are
the same as with the normal KF. The algorithm linearises about the current mean and
covariance. The biggest flaw of it is that distributions of the random variables are no
longer normally distributed because of the non linear transformation functions. Contrary
to the KF that gets the optimal solution for its linear system, the EKF only approximates
the optimality of Bayes’ rule by linearisation.

The EKF and some other KF variations are the de facto standard filter for pose estimation
[HKS+15]. To use EKF for position estimation, the transition states of the algorithm
would be acceleration, velocity and position with a modelled noise function for every
transition. The algorithm performs "time update" where the next estimation is calculated
and "measurement update" where the next sensor data is fed to the algorithm. But this
alone is not enough to get a reliable position estimation for inertial navigation that is
accurate enough for a longer time period. With sensor fusion it is possible to merge
the fast but drifting IMU with another sensor that is more reliable over time. With
the proposed EKF model by He et al., the fusion of fiducial marker tracking and IMU
tracking allows to get a reliable pose estimation with long term partial occlusion and a
relatively reliable pose estimation with short term total occlusion. This also results in a
position estimation with a higher update rate than with the optical system alone. The
IMU gets bias corrected on the fly with the information provided by the fiducial marker
tracking system.

2.6 Inverse Kinematic
To calculate the foot position when the location and rotation of knees and hips are known,
is a relatively trivial problem solvable with Forward Kinematics. The hard part is the IK
problem where the opposite is wanted. You know the starting point and the endpoint of
a kinematic chain, consisting of rigid bodies connected by joints, and want to know the
positions of all joints positioned between start and end. In our case this would be the
known head position and foot positions and we want to know the positions of the knees
and the hip.

Aristidou and Lasenby show various methods to solve the IK problem [AL11]. The first
family of IK solvers is a numerical approach that uses the Jacobian matrix to find a
linear approximation of the IK problem. These approaches provide a smooth and realistic
posture but the problem is that they have a relatively high computational complexity.

12

2.6. Inverse Kinematic

Although there exist some approaches which are improved in terms of computational
complexity, they are still a bit slow for real time applications. The second family of
IK solvers is a minimisation problem based on the Newton method. They generate
smooth motion without discontinuities but are hard to implement and are computational
heavy for every iteration of the algorithm. The next family of IK solvers is based on the
Cyclic Coordinate Descent algorithm. These solvers are fast but can lead to unrealistic
animations even if joint constraints are defined. Another difficulty of these solvers are
that they are hard to extend to kinematic chains with multiple end effectors because they
are designed to handle only serial chains. The next approach is a Sequential Monte Carlo
Method which is a statistical method that performs well but is again computational
heavy. An algorithm that uses the cosine rule to calculate each joint angle is very fast
because it can solve the problem in only one iteration but it generates very unnatural
poses.

Forward And Backward Reaching Inverse Kinematics (FABRIK), the approach imple-
mented by Aristidou and Lasenby, is a lightweight and fast method to the IK problem
that produces relatively realistic poses [AL11]. FABRIK uses a simple approach that
only has to calculate point positions on a line. The algorithm sets the current endpoint
of the kinematic chain to the new desired endpoint and drags all other points beneath
it with the constraint to not exceed the length of the edges. Going back and forth, the
algorithm stops when the endpoints are close enough to the desired positions. Figure 2.2
shows a complete iteration of the FABRIK algorithm: Point t is the new wanted endpoint
of the chain. The current endpoint P4 is moved to t, forming P4’. Then P3 is dragged
along on the line between P3 and P4’. In the last step of the first iteration at (d), the
starting point gets dragged too. So the next step is to move the starting point P1 back
to its original position and go on with the algorithm, now in the other direction. These
steps are repeated until the endpoint is close enough to the desired point t.

When using an IK algorithm on humanoid figures for motion tracking, it has to be
possible that the algorithm can work with multiple end effectors, like fingers. FABRIK
can handle such kinematic chains by splitting the algorithm into two stages. In the first
stage, the algorithm is applied as usual but with every end effector separately and only
to the next sub-base. This will create as many positions for the sub-bases, as there are
end effectors. A sub-base is a joint of the kinetic chain with more than two links and
therefore the joint that splits the kinetic chain into multiple ends. The algorithm uses
the centroid of all generated sub-base positions as the new sub-base position. From there
the algorithm goes on from the new sub-base position back to the root node, or possible
additional sub-bases. After that follows stage two, where the algorithm is applied from
the root node back to the sub-base and from there to each end effector separately. The
algorithm goes on with these two stages until all end effectors are close enough to its
desired targets.

To get even more realistic postures with FABRIK, it is possible to restrict the movement
and rotation of the joints to imitate humanoid joints. A single joint can normally be
represented by 2 rotations: a joint rotation and a joint orientation. This means that a

13

2. State of the Art

Figure 2.2: Full iteration of FABRIK
Source: [AL11]

enforcement of joint restrictions can be done in two stages. With FABRIK this is done by
checking the validity of the joints after every step in the algorithm. The 3D problem is
here simplified to a 2D Problem which decreases the complexity and the processing time.

14

CHAPTER 3
Methodology

In this chapter, I will present the design and structure of this project. First I will give an
overview of the project components and their interactions. In the section about inertial
navigation, I describe how the inertial navigation system (INS) is structured and which
micro-electromechanical systems (MEMS) are used. Then the algorithms used for marker
tracking are described. The next section is about the usage of the depth camera and how
it should minimise the effect of partial occlusion. The structure of the sensor informations
that get fused is part of the next section. Then I describe how Inverse Kinematics (IK)
is used to animate an user’s avatar.

3.1 System Architecture

The bases of the system architecture are the requirements set by the aim of the work.
The most important requirement is that the whole program should be independent of
the underlying tracking system used by the Virtual Reality (VR) headset. There are two
basic tracking types for VR headsets: inside-out and outside-in tracking. With inside-out
tracking, the VR headset contains all the sensors to estimate the position of the head
of the user. For outside-in tracking, the sensors that track the VR headset are placed
somewhere in the room. These tracking solutions usually come together with devices
that are capable of tracking hands or feet from the user. But to be independent from the
underlying system used by the VR headset, only the head position is used. The second
requirement is that the only output of the program should be position data from feet,
knees and hip so that it can work independently from any graphics engine. That means
that the rendering of the players avatar is not part of this program. For the overall flow of
the program, the system can be divided into four stages. In the first stage, the data from
the different sensors is measured. For the second stage the position data is calculated
from the different sources of data. In stage three, the position data from the different
devices gets fused to combine the advantages from the different tracking methods. With

15

3. Methodology

the last stage, the IK algorithm calculates the positions for the knees and the hip that
can later be used to animate the user’s avatar.

The components of the program are designed so that they are working mostly independent
of each other. This means that components can be swapped relatively easy in the future
if I should decide to use, for example, different tracking methods or different algorithms
for fusing the position data. The parts of the system are designed as follows:

• The inertial sensor that tracks acceleration and rotation of the user’s ankle and
sends it to the inertial navigation component.

• The inertial navigation component calculates the position of the feet from
their acceleration and rotation and sends the data to the sensor fusion component.
The calculated position is relative to the last known marker position.

• The VR headset sends the head position as a reference point to the inertial
navigation, marker tracking, depth tracking and IK components. The head position
is the only information that is needed from outside of the system.

• The marker tracking component tracks the foot marker with the RGB image
and calculates the final foot position with the help of the depth image. The
calculated positions are then sent to the sensor fusion component. Also the last
known marker position is sent to the depth tracking component and the inertial
navigation component as a reference point.

• The RGB depth camera streams a normal RGB image and a depth image
directly to the marker tracking and depth tracking components. The camera itself
is mounted on the user’s VR headset facing downward to the feet.

• The depth tracking component uses the depth image and the last marker
position to find the foot marker position by looking for similar shapes at a similar
depth value. This prevents the loss of the tracked marker positions with partial
occlusion in the RGB image. The position is then sent to the sensor fusion
component.

• The sensor fusion component combines the information received by the inertial
navigation, marker tracking and depth tracking components to generate a more
reliable position estimation than one single component. The foot position is then
sent to the IK component for pose estimation.

• The IK component uses the foot position and head position to estimate the
user’s pose. The calculated knee and hip position is then sent to a graphics engine
to render the user’s avatar. This is done outside of this program.

Figure 3.1 visualizes the systems architecture with all its components.

16

3.2. Inertial Navigation

Figure 3.1: The Project Structure

The program is designed as a stand alone library that can be used in any project where
foot tracking is needed. When the library is used only the head position has to be fed
into it and the foot positions are returned for animation.

3.2 Inertial Navigation

For inertial navigation an inertial measurement unit (IMU) is needed that has a small
enough form factor to be mounted on the user’s ankle. The IMU should have a gyroscope,
accelerometer and a magnetometer. Because the bandwidth from the sensor to the PC is
limited, the sensor fusion should already be done on the sensor itself. So less data has
to be sent; only quaternions for rotation, vectors for acceleration and timestamps. The

17

3. Methodology

additional magnetometer data is not needed in the software itself.

I had to choose between two IMU that where available to me, the BNO080 development
kit for nucleo by CEVA (formerly Hillcrest Labs) and the MetaMotionC by mbientlab.
More about which IMU I chose and why follows in the Implementation chapter 4.2. The
chosen IMU does not matter here, because both use similar algorithms. They both use
their own software to fuse their sensors. The BNO080 uses the MotionEngine by Hillcrest
Labs and the MetaMotionC uses the BSX software by Bosch. Both software use variants
of the Kalman Filter (KF) for the sensor fusion. The KF algorithm is already covered in
the state of the art chapter 2.5.

The IMU sends the final rotation and acceleration data to the inertial navigation compo-
nent. Now the algorithms 2.1 and 2.2 are used to calculate the velocity and the position
of the sensor. For better accuracy, the last known marker position is used as a reference
point to correct the fast growing drift of the position estimation. So every time a new
marker position comes in, the algorithm uses this marker position as its starting point.
Because the performance of this algorithm is very bad when the marker tracking is lost
entirely, the algorithm assumes that the sensor is only moving when the acceleration
is above a minimum level. This ignores the fact that there is no acceleration when an
object moves with a constant velocity. But since the sensor is mounted on the user’s
feet, a constant velocity is very unlikely and mostly only present when the feet are not
moving. Abib did a research of the characteristics of limbs when moving, and in his
experiment results, feet had only an acceleration near zero when standing still on the
ground [ABI18]. Figure 3.2 shows the curve of acceleration during a normal walk cycle.
This proves that ignoring constant velocity has no big impact on accuracy but it helps
removing drift when the feet are not moved. The final position data is then saved with
its timestamp for usage in the sensor fusion component.

3.3 Fiducial Marker Tracking
Since it is hard to detect feet from a colour or depth image without any context, markers
are mounted on the feet of the user. So the marker tracking not only tracks the position
of the feet, but also provides context to where the feet are in the colour image and
its corresponding depth image. The marker on the foot is internally seen as the same
position as the IMU on the user’s ankle. This is possible, because the inertial navigation
component only calculates relative positions of the feet with the marker position as its
base position. The movement between the tip of the feet and the ankle is small enough
to be ignored for our use case. This also means that the marker does not have to have
the same position on the feet every time. The only constraint is, that the marker has to
face towards the RGB depth camera on the user’s head.

The fiducial markers used for tracking are ArUco markers based on the works of Garrido-
Jurado et al. ([GJnSMCMJ14], [GJnSMCMC16]) and the works of Romero-Ramirez et
al. ([RRMSMC18]). ArUco markers are square markers with black outlines and a binary
pattern in the middle. The minimum size of the pattern has to be three by three and the

18

3.4. Depth Camera

Figure 3.2: The acceleration curve of feet during a walk cycle.
right foot is blue; left foot is red

Source: [ABI18]

maximum size is in theory limitless. The used tracking algorithm works as follows: The
RGB image from the camera is used to detect the marker from the known dictionary.
When the marker is detected, the position and orientation is calculated. For better depth
prediction, the depth camera is used to calculate the Z value of the marker position. This
calculated marker position is then sent to the sensor fusion component as well as to the
depth camera component as a reference point and to the inertial navigation component
to correct the drifting position calculation.

Calculating reliable marker positions from the RGB image is only possible if the camera
is calibrated beforehand. The calibration is done with a chequerboard image as described
in the state of the art chapter 2.3.

The marker tracking is an essential part of this system. It labels the feet in the RGB
image and its corresponding depth image. It also helps to find precise foot positions that
are used to correct the drift of the inertial navigation component. The calculated marker
position is sent to the sensor fusion component to create the final foot positions.

3.4 Depth Camera

The marker tracking easily loses the marker when it gets occluded. To counter this, the
depth camera component takes over and tries to track the marker with the depth image
when the fiducial marker tracking gets lost. The algorithm tries to find the marker if
either a previous marker tracking position is known or the algorithm itself has not yet
lost the marker within the depth image.

19

3. Methodology

The algorithm works as follows: The depth image is filtered into blobs that consists of
the old known depth of the marker and a range where the algorithm is looking for the
marker. The centres of these generated blobs get calculated and the closest to the old
marker position is chosen as the current marker position. This marker position is only
valid if it is within a distance threshold to the old marker position. If it is not within
this threshold, the marker tracking is lost completely and the algorithm has to wait until
the marker is found again through the marker tracking component.

The algorithm is a relatively easy and lightweight method to get an estimated marker
position while the marker is partially occluded in the RGB image. It is not necessary to
use a more complex tracking method with the depth camera because it is only meant to
create a more reliable marker tracking. There is still the inertial navigation component
for the case when a total occlusion of the marker happens. The depth cameras calculated
marker position is only used for the sensor fusion component if the normal marker tracking
is not available. This is because of the inaccuracy of this component in comparison to
the marker tracking component as well as the fact, that it does not add new position
information to the marker position from the RGB camera. The marker position from the
RGB camera can be seen as the ground truth. The depth camera component only has
an approximation of this ground truth.

3.5 Sensor Fusion
The sensor fusion is a crucial part of this project. It fuses the signals from two very different
sources: the fiducial marker tracking and the tracking with an INS. The advantages
of both signals can be combined by fusing them. The fiducial marker tracking has the
advantage, that it is highly accurate and can therefore be seen as the ground truth of the
current foot position. The disadvantage of the fiducial marker tracking is that it is very
slow compared to the signal rate of the IMU. This means that the advantage of the INS
is the high data rate of the signal but its disadvantage is the high drift of the calculated
position. The signal can drift more than 100 meter in less than a minute. By combining
INS and fiducial marker tracking, we can get the high data rate of the IMU corrected by
the accuracy of the fiducial marker tracking as one reliable signal.

As described in the state of the art chapter 2.5, the KF or one of its variants are the
de facto standard algorithm to fuse different sources to one signal. The used Extended
Kalman Filter (EKF) model is based on the work of He et al. [HKS+15]. One cycle of
the EKF algorithm consists of a prediction phase and an update phase. In the prediction
phase the algorithm estimates the current state variable and its uncertainties. In the
update phase the estimate is updated with a new measurement using a weighted average.
More weight is given to the measurement or the estimate, depending on their certainty.

The state vector of the EKF consists of the position p, the velocity v and the acceleration
a.

20

3.5. Sensor Fusion

p =

px

py

pz

 (3.1) v =

vx

vy

vz

 (3.2) a =

ax

ay

az

 (3.3)

The underlying state transition model is defined by the following functions:

X̂−
k = f(p, v, a) (3.4)

pk = pk−1 + ∆tvk−1 + 1
2∆t2ak−1 + 1

2∆t2wk (3.5)

vk = vk−1 + ∆tak−1 + ∆twk (3.6)

ak = ak−1 + wk (3.7)

∆t refers to the time that passed since the last calculation step. wk is the process noise
and is assumed to be zero mean Gaussian noise with covariance Qk.

The corresponding observation model Zp and Za are simple as they directly map the
observed position or acceleration value to the transition vector with the function hp and
ha. They both have their own measurement Noise vp|k and va|k that is also assumed to
be zero mean Gaussian noise with the covariance Rp|k and Ra|k.

The EKF linearises the non linear functions around the current estimate with Jacobian
matrices that contain all partial derivatives of the function f , hp and ha. These Jacobian
matrices are defined as follows:

A[i,j] =
∂f[i]
∂x[j]

(3.8)

W[i,j] =
∂f[i]
∂w[j]

(3.9)

Hp[i,j] =
∂hp[i]
∂x[j]

(3.10)

Ha[i,j] =
∂ha[i]
∂x[j]

(3.11)

Vp[i,j] =
∂hp[i]
∂vp[j] (3.12)

Va[i,j] =
∂ha[i]
∂va[j] (3.13)

The final matrices are:

21

3. Methodology

A =

1 0 0 ∆t 0 0 1
2∆t2 0 0

0 1 0 0 ∆t 0 0 1
2∆t2 0

0 0 1 0 0 ∆t 0 0 1
2∆t2

0 0 0 1 0 0 ∆t 0 0
0 0 0 0 1 0 0 ∆t 0
0 0 0 0 0 1 0 0 ∆t

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(3.14)

W =

1
2∆t2 0 0 0 0 0 0 0 0

0 1
2∆t2 0 0 0 0 0 0 0

0 0 1
2∆t2 0 0 0 0 0 0

0 0 0 ∆t 0 0 0 0 0
0 0 0 0 ∆t 0 0 0 0
0 0 0 0 0 ∆t 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

(3.15)

Hp =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

 (3.16)

Ha =

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 (3.17)

Vp =

1 0 0
0 1 0
0 0 1

 (3.18)

Va =

1 0 0
0 1 0
0 0 1

 (3.19)

The Kalman a priori covariance estimate is calculated by:

22

3.6. Inverse Kinematic

Pk
− = APk−1AT + Q (3.20)

The Kalman gain is defined by:

K̂k = Pk
−HT

HPk
−HT + R

(3.21)

The last parts of the EKF are the updated a posteriori state estimate X̂k and the updated
a posteriori covariance estimate Pk:

X̂k = X̂−
k + K̂k(Zk − HX̂−

k) (3.22)

Pk = (I − KkHk)Pk
− (3.23)

After the EKF fuses the two signals, the newly predicted foot position can be used to
animate the user’s avatar.

3.6 Inverse Kinematic
The IK component should be able to animate the user’s avatar with a relative realistic
posture using only the head position and the calculated foot positions. With the head
position we can approximate the height of the user because the user will stand on the
floor most of the time. With the approximated height, the avatar can be scaled to an
appropriate size that represents the user in the best way. The IK algorithm has to
position primarily the knees, the hip and the upper body of the user. The arms placement
is not relevant for us, because they have too little influence on the placement of the other
body parts. The biggest influence the arms have on the body, is the rotation of the upper
body that can be ignored for us. Also, the elbow placement is not trivial, as shown by
Parger et al. [KZT+20].

A good IK algorithm for our task that is fast and creates realistic postures is Forward
And Backward Reaching Inverse Kinematics (FABRIK). It works well with the skeleton
of the human body, as it can process multiple end effectors. With modifications it is
also possible to limit the movement of single joints to better simulate the human body.
FABRIK is discussed in more detail in the state of the art chapter 2.6. For best results
the rotation of the feet, that we get from the inertial navigation component, is also
taken into account when placing the knees. This allows for better immersion because the
approximated knee position will be closer to the user’s real knee position.

The skeleton information that is calculated by IK algorithm is then used by the rendering
engine to animate the user’s avatar.

23

CHAPTER 4
Implementation

This chapter contains all the information on the implementation of the project. First I
give an overview of the used hardware and used libraries in the project. Then I go into
the details on the implementation of the components in their separate subchapters.

4.1 System Architecture
The system is implemented as a generic C++ library that is independent of the graphics
engine later used for animating the user’s avatar. Because of a lack of an easy to use
Inverse Kinematics (IK) library, I decided to program the IK part of the program outside
of the C++ library in the Unity engine version 2020.3.1f1. Because Unity can not
use C++ libraries natively, a C# wrapper class is implemented that exposes the C++
functions to Unity. The main library used for maths calculations and fiducial marker
tracking is OpenCV version 3.4.3 [Bra00]. All data received from sensors is converted
into the coordinate system that is used by OpenCV, where −y is up, x is right, z is
forward and positive rotations are counter clockwise. Figure 4.1 illustrates the coordinate
system.

Internally the C++ library starts independent threads for every component and their
sensors. The main thread manages the calculated data and waits for library calls to
forward the current foot position data. One thread manages the RGB depth Camera
with the fiducial marker tracking as well as the tracking with the depth image. For every
inertial measurement unit (IMU) one thread is used for the communication with the sensor
and one is used to process its acceleration and orientation data. The communication
between the threads and the main thread is synchronised by using the Mutex class to lock
the data that is read or calculated and prevent simultaneous data access. The locks are
divided into groups to not lock all variables at once. The groups consists of independent
parts that access the head data, camera data, sensor data, serial communication data
and the Extended Kalman Filter (EKF) data.

25

4. Implementation

Figure 4.1: Overview of the used coordinate systems by Unity, OpenCV and BNO080

A graphical overview of the system architecture is given in Figure 4.2. It gives a simplified
view of the data flow and shows all used libraries.

The usage of the library is as follows:
There are getter and setter methods for returning the foot positions and for feeding the
head position and its rotation to the library. Before the library can be used, the user has
to set the serial port numbers of the IMU. Then the library can be started with a function
call of StartThread(). Now the head position has to be provided to the library by setting
the current position with periodically calling the setter function. The foot position can
be pulled at any time, as it gets updated automatically when a new acceleration value or
marker position value is measured. Unity can use the foot positions directly to animate
the avatar. The library can be stopped by calling the StopThread() function.

4.2 Inertial Navigation

For this project I had to find an inertial sensor that would work well in the context of
this lightweight library. In the end I had two candidates that where promising: The
BNO080 development kit for nucleo by CEVA and the MetaMotionC by mbientlab. They
both have about the same specifications. The BNO080 has a refresh rate of 500 Hz
for its accelerometer, 400 Hz for its gyroscope and 100 Hz for its magnetometer. The
rotation vector that is already fusing the sensors has a refresh rate of 400 Hz and the
gravity corrected linear acceleration has a refresh rate of 400 Hz. The MetaMotionC’s
sensors only have a high refresh rate when logging the data on the device itself. The
refresh rate for logging accelerometer and gyroscope are 800 Hz but for streaming the
refresh rate is only 100 Hz. The magnetometer of the MetaMotionC has a refresh rate
of 25 Hz. The fused signals for rotation and linear acceleration also have a refresh rate
of 100 Hz. The important parts of the specification for both devices are that both
fuse their acceleration, gyroscope and magnetometer data on board to provide more
accurate gyroscope data and gravity corrected acceleration data. The MetaMotionC

26

4.2. Inertial Navigation

Figure 4.2: An overview of the system architecture

uses a Bluetooth Low Energy connection to communicate with the device. The BNO080
uses a wired serial interface for communication. The serial communication limits the
amount of data that can be sent from the device. A data rate of 200 Hz is possible
without problems, a higher data rate can cause lost or corrupted data packages. When
sending linear acceleration and rotation vector, both can run at 100 Hz. This sets the
refresh rate of the BNO080 on a par with the MetaMotionC. In the end I chose the

27

4. Implementation

BNO080 for this project because the Bluetooth library needed for the MetaMotionC was
only available for the Universial Windows Platform (UWP). It was not easily possible to
use the Bluetooth functionality provided by the library in a C++ library project. The
wired serial communication protocol provided by the BNO080 can natively be used in
C++ without any extra libraries. The BNO080 also has a way higher refresh rate for its
sensors, but is limited by the speed of the serial communication.

The BNO080 runs on a Nucleo development board, shown in Figure 4.3, and is pro-
grammed in C. The SH-2 library version 1.0.0 by Hillcrest Labs is used to access and
control the sensors. It is programmed to print its sensor data as a string to the serial
port. The string consists of a timestamp, an identifier and then the acceleration value
or the rotation value in the form of a quaternion. The identifier is either "L" for linear
acceleration or "R" for rotation. The messages are separated by a semicolon. The
sampling rate is set to 100 Hz, as a faster sampling rate is too much data to transfer
over the serial port. It would be possible to get a bit higher sampling rate by sending
the data as binary packages, but 100 Hz is sufficient for the purpose of foot tracking.
An additional functionality added to the sensor program is the possibility to manually
calibrate the acceleration, gyroscope and magnetometer module by doing a calibration
routine. This has to be activated on compile time. For the calibration routine one has to
place the device on 3 different sides for some seconds and then perform a slow pitch, roll
and yawn motion. The calibration is saved with a press of the unit’s reset button. When
the reset button is pressed 5 times, the saved calibration data is completely wiped and
the unit has to be calibrated again. Normally this calibration procedure is not needed,
as the BNO080 has a dynamic calibration of its sensors that tweaks its calibration on
runtime, when the unit is used.

A slightly modified version of the SerialPort library by Mandal is used to receive the
messages of the sensor over the serial port [Man16]. The only edits on the library are
compatibility related. The library is designed to receive the messages from the serial
port as fast as possible, without big buffering of the data. So every time some parts of
the data strings are received they get merged. When a complete message is received
this way, it gets processed. The rotation is received as quaternions that consist of r,
i, j and k components. They are first normalized by dividing every component of the
quaternion by its length. The quaternion is then converted to axis–angle format with the
equations 4.1, 4.2, 4.3, and 4.4 described by Baker [Bak15b]. Also the singularities of
axis–angle at angle 0 and angle 180 have to be taken into account. The BNO080 uses
a coordinate system where z is up, x is right, y is forward and positive rotations are
counter clockwise. This coordinate system is illustrated in Figure 4.1. To accommodate
the converted axis–angle to the different coordinate system used by OpenCV, the y and
z value have to be swapped and the new y value has to be multiplied by −1 4.5. This
rotation value is then saved as it is needed to rotate the acceleration values from the
sensor.

angle = 2 ∗ arccos(r) (4.1)

28

4.2. Inertial Navigation

Figure 4.3: Bosch BNO080

x = i√
1 − r2

(4.2)

y = j√
1 − r2

(4.3)

z = k√
1 − r2

(4.4)

AxisAngleOpenCV =

x

−z
y
θ

BNO080

(4.5)

When the acceleration value in the format x, y and z is received from the BNO080,
the conversion to the OpenCV coordinate system is done by swapping the y and z

29

4. Implementation

values and multiplying the new y value by −1 4.6. Then it is checked if the foot is
stationary by calculating the magnitude of the acceleration value and checking it against
a threshold. When the acceleration is below the threshold of 0.5, then the acceleration
value is discarded, the velocity value is set to zero and the measured position is set to the
old position. This can be done, because of the very unlikely possibility of the feet moving
in a constant velocity as described in the methodology chapter 3.2. If the foot is not
stationary, then the acceleration value has to be rotated by the orientation of the sensor,
to get the acceleration in world coordinates. The acceleration and rotation vectors of
the BNO080 have the north pole as their forward vector, meaning that an additional
rotation is needed to get the acceleration vector relative to the Virtual Reality (VR)
tracking system’s forward vector. This offset rotation is done after the rotation of the
gyro sensor is applied. The rotations are done by converting the axis–angle rotations
into rotation matrices. Then the rotated acceleration vector is given by multiplying the
offset rotation matrix with the sensor rotation matrix and with the acceleration vector
4.7. This rotated acceleration vector is then forwarded to the EKF.

aOpenCV =

 ax

−az

ay

BNO080

(4.6)

aworld = OffsetRotationMatrix ∗ RotationMatrix ∗ alocal (4.7)

4.3 Fiducial Marker Tracking
The fiducial marker tracking component uses two libraries to fulfil its tasks: The ArUco
Library([GJnSMCMJ14], [GJnSMCMC16], [RRMSMC18]) that is included with the
OpenCV library is used for the marker tracking itself and the Intel RealSense SDK 2.0
version 2.16.0 is used to receive the RGB image data from the RGB depth camera as
well as the depth data from the RGB depth camera. The RGB depth camera that is
used is the Intel Realsense Depth Camera D435 (Intel Realsense). Figure 4.4 shows an
image of the camera and Figure 4.5 shows the two ArUco fiducial marker that are used.
The Intel Realsense has a maximum depth image resolution of 1280 by 720 pixels and a
maximum RGB image resolution of 1920 by 1080. The diagonal field of view is a bit over
90 degrees and the vertical field of view of the depth camera is some degree higher than
the vertical field of view of the RGB camera. A maximum of 90 frames per second is
possible for the depth camera and the working range of the depth camera is 0.2 metres
to over 10 metres. The RGB camera has a maximum of 60 frames per second. To use
the higher frame rate of the Intel Realsense, a lower resolution has to be used and vice
versa, as the amount of data that can be sent is limited trough the USB 3 standard and
the quality and length of the used USB cable.

At first the Intel Realsense has to be initialized. The resolution of the camera has to be
set to a lower resolution to allow for a faster frame rate. The resolution chosen is 848
by 480 with a frame rate of 60 frames per second. Both, the image stream of the RGB

30

4.3. Fiducial Marker Tracking

Figure 4.4: Intel Realsense Depth Camera D435

Figure 4.5: ArUco fiducial marker

image and the image stream of the depth image, are initialised with these parameters.
To get a better depth image, the following filters are used with the depth image stream:
A decimation filter that reduces the depth frame density by downsampling the image, a
spatial filter that smooths the image and a temporal filter that smooths the image with
information from past frames. Lastly the beforehand generated marker dictionary, the
camera matrix and its distortion coefficient are loaded.

In a while loop, the realsense library returns the next RGB and depth image from the
camera as soon as it is available. After applying the filter to the depth image, the colour
image and the depth image get aligned so that the pixel positions in both images are

31

4. Implementation

the same. This is necessary as the depth camera has a higher field of view than the
colour image. An example of a RGB image with a corresponding depth image, with
and without apllied filters, is shown in Figure 4.6. The OpenCV library is then used
to find the marker in the image. The images have to be converted into matrix format
to get useable in OpenCV. With the function cv::aruco::detectMarkers() every marker
seen in the image is returned by the OpenCV Aruco library. For every marker found in
the image, the middle of the marker is calculated, as the library only returns the four
edges of the marker. With this position information from the OpenCV library, a lookup
in the depth image is possible. The function rs2_deproject_pixel_to_point() from the
realsense library automatically transforms the 2D image coordinate from the marker to a
point in 3D space with the help of the depth information from the depth image. The
marker position is now in camera space. This means that it has to be rotated by the
rotation of the VR headset to get the marker position in world space. The rotation is
saved in axis-angle format. To convert the rotation into matrix form, it first has to be
converted from axis-angle to a rotation vector by multiplying the normalized vector of
the axis-angle with its angle theta. Then the function Rodrigues() from the OpenCV
library is used to convert the rotation vector to the rotation matrix. The Intel Realsense
is mounted in a slight downward angle of 20 degrees on the VR headset. This means that
this 20 degrees downwards rotation has to be applied to the marker position before the
head rotation is applied. As a last step the head position has to be added to the marker
position to get the final position 4.8. The final marker position is then fed into the EKF.

pmarkerW orldSpace = pcamera + (RotationMatrixcamera ∗ 20◦
pitch ∗ pmarkerCameraSpace))

(4.8)

4.4 Depth Camera
The depth image is mainly used when the marker tracking is lost by partial occlusion.
The Intel Realsense is used to get a depth image that corresponds to the RGB image
used for marker tracking. The calibration is the same as mentioned in the fiducial marker
tracking chapter 4.3.

After the marker tracking is done in the camera thread, the depth camera tracking is done
for every marker that could not be found in the colour image. The last known marker
position and its depth value is the basis for the blob detection. But first the matrix of the
depth image is filtered with the cv::Range() function. With this function, all values that
are too far away from the last marker depth value are set to black, and the rest of the image
is set to white. So the resulting image is a binary image with only values of zero and one.
Then gaps in the image get closed. To do this, a cv::getStructuringElement() is created.
The function cv::morphologyEx() performs a morphological transformation. With the
parameters cv::MorphTypes::MORPH_OPEN() an opening operation is performed on
the image. There the black parts of the image get enlarged, and after that the white
parts of the image get enlarged. This effectively removes noise in the form of small white

32

4.5. Sensor Fusion

holes and gaps. Then the function cv::findContours() is used to find the contours of all
white blobs in the binary image. For every found blob, a mask is created for this blob by
drawing the contour of the blob into a new matrix. Then a rectangle with a minimal
area is fitted around the blob, to best approximate the foot shape. Now the blob that
is nearest to the last marker position from either the marker tracking algorithm or the
depth tracking algorithm is chosen. Figure 4.7 shows the generated blobs with the final
marker position marked with a dot. If the new approximated marker position is too far
away from the last approximated position, the new position is ignored and the tracking
is marked as lost. This means that the inertial sensor has to track the foot until the
fiducial marker tracking finds the marker again.

The middle of the chosen blob is saved as the marker position and is used to get the new
marker depth. But the middle of the blob is not necessarily a white pixel that has a
valid depth value. That is why a function is written, that finds the nearest white pixel in
the given image. This function works as follow: To be efficient, the distance calculations
are done with matrices. First all positions of white pixels are written into a matrix with
the function cv::findNonZero(). This matrix is then split into two where one contains
all x values and the other contains all y values. Now all vectors from the starting pixel
to every white pixel are calculated by subtracting the x and y value of the start pixel
from all respective values in the x and y matrix. With the cv::magnitude() function it is
now possible to calculate the length from all vectors. The pixel of the vector with the
shortest length is then chosen for the depth value of the currently approximated marker
position. The final position is then fed into the EKF.

4.5 Sensor Fusion
As described in the state of the art chapter 2.5, the sensor fusion component uses an EKF
for fusing the different signals from the different sources. The used implementation of the
EKF is the KFilter library version 1.3 by Zalzal [Zal08]. The KFilter library itself uses
optimized algorithms by Bierman that are translated from Fortran [J77]. The KFilter
library is used by creating a new class for the EKF and inherit the EKF class from the
library. All the matrices of the EKF have to be created by overwriting the functions
makeBaseX() and makeX(), where X is the name of the matrix. The makeBaseX()
function only contains constant values that never change. Changing values like ∆t are
put into the makeX() function as it will be newly created before the library predicts
and updates the EKF state. The matrices that have to be filled in are the Jacobian
matrices A, W, H and V that are described in the methodology chapter 3.5, and the
noise matrices R and Q. The values of the process noise Q and the two measurement
noises Rp and Ra are adapted values based on the work of He et al. and the actual data
sheet of the IMU [HKS+15]. The process noise Q consists of the variance values of the
state values of the EKF. Q is a diagonal matrix, as the variances of the states are all
independent. The variance of position p and velocity v are based on the paper by He.
They are σp = 0.0002m and σv = 0.00006m/s. The variance of acceleration a is based on
the datasheet of the BNO080 and is σa = 0.02m/s2. The measurement noises Rp and Ra

33

4. Implementation

are also diagonal matrices, as the variables are independent. The variance of the position
during measurement is also based on the paper by He and is σmp = 0.00015m. The
variance of the acceleration during measurement is from the datasheet of the BNO080
and is σma = 0.35m/s2. Also a different variance has to be used for measuring positions
through the depth sensor component. A variance of 0.35m is chosen, as the estimated
position of the depth sensor can be a bit jittery. This higher variance means that the
measured signal has a higher uncertainty.

Q =

σp 0 0 0 0 0 0 0 0
0 σp 0 0 0 0 0 0 0
0 0 σp 0 0 0 0 0 0
0 0 0 σv 0 0 0 0 0
0 0 0 0 σv 0 0 0 0
0 0 0 0 0 σv 0 0 0
0 0 0 0 0 0 σa 0 0
0 0 0 0 0 0 0 σa 0
0 0 0 0 0 0 0 0 σa

(4.9)

Rp =

σmp 0 0

0 σmp 0
0 0 σmp

 (4.10)

Ra =

σma 0 0

0 σma 0
0 0 σma

 (4.11)

The last two functions from the KFilter library that have to be overwritten are makePro-
cess() and makeMeasure(). The function makeProcess() is an implementation of the state
transition function of the EKF. The state transition function is already described in the
last chapter with the functions 3.4, 3.5, 3.6 and 3.7. The makeMeasure() function tells the
EKF how the measured value can be mapped to the state vector. As the values that are
measured are either position or acceleration values, they can directly be mapped to the
state vector. The type of the measurement has to be set before the update and measure
methods of the EKF are called. This is done with the functions setPositionMeasurement(),
setPositionDepthMeasurement() and setAccelerationMeasurement().

To accommodate the fact that the feet can be stationary while measuring the acceleration
the makeProcess() function of the EKF library is changed. When the stationary variable
is set by the inertial navigation component, the used transition model is changed to set
acceleration and velocity to zero and the position to the value of the old position. This

34

4.5. Sensor Fusion

ensures that the next measurement from the accelerometer gets discarded and the foot
position will not change while not moving.

The now implemented class of the KFilter library is used in the code as follows: The first
thing that has to be done is the initialisation process for the EKF. The init() function
sets the initial state vector Xinitial and the initial covariance matrix Pinitial. The initial
state vector is set to all zero, as the position, velocity and acceleration set to zero are a
good starting point 4.12. The initial covariance matrix chosen defines the uncertainty
with the initial state vector. As the movement of the user at the beginning can not be
known, the variance values have to be chosen in a way, that the initial position and
movement of the user is within this variance margin. The chosen variance values for
position, velocity and acceleration are based on the average walking motion of a human
being [ABI18]. The values itself do not have to be very accurate, as the EKF converges
relatively fast to a correct solution. So it is better to overestimate the values than to
underestimate them, as underestimation sets too much confidence in the initial state
value.

Xinitial =

0
0
0
0
0
0
0
0
0

(4.12)

Pinitial =

12 0 0 0 0 0 0 0 0
0 12 0 0 0 0 0 0 0
0 0 12 0 0 0 0 0 0
0 0 0 (3

4)2 0 0 0 0 0
0 0 0 0 (3

4)2 0 0 0 0
0 0 0 0 0 (3

4)2 0 0 0
0 0 0 0 0 0 152 0 0
0 0 0 0 0 0 0 152 0
0 0 0 0 0 0 0 0 152

(4.13)

After the init() function of the EKF is called with the initial state vector and the initial
covariance matrix as parameters, the EKF is ready to use. Now every time a new value
is reported from the fiducial marker, depth or inertial tracking component, these values
get fed into the EKF. This is done by setting the delta time since the last measurement,
setting the type of the measurement, either position through marker tracking, position

35

4. Implementation

through depth tracking or acceleration, and then calling the step() function of the EKF.
The measurements get in at a high rate of 100 Hz, but for a better representation of
the current foot position, the current state of the EKF is predicted every time the IK
component wants to read the foot position. This is done with the same procedure as
when measuring a new value, but it is done with an empty measurement vector. This
skips the update step of the EKF that would normally correct the predicted vector by
the measured vector.

To get the current position from the EKF the current state vector can be retrieved from
the EKF. After the prediction of the position, the current state vector is returned by the
function getX(). The first three numbers of the vector contain the x, y and z coordinate
from the foot position. To further smoothen the output from the EKF, an additional
exponential moving average filter is used 4.14. This filter interpolates between the new
and the old value. An alpha value between zero and one defines how far the filtered
value is to the new value. With alpha equals zero only the old value is used and with
alpha equals one only the new value is used. The alpha value is chosen to be 0.2 so that
the new values wont affect the overall position too fast. The filtered position is then
forwarded to the inverse kinematic component for the animation of the avatar.

x̄k = x̄k−1 ∗ (1 − α) + xk ∗ α (4.14)

4.6 Inverse Kinematic

As mentioned in the system architecture chapter 4.1, the lack of a good IK library written
in C++, led to the usage of the Unity engine for the IK part of the system. The usage of
the built in IK library of the Unity engine is straight forward. The prerequisite for this
is that a humanoid avatar is used. Then an animator component has to be attached to
the avatar. A simple animator controller has to be attached to the animator component.
A controller script that handles the IK library calls can then be attached to the avatar.
The inputs for the IK controller script are both foot positions as well as the user’s head
position from the VR headset. The foot positions get pulled from the C++ library with
a managed C# wrapper library. This is necessary to use a C++ library directly in Unity.
After initialisation of the C++ library by setting the serial ports of the IMUs and starting
the individual threads, the foot positions get updated in the Unity update() method, once
every frame. This guarantees that the avatar gets updated as often as possible.

The IK controller attached to the avatar implements the OnAnimatorIK() function that
is called every time before Unity updates the IK system. In this function the foot position,
the head position as well as their rotations get applied to the avatar model. In the
Update() function of the IK controller, the camera position of the scene is set to the
head position of the avatar, so that the user has the right view from the VR headset.
Figure 4.8 shows the user’s avatar animated by Unity’s IK system.

36

4.6. Inverse Kinematic

As Unity uses another coordinate system as used in the C++ library and used by the
OpenCV library, a conversion has to be done before using the data from the C++ library.
The coordinate system is illustrated in Figure 4.1. With the Unity coordinate system the
y axis is up, the x axis is right, the z axis is forward and positive rotations are clockwise.
This means that for the position conversion only the y axis has to be multiplied by -1.
For the axis-angle representation of the rotations, the conversion is done by multiplying
the x and z coordinate by -1. Then the Quaternion.AngleAxis() function of Unity can be
used to convert the axis-angle to a quaternion that is used by Unity.

37

4. Implementation

Figure 4.6: The colour image with its corresponding depth image. The top depth image
is without applied filters and the bottom depth image is with applied filters. The depth

images are coloured for better visualisation with blue for near values and red for far
values.

38

4.6. Inverse Kinematic

Figure 4.7: Visualisation of the depth tracking algorithm. The bottom image shows the
chosen blob.

39

4. Implementation

Figure 4.8: IK animation of the avatar. The green and blue cubes represent the foot
positions.

40

CHAPTER 5
Evaluation

To evaluate the proposed foot tracking system, the following steps have been done:
Another reasonably accurate tracking system has been found. This system was then
compared to the proposed foot tracking system. Additionally a user study was conducted
to test the accuracy of the system in more real life conditions.

Another accurate tracking system is the HTC Vive by HTC and Valve. A study by
Niehorster et al. provides an analysis of the accuracy of this system [NLL17]. They
conclude that the HTC Vive has some pros and cons that allows for usage in scientific
studies under some circumstances. The pros are that the system is affordable compared
to equivalent systems, the system latency is low at 22 milliseconds and the noise level
is low. The downsides of the system are the position and orientation measurements
that are relative to a floor plane that is slightly tilted to the actual real world floor.
This results in slightly tilted roll and pitch measurements as well in changing height
measurements on the tracking area. Depending on the needed accuracy, this can be
countered by calibrating the floor plane with a measurement of the tilted floor plane.
The bigger problem is that the orientation of the tilted floor plane changes when the
tracking of the HTC Vive is lost, even when it is only lost for a very short moment. This
makes the system only viable when used at a smaller tracking area where occlusion is less
likely. As the accuracy test was done in a relatively small area, there was no hindrance
in using the HTC Vive for the accuracy test.

5.1 Technical Evaluation

The proposed tracking system has three stages of combination of the tracking methods
used. All three tracking methods are used when fiducial marker tracking is available.
Depth tracking and inertial navigation system (INS) tracking is used when the fiducial
marker is partially occluded. Only the INS tracking is used when both, fiducial marker

41

5. Evaluation

and depth tracking, is lost. Each of these tracking stages were compared to the ground
truth in form of the HTC Vive.

The hardware was set up in the middle of the room where the HTC Vive was not occluded
and had a good tracking signal. The Virtual Reality (VR) headset was mounted on a
fixed place about 1.5 metre above the ground and was pointed downwards. The tracking
hardware of the proposed system was fixated to the HTC Vive controller so that the
difference in position could be measured. The setup is illustrated in the figures 5.1, 5.2,
and 5.3.

Figure 5.1: Technical Evaluation: The VR headset was mounted about 1.5 metres
above ground

42

5.1. Technical Evaluation

Figure 5.2: Technical Evaluation: The VR headset with the Intel Realsense Depth
Camera D435 (Intel Realsense) pointed downwards to the ground

The four tests that were done with every tracking stage were:

• The difference in position when the tracker and the VR headset are stationary for
about one minute.

• The difference in position when the tracker is stationary and the VR headset is
moved.

• The difference in position when the tracker is moved and the VR headset is
stationary.

• The latency of the system when the tracker is suddenly moved in a fast manner.

43

5. Evaluation

Figure 5.3: Technical Evaluation: The HTC Vive controller was fixed to the Bosch
BNO080 and the fiducial marker

The tracker movement as well as the headset movement done in the tests were a movement
left, right, forwards, backwards, up and down as well as a movement in a circle.

The test results comparing the HTC Vive to the proposed system are as follows:

• Marker and VR headset were stationary: Figures 5.6, 5.10 and 5.14 show the
distance between the systems over time for the marker, depth and INS tracking
stages. The average distances for the stages were 2.9562 millimetres for marker,
2.9738 millimetres for depth and 0.64646 millimetres for INS tracking. The biggest
distance measured during the tests were 6.8182 millimetres for the marker stage,
12.568 millimetres for the depth stage and 1.0723 millimetres for the INS stage.
For the average case the small jitter only moved the position about 3 millimetres
and for the INS tracking only 0.6 millimetres. But with the depth tracking stage
the jitter could go up to 1.3 centimetres. This test showed that the position of the
proposed system wont drift over time.

• Marker was moving and VR headset was stationary: The distances while
moving the fiducial marker are shown in the figures 5.7, 5.11 and 5.15. The average
variation in distance was 33.645 millimetres for marker, 40.959 millimetres for
depth and 169.07 millimetres for INS tracking. The maximum distance was 123.74
millimetres for marker, 103.15 millimetres for depth and 480.95 millimetres for
INS tracking. In the worst cases of the test, the marker and depth tracking stage

44

5.2. User Study

had a bigger gap from about 10 centimetres but only for a short amount of time
from about two to three seconds. The INS tracking had a big gap from nearly 0.5
metres and that for about 5 seconds but it went back to a smaller level of about 5
centimetres after these 5 seconds. The other two stages went back to a distance
of about 2 centimetres at the end of the test, when the movement stopped. This
means that the system lost accuracy while moving but still generated accurate
results after the movement ended.

• VR headset was moving and marker was stationary: The distances for
this test are shown in the figures 5.8, 5.12 and 5.16. The average distances of this
test were 35.35 millimetres for marker, 12.133 millimetres for depth and 0.17528
millimetres for INS tracking. The biggest measured distances for the tracking
stages were 129.88 millimetres for marker, 21.989 millimetres for depth and 0.85232
millimetres for INS tracking. For INS tracking, a distance change was nearly non
existent with a maximum of under one millimetre. The marker tracking stage
was comparable to the test where the marker was moved and the VR headset was
stationary. The depth tracking stage had results that were as good as the results
for the test where marker and VR headset were stationary.

• Latency: Figures 5.9, 5.13 and 5.17 show the distance change of this test. The
latency of the tracking stages could be measured by measuring the time from the
start of the distance change to the maximum distance change. That is because the
system then starts to react to the marker position change and thus the distance to
the correct HTC Vive controller gets smaller again. The latencies for the stages
were 0.3137 seconds for marker, 0.33622 seconds for depth and 0.36908 seconds for
INS tracking. All three stages had about the same latency, but the INS tracking
state was a bit slower than the rest.

The tests showed that the proposed system had only a small inaccuracy as long as the
marker was not occluded or out of the field of view for too long. When the INS tracking
stage had to take over, then the accuracy depleted with longer distances but stayed
constant when the foot was not moved. Also the accuracy was worse while moving but
got better again when the movement had ended. Not shown in the data, but observed
while recording the tests, was the fact that the tracking had a small but constant shift
near the edge of the camera’s field of view. Most of the bigger spikes in the distance from
the two systems came from the latency of the proposed system.

5.2 User Study
The user study was done to get some data that is more to real life conditions than the
technical evaluation done at laboratory conditions. For the user study, the participants
got an additional HTC Vive controller mounted on their feet in addition to the fiducial
marker and the inertial measurement unit (IMU). With this setup the difference in
position between the proposed system and the HTC Vive tracking could be measured.

45

5. Evaluation

The two systems were placed near enough on the foot, so that the distance to each other
should not change. This means that the distance between the two systems should give
information on how good the proposed system performed.

The setup of the study was as follows: A VR scene was created in Unity that allowed for
the users to move freely in a small space. The scene contained a room that had a wooden
floor and was filled with some plants and some furniture that was placed around the
moveable area. This was done to increase the user’s immersion and to better perceive
distance in the room. The users were represented by an avatar in the form of a humanoid
robot. The feet were tracked with the proposed system and then visualised by Unity’s
Inverse Kinematics (IK) system. To track the user’s head for the proposed system, the
HTC Vive VR headset was used.

The hardware setup of the user study was as follows: Two fiducial markers with a 3 by 3
pattern were placed on the users feet near the toes. The Bosch BNO080 IMU was placed
on the ankle of the user’s right foot. The left foot had no IMU attached, to test the
difference in accuracy of the system with and without the inertial navigation component.
Two additional HTC Vive controllers were mounted on the lower part of the shin, in a
way where it could not occlude the fiducial markers. The setup of the feet is illustrated
in figure 5.4.

The usable walking space for the user study was 2.2 metres by 2.3 metres. Two HTC
Vive Lighthouse tracking stations that are required for the tracking of the HTC Vive
controller and VR headset, were placed in the diagonals of the room, about one metre
outside of the useable VR space, to guarantee optimal tracking conditions. The HTC
Vive headset has a maximum field of view of about 110 degrees, a refresh rate of 90 Hertz
and a resolution of 1080 by 1200 pixels per eye. The Intel Realsense was mounted on
the front of the VR headset, where it not occluded the headset’s sensors. The camera
was mounted in a slight downward angle of 20 degrees to better align the camera’s and
headset’s field of view. This is shown in figure 5.5.

The sample size of the study consisted of 6 people ranging from ages 20 to 70. Two of the
participants were experienced VR users that used VR environments regularly, two had
used VR environments before, but not very often and two were completely new to VR
systems. The small sample size was due to safety constraints regarding the COVID-19
pandemic.

For the experiment, every participant got instructions on how to put the tracking systems
on. Then they were advised to look at their feet during the test, as the proposed system
only tracks the feet when they are seen by the user. During the experiment, every user
had to do tasks that got recorded. The recorded data was the foot position as calculated
by the proposed system and by the HTC Vive system. The tasks every participant had
to perform were the following:

• They should go one step forward and then one step backwards.

• They should go one step to the left and then one step to the right.

46

5.2. User Study

Figure 5.4: User Study Setup: The HTC Vive controller were mounted on the side of
the ankles. The fiducial markers were placed near the toes. The IMU was mounted

slightly above the HTC Vive controller on the right foot.

• They should go some steps on a straight line with a length of about two metres.

• They should walk in a circle with a diameter of about two metres.

• They should bend their knees a bit to lower their body.

• They should only rotate their upper body left and right while their feet are standing
still.

The results of the movement experiment are shown in table 5.1. For every foot, the
distances from the proposed system to the HTC Vive were calculated. A smaller distance
means a better performance of the proposed system. The distance is not the same as the
error of the proposed system, as the HTC Vive itself has a small error margin.

The left foot, which had no INS sensor attached, had a total average distance of 134.82
millimetres and a maximum average distance of 1.04434 metres. The median of the
distances from the left foot to the HTC Vive controller was 36.84 millimetres. The right
foot with the IMU attached had a total average distance to the HTC Vive controller of
93.09 millimetres. The maximum value average was 55.414 centimetres and the median
of all the tests was 27.41 millimetres. This worst case value was from one participant,
where the foot position was falsely detected as 6.5 metres away from the real position.

47

5. Evaluation

Figure 5.5: User Study Setup: The VR headset had the Intel Realsense mounted on
it, placed on the front where it could not occlude the headset’s sensors.

The median of the maximum distances of the tests was 47.832 centimetres for the left
foot and 29.035 centimetres for the right foot.

The comparison between the average and the median value of the feet show that the
peak values only appeared for a very short time period. There are some reasons why
these distances spikes happened. It happened when the fiducial marker tracking detected
something else as the marker. This could happen if the lighting of the room is not ideal.
Then dark objects in the background could falsely be detected as the marker. Another
reason for the wrong foot position was that the system calculated wrong values in the
moment when the fiducial marker left the field of view of the camera. These wrong values
had a great influence on the left foot as it did not have the IMU attached to it. The
values from the right foot show, that the maximum values were smaller than the ones
from the left foot, as the INS tracking helped avoiding such high distance spikes. The
spikes were reduced as the IMU wont detect this sudden movement to the wrong position
and thus helps to correct the wrong value.

The median values show that the system had most of the time a reasonable distance to
the HTC Vive. The total median value of the right foot was 27 millimetres. The Sense
of Agency, as described in the state of the art chapter 2.1, is influenced by the accuracy
of the tracking system. In this context, it was a reasonable small difference to the real
foot position, as the foot position does not have to be as precise as for example a hand
position.

48

5.2. User Study

Figure 5.6: Technical Evaluation: Marker Tracking Stage: The tracker and the VR
headset are stationary

Figure 5.7: Technical Evaluation: Marker Tracking Stage: The tracker is moving and
the VR headset is stationary

49

5. Evaluation

Table
5.1:

R
esults

ofthe
user

study:
show

n
are

distances
betw

een
the

proposed
foot

tracking
system

and
the

H
T

C
V

ive

L
eft

foot
average

L
eft

foot
m

edian

L
eft

foot
m

ax
value

average

R
ight

foot
average

R
ight

foot
m

edian

R
ight

foot
m

ax
value

average

Forw
ard

and
backw

ard
steps

0.19164
m

0.03392
m

1.82836
m

0.05144
m

0.02637
m

0.28215
m

Sidew
ays

steps
0.13455

m
0.04378

m
0.53833

m
0.06457

m
0.03246

m
0.32961

m
W

alking
in

a
straight

line
0.08470

m
0.02526

m
0.62755

m
0.06185

m
0.02516

m
0.39436

m
W

alking
in

a
circle

0.21039
m

0.08842
m

1.95595
m

0.22300
m

0.08039
m

0.98367
m

B
end

the
knees

0.04622
m

0.03232
m

0.16635
m

0.04317
m

0.02379
m

0.16468
m

R
otate

upper
body

0.14143
m

0.04907
m

1.14953
m

0.11419
m

0.02401
m

1.17036
m

T
otal

0.13482
m

0.03684
m

1.04434
m

0.09304
m

0.02741
m

0.55414
m

50

5.2. User Study

Figure 5.8: Technical Evaluation: Marker Tracking Stage: The tracker is stationary
and the VR headset is moving

Figure 5.9: Technical Evaluation: Marker Tracking Stage: Latency test

51

5. Evaluation

Figure 5.10: Technical Evaluation: Depth Tracking Stage: The tracker and the VR
headset are stationary

Figure 5.11: Technical Evaluation: Depth Tracking Stage: The tracker is moving and
the VR headset is stationary

52

5.2. User Study

Figure 5.12: Technical Evaluation: Depth Tracking Stage: The tracker is stationary
and the VR headset is moving

Figure 5.13: Technical Evaluation: Depth Tracking Stage: Latency test

53

5. Evaluation

Figure 5.14: Technical Evaluation: INS Tracking Stage: The tracker and the VR
headset are stationary

Figure 5.15: Technical Evaluation: INS Tracking Stage: The tracker is moving and
the VR headset is stationary

54

5.2. User Study

Figure 5.16: Technical Evaluation: INS Tracking Stage: The tracker is stationary and
the VR headset is moving

Figure 5.17: Technical Evaluation: INS Tracking Stage: Latency test

55

CHAPTER 6
Summary and Future Work

In this chapter the proposed system and its evaluation are summarised. Then an outlook
on future work and possible improvements to the system are given.

6.1 Summary
I proposed a lightweight foot tracking system that works independent from the used
Virtual Reality (VR) system. It does not matter if an inside-out or outside-in VR system
is used, that means that the proposed tracking system is also suitable for bigger VR
environments where occlusion would be a problem when outside-in tracking is used.
The proposed system has a RGB-depth camera mounted on the VR headset and uses
fiducial marker tracking as its main tracking system. The fiducial marker are mounted
on the user’s feet. The depth camera is used to track the feet while the marker is
occluded. Additionally inertial measurement units (IMUs) are mounted on the user’s
feet to maintain a tracking signal while the feet are not in the field of view of the camera
and to get a higher tracking frequency. These three mostly independent tracking systems
are fused with an Extended Kalman Filter (EKF). The calculated position is then used
to animate the user’s avatar with the usage of Forward And Backward Reaching Inverse
Kinematics (FABRIK), an Inverse Kinematics (IK) algorithm.

The evaluation of the proposed system was done by comparing the calculated foot
positions with the HTC Vive tracking system. It showed that the system works very
well when the feet are standing still, even when the markers are occluded or not in the
field of view of the camera. Due to a system latency of about 0.3 seconds, a deviation
of about two to ten centimetres to the real foot position is normal while walking. Even
bigger gaps are possible due to wrong fiducial marker positions when the marker leaves
the field of view of the camera or when other objects are detected as the marker due to
bad lighting. But as the system has no time related drift, the foot positions go back to
their real positions in a fast manner when movement stops. The user study showed the

57

6. Summary and Future Work

importance of the inertial navigation system (INS) component of the proposed system, as
it helps to correct the bigger position errors from the fiducial marker tracking component.
The IMU wont detect the big position change from a faulty marker detection and thus
hinders the EKF to drift as much as without the INS component.

6.2 Future Work
Future improvements could be done by improving the system latency. There are some
ways to achieve this: By using a RGB depth camera with a higher frame rate at the
same resolution of 1280 by 720 pixel or higher. A higher resolution would reduce jitter
from the fiducial marker tracking and a higher frame rate would mean, that less foot
positions between the frames have to be calculated by the INS. This would result in even
smoother movement and less latency. What has to be improved to eliminate extreme
outliers, is a detection when the marker leaves the field of view of the camera. It would
also be possible to use a camera with a higher vertical field of view. Then the marker
would less often leave the field of view and the range of the trackable area would increase.
This would also improve the system, as the tracking would then also be possible, when
the user is not directly looking at their feet.

The proposed system could be extended by implementing a way to track the user’s hands
as well. But this would be more difficult than the feet, as the hands can be rotated by
180 degree. This would make a reliable single marker placement for the hand hard. It
would also be less useable than foot tracking, as it would be nearly impossible to track
the fingers with markers. But maybe the hands could be tracked with markers and the
fingers could then be tracked with the depth data. A system built this way must then
have a bigger focus on the depth tracking, as the fingers would have no fallback tracking
system when occluded.

58

List of Figures

2.1 A sample plot of the Allan variance results Source: [HJ15] 8
2.2 Full iteration of FABRIK Source: [AL11] 14

3.1 The Project Structure . 17
3.2 The acceleration curve of feet during a walk cycle Source: [ABI18] 19

4.1 Overview of the used coordinate systems by Unity, OpenCV and BNO080 26
4.2 An overview of the system architecture . 27
4.3 Bosch BNO080 . 29
4.4 Intel Realsense Depth Camera D435 . 31
4.5 ArUco fiducial marker . 31
4.6 The colour image with its corresponding depth image. 38
4.7 Visualisation of the depth tracking algorithm. 39
4.8 IK animation of the avatar. 40

5.1 Technical Evaluation: The VR headset was mounted about 1.5 metres
above ground . 42

5.2 Technical Evaluation: The VR headset with the Intel Realsense Depth
Camera D435 (Intel Realsense) pointed downwards to the ground 43

5.3 Technical Evaluation: The HTC Vive controller was fixed to the Bosch
BNO080 and the fiducial marker . 44

5.4 User Study Setup: The HTC Vive controller were mounted on the side of
the ankles. The fiducial markers were placed near the toes. The IMU was
mounted slightly above the HTC Vive controller on the right foot. 47

5.5 User Study Setup: The VR headset had the Intel Realsense mounted on it,
placed on the front where it could not occlude the headset’s sensors. . . . 48

5.6 Technical Evaluation: Marker Tracking Stage: The tracker and the VR
headset are stationary . 49

5.7 Technical Evaluation: Marker Tracking Stage: The tracker is moving and
the VR headset is stationary . 49

5.8 Technical Evaluation: Marker Tracking Stage: The tracker is stationary
and the VR headset is moving . 51

5.9 Technical Evaluation: Marker Tracking Stage: Latency test 51

59

5.10 Technical Evaluation: Depth Tracking Stage: The tracker and the VR
headset are stationary . 52

5.11 Technical Evaluation: Depth Tracking Stage: The tracker is moving and
the VR headset is stationary . 52

5.12 Technical Evaluation: Depth Tracking Stage: The tracker is stationary
and the VR headset is moving . 53

5.13 Technical Evaluation: Depth Tracking Stage: Latency test 53
5.14 Technical Evaluation: INS Tracking Stage: The tracker and the VR headset

are stationary . 54
5.15 Technical Evaluation: INS Tracking Stage: The tracker is moving and the

VR headset is stationary . 54
5.16 Technical Evaluation: INS Tracking Stage: The tracker is stationary and

the VR headset is moving . 55
5.17 Technical Evaluation: INS Tracking Stage: Latency test 55

60

List of Tables

5.1 Results of the user study: shown are distances between the proposed foot
tracking system and the HTC Vive . 50

61

Acronyms

AR Augmented Reality. 10

EKF Extended Kalman Filter. 12, 20, 21, 23, 25, 30, 32–36, 57, 58

FABRIK Forward And Backward Reaching Inverse Kinematics. 13, 14, 23, 57, 59

IK Inverse Kinematics. ix, 3, 5, 12, 13, 15, 16, 23, 25, 36, 40, 46, 57, 59

IMU inertial measurement unit. ix, 7, 8, 11, 12, 17, 18, 20, 25, 26, 33, 36, 45–48, 57–59

INS inertial navigation system. 3, 7, 15, 20, 41, 44, 45, 47, 48, 54, 55, 58, 60

Intel Realsense Intel Realsense Depth Camera D435. 2, 30, 32, 43, 46, 48, 59

KF Kalman Filter. 11, 12, 18, 20

MEMS micro-electromechanical systems. 7, 15

RANGO RANdomized Global Object localozation. 11

SoE Sense of Embodiment. 5, 6

UWP Universial Windows Platform. 28

VR Virtual Reality. vii, ix, 1–3, 5, 6, 15, 16, 30, 32, 36, 42–46, 48, 49, 51–55, 57, 59, 60

WIP Walking-in-place. 6

63

Bibliography

[AAAA17] A. Abadleh, E. Al-Hawari, E. Alkafaween, and H. Al-Sawalqah.
Step detection algorithm for accurate distance estimation using dy-
namic step length. In 2017 18th IEEE International Conference
on Mobile Data Management (MDM), pages 324–327, 2017. doi:
10.1109/MDM.2017.52.

[AAFP16] Sharath Akkaladevi, Martin Ankerl, Gerald Fritz, and Andreas Pichler.
Real-time tracking of rigid objects using depth data. In OAGM &
ARW Joint Workshop on ”Computer Vision and Robotics”, 05 2016.

[ABI18] Mahdi ABIB. Walking gait features extraction and characterization
using wearable devices. Theses, L’ÉCOLE CENTRALE DE NANTES,
October 2018. URL: https://hal.archives-ouvertes.fr/tel-
01969674.

[AL11] Andreas Aristidou and Joan Lasenby. FABRIK: A fast, iterative
solver for the inverse kinematics problem. Graphical Models, 73(5):243–
260, September 2011. URL: http://dx.doi.org/10.1016/
j.gmod.2011.05.003, doi:10.1016/j.gmod.2011.05.003.

[Bak15a] Martin John Baker. Physics - kinematics, 1998-2015. [Online; accessed 1-
June-2020]. URL: http://www.euclideanspace.com/physics/
kinematics/index.htm.

[Bak15b] Martin John Baker. Physics - kinematics, 1998-2015. [Online; accessed
1-June-2020]. URL: http://euclideanspace.com/maths/
geometry/rotations/conversions/quaternionToAngle/
index.htm.

[BC19] Costas Boletsis and Jarl Erik Cedergren. VR locomotion in the new
era of virtual reality: An empirical comparison of prevalent techniques.
Advances in Human-Computer Interaction, 2019:7420781, Apr 2019.
doi:10.1155/2019/7420781.

[Bra00] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools, 2000.

65

https://doi.org/10.1109/MDM.2017.52
https://doi.org/10.1109/MDM.2017.52
https://hal.archives-ouvertes.fr/tel-01969674
https://hal.archives-ouvertes.fr/tel-01969674
http://dx.doi.org/10.1016/j.gmod.2011.05.003
http://dx.doi.org/10.1016/j.gmod.2011.05.003
https://doi.org/10.1016/j.gmod.2011.05.003
http://www.euclideanspace.com/physics/kinematics/index.htm
http://www.euclideanspace.com/physics/kinematics/index.htm
http://euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
http://euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
http://euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm
https://doi.org/10.1155/2019/7420781

[DMWB13] Shreyansh Daftry, Michael Maurer, Andreas Wendel, and Horst Bischof.
Flexible and user-centric camera calibration using planar fiducial mark-
ers. In Proceedings of British Machine Vision Conference (BMVC).
BMVC, September 2013.

[FALH20] R. Fribourg, F. Argelaguet, A. Lécuyer, and L. Hoyet. Avatar and sense
of embodiment: Studying the relative preference between appearance,
control and point of view. IEEE Transactions on Visualization and
Computer Graphics, 26(5):2062–2072, 2020.

[GJnSMCMC16] S. Garrido-Jurado, R. Mu noz Salinas, F.J. Madrid-Cuevas, and
R. Medina-Carnicer. Generation of fiducial marker dictionaries us-
ing mixed integer linear programming. Pattern Recognition, 51:481
– 491, 2016. URL: http://www.sciencedirect.com/science/
article/pii/S0031320315003544, doi:http://dx.doi.org/
10.1016/j.patcog.2015.09.023.

[GJnSMCMJ14] S. Garrido-Jurado, R. Mu noz Salinas, F.J. Madrid-Cuevas, and M.J.
Marín-Jiménez. Automatic generation and detection of highly reliable
fiducial markers under occlusion. Pattern Recognition, 47(6):2280
– 2292, 2014. URL: http://www.sciencedirect.com/science/
article/pii/S0031320314000235, doi:http://dx.doi.org/
10.1016/j.patcog.2014.01.005.

[HJ15] A. A. Hussen and I. N. Jleta. Low-cost inertial sensors mod-
eling using Allan variance. International Journal of Electrical
and Computer Engineering, 9(5):1237 – 1242, 2015. URL:
https://publications.waset.org/10001443/low-cost-
inertial-sensors-modeling-using-allan-variance.

[HKS+15] C. He, P. Kazanzides, H.T. Sen, S. Kim, and Y. Liu. An iner-
tial and optical sensor fusion approach for six degree-of-freedom
pose estimation. Sensors, 15:16448–16465, 2015. URL: https:
//www.mdpi.com/1424-8220/15/7/16448.

[J77] Bierman G J. Factorization methods for discrete sequential estimation.
Academic Press, New York, 1977.

[KB99] H. Kato and M. Billinghurst. Marker tracking and HMD calibration for
a video-based augmented reality conferencing system. In Proceedings
2nd IEEE and ACM International Workshop on Augmented Reality
(IWAR’99), pages 85–94, 1999.

[KHS17] M. Kok, J. D. Hol, and T. B. Schön. Using Inertial Sensors
for Position and Orientation Estimation. 2017. URL: https:
//ieeexplore.ieee.org/document/8187588.

66

http://www.sciencedirect.com/science/article/pii/S0031320315003544
http://www.sciencedirect.com/science/article/pii/S0031320315003544
https://doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/http://dx.doi.org/10.1016/j.patcog.2015.09.023
http://www.sciencedirect.com/science/article/pii/S0031320314000235
http://www.sciencedirect.com/science/article/pii/S0031320314000235
https://doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
https://doi.org/http://dx.doi.org/10.1016/j.patcog.2014.01.005
https://publications.waset.org/10001443/low-cost-inertial-sensors-modeling-using-allan-variance
https://publications.waset.org/10001443/low-cost-inertial-sensors-modeling-using-allan-variance
https://www.mdpi.com/1424-8220/15/7/16448
https://www.mdpi.com/1424-8220/15/7/16448
https://ieeexplore.ieee.org/document/8187588
https://ieeexplore.ieee.org/document/8187588

[KUY+18] D. Khan, S. Ullah, D. Yan, I. Rabbi, P. Richard, T. Hoang,
M. Billinghurst, and X. Zhang. Robust tracking through the design
of high quality fiducial markers: An optimization tool for ARToolKit.
IEEE Access, 6:22421–22433, 2018.

[KZT+20] Felix Kosmalla, André Zenner, Corinna Tasch, Florian Daiber, and
Antonio Krüger. The importance of virtual hands and feet for virtual
reality climbing. In Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems, CHI EA ’20, page 1–8,
New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3334480.3383067.

[LHL12] B. Langmann, K. Hartmann, and O. Loffeld. Depth camera technology
comparison and performance evaluation. In International Conference
on Pattern Recognition Applications and Methods, 2012.

[Man16] Manash Kumar Mandal. Serialport. https://github.com/
manashmandal/SerialPort, 2016.

[May79] P.S. Maybeck. Stochastic Models, Estimation and Control. Number
pt. 1 in Mathematics in science and engineering. Academic Press, 1979.
URL: https://books.google.at/books?id=eAdRAAAAMAAJ.

[NLL17] Diederick C. Niehorster, Li Li, and Markus Lappe. The accuracy and
precision of position and orientation tracking in the HTC Vive virtual re-
ality system for scientific research. i-Perception, 8(3):2041669517708205,
2017. PMID: 28567271. arXiv:https://doi.org/10.1177/
2041669517708205, doi:10.1177/2041669517708205.

[PS19] Ye Pan and Anthony Steed. How foot tracking matters: The impact
of an animated self-avatar on interaction, embodiment and presence
in shared virtual environments. Frontiers in Robotics and AI, 6:104,
2019. URL: https://www.frontiersin.org/article/10.3389/
frobt.2019.00104, doi:10.3389/frobt.2019.00104.

[QK15] Qian-Yi Zhou and V. Koltun. Depth camera tracking with contour cues.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 632–638, 2015.

[RRMSMC18] Francisco J. Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael
Medina-Carnicer. Speeded up detection of squared fiducial mark-
ers. Image and Vision Computing, 76:38 – 47, 2018. URL:
http://www.sciencedirect.com/science/article/pii/
S0262885618300799, doi:https://doi.org/10.1016/
j.imavis.2018.05.004.

67

https://doi.org/10.1145/3334480.3383067
https://github.com/manashmandal/SerialPort
https://github.com/manashmandal/SerialPort
https://books.google.at/books?id=eAdRAAAAMAAJ
http://arxiv.org/abs/https://doi.org/10.1177/2041669517708205
http://arxiv.org/abs/https://doi.org/10.1177/2041669517708205
https://doi.org/10.1177/2041669517708205
https://www.frontiersin.org/article/10.3389/frobt.2019.00104
https://www.frontiersin.org/article/10.3389/frobt.2019.00104
https://doi.org/10.3389/frobt.2019.00104
http://www.sciencedirect.com/science/article/pii/S0262885618300799
http://www.sciencedirect.com/science/article/pii/S0262885618300799
https://doi.org/https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/https://doi.org/10.1016/j.imavis.2018.05.004

[SNdS16] E. Sikström, N. C. Nilsson, A. de Götzen, and S. Serafin. Is this bridge
safe? evaluation of audiovisual cues for a walk on a small bridge over a
canyon. In 2016 IEEE Virtual Reality (VR), pages 285–286, 2016.

[TCG+07] Nigel W. Tierney, J. Crouch, H. Garcia, M. Walker, B. V. Lunen,
G. DeLeo, George Maihafer, and S. Ringleb. Virtual reality in gait
rehabilitation. 2007.

[WB06] Greg Welch and Gary Bishop. An introduction to the Kalman filter.
Proc. Siggraph Course, 8, 01 2006.

[Woo07] Oliver J. Woodman. An introduction to inertial navigation. Tech-
nical Report UCAM-CL-TR-696, University of Cambridge, Com-
puter Laboratory, August 2007. URL: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-696.pdf.

[YH15] X. Yang and B. Huang. An accurate step detection algorithm using
unconstrained smartphones. In The 27th Chinese Control and Decision
Conference (2015 CCDC), pages 5682–5687, 2015. doi:10.1109/
CCDC.2015.7161816.

[Zal08] Vincent Zalzal. KFilter - free C++ extended Kalman filter li-
brary, 2006-2008. [Online; accessed 24-February-2021]. URL: http:
//kalman.sourceforge.net/index.php.

68

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-696.pdf
https://doi.org/10.1109/CCDC.2015.7161816
https://doi.org/10.1109/CCDC.2015.7161816
http://kalman.sourceforge.net/index.php
http://kalman.sourceforge.net/index.php

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodology and Approach
	Structure of the Work

	State of the Art
	VR Immersion
	Inertial Navigation
	Fiducial Marker Tracking
	Depth Camera
	Sensor Fusion
	Inverse Kinematic

	Methodology
	System Architecture
	Inertial Navigation
	Fiducial Marker Tracking
	Depth Camera
	Sensor Fusion
	Inverse Kinematic

	Implementation
	System Architecture
	Inertial Navigation
	Fiducial Marker Tracking
	Depth Camera
	Sensor Fusion
	Inverse Kinematic

	Evaluation
	Technical Evaluation
	User Study

	Summary and Future Work
	Summary
	Future Work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

