
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 1

Nanotilus: Generator of Immersive Guided-Tours
in Crowded 3D Environments

Ruwayda Alharbi, Ondřej Strnad, Laura R. Luidolt, Manuela Waldner,
David Kouřil, Ciril Bohak, Tobias Klein, Eduard Gröller, Ivan Viola

Fig. 1: Nanotilus entering the center of the HIV model. Several protein instances are sparsified to reveal the internal part of
the model. Left: A grayscale model with highlighted proteins inside the Nanotilus hull is combined with the model’s final
depiction. The model is dissected by a cutting plane perpendicular to the Nanotilus hull. Right: Resulting view from the
Nanotilus perspective.

Abstract—Immersive virtual reality environments are gaining popularity for studying and exploring crowded three-dimensional
structures. When reaching very high structural densities, the natural depiction of the scene produces impenetrable clutter and requires
visibility and occlusion management strategies for exploration and orientation. Strategies developed to address the crowdedness in
desktop applications, however, inhibit the feeling of immersion. They result in nonimmersive, desktop-style outside-in viewing in virtual
reality. This paper proposes Nanotilus—a new visibility and guidance approach for very dense environments that generates an
endoscopic inside-out experience instead of outside-in viewing, preserving the immersive aspect of virtual reality. The approach
consists of two novel, tightly coupled mechanisms that control scene sparsification simultaneously with camera path planning. The
sparsification strategy is localized around the camera and is realized as a multi-scale, multi-shell, variety-preserving technique. When
Nanotilus dives into the structures to capture internal details residing on multiple scales, it guides the camera using depth-based path
planning. In addition to sparsification and path planning, we complete the tour generation with an animation controller, textual
annotation, and text-to-visualization conversion. We demonstrate the generated guided tours on mesoscopic biological models –
SARS-CoV-2 and HIV. We evaluate the Nanotilus experience with a baseline outside-in sparsification and navigational technique in a
formal user study with 29 participants. While users can maintain a better overview using the outside-in sparsification, the study
confirms our hypothesis that Nanotilus leads to stronger engagement and immersion.

Index Terms—VR immersive, Visibility management, Path planning, Storytelling, Visualization

F

1 INTRODUCTION

IN the wake of the pandemic outbreak, the ultrastructure
of biological entities, such as the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) is no longer the ex-
clusive knowledge of a small group of structural biologists.
The broader population has become familiar with the viral

• R. Alharbi, O. Strnad, C. Bohak and I. Viola are with King Abdullah
University of Science and Technology (KAUST), Saudi Arabia. E-mails:
{ruwayda.alharbi | ondrej.strnad | ciril.bohak | ivan.viola }@kaust.edu.sa.
R. Alharbi and O. Strnad are co-first authors.

• L. Luidolt, M. Waldner, D. Kouřil and E. Gröller are with TU Wien.
E-mails: {laura | waldner | dvdkouril | groeller }@cg.tuwien.ac.at.

• T. Klein is with Nanographics. E-mail: tobias@nanographics.at

Manuscript received Month day, 202X; revised Month day, 202X.

architecture and its elementary building blocks. Today, the
public has a better understanding of what a vaccine consists
of, what different types exist, and how it contributes to ac-
quiring immunity. Overall, public knowledge of molecular
assemblies and the interest in the topic are much higher than
in prepandemic times. Simultaneously, biologists now have
better ways to depict biological structures, which can be
specified using cellPack [1], ChimeraX [2], or Mesoscope [3]
by applying a recently introduced three-dimensional (3D)
rapid modeling approach [4]. These models of the mesoscale
ultrastructure (i.e., the details of molecular assemblies) are
essential for scientific publications and molecular dynamics
simulations. Thus far, these scientifically relevant models are

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 2

not used for dissemination to the broader public. Biologists
neither have the training nor the time to create exciting
scientific content directly from their models for a broad
audience. Instead, illustrative (and often misleading) 3D
models or 2D illustrations are created for public awareness.
The pipeline for science dissemination to a broad audience is
performed separately, generating substantial overhead and
sometimes leading to unfortunate conceptual miscommuni-
cations.

However, science-generated molecular models of biolog-
ical entities could be used in science dissemination directly
if the dissemination process were automatized so that bi-
ologists would not require in-depth science communication
training. Such dissemination would require an automatized
system, in which the biologist would describe the model
content with plain text, which would be used with the
model to generate an exciting 3D animation or an interactive
3D exploration. Our vision is to establish such a technology.

The essential building elements would automatically
guide a camera according to the biologist’s text, and the
described structures would be visually presented to the
viewer. With molecular models, this becomes a nontrivial
problem, as the scene is very crowded with densely packed
molecular structures, which are isotropically distributed in
all three spatial dimensions. An advanced visibility man-
agement strategy is necessary to sparsify the environment.
Ideally, such a sparsification process preserves the scene’s
fundamental properties, among others, the notion of crowd-
edness, while securing the visibility of the selected struc-
tures. Our prior work has made it possible to automatically
generate a guided tour for desktop viewing [5]. However,
the perception of crowdedness has been traded for clear
visibility of the discussed structures. In prior work, the
viewer is placed outside the scene and peers into it. In
this work, we investigate a new automatic guided-tour
generation that preserves the notion of crowdedness and
allows the audience to become deeply immersed into the
space with nanoscale details.

A well-suited type of science communication employs
an immersive environment with a large 360◦ dome stereo
projection or virtual reality (VR) headsets. These display
technologies convey complex 3D structural arrangements
much better than standard 2D displays. They are very en-
gaging means for science dissemination, further propelling
knowledge transfer. When using a previously developed
desktop-centric guided-tour generation [5] in such environ-
ments, the experience can be described as watching a movie
in an immersive setting. We call this type of egocentric view
an outside-in view, where the users view the entire scene in
front of them.

The immersion did not encompass the actual space or
model being communicated, which is the challenge we
address in this paper. We propose Nanotilus, a guided-
tour generator for immersive display environments to com-
municate multi-scale, crowded, scientifically accurate 3D
models, representing the structure of complex biological
entities. In addition, the generator preserves the immersive,
overwhelming feeling of the environment so that, in VR, the
viewer is surrounded by all structures that form the model.
We call this type of egocentric view an inside-out view, where
the user is placed in the middle of the scene, and the scene

elements are located around and behind the user.
The Nanotilus guided-tour generation consists of several

constituents, where two components represent technical
novelties. Additional components complete the necessary
functionality and are taken from prior research. Techni-
cally novel is the sparsification technique, which is tightly
coupled with journey planning. These two parts are cou-
pled with a text-to-itinerary conversion and labeling from
prior research. Together, all these components constitute
the Nanotilus guided-tour generator as a novel scientific
contribution on a system level. The components have been
designed to match the following set of requirements:

• R1 (Immersion): Preserve the immersion to create a
feeling that one is part of the scene.

• R2 (Realism): Preserve the realism of the model by
minimizing the sparsification effect on the scene.

• R3 (Variety): Maximize the variety of information by
prioritizing the removal of redundant structures and
avoid removing unique structures.

• R4 (Multi-scale): Convey the multi-scale hierarchical
architecture of the biological entities.

• R5 (Smoothness): Preserve the smoothness of the visual
experience by avoiding the sudden disappearance of
the scene’s elements.

• R6 (Engagement): Maximize the engagement that in-
creases the audience’s eagerness to learn.

2 RELATED WORK

Nanotilus employs a novel path planning and visibility
management technique to generate a guided tour in an
immersive environment. Our work is related to several
areas, where we discuss the most relevant previous studies
in each of those.

Smart Visibility: The impediment to observing inter-
nal features due to occlusion from other objects affects many
3D data visualizations. Several methods have been pro-
posed for occlusion management. Elmqvist and Tsigas [6]
surveyed common approaches and identified five major de-
sign patterns. Viola and Gröller [7] compiled smart visibility
techniques that either adjust optical attributes through cut-
away, section, or ghosted views [8] or alter spatial layouts,
using exploded views or deformations [9].

Removing parts of a 3D model may lower occlusion,
but it can eliminate salient features or obscure the overall
characteristics of the data. A trade-off is often determined
based on the importance of the depicted features. Bruckner
et al. [10] detected homogeneous regions in volumetric
models and reduced their opacity to reveal high-frequency
objects that they assume have higher importance. Viola
and Gröller [11] determined visibility based on an impor-
tance function derived from the model features. Krüger et
al. [12] applied a Focus+Context concept as often employed
in visualizations. They modulated the transparency to com-
bine ray-casted focus and context layers separately. The
approach by Li et al. [13] automatically creates cutaway
illustrations for surface meshes after an initial manual shape
categorization step.

Several authors have formulated visibility management
as an optimization problem. Sigg et al. [14] proposed a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 3

Monte Carlo technique to automatically detect the best posi-
tion and parameterization of a cut-away primitive. Further,
Ament et al. [15] optimize light attenuation with a single
scattering in direct volume rendering to selectively illumi-
nate and uncover essential structures. Birkeland et al. [16]
determined clipping regions by fitting an elastic membrane
in a force field defined by the model features. Similarly,
the method by Dı́az et al. [17] permits the extrusion of
segmented surfaces (e.g., bone structures) from the clipping
plane.

Molecular models often feature a high density of infor-
mation similarly as in volumetric data. Researchers most
often deal with occlusion by removing some of the density
(i.e., they sparsify the crowded model). Kouřil et al. [18] ap-
plied two sparsification strategies to navigate the hierarchy
of a 3D molecular model. A limitation of their work is that
when the user navigates deeper into the hierarchy, more of
the model is removed, leading to a reduced understand-
ing of the crowdedness. Le Muzic et al. [19] proposed a
technique for authoring cutaway illustrations of mesoscopic
biological models consisting of many elementary instances.
Sparsification consists of clipping objects and visibility
equalization. Visibility equalization comprises a series of
visualization control bars overriding the clipping state of
instances according to type. We consider our sparsification
approach to be an automatic visibility equalizer, where the
viewer does not have to control the visibility manually.
Nanotilus combines both the clipping objects and visibility
equalizer into a single entity and uses heuristics to guide the
sparsification process.

A significant drawback of cutaway views is that they
inherently eliminate portions of the data from a visual-
ization. Occlusion management methods that alter spatial
characteristics (e.g., exploded views or peel-away views)
circumvent this problem. Li et al. [20] create interactive
exploded views of an elaborate 3D model. The 3D model is
structured in an explosion graph encoding the displacement
of parts in relation to others. Birkeland et al. [21] described
the automatic creation of view-dependent peel-away views
for volumetric data. Sorger et al. [22] proposed a system for
producing reusable animated transitions tailored to molec-
ular datasets. Exploded views were used to examine the
layering of hierarchical structures. Finally, Elmqvist [23]
distorted the space to manage occlusion, where a spherical
force field repels objects close to the 3D cursor. A follow-
up user study [24] determined that the approach has high
precision and is quite time-consuming. Elmqvist’s approach
is similar to Nanotilus in terms of employing an influence
zone around a 3D position and modifying the characteristics
of the objects in the zone. Our work additionally suggests
several extensions. For example, to account for multi-scale
scenarios, multiple levels of influence zones and different
geometries of the zones (i.e., shells) surrounding the camera
are used instead of a single-level spherical influence zone.

Virtual Camera Control: Christie and Olivier [25]
comprehensively reviewed camera control in the context
of computer graphics. In addition, Mindek et al. [26] intro-
duced a data-sensitive navigation model to enhance medical
visualization interaction. In the case of large molecular
scenes, the interaction techniques must consider the multi-
scale characteristics. Mackinlay et al. [27] determined cam-

era movement speed as a percentage of the distance to the
target, resulting in fast movement far from the object but
slow and controlled movement close to it. Moreover, Mc-
Crae et al. [28] described a technique for navigating multi-
scale datasets employing a cubemap as an image-based
representation of the nearby environment. These studies
address navigation in a multi-scale environment; however,
they avoid collisions, which is inapplicable in molecular bi-
ology. In molecular biology the models are densely packed,
and it is crucial to apply a visibility technique that creates
a space for navigation. Trellet et al. [29] suggested a navi-
gation strategy aimed at crowded molecular biology. They
employed transparency and exploded views to deliver a
clear view of the target objects.

Another significant component in controlling a virtual
camera is its trajectory. Several studies have investigated
path planning algorithms used for road maps [30], [31], [32],
[33], [34], [35]. The main idea is to automatically precompute
a probabilistic collision-free road map and use a search
algorithm at runtime to determine the trajectories. Hsu et
al. [33] used this approach for producing visually pleasing
camera animations from volumetric data. Path planning is
also used to address different problems in VR. An example
is stereoscopic adjustments for group presentations in a cave
automatic virtual environment (CAVE), as an alternative
to the commonly used single-person head tracking [36].
Research in robotics is highly relevant to path planning.
Depth cameras have emerged as appropriate sensors for
robotic navigation in complex indoor environments [37]. For
example, Galvane et al. [38] described techniques to follow
targets in a dynamic environment with camera-equipped
quadrotor drones. In addition, Nägeli et al. [39] allowed
aerial cinematography movement using multiple drones in
real-time with multiple on-screen subjects. In our work, we
propose a path planning that creates a weighted roadmap.
Instead of constructing a graph based on potential locations,
we use the depth buffer to estimate these. Edges connecting
locations are evaluated. Then, we use Dijkstra’s algorithm
to determine the optimal path.

Storytelling in Visualization: Animated visualiza-
tions can effectively present fascinating stories about scien-
tific data. The survey by Chao et al. [40] focuses on story-
telling literature in visualization and describes its essential
elements. Ma et al. [41] presented examples of effective
storytelling specifically with scientific data, using such sys-
tems as AniViz [42]. Furthermore, Wohlfart and Hauser [43]
utilised interactive volume visualization for guided story
creation. Thöny et al. [44] described the design and require-
ments for interactive storytelling within 3D geographic vi-
sualizations. Additionally, Lidal et al. [45] proposed a graph-
ical approach to gathering and visualizing the reasoning
process for generating geological sketches. Metamorphers
by Sorger et al. [22] define animation through reusable
storytelling templates for molecular models.

Our work builds on the Molecumentary method by Kouřil
et al. [5]. This method comprises a framework for develop-
ing documentary-style content employing scientific visual-
ization. The approach automatically generates fly-throughs
of hierarchical molecular models such that leverages pre-
viously written expert explanations to supply an accompa-
nying verbal commentary using text-to-speech technology.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 4

Fig. 2: High-level schematic overview of Nanotilus. The author of the guided provides the system with a 3D model, the
hierarchy, and a script that contains the itinerary (the names of types that the tour should visit). Journey planning receives
the script, extracts the itinerary, and builds the journey. Once the journey is created, it can control the tour by interacting
with the animation controller, which provides information to the camera, sparsification, and text-to-speech conversion
components based on input from the viewer and the journey.

A drawback of molecumentaries, which we address in our
work, is the occlusion management that removes most of
the scene when presenting the internal features.

Storytelling in Virtual Reality: Immersive and in-
teractive VR visualizations offer significant benefits to both
research and education. Slater et al. [46] have evaluated VR
developments since the 1980s, when the concepts were first
conceived. Keiriz et al. [47] used VR to provide a more
immersive way to explore brain data. Boges et al. [48] pre-
sented an immersive system for interactively exploring and
analyzing 3D cellular nanoscale models of the brain. Cremer
and Kearney [49] described a method for creating complex
traffic scenarios to examine human driving performance.
Further, Ponder et al. [50] used interactive storytelling to
create an immersive VR decision training system.

Immersive movies can also play a critical role in learning.
For example, Parong and Mayer [51] compared instruc-
tional effectiveness between immersive VR and a desktop
slideshow. Students evaluated VR lessons as more moti-
vating and enjoyable compared to a PowerPoint slideshow.
Dooley [52] pointed out that the freedom of users to change
the view in VR generates additional challenges for the
authoring of VR narratives. Zhang et al. [53] examined the
influence of interactivity in an educational VR experience
concerning immunology learning. Although interactivity is
useful in improving content engagement, it does not apply
to all actions. Thus, a balance should be maintained between
user control and automation.

Several researchers have investigated the immersive ef-
fect of VR in data visualization. In addition, VR enables
the user to gaze into the data, rather than onto the data.
For example, Yang et al. [54] studied room-scale immersive
networks, establishing the need for a trade-off between user
engagement, physical and mental demand, and efficiency.
Further, Kraus et al. [55] evaluated the effect of immersion

by comparing immersive scatterplot visualizations. Sorger
et al. [56] discussed the advantages of an outside overview
and inside detailed perspectives in exploring medical data
networks. Our work complements these findings. We vi-
sualize inherently spatial data and employ novel visibility
management specifically for immersive storytelling.

3 NANOTILUS - TECHNICAL OVERVIEW

The goal of our pipeline is to automatically generate en-
gaging guided tours through nanoscale detail as a novel,
attractive form of disseminative visualization for a broad
audience, from the bench directly to outreach. Soon, many
3D models of biological structures at the mesoscale can be
produced by scientists for research and publication pur-
poses. With minimal additional effort, such an outcome
should be repurposed for public outreach. The minimal
effort requires to formulate a plain-text script that will define
the guided tour content through the model. The script has
to use consistent terminology with names associated to the
model elements. The generated outcome can be immedi-
ately deployed in immersive dome stereo projections or
guided VR tours.

In this section, we clarify the terminology of the indi-
vidual components involved in a guided-tour generation
(Figure 2). Nanotilus expects input of two types of users:
authors and viewers. The author is the writer or director
of the story who provides the system with a 3D model
together with a script (i.e., textual story) which are then
used to generate the immersive guided tour. The viewer is
immersed in VR to explore structural details described in
the story. The role of the viewer is similar to an audience in
a cinema or theatre.

A guided tour is a sequence of stereo-pair images
coupled with an audio narration from a text-to-speech

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 5

conversion. The stereo-pair is rendered based on camera
settings, sparsification settings, a model, and the associated
labels. An animation controller provides information to
the camera and sparsification components based on input
from the viewer and the journey. A journey is the path
between several points of interest with associated textual
narration. These points of interest are selected structural
instances of the model that are highlighted and discussed
in the narration of the guided tour.

The input 3D model represents the molecular biological
structure of mesoscale organisms, such as viruses, at the
atomistic resolution. The model may consist of several thou-
sands of instances each formed by millions of atoms densely
packed to communicate the crowded situation in real organ-
isms. It does not explicitly contain the water molecules that
sometimes represent 50% to 90% of the volume like in the
blood plasma. Including water molecules, the scene would
be completely packed. Without water molecules there are
void spaces scattered inside the model. Every model is
coupled with its hierarchy (see Figures 11 and 12 in the
supplementary material, Appendix C). Leaf instances at
the bottom of the hierarchy comprise the geometries of
individual molecules. The leaf instances assemble into more
complex geometries of intermediate instances. The ances-
tors of an instance are all the intermediate instances on the
path from that instance up to the root. Each instance is of a
certain molecular type that has a particular name. A script
by the author contains the names of the described types. We
extract the sequence of types from the script and build an
itinerary.

Journey planning takes the sequence of the types in the
itinerary and transforms it into a path (i.e., a sequence
of 3D positions corresponding to the target instances of
the itinerary types). The instances are selected based on
their spatial position so that the camera can easily navigate
between them. The path of points with a text snippet from
the script associated with each itinerary element form a
journey. If only these points are visited, the resulting camera
path would likely not be as engaging. For example, after
visiting one target instance along the path, a natural path for
the camera would be to navigate through the model’s void
spaces and deviate slightly from the intended direction so
that the camera does not need to travel directly through all
instances obstructing the way.

Navigation through void spaces minimizes the num-
ber of instances to sparsify, which subsequently preserves
the model realism (R2). We can observe through anecdotal
evidence that passing through void spaces of the scene
increases the participants’ immersion in the virtual environ-
ment. If everything is cut in front of them, the coexistence
with the scene will not be as strong. Therefore, we argue
that navigation through void spaces increases the immersive
experience (R1). In addition, we have observed that many
participants were much more engaged in the virtual envi-
ronment if they were immersed in it. As a metaphorical ex-
ample, using the natural void spaces to cross a forest would
be a more engaging adventure than using the main road.
So, navigation through void spaces increases the engagement
(R6). Therefore, journey planning additionally searches for
the model’s void spaces and considers these void spaces for
traversal during the journey. The path is subdivided into

line segments, ensuring that the journey takes a specific,
more detailed route through the model between instances
and uses the available void space. Therefore, some points
along the path are associated with a target instance and text
narration, and some points are included to facilitate natural
corridors in the model for the camera path.

At the journey planning stage, the path is just a sequence
of points. The path is not yet the specific smooth trajectory
the camera will be moving along. A smooth camera trajec-
tory is generated by fitting a higher-order curve through the
path’s points. The absence of the water molecules assures
to a large degree the existence of natural void spaces that
are then used by the camera to pass through. If the scene
in a particular region is too dense for a given magnification
level, an artificial tunnel will be generated by sparsification.
We apply sparsification to the model around the camera
so that interesting and essential instances remain visible,
while superfluous instances of a particular type become
temporarily hidden. Sparsification is localized around the
camera, which minimizes the sparsification effect on the
model, preserving the model realism (R2) and scene immer-
sion (R1). However, filtering the instances and prioritizing
the removal of redundant structures, increase the variety
(R3) of information displayed in the scene. In the spar-
sified model the camera is still enclosed by structures to
preserve the immersive experience, some local void space
always exists around the viewer. Sparsification is staged
through multiple concentric shell elements surrounding
the camera to avoid instances abruptly disappearing in
front of the viewer and to preserve the smoothness (R5) of
the presented information. Sparsification increases from the
outermost shell toward the center. The innermost shell hides
all instances that would otherwise hit the camera. Long
genetic molecules and other fiber structures are exempt from
hiding. They are pushed away from the camera trajectory
to reinforce the sense of immersion further. Pushing the
important structures away also minimizes the number of
instances to sparsify, which preserves the model’s realism
(R2) and scene immersion (R1). It evokes the experience of
displacing objects to cross a crowded area, which increases
engagement (R6). During a journey, a user may encounter
instances at different scales that represent intermediate or
leaf instances in the hierarchy. To convey multiple scales (R4)
to the user, multi-scale sparsification is required.

4 JOURNEY PLANNING

An immersive guided tour requires a path that visits excit-
ing places within the 3D model. Moreover, the path should
run between the instances in the model so that the camera
traverses the model’s natural void spaces and unnecessary
sparsification is reduced. The journey planning starts by
identifying a set of target instances that journey should
visit. This process generates a path that connects selected
instances, while traversing through the model’s void spaces.
The journey planning is completed in a preprocessing stage
and the outcome is used during runtime with scene traver-
sal. The detail explanation of each step of journey planning
can be found in the following subsection.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 6

4.1 Target Instances Determination

The first step in journey planning is to determine represen-
tative instances from the itinerary. The itinerary is extracted
from the input script. The script comprises individual sen-
tences, and type names are extracted from these sentences.
Every type in the itinerary has an associated textual snippet
text(Ti) in the narration using text-to-speech synthesis. This
process is described with further detail in our previous
work, where it is called the text-to-vis method [5]. The
guided tour itinerary is a sequence of types 〈T1, ..., Tn〉 used
to determine the sequence of target instances whose 3D
positions define the initial path. The initial position P0 of
the camera is outside of the model, so the whole model
is inside the camera frustum. For each type Ti, we select
one particular instance Si among the many by taking the
one closest to the camera position Pi−1. From the camera
position Pi, which is set to view the instance Si, the closest
instance Si+1 of type Ti+1 is found. Then, camera position
Pi+1 is determined, and so on, until we find a corresponding
instance Si for every type Ti of the itinerary. This leads to
sequences of target instances S = 〈S1, ..., Sn〉 and camera
positions P = 〈P0, ..., Pn〉 that form the initial path. The
initial path is further refined by analyzing the possible ways
through the crowded model, leading to a path with two-
level indexing, where all points between Pi and Pi+1 are
indexed with 〈Pi,0..Pi,m〉. Level-one point Pi corresponds
to level-two point Pi,0, and Pi,m is the last level-two point
that connects to Pi+1.

4.2 Tunnel Detection

Although the 3D model is densely packed, the camera can
typically traverse through several existing holes. We employ
a vision-based approach to determine the path through the
holes in the model from target instance Si to target instance
Si+1. We render the scene to obtain a depth image from
the camera position Pi, with the look-at vector pointing to
the target instance Si+1. Then we analyze the depth buffer
and identify tunnels that end farthest from the camera, and
their opening is sufficiently large on the rendered image.
Next, we move the camera towards the tunnel, adjust the
camera look-at vector to the target instance Si+1 again and
repeat the entire process, until the target instance Si+1 has
become sufficiently visible.

The approach analyses the depth and ID buffers. Both
are attachments of a frame buffer object. Therefore, every
time the scene is rendered, both buffers are updated im-
mediately within a single draw call. For each pixel, the
depth buffer contains the distance to the instance closest
to the camera. The ID buffer contains the identifier of the
rendered instance or a default value. While the background
is not considered, the tunnels are detected using GPU-based
connected-component labeling called Label-equivalence [57],
[58]. The algorithm detects the regions where the voids are
projected in the depth map. We refer to these regions as
void depth projection (VDP). The existence of VDPs is assured
as these are 2D regions detected in the depth map, which
is updated in every frame based on the camera position
and rotation. As the tunnels or VDPs lead to instances,
their existence is assured if at least one instance is visible
in the scene. In this case, the tunnel leads to that instance.

Fig. 3: Top left: Depth buffer of the current frame. Brighter
colors indicate instances farther from the camera. Bottom
left: The two farthest void depth projections, VDP0 and
VDP1, are used for detecting I0 and I1 and computing N0

and N1. Right: Illustration of depth-based journey planning
building the graph G. Intermediate points Nj represent
nodes in the graph that are computed.

Therefore, as the viewer is enclosed in the model, tunnels,
as we defined them, are presented during the guided tour.

The Label-equivalence algorithm identifies which pixels in
the depth buffer belong to the same connected cluster or
VDP. The algorithm relies on three GPU functions: initial-
ization, scan, and analysis. The initialization function uses
the pixel’s linear address as a unique label for that pixel.
The scan function compares each pixel’s depth value with
its eight neighbors to determine whether it is connected to
one of them (i.e., has a similar depth value). If so, it updates
the pixel label with the smallest label. Finally, the analysis
function checks the label of each pixel to determine whether
it refers in turn to an even smaller label. This process
continues until the root of a chain of labels is found. The root
label becomes the label of that pixel. The scan and analysis
functions are repeated until label stability is achieved (i.e.,
labels are no longer updated in a pass). We also collected
size and 3D position information about the detected VDPs.
The analysis of the depth buffer typically provides several
good tunnel candidates.

4.3 Journey Generator

Journey planning computes and evaluates several candidate
paths for the camera to move from one 3D position to the
next. Once we reach the target instance, one of the candidate
paths is selected and used by the animation controller.

Candidate paths, are stored in a directed acyclic graph
(DAG) to allow efficient searching through them. Every path
is given as a poly-line connecting 3D points. An edge in the
DAG represents a segment of the poly-line. Both endpoints
of a segment have corresponding nodes in the graph. Edges
are weighted, which allows us to search for an optimal path.
For example, edges are assigned a higher weight if they
correspond to broader and longer tunnels.

Journey planning processes instances Si sequentially in
steps. In every step, a DAG G containing alternative paths
between the camera position Pi−1 and a 3D point close to
instance Si is created. Intermediate nodes and edges are in-
serted into G while analyzing the depth buffers in recursive

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 7

calls. An example of graph G is depicted in Figure 3. A
detailed exemplary description for the first instance S1 of
the sequence follows. The remaining instances from S are
computed analogously.

In the beginning, G is created and initialized with a
single root node representing the 3D camera position P0.
The scene is rendered from the camera position P0 pointing
to the instance S0. By rendering the scene, a frame is ob-
tained. Then, the depth buffer of the frame is analyzed and
VDPs are found as described in Section 4.2. In the next step,
we evaluate each VDPj . The weight(VDPj) is calculated
as the sum of depths of all pixels belonging to VDPj . This
calculation assigns high weight to VDPs corresponding to
larger and longer tunnels. For each VDP, a set of instances
I = {I1, ..Ij ..Io} from the ID buffer is detected, based on the
pixel coordinates of the center of the void depth projection.
Point Nj is calculated as the intersection of the line from
camera P0 to instance Ij and the bounding sphere of Ij .
The distance of the point Nj from the camera P0 can be
optionally limited by a maxEdgeLength to prevent moving
too far through the model. A new node(Nj) is inserted into
graph G, referencing the intersection point Nj . A new edge
ej connecting node(P0) with node(Nj) is also inserted. The
weight of the edge ej is set to weight(VDPj).

In the following step, the camera is placed at positions
of points Nj , oriented toward S1. If instance Ij is a leaf
instance and not an intermediate instance, Ij is hidden
because it will likely block the camera view in the next
iteration of the algorithm. The scene is rendered again, and
the process is repeated until the target instance S1 (or at
least one of its leaf instances meaning S1 is visible partially)
is detected in the ID buffer.

In the final path-refinement step, a set of leaf nodes L
from G end up very near S1, and their average position
Lavg is computed. The point P1 is set to the position of
the closest point on the bounding sphere of S1 to Lavg ,
and edges previously ending in L are retargeted to P1. In
addition a reference to S1 for P1 is stored. Once G with
multiple path-segments is computed, the highest weighted
path-segment connecting P0 with P1 from G is determined.
Points P0 and P1 are taken to define the level-two points
P0,0 . . . P0,m of the refined path. As the edges in the graph
have numerical weights, we used Dijkstra’s algorithm to
obtain an optimal path. Finally, the temporary DAG G
structure is cleared for the next path-processing step. The
remaining instances Si, with i ∈ [2, . . . , n], are processed
analogously. The pseudocode of Algorithm 1 can be found
in the supplementary material, Appendix A.

5 SPARSIFICATION

When the viewer enters an immersive world of a packed
mesoscale molecular biology, the scene density evokes an
experience like cutting through a jungle, even if there are
tunnels to pass through. Therefore we designed a local,
camera-centric sparsification procedure, reminiscent of the
Nautilus submarine from science fiction because of the
involved geometries and the user experience. The sparsi-
fication is controlled by three nested and concentric shells
surrounding the camera. These three shells approximate
the change in visibility function that varies from 0 to 1,

where 0 means nothing is visible, and 1 means everything
is visible. We use three shells for illustration, but this can
be generalized to an arbitrary number. Based on the overlap
of the model instances with the shells, the visibility of all
but a few selected instances is modulated, or the instances
are entirely hidden. Nanotilus generates endoscopic views
where the scene elements surround the viewer. The shells
are designed as an ellipsoidal shape that is anisotropic along
the tangent of the journey path , as a result, the sparsification
of the model is stronger in the forward direction and weaker
orthogonal to the tangent, which provides the viewer with
necessary space to observe the environment. In addition, the
sparsification reduces structural occlusion and provides the
user with endoscopic views that convey the crowdedness in
the model, while offering an unobstructed journey through
the model.

Nanotilus performs a multi-scale sparsification to cope
with the multi-scale hierarchy of the 3D mesoscale model.
It detects the appropriate scale of the target instance and
sparsifies the model accordingly. For example, if the target
instance in the HIV model is a particular virion as an in-
termediate instance, the granularity of sparsification should
affect other instances on the same scale (i.e., other virions).
Sparsification, in this case, should not just hide some leaf
instances belonging to neighboring virions. Instead, entire
intermediate instances should be hidden. If a HIV capsid
protein is a target instance, a natural behavior would be to
sparsify neighboring virions on the intermediate instance
scale. However, in the case of a target instance’s parent,
lower-level instances should be sparsified to open the virus
and reveal the capsid protein. Thus the sparsification gran-
ularity is modulated based on the hierarchical vicinity of an
instance to the target instance.

The sparsification process is performed during the
guided tour execution. The camera motion frequently in-
vokes the sparsification which is scale-aware (i.e., based on
the target instance characteristics). In the Nanotilus frame-
work, this information is passed on to the sparsification
component by the animation controller. When a new target
instance is selected, the sparsification component defines the
scale on which the occluding instances should be sparsified.
This has been illustrated in the above examples with HIV as
the target instance on the intermediate scale and the capsid
protein as the target instance on the leaf scale. Spatially-
large target instances require stronger sparsification than
spatially small instances. Therefore, Nanotilus changes the
sparsification region based on the target instance. It grad-
ually increases or decreases the dimensions of the shell
geometries to match the bounding-sphere size of the target
instance. The scale is determined in Algorithm 2 in the
supplementary material, Appendix A as described in Sec-
tion 5.2.

Changing the camera position leads to a sparsification
update (i.e., deciding what is shown or hidden) in three
steps. In the first step, as the camera serves as a pivot point
for the shells, these are transformed to a new position with
respect to it. In the second step, instances are associated
through overlap with one of the shells. In the third step,
multi-scale sparsification is performed. In this step, all in-
stances are assigned a weight representing their priority of
being hidden, based on their abundance and distance from

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 8

Fig. 4: Illustration of the sparsification process with different
sizes of the innermost shell (the right image has a larger
innermost shell). The right sides of both images display
the resulting sparsification whereas the left sides illustrate
the shell membership in colors, the red color represents
the instances that belong to most inner shell, the green
and yellow colors represent outer shells’ instances. A larger
inner shell produces a sharper transition between sparsified
and non-sparsified regions.

the camera. The visibility decision considers the multi-scale
scene hierarchy and results in a sparsified model. These
sparsification steps are described in detail in Sections 5.1,
5.3, and 5.4 (see also Figure 2).

5.1 Shell Elements

The three shells define concentric bounding geometries
around the camera and are responsible for preserving the
viewer’s comfort zone. Visible collisions of the camera
with the innermost shell’s instances should be avoided. In
contrast, structures farther away from the camera should
be perceivable, which requires sparsification in the mid-
dle and outermost shells at varying degrees. This method
somewhat invokes the experience of using a vehicle lights
at night. Nanotilus sparsification realizes gradual visibility
management through three nested shells surrounding the
camera to avoid the sudden disappearance of instances
in front of the viewer. The outermost shell performs the
initial stage of sparsification. The middle shell performs
a further sparsification, and the innermost shell hides all
instances obstructing the camera movement. Each shell has
a different visibility percentage (i.e., the visibility percentage
of the innermost shell is set to 0.0, which means all instances
are entirely hidden to avoid collision with the camera). The
visibility percentage increases with each larger shell. In the
middle shell, only the scarcest and vital instances remain
visible. In the outermost shell more instances populate the
shell space. Outside the outermost shell visibility reaches
1.0, meaning that all instances remain fully visible and are
shown. Altogether, the number of nested shells, the gradual
visibility change between them, and the animated opacity
transition between visible and hidden instances result in a
smoothly perceived sparsification.

In principle, the shells can take on any 3D geometric
shape where a collision query can be solved. We tested
several shell geometries, such as nested ellipsoids, nested
cubes, and nested egg shapes. The latter geometries are
loosely similar to a perspective-viewing frustum but with
a limited sparsification zone. We concluded that nested el-
lipsoids provide the most immersive experience, especially
when opening compartmental boundary structures. We
used the standard ellipsoid equation [59] to mathematically
define the shell geometry of Nanotilus, where (px, py, pz) is

Fig. 5: Left-top: Illustration of a scene containing a multi-
scale model. Left-bottom: Hierarchy of the multi-scale
model. Each tree node is associated with a unique ID. Right:
ID-addresses of instances.

a point on the surface, (ex, ey, ez) is the center point of the
ellipsoid, and a, b, and c are the scaling parameters for each
coordinate axis.

(px − ex)
2

a2
+

(py − ey)
2

b2
+

(pz − ez)
2

c2
= 1 (1)

The shell size specifies the volume of the sparsification
region. Nanotilus updates the shell size based on the bound-
ing sphere of the target instance when a new target is
selected. Nanotilus interpolates between the current shell
size and a newly estimated size based on the bounding
sphere of the new target instance during the path traversal.
To compute the final ellipsoid size from the target bounding
sphere, we assigned its radius to the smallest parameter
of the inner-most ellipsoid and updated other ellipsoid
parameters to preserve the original ratio. Accordingly, we
update the parameters of other two outer ellipsoids to
preserve the scale ratio between them. Another possibility is
to select the innermost shell with an overproportioned size,
as it is the most important one that represents the comfort
zone. The illustration in Figure 4 depicts the results of two
different inner shell sizes. A larger inner shell produces a
faster sparsification leading to a sharper transition between
sparsified and non-sparsified regions of the model. The
middle and outermost shells in this comparison have the
same size.

5.2 Scale Determination
The proposed multi-scale sparsification scheme is unequal
in terms of how the instances are sparsified. In the frame-
work, the instances are hierarchically organized in a tree,
similar to the commonly known scene graph structure.
When a particular instance is close in the hierarchy to the
target instance (e.g., example, being its parent or grand-
parent), sparsification is performed on a lower granularity
level (i.e., leaf instance level). When the target instance is
more distant from the instance, it will be sparsified with
higher granularity. The children of a target instance are
not sparsified as they constitute the target instance under
inspection. To automate multi-scale sparsification, we define
the following instance addressing scheme. Each instance
is assigned a unique ID and a hierarchically composed
ID-address. We use the ID-address of the target instance
to determine the scale of sparsification for a particular
instance. The similarity between the instance ID-address to
be sparsified and the target instance ID-address determines
the sparsification scale.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 9

We explain the concept with a simple example in Fig-
ure 5. A schematic multi-scale model is depicted at the top
left. Below is the corresponding hierarchical tree, where each
level in the tree represents a distinct scale. The instance’s
depth is the number of edges from that instance up to the
tree’s root. The address definitions for each instance Ii based
on the IDs of its own, its parents, and its ancestors are on the
right. The sequence of IDs along the path from the root to an
instance defines the ID-address of that instance inside the
3D model. For example, the ID-address of the green circle is
{0.4.7}. This address indicates us that to observe instance I7,
we must sparsify instance I0 first, followed by instance I4.
Based on the above address, there is no need to sparsify the
blue triangle. If we decide to hide it, we must consider the
entire subtree below the blue triangle to be a single element
and hide it all at once. We can realize this if we compare the
ID-address of the target instance (i.e., {0.4.7}) with the ID-
addresses of the blue, green, and yellow triangles, which are
{0.1}, {0.1.5}, and {0.1.6}, respectively. The scale-based-ID
of an instance is the first ID in its ID-address that does not
match the corresponding ID in the target ID-address. Thus,
for the blue, green, and yellow triangles, the scale-based-
ID is 1. Therefore, if sparsification is used, it hides Level 1
instances (where the root is Level 0). The final visibility
decision concerning every instance relies on its scale-based-
ID. In the example, the visibility of instance I1 overrides the
visibility values of the green and yellow triangles. Therefore,
if we decide to remove the blue triangle, we also eliminate
all of its children (i.e., the yellow and green triangles).

The sparsification has to consider the previous target
instance along the journey, too. For example, in Figure 5,
let’s assume the previous target instance is the green circle,
and we select the green rectangle as the new target instance.
Then, the scale-based-ID of the yellow, green, and blue circle
is 4. When we are inside the model closely observing target
I7, and we switch to the new target instance, the whole I4
subtree disappears as a result of multi-scale sparsification.
More natural behavior is to sparsify the previous target on
a lower granularity level. Therefore, we calculate the scale-
based-ID of an instance by comparing it with the current
and the previous target ID-addresses. This procedure is
called scale determination and is listed in Algorithm 2 in the
supplementary material, Appendix A. Because the model is
static, the ID-addresses of model’s instances are computed
once after the model and hierarchy are loaded. Figure 6
shows an example of using the scale-determination.

5.3 Membership Identification

Nanotilus generates endoscopic views where the scene el-
ements surround the viewer. It only sparsifies instances
lying at least partially inside the shells. The mathematical
description of the shell geometry is used to determine
whether the bounding sphere of an instance intersects one
of the shells. All shells are tested for intersection. If an
intersection exists, the computation ends, and the instance
is considered a member of the smallest shell it intersects.
If the bounding sphere of the instance does not intersect
with any shell, it has membership to the region outside the
outermost shell. We compile additional information, such
as the number of visible and invisible instances in each shell

Fig. 6: Illustration of the scale-determination result. In this
example, the target is one of the plasma proteins, thus,
sparsification is on the virus scale. The whole virion has
the yellow membership which means it belongs to the most
outer shell because this virion partially intersects with that
shell.

and their distances from the camera, with the membership
information during one compute shader call. Furthermore,
we determine the number of visible instances per type,
which is helpful for evaluating the importance of the types.

5.4 Sparsification Update
Sparsification is realized in two consecutive phases. The first
phase does not consider the scale, where some instances
that intersect the shells are selected for sparsification. The
second phase considers the scale, where the sparsification
decision from the previous step may be overridden by the
sparsification value of one of the instance’s ancestors in the
model hierarchy.

Phase 1: Initial Sparsification: After membership
identification, we know which instances are inside the
shells. The shells are associated with the visibility percent-
age determining the limit of how many instances inside the
respective shell can remain visible. This initial sparsification
selects instances that should be hidden and updates their
visibility values accordingly.

Every instance that is located outside the shells should
not be sparsified. If the instance was hidden previously
due to a prior intersection with the shells, it should now
be visible again. Otherwise, a previously hidden instance
remains hidden to maintain visual coherence as long as it is
inside one of the shells. On the other hand, if the instance
is visible and inside one of the shells, the algorithm checks
every instance inside the shell for each shell to determine
whether the desired number of invisible instances inside
the shell has already been reached. For a shell element that
has N instances and visibility percentage p, this threshold is
computed as N − pN . If the number of invisible instances
is still not achieved, each visible instance is a candidate to be
hidden. A weight is associated with each candidate instance
that represents the instance priority to be hidden. Abundant
instances and those located closer to the camera are assigned
a higher priority of being hidden, while important instances
are assigned a higher priority to remain visible. The weight
is affected by two values: the distance from the instance
to the camera and the importance of the type, computed
as the complement of the ratio of instances of that type
that remain visible inside the sparsification region. This
is depicted in Figure 7, where the importance of the red

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 10

Fig. 7: Illustration of the sparsification process. The instances
are sparsified based on the importance of the type (cyan
or red) and membership to a shell. Low saturation colors
represent hidden instances. All instances in the innermost
shell have been removed regardless of their importance to
avoid the block view. Some abundant instances have been
removed from the second and third shells.

molecule is calculated as [1 − (2/(2 + 10))]. The weight is
calculated as follows:

w = ||importance||[0,1] · ||dist||[0,1], (2)

where ||importance|| represents the importance of the type,
normalized to the range [0, 1]. Zero corresponds to the
lowest importance, and one corresponds to the highest im-
portance. Moreover, ||dist|| represents distance to camera,
also normalized to the range [0, 1], where 0 is the closest, and
1 is the farthest distance inside the sparsification region. A
smaller instance weight w indicates a stronger candidate for
being hidden. The algorithm sorts the candidate instances
based on weight. Finally, the instances with the smallest
weight are hidden until the threshold is achieved for a given
shell. The pseudocode of Initial Sparsification can be found in
Algorithm 3, in the supplementary material, Appendix A.

The leaf instances are the basic building blocks of inter-
mediate instances. Thus, selecting a leaf instance means its
ancestors are also indirectly selected. Algorithm 3 applies
only to the leaf instances, and once an instance is selected,
the instance and some of its ancestors are hidden. The al-
gorithm propagates the hidden status from the leaf instance
through the ancestors until it reaches the ancestor that has
an ID which matches the leaf instance’s scale-based-ID.

Phase 2: Multi-scale Sparsification: To convey the
model’s multiple scales to the user, multi-scale sparsification
should be applied. In the previous step, specific instances
have been selected to be sparsified. However, based on
the scale-based-ID, that sparsification may be overridden
by the value of one of that instance’s ancestors. The scale-
based-ID is given by the scale determination algorithm
described in Section 5.2. In the Multi-scale Sparsification
stage, the Nanotilus uses the scale-based-ID to determine
the final visibility of every leaf instance, depending on the
hidden/unhidden status of the ancestor on the level of
the current scale value. For every leaf instance, we fetch
the sparsification status of the instance that has an ID
corresponding to the scale-based-ID and use it to update
the sparsification status of that leaf instance. The Multiscale
Sparsification is formally described in Algorithm 3, in the
supplementary material, Appendix A.

Some instances in the model are so valuable that
they should remain unhidden for the entire journey. For
example, nonlocal genetic molecules, such as RNA, occupy

a large space. However, their strand-like structure is sparse
enough; therefore, these nonlocal structures are never
hidden. Instead, they are pushed away from the innermost
shell. The displacement direction is computed based on
the strand’s control points positions and the shell’s center
position. The pushed control points return to their original
positions after they leave the sparsification region.

Instance Fading Effect: When instances become sud-
denly hidden or unhidden in the sparsification phase, it
creates a visual popping artifact, which is inconvenient
during the guided tour experience. Viewers must involun-
tarily redirect their gaze toward the visual popping posi-
tion, which disturbs the experience. Therefore, instead of
suddenly hiding or showing instances, we introduce the
fading effect of the instances that change sparsification
status. In other words, once the status of an instance changes
from hidden to unhidden, or vise versa, as a result of
the sparsification stage, the transparency of that instance
is gradually increased/decreased with every rendering call
until it becomes fully transparent/opaque. With that, the
user perceives sparsification as a smooth process rather than
a discrete event.

The fading effect is achieved by the rendering of the
scene in two independent passes. Only opaque instances
are rendered in the first pass, whereas transparent instances
with the corresponding alpha transparency are drawn in
the second pass. The transparency change is animated over
several frames. This change is performed as an off-screen
rendering into two framebuffers objects (FBOs) which are
composited using alpha blending.

6 REMAINING ELEMENTS OF NANOTILUS

In journey planning in Section 4, Nanotilus computes a path
connecting target instances, which is primarily collision-
free. The animation controller interpolates the path into a
high-order curve and positions the camera along that curve
based on the journey’s progress. Every time the camera
position is updated, sparsification is also updated. The shell
elements are oriented so that their forward direction are
aligned to the tangent on the curve, which results in the
perception that the user is inside the Nautilus submarine. As
our shell element is ellipsoid, the sparsification of the model
is stronger in the forward direction and weaker orthogonal
to it.

Furthermore, the animation controller is responsible
for triggering text-to-speech events. As the path connects
node(Pi), the sequence of instances S can be obtained as
S = 〈P1.ref, ..., Pn.ref〉. From journey planning, every
type Ti is associated with a text snippet text(Ti).

The animation controller synchronizes the camera with
the text-to-speech synthesizer. Before the next step along
the journey, it fetches the target instance Si. Then, the
camera traverses to target instance Si, and the narration
snippet text(Ti) is played in the form of audio. After both
the camera traversal and narration are finished, the user
can freely explore the current part of the model. Once the
exploration is finished, the animation controller continues
to target instance Si+1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 11

Fig. 8: Illustrative stereo-pair images from the HIV guided tour. Left: Nanotilus penetrating the membrane of the virion.
Right: Nanotilus focused on an instance inside the virion.

During the guided tour, the structural information anno-
tating the model is augmented with audio narration and la-
bels. Labeling provides the user with additional descriptive
information about the model. Moreover, labels help the user
associate the information from the narration to the particular
instances. We integrated the labeling approach by Kouřil et
al. [18], [60], which identifies the types of instances currently
visible and places labels for the representative instances
for all types in the current viewpoint. However, restricting
the labeling process to only once the camera rotation and
movement is completely stopped is infeasible for the VR
environment. If the user observes the model through a
VR head-mounted display (HMD), the camera orientation
and position are tracked and continuously updated by the
HMD. The camera never stops; there is slight movement
at all times. Therefore, we extended the original method to
label the model several times, transiting from one instance
to another. In other words, if the camera navigates from
structure Si to structure Si+1, the arclength of the path is
calculated. As the camera progresses along the path, after it
reaches 25%, 50%, 75%, and 95% of its arc length, labeling is
performed based on the current view direction. This labeling
provides the viewers an actual description of the model
even if they rotate their heads 180° along the journey.

7 TECHNICAL IMPLEMENTATION

We implemented Nanotilus using the Marion frame-
work [61], employing an impostor rendering pipeline based
on the work by Le Muzic et al. [62]. The entire framework is
implemented in C++, OpenGL, and GLSL and relies on the
Qt library. Nanotilus is implemented using GLSL compute
shaders with only small data transfer between the CPU
and GPU. As the target environment for the presentation
of the resulting guided tours, we used the HTC Vive Cos-
mos. Therefore, we implemented OpenVR support in the
framework.

The target model typically consists of several thousands
of instances (all formed by millions of atoms) with a hi-
erarchy that defines the logical structure of the model.
The illustrations of both hierarchies of the HIV and SARS-
CoV-2 models are presented in Figures 11 and 12 in the
supplementary material, Appendix C. The HIV model was
generated by Scripps Research [1], [63]. The SARS-CoV-2
model was created using our recently introduced modeling
approach [4]. The virion model was enclosed in the model of
blood plasma to create conditions similar to the HIV model.

We automatically generated guided tours for these two
molecular models, HIV and SARS-CoV-2, in blood plasma,
with comparable numbers of molecules (18,515 for HIV and
14,583 for SARS-CoV-2) and lipids (approx. 200,000 in HIV,
140,000 in SARS-CoV-2). Both models have RNA strands.
We authored a script for each model (340 words with 11
mentioned types for HIV and 354 words with 10 mentioned
types for SARS-CoV-2). The sample screenshots from the
HIV tour are presented in Figure 8 and Figure 1.

After the performance optimizations described in the
supplementary material, Appendix B, we set the resolution
to 1064× 1256 pixels per eye. The application ran on an Intel
Xeon Gold 6242, GeForce 3090, Windows 10 Education, Qt
5.14.2 with 25 FPS per eye, on average. While the FPS recom-
mendations for VR are typically higher, the framerate was
sufficient for conducting the user study to assess whether
Nanotilus preserves an immersive experience.

8 USER STUDY

We invited 29 bioscience students to participate in a VR user
study. In the study, participants conducted two guided tours
through 3D models of viruses (HIV and SARS-CoV-2) using
a VR HMD. The study took around 20 to 30 minutes, and
participants were compensated with gift vouchers (50 USD
each). The Institutional Biosafety and Bioethics Committee
at KAUST approved the study.

The focus is on the formal comparison of the outside-
in and inside-out views (Nanotilus) to explore the main
contributions of the approach in a user study. We chose
Molecumentary [5], which uses a cutting plane as an oc-
clusion management technique to guide the user through
an automated story, as a state-of-the-art baseline condition
representing the outside-in view. Thus, the two conditions
primarily differ from each other in how they visually
present the current focus of the story to the user. In contrast
to Molecumentary, Nanotilus allows users to become fully
immersed in the instances and feel as if they were inside
the model. Increasing the sense of presence is also likely to
increase learning and understanding [64]. Therefore, we hy-
pothesize that users would report a deeper understanding
of the 3D structure of the presented molecules despite the
density of the model due to our smart visibility handling
using the inside-out view.

8.1 Stimuli and Apparatus
The textual story was split into separate textual snippets for
each target instance. These snippets were presented using

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 12

1 2 3 4 5 6 7
How much did the visual aspects of the environment involve you?

Nautilus

Molecumentary

(a) Z = 2.562, p = .010

1 2 3 4 5 6 7
How well could you examine objects from multiple viewpoints?

Nautilus

Molecumentary

(b) Z = 2.480, p = .013

1 2 3 4 5 6 7
How involved were you in the virtual environment experience?

Nautilus

Molecumentary

(c) Z = 2.163, p = .031

Fig. 9: Items from the sense of presence questionnaire displaying significant results of the Wilcoxon signed rank tests.

text-to-speech synthesis. As the focus of the study was on
visual scene perception and not navigation, we used the
Wizard of Oz method to guide the users through both
scenes. Upon verbal request, the experimenter advanced the
story so that the user was transitioned to the next target
instance, and the next section in the synthesized audio
narration was played. At each target instance, the tour was
paused, and the users could look around freely to inspect
their surroundings.

The users stood while viewing both scenes using an HTC
Vive Cosmos. As we employed the Wizard of Oz method
with speech commands, users did not receive any point-
ing or teleportation controllers. This way, inexperienced
VR users also could navigate the scene efficiently, without
introducing a potential confounding effect.

8.2 Study Design and Procedure

We employed a within-subject design with one experimental
factor (interface: Nanotilus or Molecumentary). Figure 13
depicts the SARS-CoV-2 scene for both study conditions. To
compensate for learning effects, we counterbalanced the or-
der of appearance of the two interfaces and the assignment
of the two data sets to the two interfaces.

To measure the users’ sense of presence and overall
impression, we collected the following dependent measures.
First, after each condition, users completed a questionnaire
related to the sense of presence. We adapted a widely
adopted presence questionnaire [64] by selecting only ques-
tionnaire items referring to the visual input and overall user
experience. Second, we issued a final preference question-
naire, in which users rated their overall impressions of the
two conditions and provided free written feedback on each
condition after exposure to both conditions. The complete
questionnaires, responses, and procedures are presented in
the User study document in the supplementary material.

Of the 29 students, 17 were female and 12 male, ages 22
to 39, with a mean age of 27.1. All students were master’s
degree or Ph.D. students of bioscience. Their self-reported
knowledge of SARS-CoV-2 and HIV was an average of 4.5
and 3.8, respectively, on a 7-point Likert scale. With the
bioscience student sample, we assumed that all users were
generally interested in the topic, yet not experts with deep
prior knowledge of the viral structures.

8.3 Study Results

Presence was measured using the results from the sense of
presence questionnaire. For the 15 items in the adapted
presence questionnaire, three responses presented in Fig-
ure 9 yielded significant results. In all three cases, the re-
sponses were significantly higher for Nanotilus than Molec-

umentary (Figure 9). Participants were more involved (visu-
ally and overall) in the Nanotilus condition and could more
easily inspect the structures from multiple viewpoints. The
remaining questionnaire results are provided in the User
study document in the supplementary material.

The overall average preference rating on the 7-point
Likert scale was slightly higher for Nanotilus (4.25) than
for Molecumentary (4.07), but this difference is not statis-
tically significant (Z = −0.787, p = 0.431). We performed
open coding to qualitatively analyze the users’ subjective
textual feedback of both conditions to understand the per-
ceived strengths and weaknesses better. Two independent
coders established four feedback categories: experience (en-
gagement and overall user experience), spatial cognition
(understanding of scales and spatial relations), locomotion
(feedback concerning movement and scene interaction), and
guidance (orientation and ability to follow the story). All
coded utterances were categorized into positive and nega-
tive feedback (Figure 10). The feedback confirms that Nan-
otilus leads to a more positive user experience overall. For
example, people commented that they “liked how close I was
to the structures”, “felt [they were] inside the virus”, and found
it “very immersive”. In contrast, Molecumentary seems to
provide an easier way to follow the story. Users commented
that this outside-in view “gives you an overview”, “is very
clear”, and uses “good highlighting”, whereas participants
commented that they sometimes did not know where to
focus using Nanotilus. Users criticized the “lack of guide
arrows” or other types of annotation for the current objects
of interest.

For both interfaces, some users expressed the wish to
have more control over their location inside the scene. For
example, one user stated “wished I could walk closer inside or
walk backward away from the structures” using Nanotilus. Two
users mentioned that they would like to observe selected
structures from different angles (two for Nanotilus, one
for Molecumentary). Using Molecumentary, users wished to
“go inside the virus and see what is there” and “see the structures
[more] closely”. Even though steering locomotion is known
to induce cybersickness symptoms [65], only two users
reported slight feelings of dizziness (both for Nanotilus).
Three users explicitly mentioned that they did not feel sick
or dizzy (one for Nanotilus and two for Molecumentary).
One strength of Nanotilus’ inside-out view for molecular
visualization is its ability to enhance spatial cognition. Ac-
cording to the users, it “intuitively showed the size of the
molecules [and] their relation to one another” so that “it is nice
to see [...] how small some of the constructs are compared to
others; also cells are quite densely packed”. In contrast, one user
commented that “the scale using the Molecumentary tour was
harder to comprehend as the virus took up most of the visual field

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 13

in front of the view, making it seem larger in comparison to the
virus in the Nanotilus tour”. The comprehensive coded list of
user comments is presented in the User study document in
the supplementary material.

9 DISCUSSION

The sense of presence questionnaire results and user feed-
back indicate that Nanotilus’ immersive inside-out view
increases engagement and involvement. However, this in-
creased engagement does not automatically lead to a higher
acceptance of Nanotilus as compared to a state-of-the-art
outside-in view using a clipping plane to resolve occlusions.
In the latter case, users reported a clearer overview and
could therefore more easily follow the narration. Studies
comparing looking into abstract data, such as scatterplots
and graphs, as opposed to looking onto the data, have
reported similar results. Users are more engaged inside a
data set [54] and tend to feel more present [55]. Moreover,
they can gain new, insightful perspectives on the data [56].
However, they also experience a higher task load [54], more
loss of overview [55], and an increased tendency toward
cybersickness [56].

In summary, immersing into the structures seems to
trade the ability to maintain an overview against a more
pronounced sense of presence (i.e., a sense of being in the
environment [64]). Results from the subjective user feedback
indicate that this increased sense of presence can improve
users’ spatial understanding of the visualized structures. It
is known from VR research that immersion can improve
spatial understanding [66], yet there has been no scientific
evidence so far whether an inside-out view can improve
the spatial understanding of a molecular scene compared
with an outside-in view. Future work must consider ways to
fluidly transition between a clear outside-in overview of the
narration to an inside-out view for a detailed and more en-
gaging inspection of structures to combine the advantages.

10 CONCLUSION AND FUTURE WORK

We developed a novel guided-tour generator that can trans-
form a 3D model and associated script into an immersive
guided tour about the biological nanoworld. On top of
multiple existing technologies, we developed a new jour-
ney planning technique and a new sparsification method,
which enable an engaging, immersive experience when
coupled together. There are two steps to improve the cur-
rent software prototype: performance acceleration and a

Fig. 10: User feedback for Nanotilus (left) and Molecumen-
tary (right) coded into four categories. Bars indicate the
amount of positive and negative feedback for each category
and condition.

new sparsification technique that strengthens the sense of
orientation while preserving the immersion. The Nanotilus
guided tour generator is designed for a linear narrative;
however, in principle, it is easily expandable to support
non-linear storytelling. In such a scenario, the story has
several paths. It branches and forms a story tree or even
a story graph. With such a representation, the interaction
can be as follows: the user visits a particular node and is
offered several ways to proceed, or the user engages in
conversation with the system, and the most related edge
in this story structure would be followed. Conversational
visualization is an important topic to further investigate in
this particular setting or visualization in general. On the
author side, this means not only one story needs to be
authored, but the entire guided structure is authored with
various degrees of automation. In this paper, we focused on
assisted forms of interaction, as it is frequently the choice
in explanatory visualization scenarios. Based on the user
study, we consider the proposed sparsification strategy fea-
sible and conceive a combination of sparsification geometry
for Molecumentary and Nanotilus. In principle, we can
smoothly combine these two sparsification geometries, pro-
vided both are formulated as implicit objects. With such a
combination, we can occasionally enable a general oversight
view using Molecumentary sparsification, which is blended
back into the immersive experience of Nanotilus. Thus, we
do not require proxy elements, such as a miniaturized world
overview, which requires divided attention from the users.
The degree of sparsification was the control factor in our
study. However, the navigation through the void spaces
could also have a strong influence on the perception. There
are indications in prior work that support this consideration.
For example, in VR training simulations, the amount of
visual details had an influence on the training success [67],
[68]. In VR crowd simulations, the density influences where
participants look [69]. We can therefore expect that the num-
ber of visible instances, how they are presented, and how the
user can navigate through them, also have a considerable
influence on the users’ experiences. We consider this as an
important point for future research.

In the Nanotilus guided-tour generator, we provide the
itinerary from the author’s script. Although this itinerary re-
sults in an engaging visual experience, the viewers passively
consume the provided information. Another method could
be to provide the viewers with the option to create their own
stories throughout the model, potentially leading to even
stronger engagement. Nanotilus currently follows a prede-
fined tour plan. In an interactive scenario, multiple options
exist regarding where to go and what to explore. Another
challenge is to create an explorative environment, which still
guarantees a specific learning outcome. For this purpose,
subtle gaze direction and flicker-guiding techniques [70]
can unperceivably guide the viewers to explore specific
structures, with the illusion of free will, where viewers
would feel they discovered the intended target instances by
choice.

ACKNOWLEDGMENTS

The research was supported by the King Abdullah Uni-
versity of Science and Technology (BAS/1/1680-01-01) and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 14

KAUST Visualization Core Lab. We thank nanographics.at
for providing the Marion software, Alex Kouyoumdjian for
insightful comments, and Jules Verne for inspiration.

REFERENCES

[1] G. T. Johnson, L. Autin, M. Al-Alusi, D. S. Goodsell, M. F. Sanner,
and A. J. Olson, “cellPACK: a virtual mesoscope to model and
visualize structural systems biology,” Nature methods, vol. 12, no. 1,
pp. 85–91, 2015.

[2] E. F. Pettersen, T. D. Goddard, C. C. Huang, E. C. Meng, G. S.
Couch, T. I. Croll, J. H. Morris, and T. E. Ferrin, “UCSF ChimeraX:
Structure visualization for researchers, educators, and develop-
ers,” Protein Science, vol. 30, no. 1, pp. 70–82, 2021.

[3] L. Autin, M. Maritan, B. A. Barbaro, A. Gardner, A. J. Olson,
M. Sanner, and D. Goodsell, “Mesoscope: A Web-based Tool
for Mesoscale Data Integration and Curation,” in Workshop on
Molecular Graphics and Visual Analysis of Molecular Data, 2020.

[4] N. Nguyen, O. Strnad, T. Klein, D. Luo, R. Alharbi, P. Wonka,
M. Maritan, P. Mindek, L. Autin, D. Goodsell, and I. Viola, “Model-
ing in the Time of COVID-19: Statistical and Rule-based Mesoscale
Models,” IEEE Transactions on Visualization and Computer Graphics,
vol. 27, no. 2, pp. 722–732, 2020.

[5] D. Kouřil, O. Strnad, P. Mindek, S. Halladjian, T. Isenberg, M. E.
Gröller, and I. Viola, “Molecumentary: Scalable Narrated Docu-
mentaries Using Molecular Visualization,” IEEE Transactions on
Visualization and Computer Graphics, 2021.

[6] N. Elmqvist and P. Tsigas, “A Taxonomy of 3D Occlusion Man-
agement for Visualization,” IEEE Transactions on Visualization and
Computer Graphics, vol. 14, no. 5, pp. 1095–1109, 2008.

[7] I. Viola and M. E. Gröller, “Smart Visibility in Visualization,”
in Proc. of Computational Aesthetics in Graphics, Visualization and
Imaging, 2005, pp. 209–216.

[8] S. K. Feiner and D. D. Seligmann, “Cutaways and ghosting:
satisfying visibility constraints in dynamic 3D illustrations,” The
Visual Computer, vol. 8, no. 5, pp. 292–302, 1992.

[9] M. Agrawala, D. Phan, J. Heiser, J. Haymaker, J. Klingner, P. Han-
rahan, and B. Tversky, “Designing Effective Step-by-Step Assem-
bly Instructions,” ACM Transactions on Graphics, vol. 22, no. 3, pp.
828––837, 2003.

[10] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller, “Illustrative
Context-Preserving Exploration of Volume Data,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 12, no. 6, pp. 1559–
1569, 2006.

[11] I. Viola, M. Feixas, M. Sbert, and M. E. Gröller, “Importance-
Driven Focus of Attention,” IEEE Transactions on Visualization and
Computer Graphics, vol. 12, no. 5, pp. 933–940, 2006.

[12] J. Kruger, J. Schneider, and R. Westermann, “ClearView: An Inter-
active Context Preserving Hotspot Visualization Technique,” IEEE
Transactions on Visualization and Computer Graphics, vol. 12, no. 5,
pp. 941–948, 2006.

[13] W. Li, L. Ritter, M. Agrawala, B. Curless, and D. Salesin, “Inter-
active Cutaway Illustrations of Complex 3D Models,” ACM Trans.
Graph., vol. 26, no. 3, pp. 31––42, 2007.

[14] S. Sigg, R. Fuchs, R. Carnecky, and R. Peikert, “Intelligent Cutaway
Illustrations,” in Proceedings of the 2012 IEEE Pacific Visualization
Symposium, 2012, pp. 185––192.

[15] M. Ament, T. Zirr, and C. Dachsbacher, “Extinction-Optimized
Volume Illumination,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 23, no. 7, pp. 1767–1781, 2017.

[16] Å. Birkeland, S. Bruckner, A. Brambilla, and I. Viola, “Illustrative
Membrane Clipping,” Computer Graphics Forum, vol. 31, no. 3pt1,
pp. 905–914, 2012.

[17] J. Dı́az, E. Monclús, I. Navazo, and P. Vázquez, “Adaptive Cross-
Sections of Anatomical Models,” Comput. Graph. Forum, vol. 31,
no. 7pt2, pp. 2155—-2164, 2012.

[18] D. Kouřil, T. Isenberg, B. Kozlı́ková, M. Meyer, M. E. Gröller,
and I. Viola, “HyperLabels: Browsing of Dense and Hierarchical
Molecular 3D Models,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 27, no. 8, pp. 3493–3504, 2021.

[19] M. Le Muzic, P. Mindek, J. Sorger, L. Autin, D. S. Goodsell, and
I. Viola, “Visibility Equalizer Cutaway Visualization of Mesoscopic
Biological Models,” Computer Graphics Forum, vol. 35, no. 3, pp.
161–170, 2016.

[20] W. Li, M. Agrawala, B. Curless, and D. Salesin, “Automated
Generation of Interactive 3D Exploded View Diagrams,” ACM
Transactions on Graphics, vol. 27, no. 3, pp. 1––7, 2008.

[21] Å. Birkeland and I. Viola, “View-Dependent Peel-Away Visual-
ization for Volumetric Data,” in Proceedings of the 25th Spring
Conference on Computer Graphics, 2009, pp. 121––128.

[22] J. Sorger, P. Mindek, P. Rautek, M. E. Gröller, G. Johnson, and
I. Viola, “Metamorphers: Storytelling Templates For Illustrative
Animated Transitions in Molecular Visualization,” in Proceedings
of the Spring Conference on Computer Graphics 2017, 2017, pp. 27–36.

[23] N. Elmqvist, “BalloonProbe: Reducing Occlusion in 3D Using
Interactive Space Distortion,” in Proc. VRST, 2005, pp. 134–137.

[24] N. Elmqvist and M. Eduard Tudoreanu, “Occlusion Management
in Immersive and Desktop 3D Virtual Environments: Theory and
Evaluation,” International Journal of Virtual Reality, vol. 6, no. 2, pp.
21–32, 2007.

[25] M. Christie and P. Olivier, “Camera Control in Computer Graph-
ics: Models, Techniques and Applications,” in ACM SIGGRAPH
ASIA 2009 Courses, ser. SIGGRAPH ASIA ’09, 2009.

[26] P. Mindek, G. Mistelbauer, M. E. Gröller, and S. Bruckner, “Data-
Sensitive Visual Navigation,” Computers & Graphics, vol. 67, no. C,
pp. 77–85, 2017.

[27] J. D. Mackinlay, S. K. Card, and G. G. Robertson, “Rapid Con-
trolled Movement through a Virtual 3D Workspace,” SIGGRAPH
Comput. Graph., vol. 24, no. 4, pp. 171—-176, 1990.

[28] J. McCrae, I. Mordatch, M. Glueck, and A. Khan, “Multiscale 3D
Navigation,” in Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, 2009, pp. 7––14.

[29] M. Trellet, N. Ferey, M. Baaden, and P. Bourdot, “Content and
task based navigation for structural biology in 3D environments,”
in 2015 IEEE 1st International Workshop on Virtual and Augmented
Reality for Molecular Science (VARMS@IEEEVR), 2015, pp. 31–36.

[30] B. Salomon, M. Garber, M. C. Lin, and D. Manocha, “Interactive
Navigation in Complex Environments Using Path Planning,” in
Proceedings of the 2003 Symposium on Interactive 3D Graphics, 2003,
pp. 41––50.

[31] A. Calomeni and W. Celes, “Assisted and Automatic Navigation
in Black Oil Reservoir Models Based on Probabilistic Roadmaps,”
in Proceedings of the 2006 Symposium on Interactive 3D Graphics and
Games, 2006, pp. 175—-182.

[32] F. Yan, Y.-S. Liu, and J.-Z. Xiao, “Path Planning in Complex 3D
Environments Using a Probabilistic Roadmap Method,” Int. J.
Autom. Comput., vol. 10, no. 6, pp. 525—-533, 2013.

[33] W. Hsu, Y. Zhang, and K. Ma, “A Multi-Criteria Approach to Cam-
era Motion Design for Volume Data Animation,” IEEE Transactions
on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2792–
2801, 2013.

[34] P. Knöbelreiter, R. Berndt, T. Ullrich, and W.-D. Fellner, “Au-
tomatic Fly-through Camera Animations for 3D Architectural
Repositories,” in GRAPP 2014 - Proceedings of the 9th International
Conference on Computer Graphics Theory and Applications, 2014, pp.
335–341.

[35] T. Oskam, R. W. Sumner, N. Thuerey, and M. Gross, “Visibility
transition planning for dynamic camera control,” in Proceedings
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 2009, pp. 55–65.

[36] B. Sommer, A. Hamacher, O. Kaluza, T. Czauderna, M. Klap-
perstück, N. Biere, M. Civico, B. Thomas, D. Barnes, and
F. Schreiber, “Stereoscopic Space Map – Semi-immersive Config-
uration of 3D-stereoscopic Tours in Multi-display Environments,”
2016.

[37] D. Maier, A. Hornung, and M. Bennewitz, “Real-time navigation
in 3D environments based on depth camera data,” in 2012 12th
IEEE-RAS International Conference on Humanoid Robots (Humanoids
2012), 2012, pp. 692–697.

[38] Q. Galvane, C. Lino, M. Christie, J. Fleureau, F. Servant, F.-L.
Tariolle, and P. Guillotel, “Directing Cinematographic Drones,”
ACM Transactions on Graphics, vol. 37, no. 3, pp. 1–18, 2018.

[39] T. Nägeli, L. Meier, A. Domahidi, J. Alonso-Mora, and O. Hilliges,
“Real-Time Planning for Automated Multi-View Drone Cine-
matography,” ACM Transactions on Graphics, vol. 36, no. 4, 2017.

[40] C. Tong, R. Roberts, R. Borgo, S. Walton, R. S. Laramee, K. Wegba,
A. Lu, Y. Wang, H. Qu, Q. Luo, and X. Ma, “Storytelling and
Visualization: An Extended Survey,” Information, vol. 9, no. 3, 2018.

[41] K. Ma, I. Liao, J. Frazier, H. Hauser, and H. Kostis, “Scientific
Storytelling Using Visualization,” IEEE Computer Graphics and
Applications, vol. 32, no. 1, pp. 12–19, 2012.

[42] H. Akiba, C. Wang, and K. Ma, “AniViz: A Template-Based An-
imation Tool for Volume Visualization,” IEEE Computer Graphics
and Applications, vol. 30, no. 5, pp. 61–71, 2010.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 15

[43] M. Wohlfart and H. Hauser, “Story Telling for Presentation in
Volume Visualization,” in Proceedings of the 9th Joint Eurographics /
IEEE VGTC Conference on Visualization, 2007, pp. 91––98.

[44] M. Thöny, R. Schnürer, R. Sieber, L. Hurni, and R. Pajarola,
“Storytelling in Interactive 3D Geographic Visualization Systems,”
ISPRS International Journal of Geo-Information, vol. 7, no. 3, 2018.

[45] E. M. Lidal, H. Hauser, and I. Viola, “Geological Storytelling -
Graphically Exploring and Communicating Geological Sketches,”
in Eurographics Workshop on Sketch-Based Interfaces and Modeling,
K. Singh and L. B. Kara, Eds., 2012.

[46] M. Slater and M. V. Sanchez-Vives, “Enhancing our lives with
immersive virtual reality,” Frontiers in Robotics and AI, vol. 3, p. 74,
2016.

[47] J. Keiriz, L. Zhan, M. Chukhman, O. Ajilore, A. Leow, and
A. Forbes, “Exploring the Human Connectome Topology in
Group Studies,” 2017. [Online]. Available: https://arxiv.org/abs/
1706.10297

[48] D. Boges, M. Agus, R. Sicat, P. J. Magistretti, M. Hadwiger, and
C. Calı̀, “Virtual reality framework for editing and exploring
medial axis representations of nanometric scale neural structures,”
Computers & Graphics, vol. 91, pp. 12–24, 2020.

[49] J. Cremer and J. K. Kearney, “Scenario Authoring for Virtual
Environments,” in Proceedings of the IMAGE VII Conference, 1994,
pp. 141–149.

[50] M. Ponder, B. Herbelin, T. Moler, S. Schertenlieb, B. Ulicny, G. Pa-
pagiannakis, N. Thalmann, and D. Thalmann, “Immersive VR
decision training: Telling interactive stories featuring advanced
virtual human simulation technologies,” Jan 2003, p. 97–106.

[51] J. Parong and R. E. Mayer, “Learning science in immersive virtual
reality,” Journal of Educational Psychology, vol. 110, no. 6, p. 785,
2018.

[52] K. Dooley, “Storytelling with virtual reality in 360-degrees: a new
screen grammar,” Studies in Australasian Cinema, vol. 11, no. 3, pp.
161–171, 2017.

[53] L. Zhang, D. A. Bowman, and C. N. Jones, “Exploring Effects of
Interactivity on Learning with Interactive Storytelling in Immer-
sive Virtual Reality,” in 2019 11th International Conference on Virtual
Worlds and Games for Serious Applications (VS-Games), 2019, pp. 1–8.

[54] Y. Yang, M. Cordeil, J. Beyer, T. Dwyer, K. Marriott, and H. Pfister,
“Embodied Navigation in Immersive Abstract Data Visualization:
Is Overview+Detail or Zooming Better for 3D Scatterplots?” IEEE
Transactions on Visualization and Computer Graphics, vol. 27, no. 2,
p. 1214–1224, Feb 2021.

[55] M. Kraus, N. Weiler, D. Oelke, J. Kehrer, D. A. Keim, and J. Fuchs,
“The Impact of Immersion on Cluster Identification Tasks,” IEEE
Transactions on Visualization and Computer Graphics, vol. 26, no. 1,
pp. 525–535, Jan 2020.

[56] J. Sorger, M. Waldner, W. Knecht, and A. Arleo, “Immersive
Analytics of Large Dynamic Networks via Overview and Detail
Navigation,” in 2019 IEEE International Conference on Artificial
Intelligence and Virtual Reality (AIVR), 2019, pp. 144–1447.

[57] K. A. Hawick, A. Leist, and D. P. Playne, “Parallel Graph Compo-
nent Labelling with GPUs and CUDA,” Parallel Computing, vol. 36,
no. 12, pp. 655–678, 2010.

[58] D. P. Playne and K. Hawick, “A New Algorithm for Parallel
Connected-Component Labelling on GPUs,” IEEE Transactions on
Parallel and Distributed Systems, vol. 29, no. 6, pp. 1217–1230, 2018.

[59] E. Lengyel, Mathematics for 3D game programming and computer
graphics. Nelson Education, 2012.

[60] D. Kouřil, L. Čmolı́k, B. Kozlı́ková, H. Y. Wu, G. Johnson, D. S.
Goodsell, A. Olson, M. E. Gröller, and I. Viola, “Labels on Levels:
Labeling of Multi-Scale Multi-Instance and Crowded 3D Biological
Environments,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 1, pp. 977–986, 2019.

[61] P. Mindek, D. Kouřil, J. Sorger, D. Toloudis, B. Lyons, G. John-
son, M. E. Gröller, and I. Viola, “Visualization Multi-Pipeline for
Communicating Biology,” IEEE Transactions on Visualization and
Computer Graphics, vol. 24, no. 1, pp. 883–892, 2018.

[62] M. L. Muzic, L. Autin, J. Parulek, and I. Viola, “cellVIEW: a Tool
for Illustrative and Multi-Scale Rendering of Large Biomolecular
Datasets,” in Eurographics Workshop on Visual Computing for Biology
and Medicine, K. Bühler, L. Linsen, and N. W. John, Eds., 2015, pp.
61–70.

[63] G. T. Johnson, D. S. Goodsell, L. Autin, S. Forli, M. F. Sanner,
and A. J. Olson, “3D molecular models of whole HIV-1 virions
generated with cellPACK,” Faraday Discussions, vol. 169, pp. 23–
44, 2014.

[64] B. G. Witmer and M. J. Singer, “Measuring presence in virtual
environments: A presence questionnaire,” Presence, vol. 7, no. 3,
pp. 225–240, 1998.

[65] J. Clifton and S. Palmisano, “Effects of steering locomotion and
teleporting on cybersickness and presence in HMD-based virtual
reality,” Virtual Reality, vol. 24, no. 3, pp. 453–468, 2020.

[66] D. A. Bowman and R. P. McMahan, “Virtual reality: how much
immersion is enough?” Computer, vol. 40, no. 7, pp. 36–43, 2007.

[67] E. D. Ragan, D. A. Bowman, R. Kopper, C. Stinson, S. Scerbo, and
R. P. McMahan, “Effects of Field of View and Visual Complexity on
Virtual Reality Training Effectiveness for a Visual Scanning Task,”
IEEE Transactions on Visualization and Computer Graphics, vol. 21,
no. 7, p. 794–807, Jul 2015.

[68] S. Lessels and R. A. Ruddle, “Movement Around Real and Virtual
Cluttered Environments,” Presence: Teleoperators and Virtual Envi-
ronments, vol. 14, no. 5, pp. 580–596, Oct 2005.

[69] F. Berton, L. Hoyet, A.-H. Olivier, J. Bruneau, O. Le Meur, and
J. Pettre, “Eye-Gaze Activity in Crowds: Impact of Virtual Reality
and Density,” in 2020 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), 2020, pp. 322–331.

[70] S. Rothe, D. Buschek, and H. Hußmann, “Guidance in cinematic
virtual reality-taxonomy, research status and challenges,” Multi-
modal Technologies and Interaction, vol. 3, no. 1, p. 19, 2019.

https://arxiv.org/abs/1706.10297
https://arxiv.org/abs/1706.10297

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2021.3133592, IEEE
Transactions on Visualization and Computer Graphics

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, MONTH 20XX 16

Ruwayda Alharbi is a Ph.D. student at King Abdullah University of Sci-
ence and Technology (KAUST), Saudi Arabia. She received her Master’s
degree in 2016 from King Saud University, Saudi Arabia. Her research
interest lies in scientific visualization, where she focuses on designing
novel visualization methods that support exploration and understanding
of 3D mesoscale biological models.

Ondřej Strnad is a research scientist at King
Abdullah University of Science and Technology
(KAUST), Saudi Arabia. He received his doctoral
degree from the Masaryk University in Brno,
Czech Republic in 2014. His research interests
stretch over scientific visualization, geometry al-
gorithms and computer graphics. Recently he
joined the NANOVIS group at KAUST to work
on technologies that deliver new visualizations
and techniques regarding mesoscale biological
models.

Laura R. Luidolt has been a Ph.D. student at
TU Wien working on XR, in particular perception
in VR.

Manuela Waldner is an Assistant Professor at
the Institute of Visual Computing and Human-
Centered Technology at TU Wien. Her research
interests cover human-computer interaction and
visualization, with a special focus on perception
of visualizations and intelligent visual interfaces
for the interactive exploration and analysis of
complex data. Waldner has a PhD in computer
science from the Graz University of Technology.

David Kouřil is a post-doctoral researcher at the
Masaryk University in Brno, Czech Republic. He
received his doctorate in 2021 from TU Wien in
Vienna, Austria. His research topic lies in sci-
entific visualization, where he focuses on three-
dimensional data coming from structural biology.
He designs novel visualization and interaction
methods to support exploration and understand-
ing of the environments that this data represents.

Ciril Bohak is a postdoctoral research fellow at
King Abdullah University of Science and Tech-
nology (KAUST), Saudi Arabia, and an assistant
professor at the Faculty of Computer and Infor-
mation Science, University of Ljubljana, Slove-
nia. He received his B.Sc., M.Sc., and Ph.D.
degree from the University of Ljubljana. His re-
search covers computer graphics, scientific visu-
alization, and human-computer interaction.

Tobias Klein is CEO and co-founder of Nano-
graphics, which creates biomedical animations
and software solutions. He received his doctoral
degree from TU Wien, Austria, where he was
working on biological mesoscale visualization
and model generation. In his work, he tries to
build a bridge between research and industry
covering topics ranging from scientific visualiza-
tion to parallel computing.

Eduard Gröller is a Professor at the Institute of
Visual Computing and Human-Centered Tech-
nology at TU Wien, and adjunct professor of
computer science at the University of Bergen,
Norway. His research interests include computer
graphics, visualization, and visual computing.

Ivan Viola is a Professor at King Abdullah Uni-
versity of Science and Technology (KAUST),
Saudi Arabia. He graduated from TU Wien, Aus-
tria, in 2005 he took a postdoc position at the
University of Bergen, Norway, where he was
gradually promoted to the professor rank. In
2013 he received a WWTF grant to establish a
research group at TU Wien. At KAUST, he con-
tinues developing new technologies that make
visual, in-silico life at nanoscale possible. Viola
co-founded the Nanographics startup to com-

mercialize nanovisualization technologies.

