JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Multi-level Area Balancing of Clustered Graphs

Hsiang-Yun Wu, Martin Néllenburg, and Ivan Viola

Abstract—We present a multi-level area balancing technique for laying out clustered graphs to facilitate a comprehensive
understanding of the complex relationships that exist in various fields, such as life sciences and sociology. Clustered graphs are often
used to model relationships that are accompanied by attribute-based grouping information. Such information is essential for robust data
analysis, such as for the study of biological taxonomies or educational backgrounds. Hence, the ability to smartly arrange textual labels
and packing graphs within a certain screen space is therefore desired to successfully convey the attribute data . Here we propose to
hierarchically partition the input screen space using Voronoi tessellations in multiple levels of detail. In our method, the position of
textual labels is guided by the blending of constrained forces and the forces derived from centroidal Voronoi cells. The proposed
algorithm considers three main factors: (1) area balancing, (2) schematized space partitioning, and (3) hairball management. We
primarily focus on area balancing, which aims to allocate a uniform area for each textual label in the diagram. We achieve this by first
untangling a general graph to a clustered graph through textual label duplication, and then coupling with spanning-tree-like visual
integration. We illustrate the feasibility of our approach with examples and then evaluate our method by comparing it with well-known
conventional approaches and collecting feedback from domain experts.

Index Terms—Graph drawing, Voronoi tessellation, multi-level, spatially-efficient layout

1 INTRODUCTION

VER recent decades, graphs have been developed to

formulate relationship networks between entities. So-
cial networks, for example, have emerged in recent years
and have quickly dominated network data. Graph theory,
graph drawing, and graph visualization methods have been
identified as effective techniques to analyze this data [13].
Nowadays, the architecture of knowledge graphs [10], which
are powerful representations of knowledge, can be effec-
tively analyzed by means of graph-related computational-
and visual-analytics machinery. Furthermore, the recently
established scientific discipline of complexity science [39]
studies the complex relationships among entities within
particular structures or phenomena.

One typical example for the application of complexity
science includes network structures in biology. For instance,
life functions are organized in a relationship of interacting
elements and chemical compounds that form a supercom-
plex network of reactions occurring throughout the entire
life form. To semantically organize these enormous net-
works, they can be segmented into network sub-elements,
known as pathways, to form a graph containing dozens of
chemical elements that represent a particular function of
life. However, the full collection of pathways is too large
to be easily handled using common graph visualization
techniques. Therefore, these complex networks are typically
organized into clusters, denoted as subsystems, to make them
easier to visually comprehend. Furthermore, because there
is only a limited number of chemical elements that play
a role in evolution and other roles in several pathways,

o H.-Y. Wu is with TU Wien, Austria.
E-mail: hsiang.yun.wu@acm.org
e M. Nollenburg is with TU Wien, Austria.
E-mail: noellenburg@ac.tuwien.ac.at
o [Viola is with King Abdullah University of Science and Technology
(KAUST), Saudi Arabia.
E-mail: ivan.viola@kaust.edu.sa

Manuscript received April 19, 2005; revised August 26, 2015.

molecules of water, oxygen, carbon dioxide, ATP, or NAD
are so frequently interconnected that they inevitably form
part of almost every pathway, making these networks very
tightly connected. Thus, graphical representations of bio-
logical networks pose a huge challenge for scientific graph
visualization techniques.

Applying state-of-the-art graph-drawing and graph-
visualization techniques to such complex scientific networks
inevitably becomes hopelessly computationally infeasible.
To date, Metabopolis [64] is the only study that has at-
tempted to algorithmically design a network layout for the
entire metabolic pathway network. While their algorithm
can compute a layout within a reasonable time of just over
two hours, it still cannot compete with manually designed
metabolic pathway diagrams in terms of visual quality [52].

Perhaps the most notable shortcoming of Metabopolis,
as compared to ReconMap (a manual layout that has been
compiled over several years; v3 at the time of writing),
is its lack of space utilization uniformity. In Metabopolis,
some subsystems are given ample space for their pathway
layouts with generous space around them, while some other
pathways are extremely densely packed, which severely
comprises their readability. Some subsystem boxes on the
next level of spatial organization are well connected with
their neighboring interacting subsystems, but some create
inefficient holes in the overall layout. In contrast, Recon-
Map3 organizes the subsystems more organically for tighter
and more uniform space utilization. ReconMap3 also occa-
sionally non-uniformly distributes the network ink. This is,
however, by design and purposely done to communicate
a particular structural motif, such as the citric acid cycle,
which is rather sparse, and transport pathways, which are
rather dense. Due to the uniqueness of those motifs (rec-
ognizable topological structures), some localization of detail
can be performed even without recognizing the full details.

We draw inspiration from the manually crafted network
design of ReconMap3 for tackling the key shortcomings of

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

the current fully algorithmic network layout of metabolic
pathways. In this paper, we address one of the major scien-
tific graph visualization challenges, namely the uniformity
of the layout. Our approach is generally applicable, how-
ever, and is especially tailored for scientific networks such
as metabolic pathways. Moreover, our approach tackles the
problem as a multi-layer problem with several scales of
conceptual organization. The uniformity, or as we denote
it, the area balancing, allocates nearly equal area for each
textual label over the canvas as an even density of stations
across a map [54]. Our approach is conceptually a top-down
multi-pass process based on Voronoi tessellations, which
results in a well-balanced spatial layout. Our approach also
supports motif alignment and vertex duplication to resolve
hard hairball-causing cases. When calculating the layout on
a detailed level, the approach also takes into consideration
the size of the textual labels associated with the vertices. To
emphasize this association, we denote a vertex annotated
with a textual label as a vertext (pl. vertexts) in this paper. In
summary, our main technical contributions are:

o Multi-level area balancing

o Schematized space partitioning
and overlap-free vertext arrangement

« Hairball management via vertext duplication
coupled with visual integration

The remainder of this paper is structured as follows: In
Section 2, we relate our new algorithm to the existing body
of work. We then begin with an explanation of the design
criteria for achieving area-balanced networks and provide a
high-level algorithm explanation in Section 3. The technical
contribution and details are presented in Sections 4-6. Sev-
eral improvements in our implementation are detailed in
Section 7, followed by the implemented results in Section 8,
and evaluation and discussion in Section 9. Finally, we
conclude this paper and sketch interesting future directions
in Section 10.

2 RELATED WORK

Our proposed approach for visualizing clustered graphs in
a way that assigns a fair share of the available space to
each vertext is related to several studies in the literature.
We first cover the layout approach for clustered graphs, and
the relevant space partitioning algorithms followed by the
layout schematization approaches.

2.1 Layout of clustered graphs

Numerous approaches for drawing graphs with additional
vertex grouping or clustering information exist in the lit-
erature [12], [17], [23], [38], [70]; however, most of those
studies assume proper hierarchical clustering, in the sense
that clusters must be either disjoint or one cluster must be
contained in the other cluster. Recent surveys by Vehlow et
al. [59] on visualizing group structures in graphs and by
McGee et al. [46] on visualizing more generally multilayer
graphs [39] give a good overview of the state of the art. A
recent scalable method for drawing graphs based on stress
minimization with additional layout constraints, including
constraints for avoiding cluster overlap, has been presented

2

by Wang et al. [61]. In comparison to preserving the geomet-
ric structures of node-link diagrams, set visualization tech-
niques can be used to emphasize cluster information. Bub-
bleSets [18], LineSets [9], and KelpFusion [47] are techniques
that introduce enclosed regions around pre-placed elements
to provide a stronger sense of the grouped elements.

Due to the application of the map metaphor, we are
particularly interested in those approaches that use a proper
(hierarchical) partitioning of the available space among the
different clusters, similar to countries on a map, rather than
methods that merely color vertices or use non-space-filling
lines or contour overlays on top of node-link diagrams.
A well-known example is GMap [31], which first draws
the given graph using standard algorithms such as force-
directed layout or multidimensional scaling, and then com-
putes a flat clustering of the graph (which could also be
given in the input). The vertex positions as well as a large
set of additionally placed points are then used as seeds
to compute a Voronoi diagram, whose cells are colored
according to the cluster information. As a result, a GMap
visualization can show a clustered graph in the shape of
a political map with countries representing clusters. In the
initial paper, vertices always belong to a single cluster,
and clusters can sometimes be non-contiguous because the
layout and the clustering are computed separately. A more
recent journal extension later overcomes this weakness by
overlaying semi-transparent clusters over each other [32]. In
comparison to GMap, we incorporate a duplication scheme
to simplify the graph topological structures to achieve the
same goal. Kobourov et al. [41] subsequently developed a
method for computing GMap-style layouts with contiguous
cluster regions in the setting where either the input em-
bedding or the clustering can be modified. MapSets [25]
is another extension for showing cluster membership of
vertices in a graph layout by space partitioning. However,
regions in MapSets are computed for existing graph layouts
that must be preserved and thus may enforce complex
cluster shapes. Other works that use a map metaphor for
graph layouts similar to GMap draw topographic maps of
clustered graphs [33], maps of computer science [28], and
GraphMaps [49].

2.2 Space-Partitioning Algorithms

Space-partitioning algorithms for graph layouts typically
use a recursive partitioning scheme to assign the required
space (or area) of the available drawing area to certain
subgraphs, as is often needed when using a map metaphor.
Treemaps [56], [57] are among the most prominent space
partitioning schemes to visualize (weighted) trees by split-
ting the region representing a certain interior node into sub-
regions for all its children, each of them proportional to the
weight or subtree size. While the original treemaps have
used rectangular subdivisions, treemaps have also been
studied for non-rectangular regions, e.g., Voronoi cells [11].

A different type of space-filling graph layout represents
planar graphs by dual planar subdivisions, where each ver-
tex is represented by one cell or face in the subdivision and
two vertices are connected by an edge if and only if the
cells share a common boundary. Such layouts are related
to cartograms [53], i.e., value-by-area maps of countries,

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

where the area of each country is proportional to some
external value. Similarly, floor planning [68] in VLSI designs
considers the task of partitioning the space of a circuit board
into regions to place electronic components with neighbor-
hood preferences given by a graph model. Floor planning
techniques have also been applied in visualization, e.g., for
browsing images using a Voronoi tesselation [14], Voronoi-
based distribution of overlap-free vertex labels [66], [67] or
computing word cloud layouts [19].

2.3 Network Schematization Algorithms

The cluster boundaries in our approach are simplified and
schematized into octilinear polygons, where the slope of
each edge is a multiple of 45°, as is commonly seen in
metro maps, for example [63]. Several algorithms exist for
schematizing polylines [20] and also for area- and topology-
preserving schematization of polygons [15], [48].

3 OUR BALANCING STRATEGIES

We use a graph model G = (V, E) to represent a complex
relationship network. The model consists of a set of vertexts
V' = {v1,v2, ..., v, } representing individual, named entities
and the mutual entity connectivity is represented by the
edges E = {e1,e2,....,en,} €V x V. We aim to tackle more
generally clustered graphs, where each v € V can belong to
one or more clusters ¢ € C = {c1,ca,...,cr}, where each
c; € V. We can consider this as a specific type of multilayer
graphs, which is a unified model for complex networks [65].

In this paper, we primarily focus on the development of
(S1) vertext area balancing, which is done by integrating a
(S2) schematized space partitioning algorithm together with
additional vertexts arrangement. Moreover, a (S3) hairball
management via vertext duplication is accommodated with
a spanning-tree-like visual integration. We will first give an
explanation based on our selected design principles (51)-
(53) as a whole, followed by a step-by-step example, as
shown in Figure 1.

3.1 Vertext Area Balancing (S1)

Note that our approach is decomposed into several levels
in a top-down fashion, where area balancing for each level
takes into account information complexity or density of
the level underneath. This strategy with several refinement
steps eventually leads us to a balanced vertext distribution,
which takes into account connectivity information on all
levels in the progressive composition. Our solution is tai-
lored initially for metabolic networks, although its utility
potential reaches beyond this specific application. Based
on hand-made graphs and prior experience of box-based
clustered graph visualization [64], this approach supports
more free-form organic shapes of graphs to ensure the high
effectiveness of the layout compaction.

This is achieved by a four-level area balancing ap-
proach to allocate appropriate space for each vertext within
a cluster. The four distinct phases include (1) category-
level (Figures 1(a)-(d)), (2) component-level (Figures 1(e)),
(3) topology-level (Figures 1(f)-(g)), and (4) detail-level
space partitioning (Figures 1(h)-(i)). This design decision
has been made based on the topological properties of

3

networks, where category-level refers to cluster proper-
ties, component-level indicates connected-component prop-
erties, topology-level represents the abstract form of sub-
networks, and detail-level shows the detailed sub-networks.
In practice, each level is computed by a force-based layout
(see Section 4) followed by a schematization approach for
simplifying the shapes of the contours (see Section 5) to
accomplish detail-level vertext area balancing.

3.2 Schematized Space Partitioning
and Overlap-Free Vertexts Arrangement (S2)

To achieve our goal, we establish a corresponding graph
skeleton g; € Gg = {G¢, Gy, Gr,Gp} for each of the four
levels, Category, coMponent, Topology, and Detail levels,
respectively. The layout of each graph skeleton is used
to guide the positioning of its belonging vertices to their
expected position, in order to retain a balanced distribution.
Each skeleton g; is built individually based on the structures
needed at each level, where we consider the topological
properties when forming this skeleton (see definition in
Section 5).

In the category-level, we aim to reserve sufficient space
for each category using Voronoi seeds for estimating the
appropriate space. For example, each vertex in Figure 1(a) is
a representative vertex for a cluster. It consists of elements
mag. € Mg, that are used as a representative unit for
a certain number of detail-level vertexts within a cluster
(Figure 1(b)).

This is done by replacing the representative vertex for

a cluster with a cycle graph, which enables the flexibility
of vertices in the cycle graphs to move during the layout
process.
We introduce this strategy because force-directed layout ap-
proaches are good at handling sparse and tree-like graphs.
In the component-level, we drag components sharing some
vertexts close to each other (see red edges in Figure 1(d)-(e))
and align cells containing subgraphs with similar topologi-
cal structures in their neighborhood. In the topology-level,
we again spread representative units in the sub-domains by
referring to its abstract topological structures for distribu-
tion estimation.

Finally, in the detail-level, we compute the detailed
layout by assigning a seed to each vertext for a Voronoi
cell computation. Note that we utilize the area computed by
Voronoi cells as partitions reserved for each graph skeleton.
To improve the layout representation, at the end of each
level, we reshape each contour polygon and simplify its
boundaries for better shape identification. Adjusting poly-
gon boundaries also allows us to pay particular attention
to the textual-annotation of vertexts. Our design takes into
account the size of the textual label at each vertext. This
is because conventional approaches often introduce textual
labels as a post-processing approach by prolonging edges
horizontally or vertically to solve the problem [30], which
has the drawback that users cannot control the aspect ratio
of the final drawing. The algorithm may also produce an
unexpected horizontally or vertically long diagram based
on the input graph layout.

We therefore define our ideal layout by finding a com-
promise between the conventional force-directed algorithm

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

(a) vertices in G (b) extended vertices in G- (c) vertices in G¢ (d) gp1 (e) vertices in Gy

(f) vertices in G (8) gp2 (h) vertexts in Gp (1) gb3

Fig. 1. These figures depict the overall pipeline of our approach. (a) A primary graph skeleton for describing a strong neighborhood relationship
between clusters. (b) A collection of cycles computed from (a), which are used for estimating the required screen space. (c) The distribution of the
cycles after forces are applied. (d) Simplified cluster boundaries. (e) Underlying structures that show the inter-connectivity between packed Voronoi
cells, which are used to specify the center of each connected graph component. (f) Abstract graph structures are then used to estimate the area
needed for the fine layout. (g) Rearranged cell boundaries. (h) Balanced detailed graph distribution after forces are applied. (i) Boundary for each
vertext is then rearranged for better readability. (j) A Steiner tree representation that highlights identical vertexts.

through the blending with Voronoi centroidal forces to
retain its initial graph layout. The shapes of the vertext
areas are simplified and schematized to better highlight the
boundaries of the components. This design is analogous
to the boundaries of different districts or countries in a
political map. Such a map metaphor has proved its usability
in previous approaches [25], [31].

3.3 Hairball Management via Vertext Duplication
Coupled with Visual Integration (S3)

In metabolic pathways, some metabolites are omnipresent
and connected with almost every elementary subsystem in
a pathway category, and this naturally leads to a hairball
effect. Our design strategy here is inspired by hand-crafted
maps by biologists [52], [55], where we perform a vertext
duplication of these metabolites to reduce the graph density
and mutual complexity. However, if we duplicate vertexts
too much, then the graph components are oversimplified.
As a consequence, tracking duplicated vertexts becomes
difficult. One challenge is to find the right level of dupli-
cation that simplifies the graph just enough, but not more
than necessary. The effectiveness of vertex duplication has
been demonstrated by Henry et al. [35], who showed that
vertex duplication is useful for community-related tasks
when exploring grouping structures in a social network.
Nielsen et al. [51] also demonstrated its applicability in
biological networks. Vertex duplication is helpful here, since
it also provides readers with a visual hierarchy of vertices
using different visual variables. For example, a high-degree
vertex involved in many groups could be essential in so-
cial network analysis because it shows the activity of a
person who interacts strongly with other persons in the
network. On the contrary, it could be less compelling in the
case of molecules H,O or H in biological networks. These
molecules frequently join reactions in metabolic pathways,
but due to their abundance in the cells do not provide essen-
tial biological meaning for interpretation. For this reason, we
reduce the hairball effect by duplicating such vertexts. We
therefore define two duplication strategies to guide readers

to concentrate on important vertexts. Note that duplication
also helps in reducing potential edge crossings. The details
will be explained in Section 6.1.

Once the vertext duplication is being performed, we
construct a graph skeleton G ¢ representing the connectivity
of neighborhood clusters. Each vertex indicates a cluster (see
Figure 1(a)), while an edge shows how strongly connected
a pair of clusters are, which share vertexts in the dataset.
This is done by computing a spanning tree of the clusters
based on the number of shared vertexts. For example, in
Figure 1(a), there exist three vertices, each representing a
differently colored cluster later. We then extend the skeleton
G¢ (Figure 1(b)), which will be later used as seeds of
Voronoi tessellation for estimating the appropriate space
to embed vertexts and edges in this category. The number
of vertices in a cycle (see Figure 1(b)) of each vertex in
Figure 1(a) is proportional to the total pixel size of labels
needed to be placed within this category (as shown in
Figure 1(c)).

To introduce a vertex in the cycle as a representative
of an area bounded by the corresponding Voronoi cell,
we define a unit d, which represents a collection of pixels
suitable for area approximation. The default value is d = 40
since it gives a good approximation.

Unfortunately, the vertext duplication naturally creates
many more vertexts, and finding one in the network does
not mean that we know all copies of that vertext. We need to
formulate the means to be once again able to perceive these
as a single node and thus comprehensively understand its
role in the entire network. We therefore introduce a visual
integration strategy to connect identical duplicated vertexts
for their better identification. This is useful in the sense
that highlighting the vertexts only shows the distribution of
the vertexts, but does not show the connectivity of vertexts
between different clusters. Since this is a different type of
edge, representing a set of identical vertexts rather than the
mutual connectivity of entities in the input data, we adopt a
distinct visual representation. This can be modeled as a set
visualization problem with a spanning tree that minimizes

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

O

<
PO

centroid(v;)

(d)

(b) (©)

Fig. 2. Our force model, including (a) attractive forces, (b) vertex-vertex
repulsive forces, (c) edge-edge repulsive forces, and (d) centroidal
forces generated from Voronoi tessellation.

the distance to each of the identical vertexts. Figure 1(j)
shows such an example, which allows us to visually dis-
criminate duplicated vertexts in different clusters.

4 VERTEXT AREA BALANCING (S1)

At each designated level, we process the corresponding
graph skeletons g; € Gg, as shown in Figure 1, and move
the corresponding vertices or vertexts toward their expected
target positions. This is accomplished through the blend-
ing of forces generated by force-directed algorithms and
forces computed from centroidal Voronoi tessellation [66]
for allocating the appropriate area for each vertex in Gg.
The challenge of embedding a graph within an arbitrary
shape is to keep vertex movement restricted within the
region. The nature of Voronoi Cells allows us to cleverly
avoid this problem by constantly moving the vertex away
from the boundary of its Voronoi cell. In the following
subsections, we will use detail-level vertexts as examples
to describe our force model, since we apply the full set of
forces incorporated in our approach to this skeleton graph.

4.1

Once the initial overlap-free positions of the skeleton G¢
have been computed [64], we employ the conventional
force-directed algorithm in order to lay out the skeleton. In
our implementation, we introduce attractive forces (Eq. (1))
and two types of repulsive forces, including vertex-vertex
repulsive forces (Eq. (2)) and edge-edge repulsive forces
(Eq. (3)).

The attractive force (see Figure 2(a)) is often formulated
using Hooke’s law applied on edges ¢ = (v;,v;) € E (we
also use the abbreviated form e;; = (v;,v;)) as follows:

Fo(viyvg) = ka(llvj —vil = lo)(v; — vi),

Conventional Force-Directed Model

)

where [y represents the ideal length of the spring, which
is estimated using the ideal average pair-wise distance, as
detailed in Section 7. The user-defined constant &, controls
the magnitude of the forces.

The vertex-vertex repulsive force (see Figure 2(b)) is
assumed to have electrical charges on vertices so that we
can keep minimum distances between them. The force is
thus defined as:

Fr(vi,v5) = =k (v — v3)/|lv; — vil|?,

@

5

where £, corresponds to the magnitude of the electric forces
and is set to be 1000.0 by default in our system. The value is
decided by not adding excessively strong forces relative to
the attractive force.

The edge-edge repulsive force (see Figure 2(c)) is simi-
larly defined by adding forces generated from edges (v;, v;)
and (v;,vx) that share the same end vertex v; in order to
push away those edges with a sharp angle § [45]. This is
computed using:

Fe(viavj7vk) =

k. | arctan w + arctan M 0 —1 - u+
Co Co]. 0
0\ (0 —1

<kccot2> (1 0> U
where k. and k. correspond to the magnitudes of the
forces from edge lengths and the forces from the angle ¢
intersected by edges e;; and e;j, respectively. The value ¢
is the ideal length for edges e;; and e;;, which is computed

similarly as l. The matrix (¢ 61) is the rotation matrix of

Vj —Vi Ve —V;
Tos—ol T)

7/2 and u is the unit vector of =
llv;—v

ok —vill

4.2 Centroidal Voronoi Tessellation

Our key idea to balance the area for each vertext is to apply a
centroidal Voronoi force to distribute vertexts evenly within
a finite polygonal region, while keeping vertexts within
this region. This also allows us to potentially eliminate
unwanted overlaps between text labels [66]. We accomplish
this by partitioning the space through the following steps
and move each vertext to its corresponding Voronoi cen-
troid:

1) Compute the Voronoi tessellation using predefined seed
points.

2) Crop the Voronoi cell by the polygonal contour.

3) Determine the centroid centroid(v;) of each cropped
Voronoi cell.

In Step 1, we compute the Voronoi tessellation [40] by
referring to the coordinates of each v; € g, as a seed point.
Next, we crop the Voronoi cell with the polygonal shape of
the cluster one level above in the hierarchy. Alternatively,
a hardware-assisted algorithm [37] can be used to approx-
imate the effect of the geometric algorithm by plotting 3D
cones of different colors at the given seed points and pro-
jecting them onto the frame buffer. In our implementation,
we use the first approach for the ease of extracting the
polygonal contour from the Voronoi diagram. The centroidal
force to each node v; € G is computed as:

F,(v;) = —ky(v; — centroid(v;)), 4)
where k, is a constant that determines the magnitude of
the centroidal force. The value is determined by seeking
a balance between the centroidal force and other forces to
normalize the weights w; and w, in Eq.(5). These aforemen-
tioned steps are repeatedly computed until all seed points
reach their equilibrium position.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Until here, we sum up these attractive and repulsive
forces from Sections 4.1 and 4.2 to each vertext v; as:

FS(Ui):’LUf*(Z Fa(’l}i,’(}j)-f— Z Fr(’l}i,’l)j)
ei;EE jeV—{v;}

+ Z Fe(vi,vj,v1)) + wy * Z F,(v;).

eij,eik€EE i€V

This force is applied to each node until the network
layout achieves an equilibrium state. With repulsive forces,
we can empirically avoid unexpected visual clutter, such as
edge crossings, and with centroidal Voronoi forces, we can
balance the area for individual vertices. In our approach, the
above steps are iteratively computed until we find a reason-
ably uniformly partitioned space. Note that the additional
force F,(v;,vj) = —ko(v; —v;)/||v; —v;||? is adaptively added
if the two vertexts unexpectedly overlap. Further note that
F, is only applied on vertexts in the detail-level graph Gp,
since we consider the vertex overlaps in other levels will
be less influential on the final layout. The weight w, is
increasing toward detail-level since this helps us to find a
better vertext distribution.

TABLE 1
A summary of the default parameter settings in our force model.
w g Wy ka k ke ke ko ko

10000 | 05 | 0.5 | 1.0 0.0
10000 | 05 | 0.5 | 1.0 0.0
10000 | 05 | 0.5 | 1.0 0.0
10000 | 05 | 0.5 | 1.0 | 10.0

Fig 10 Ge || 03 | 07 | 0.1
Fig. 1(e) Gas || 01 | 09 | 0.1
Fig. 1() Gr 01 | 00 | 01
Fig 1(h) Gp || 01 | 09 | 0.1

Table 1 provides a summary of default parameters used
in our system, where we strengthen the centroid forces in
the last step to evenly distribute the vertexts.

Practically, F, and F, are conventional forces to preserve
the distance between connected vertices, and F,, influences
the overall balance of the area preserved for each vertex.
Figure 3 shows an example of how F, will influence the
final visualization. The forces F, F,, and F, have a stronger
impact on the final rendering by retaining angular resolu-
tion and eliminating vertext overlaps. We study the effect
of these parameters in the supplementary materials (see

Section 11.2).
BT S
PAEAR A A

r[. i

(a) With F, (b) Without F,

Fig. 3. An example of how the canvas is partitioned by incorporating (a)
with all forces, and (b) without F,.

5 SCHEMATIZED SPACE PARTITIONING
AND VERTEXT POSITION ARRANGEMENT (S2)

As described previously, the constrained forces for vertex
area balancing are computed in four levels, including (1) a
category-level, (2) a component-level, (3) a topology-level,
and (4) a detailed-level computation.

®)

1-10 0 000 0 0 0 x(v]) 1.6
00 0 0 01-10 0 0 x(vh)
v 01 -10 000 0 0 O x(v}) 0 \;4’ p
V3 00 0 0 001 —-10 0 x(v)) 1.9 &}
00 1 -1000 0 0 0 x(v}) 0.9
= L]
Vs 00 0 0 000 1 —10 y(v)) 0.9 vs'
00 0 1 -100 0 0 0 y(v}) —1.2 '
2 2 7 V2
vV 00 0 0 000 0 1 —1 y(v}) 0 vy
10 0 0 -100 0 0 0 y(v}) 0
00 0 0 010 0 0 —1/ \y(w}) 2.0
(@) (b) (©

Fig. 4. An example of (a) an input boundary graph G, (b) its associated
AV’ = b with constraints (O1), and (c) the corresponding output.

5.1 Representative Graph Skeletons

Note that at each level, we generate a unique graph skeleton
gs € Gs = {Gc,Gpn,Gr,Gp} for guiding corresponding
area allocation by applying the technique described in the
previous section.

5.1.1 Category-level Skeleton (G¢)

Since important vertexts shared between clusters are dupli-
cated to form a hierarchically clustered graph, those clusters
sharing vertexts are expected to stay close to each other
to avoid scattered vertexts. To achieve this, we prepare a
spanning subgraph G¢ for maximally retaining the neigh-
borhood relationships of pairs of clusters. We first apply
the same strategy as in Metabopolis [64]. This allows us
to create a spanning subgraph, which is planar, so that
the corresponding planar embedding can be used as the
initial positions of the cluster centers (see Figure 1(a)). We
then explode the vertices of this spanning subgraph into
a sequence of cycle vertices, where the number of vertices
here are computed to be proportional to the total pixel size
of labels within the corresponding categories (Figure 1(b)).

5.1.2 Component-level Skeleton (G ;)

After the vertex duplication, some subgraphs can become
disconnected. We first need to distribute these components
without overlaps, so that subgraphs will not be drawn over
others unexpectedly. Additionally, in order to reduce the
readers’” workload when tracing duplicated vertexts, we
move those components sharing similar important vertexts
in different clusters close to each other by adding cross-
cluster edges to the graph. Those edges are marked in red
in Figure 1(d)—(e).

5.1.3 Topology-level Skeleton (Gr)

Here, we aim to shape the area to fit the topological struc-
ture of a component. For example, if a graph contains a
circular structure, a round area is more suitable for the
layout. However, this may not be suitable for a chain graph
since it can be embedded better within a long horizontal
or vertical rectangular area. A graph skeleton Gr is used
to support this idea. For each component, we compute its
representative topological structure using the Markov Cluster
Algorithm [5], [21]. The graph G is built upon the connectiv-
ity of those clusters, which is used as a representative unit
of the entire subgraphs. Of course, we can also apply the
Edge Sparsification technique [24], or Motif Simplification [22]
to achieve the same goal.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Additionally, to efficiently recognize some similar topo-
logical patterns in the components, we also place subgraphs
with similar topological structures close to each other. In
our system, we detect and connect pair-wise isomorphic
components, but users can also define their own similarity
measure for evaluating two subgraphs. Since we consider
each component as an independent object, we need to
add secondary edges to guarantee that they are expected
neighbors in the graph skeleton G'7. This is done by adding
random edges between similar vertices while keeping the
resulting graph planar.

5.1.4 Detailed-level Skeleton (Gp)

At this final level, we simply treat vertexts in the clustered
graph as individual vertexts in the skeleton Gp, which
allows us to finalize the vertext position of each vertext
through the blending of Centroidal Voronoi force.

5.2 Layout Frame Schematization

Although Voronoi tessellation allows us to find a parti-
tioning of a region, where each cell consists of all points
closer to its seed than to any other seed, the boundary of
such a cell has a unique, irregular shape. This increases
the visual complexity, since it is still difficult to recognize
the polygonal contours extracted from a group of cells. In
this section, we aim to rearrange and simplify the boundary
formed by Voronoi cells to provide the readers with clean
and easily traceable region patterns for better memorability.
We incorporate three constraints here. This includes (O1)
octilinearity, to arrange edge orientation to a limited set
of angles, (O2) relative positioning, to maximally retain
the initial boundary positions, and (O3) overlap removal,
to remove overlaps between vertexts and the schematized
boundary. To achieve this, we first construct a boundary
graph G'p. We take boundary edges extracted from the
Voronoi cells into consideration and build a simple network
that covers all edge segments along the cluster boundary.
This graph G is necessary since it will then later be used to
bundle the edges that are used to show the set of duplicated
vertexts without occluding text labels. We use the following
three constraints.

5.2.1 (O1) Octilinearity

Our primary goal here is to rearrange the edges in G'g so
that the edge orientation is constrained to either horizontal,
vertical, or diagonal at 45 degrees, also known as octilinear
(or octolinear) orientations. This is achieved by minimizing
the angle difference between the current edge angle and
the target octilinear angle 6.. Note that the target angle
0. € {0,0.25m,0.57,0.757, m, 1.257, 1.5m, 1.757} is precom-
puted from the input edge e;; € Gp. The constraint can
be formulated as:

>

eij=(vi,v;)EE

Qol = ‘(Uz, - ’U;) - OCt(Ui - vj)|27 (6)

where vj,v; € V represents the unknown ideal output
coordinates that need to be computed, and Oct is a function
that rotates the edge e;; = (v;,v;) in the input graph to its
closest octilinear direction 6,.

5.2.2 (02) Relative Positioning

To maximally retain the balanced partitioning from the
Voronoi cell computation, we want to avoid a drastic change
from this partitioning after schematizing G g. Therefore, the
relative position of vertexts should play a role in determin-
ing where to place a vertext. This is done by minimizing
the distance between the input vertext v; and the expected
output vertext v}, and the energy term is defined as follows:

Do, = > () —). 7)

vieV!

5.2.3 (03) Overlap Removal

The final constraint aims to remove the overlaps between
vertexts and boundary edges e € G . The idea is to retain
a minimal distance between a vertext and its corresponding
Voronoi cell. This is done by giving a soft penalty to the

term:
>

Qoy = |(v; = D) — 6(vi — pji) 1%, 8)
v;€G,e(vj,vr)EGB

€

where § = P The value € is the minimum distance
between vertext v; and edge e;,. We set this value to be
equal to half the text label width, in order to maintain some
distance between a vertext and its cell boundary. The point
pjk is the closest point on the edge ¢, to vertext v;. This is
computed at each iterative step.

In summary, the objective function is defined as:

Q = wOl Qol + wOZQoz + wosgosv (9)

where w,, indicates the weight for each energy term. Based
on our empirical experiences, we assign the weights as
Wo, = 10.0, w,, = 0.00001, and w,, = 20.0 by default. Read-
ers can refer to [58], [62] for some similar implementation
details.

During this optimization process, our system tends to
find the ideal aligned position of vertext v € V(Gp).
Figure 4 gives an example of how the optimization is
computed, where v; = (1.0,1.0), v = (—0.5,1.6), v3 =
(-1.2,-0.2), v4 = (-0.2,-1.0), and v5 = (1.0,—1.0) are
our input vertices. The constraints in Egs. (6), (7), and (8)
can be transformed into a linear system AV’ = b(V’),
where A is a coefficient matrix, and V'’ collects all ver-
text output coordinates. The constraints we have here are
more than the number of variables, so the matrix is over-
determined. Therefore, the problem is then solved by using
V' = (ATA)"'ATV. In our system, we incorporate the
conjugate gradient optimization technique [36] to minimize
our objective function 2. Another benefit of using a con-
jugate gradient is that it allows us to iteratively solve this
problem. We therefore check the overlaps of text labels by
examining the distance between label centers to edges e in
Gp, and introduce necessary constraints to penalize (O3)
at each iterative step. This allows us to not include all
constraints from the beginning, thus avoiding unnecessary
computational complexity.

6 HAIRBALL MANAGEMENT VIA VERTEXT DUPLI-
CATION COUPLED WITH VISUAL INTEGRATION (S3)

In this section, we explain how we transform a real-world
relationship into a clustered graph so that we can create

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

multiple graph skeletons at different levels for finding ap-
propriate vertext areas as described in the previous subsec-
tions.

6.1 Vertext Duplication and Spanning Subgraphs

The goal of visualizing a clustered graph is to arrange ver-
tices in the same cluster close to each other for better iden-
tification. Clusterings can be automatically generated [50],
or predefined by domain experts in biology, medicine, or
finance etc. Clusters, often highlighted using colors asso-
ciated with the underlying subgraph, provide additional
insight into the data. For instance, in biology, a reader
can associate relationships with corresponding functional
groups or cellular compartments. However, clusters in clus-
tered graphs are by definition either disjoint or one cluster
contains the other [27]. Such clusters sometimes cannot
cover the properties of real-world relationships [65]. Vertext
duplication is an intuitive way to transform overlapping
clusters into disjoint clusters and is an alternative scenario to
remove mutual edge crossings for better visual quality. This
strategy is commonly applied in biological [52] and social
network visualization [35]. We apply two strategies for
vertext duplication by defining the importance of vertexts
in the datasets.

Besides umimportant vertexts, the remaining high-
degree vertexts are denoted as important. We only duplicate
an important vertext if it belongs to multiple clusters. More-
over, each important vertext is unique to each component.
On the other hand, a less informative vertext, such as H,O
in metabolic pathways, will be fully duplicated for each
incident edge to reduce the visual complexity induced by
edge crossings. The importance of a vertext can be either
determined from a list given by the user or derived from a
threshold on the degree.

6.2 Spanning-Tree Visual Integration

Since a vertext in our input graph can belong to multiple
categories, we declutter the visual complexity originating
from this property by duplicating vertexts to set up a
clustered graph for better readability. Once the vertext du-
plication is applied as described in the previous subsection,
we naturally increase the number of vertexts, which also
complicates reading in the sense that a vertext is not unique
anymore. To alleviate the problem of finding all copies of
a vertext, our system allows users to connect all vertext
instances using a spanning sub-tree computed from Gp,
beyond simply highlighting vertexts using colors. With the
use of the graph G, we can avoid drawing edges over any
vertext, and with a spanning sub-tree, we can also show
the connectivity of the vertext between different clusters.
The underlying problem is formulated as a Steiner tree
problem, which finds an optimal tree of minimum weight
for a given set of vertexts in a graph. This problem differs
from the minimum spanning tree problem in the sense that
not all vertexts will be included and finding such a set
with minimum weight is an NP-complete problem. To solve
this problem, we use a greedy algorithm for computing
the Steiner tree [42] for all instances of an identical vertext.
When a user selects a target vertext, the system will compute
the corresponding set of duplicates and highlight them
using user-specified or determined colors (see Figure 1(j)).

8

7 IMPLEMENTATION AND FORCE APPROXIMATION

In this section, we present experimental results of the
proposed approach on synthetic and real-world datasets,
together with discussions of the present approach. Our
prototype system has been implemented on a desktop PC
with Quad-Core Intel Xeon CPUs (3.7GHz, 10MB cache) and
12GB RAM, and the source code was written in C++ using
GSL for numerical computation, OpenGL for graphics, and
GLUI library for the user interface. The source code was
written in C++, and the graphics rendering and user inter-
face were implemented using the Qt library [6]. The primary
graph data structure was developed on the Boost Graph
Library [1], and CGAL [2] was used for computational
geometry algorithms, such as computing Voronoi diagrams.
Eigen [3] is used to perform matrix computation for opti-
mization and the Micans package is used for fast graph clus-
tering algorithms [5], [21]. The source code for our system is
available on github https:/ /github.com/yun-vis/KeiRo.

7.1 Estimation of Screen Size and Initial Settings

It is often tricky to decide how big a canvas we need
for embedding a graph with vertexts and their specified
aspect ratios. Our approach estimates the canvas size as
D = (3, cq f(vi)*(le]?/|v]+1), where f(v;) represents the
number of pixels of a vertext. R is a user-defined constant
that determines the size of a region dedicated to drawing
edges, by default set to 1.3. Users can also specify an aspect
ratio 7 : 1 to fully control the diagram in our approach. Since
we use Voronoi cells to allocate a balanced area for each
vertext, all vertexts are expected to be uniformly distributed
over the entire screen space. Based on this assumption and
the aspect ratio r, we compute our ideal edge length of a
graph skeleton G using lo ~ /0.5 x region(Gs)/n, where
region(Gg) returns the bounding region of G.

Since our graph is not simply embedded inside a rect-
angular domain but an arbitrary polygonal domain, we
have to guarantee that no vertext will move outside of the
domain. Our Voronoi centroidal force directly solves this
problem since it always provides forces to move the vertext
away from the boundary. However, we are not this lucky
when assigning the initial positions of vertexts since we
cannot guarantee that the centroid of a polygon is always
located inside the polygon. We thus try to perturb the
centroid several times (100 by default), and select the one
with the maximum radius to the boundary of the polygon.
In this case, we can initialize the vertext positions within
this circle using conventional layout approaches.

7.2 Perturbation in Simulated Annealing

Nevertheless, conventional force-directed algorithms are
known for their low computational efficiency and less flex-
ibility to escape poor local minima. To avoid this, we also
implemented a spatial quadtree subdivision technique and
a temperature function to enable vertext perturbation when
applying the force-directed algorithm. As described previ-
ously in Section 4, the force-directed layout is simulated by
finding an equilibrium state of a physical system, where the
attractive and repulsive forces applied on vertexts are bal-
anced. Even though in our formulation we do not place ver-
texts fully randomly at the initial steps, but rather slightly

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

move the vertexts to their preferred boundary edges, some
vertexts could nevertheless still fall into local minima. To
avoid this, a temperature function from simulated annealing
is introduced to perturb vertexts to escape this situation.
This temperature constrains the dynamics of moving ver-
texts as the temperature decreases, which is captured as the
simulated iteration counter iter is increased:

1.0/iter
)

Decay = 1.0 — MinTemperature (10)

where MinTemperature indicates the lower limit of the
system temperature.

For simplicity, we assume the mass of all charged ver-
texts is m = 1, so the acceleration of a vertext at time
t is then computed by Newton’s law a; = Fs/m. In our
implementation, we use velocity Verlet integration [60] to
calculate the next position of a vertext v,(7) as:

v () = 200 (i) — o071 (i) +) A2, 11)
where v(*+1), v and v(*=1) represent the next, current, and
previous time steps, respectively. After introducing velocity
attenuation Decay, the equation becomes

v (4) = '@ 4 Decay * (v!@ — vV (4)) + D A2, (12)

The time step of simulation is defined as At = 1. The idea
of the simulated annealing algorithm allows us to gradually
control vertext movement during the process. The system
has a higher temperature initially, which enables faster
movement to escape local minimum. This magnitude of the
movement decreases as the iteration counter increases, until
the final layout is obtained.

7.3 Force Approximation using Quadtree Subdivision

Computing repulsive forces is also computationally ex-
pensive because it requires examining all pairs of ver-
tices. Thus, our solution is to subdivide the screen space
into a quadtree for faster computation using Barnes-Hut
approximation [71], as done in earlier force-directed ap-
proaches [29], [34]. The idea is to aggregate vertices with
large distances and compute repulsive forces from these
aggregated vertices. This will improve the time complexity
to O(nlogn) for well-distributed vertex positions.

7.4 Continuous Curvy Contours and Curvy Paths

To improve the visual quality of the layout, we incorporate
Chaikin’s corner cutting algorithm [16] to generate curvy
contours and curvy paths in the final visual representation.
The idea of this algorithm is to smoothen the corners of a
polygon or a polyline by cutting the corners off the original
one. The smoothness of Chaikin curves depends on the
sample points on the contours and the recursive steps that
add intermediate points. We first re-sample the points on
a contour, so that sample points are evenly distributed to
avoid sharp artifacts. Then we use Chaikin’s algorithm to
refine the corner points by adding intermediate points. The
underlying process is based on iterative improvement until
the distance between two adjacent sample points is below a
predefined threshold.

8 RESULTS

In this section, we demonstrate the feasibility of our ap-
proach by visualizing the four datasets Small Pathway,
Recipe, Metabolic Pathway, and KEGG Overview Path-
way. The scale of the datasets ranges from small to relatively
large, as shown in Table 2.

Small Pathway. In Figure 5, we present a small set of
metabolic pathways to demonstrate the balanced layout
generated using our approach. Biological pathways are
chains of biochemical reactions within cells. Such pathways
often include proper classifications (e.g., subsystems) of
reactions, such as Transferase together with their associated
metabolites, such as ATP or glucose. Some metabolites are
often involved in multiple subsystems, which visually com-
plicates the diagram and thus leads to an unwanted hairball
effect.

Our technique allows us to focus on important metabo-
lites, for example, ADP (pink), while fully duplicating less
informative molecules such as H,O and H (cyan). Thus,
users can select and trace in which reactions the Glutamate
(red) is involved. In both examples in Figure 5, we see that
the Glutamate connects to ASNS1, ASPTA, and GF6PTA in
Alanine and aspartate metabolism and Aminosugar metabolism,
respectively. Glutamate is shared, so that its containing sub-
systems are positioned as neighbors. Figures 5(a) and 5(b)
show the results with a different aspect ratio of » = 8/3
and r = 4/3, respectively. While similar in both images,
vertexts 0113 and r0782 (highlighted in yellow in Figure 5)
are placed side by side within the purple region due to their
identical topological structure.

Metabolic Pathway. Figure 7(b-4) gives an example of ma-
jor pathways as a subset of human metabolism in Recon-
Map [52]. To generate a clustered graph, we first performed
our duplication scheme to guarantee that each vertext ap-
pears in one cluster only, which are highlighted in differ-
ently colored regions. This successfully relaxes the topolog-
ical structure as well as the hairball effect induced by the
H>0 molecules that connect to almost all reactions in this
dataset. After computing our layout, the vertexts are nearly
uniformly distributed over the screen space and small con-
nected components are pushed and aligned at the corner
(see top-right corner in Figure 7(b-4)). Glutamate is again
highlighted here and demonstrates that those subsystems
involving Glutamate are placed in the neighborhood. Since
our spanning subtree is computed based on the boundary
generated by Voronoi cells, we successfully avoid drawing
paths over other vertexts and avoid introducing further
unwanted visual complexity.

Recipe. This dataset originates from the Graph Drawing
Contest 2019 [4] and includes 151 popular food recipes
extracted from the TheMealDB database [7]. The extracted
recipes come from 11 countries, including USA, Britain,
China, etc., and in total include 297 ingredients, such as
Flour, Onion, Egg, and so on. We construct our input graph
by connecting the recipes with their associated ingredients
and assign a country id as clusters to each of the recipes. In
the end, the graph includes 448 vertexts and 1377 edges (Ta-
ble 2). Figure 7(c-4) shows the resulting diagram generated
by our approach. The white rectangular labels are recipe
vertexts and the rounded rectangular labels are ingredient

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Fig. 5. A collection of pathways in human metabolism, including Alanine and Aspartate Metabolism, Alkaloid Synthesis, and Aminosugar
Metabolism. Each of the clusters, or so-called subsystems in metabolism, is highlighted in different colors in the diagram. White rectangular labels
represent biochemical reactions, and rounded labels are metabolites involved in the reactions. Pink vertices indicate important vertices, such as
the metabolite ATP carrying energy in Alanine and Aspartate Metabolism, and cyan vertices are the duplicated less important metabolites, such
as H,O or Ha, which are involved in most of the reactions in human metabolism. The Small Pathway includes 52 reactions and 117 different
metabolites before duplication, where each reaction belongs to one of the three subsystems. The red route here indicates a highlighted metabolite
appearing as a duplicate in multiple subsystems. Our system allows users to specify an input aspect ratio such as (a) r = 8/3 and (b) r = 4/3.

Fig. 6. Redrawing the human metabolic pathway map of KEGG [43] using our approach in comparison to the diagram in Metabopolis [64]. The
present aspect ratio is r = 4/3.

vertexts, similarly to the biological pathways. The cyan focus on. We assume that frequently used ingredients are
vertexts indicate fully duplicated common vertexts and the less informative since they can be easily found in several
pink ones are important vertexts that users may want to local areas.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

To produce authentic food, we can mainly focus on country
specific ingredients (white, rounded vertexts) in this case.
The threshold between important and less important ver-
texts is set as 9 here, based on the frequency of ingredient
usage in the dataset. From the results, we can see that many
British recipes are contained in the database. Compared to
other countries, ingredients in British recipes (yellow) are
relatively strongly connected, since after vertext duplication,
apart from Vegetarian Chili (bottom-right of yellow region),
the subgraph is still a single connected component.

Besides commonly used ingredients, ingredients of Italian
recipes (green) are relatively independent from each other.
In Figure 7(c-4), readers can see that there are more individ-
ual star-liked structures. Those recipes have a tendency to
be considered as home cooking, for which we do not need
specific ingredients. As an example, the red highlighted
Steiner tree here connects the common ingredient Soy Sauce
vertexts in different countries (if any). It is not surprising
that Chinese (purple) and Japanese (pink) recipes often use
Soy Sauce as primary ingredients, while it is absent from
most other countries. Nonetheless, one outlier (Mushroom
and Chestnut Rotolo) exists in British cuisine. The map we
created using this dataset won the 1st Place Award in the
28th Annual Graph Drawing Contest [44].

KEGG Overview Pathway. Figure 6 is the result of re-
producing the KEGG overview pathway map using our
approach. The color coding of the category here is directly
retrieved from the original KEGG database [43], as similarly
incorporated in Metabopolis [64] (see figures in supplemen-
tary materials). We also set the same threshold for specifying
unimportant vertices as in Metabopolis, so that readers can
refer to the paper for comparison (Figure 6). The advantage
of this technique allows us to arrange the vertexts in a
balanced fashion by pushing vertexts away from each other.
This initially gives users an idea of how big each category
is, and explicitly shows which reaction is classified under
which category. Users can also identify sub-components ef-
fectively since those components with identical topological
structures are aligned as neighbors. This also helps users
to comprehend which structures are associated with certain
types of pathways, such as small chains, stars, etc.

9 EVALUATION AND DISCUSSION

In this section, we measure and evaluate the space cover-
age of the results generated by our implementation, and
we report the running time for each image shown in this
paper. Table 2 summarizes the properties of our datasets,
where the number of vertexts, edges, clusters, and the
corresponding graph densities are noted as V, E, C, and
Den, respectively. The notation with subscript p refers to
these numbers after vertext duplication. We use the same
graph density function for Den and Denp, which is defined
as Den= |E|/(|V|*> — |V|) [69]. We multiply this ratio by 100
for simplicity in Table 2.

9.1 Measuring Space Coverage and Time Complexity

To the best of our knowledge, none of the existing works vi-
sualizes clustered graphs by balancing vertext areas within
an arbitrary shape by fully utilizing the entire screen space.

11

TABLE 2
The number of nodes (|V]), edges (| E|), and density (Den) before and
after node duplication, while |C| shows the number of clusters.

Before duplication/After duplication
V1/TVb] [ET/1ED] Den/Den p |C|
Fig. 5 169/211 223/260 0.79/0.59 3
Fig. 7(b-4) || 593/948 1244/1635 | 0.35/0.18 11
Fig. 7(c-4) 448/1377 | 1618/3236 | 0.80/0.17 11
Fig. 6 3679/3832 | 4008/4010 | 0.0296/0.0273 | 13

However, Bubble Sets [18] is a pioneering technique to
visualize set information over point clouds. The advantage
of this approach is that it shows the connectivity of com-
ponents in the same clusters. GMap [31] and MapSets [25]
are also relevant techniques, which use Voronoi tessellation
to visualize clustered graphs with a map metaphor. We
therefore compare our results together with these three
conventional approaches, since they all utilize filled-in arbi-
trary regions to emphasize cluster information. The figures
give the results from Bubble Sets, GMap, and MapSets that
visualize the same datasets from Section 8. Since the region
computation of Bubble Sets, GMap, and MapSets relies
on the same initial layout algorithms, all three approaches
cannot fully control the number of split clusters (see the
purple clusters in Figure 7), and the screen size.

One property of Bubble Sets, GMap, and MapSets is that
space usage is fragmented with empty white spaces and the
fragmented empty space is not fully utilized. Our approach
relaxes this constraint and finds a balanced layout that fully
uses the screen as preferred by the biologists [52]. We thus
introduce two space coverage measures My and My to
evaluate the proper distribution of vertexts in the layout.
We define My as the coefficient of variation (CV = o,/)
of distances of the vertexts to their £ nearest neighbors, to
examine if each vertext has equal distances to its neighbors.

The value o,, = \/ |U‘171 ZL’;'I(Xl — fip,)? corresponds to the
standard deviation of average distances X; of a vertext to
its k nearest neighbors and p is the corresponding mean
value of X;. The other measure, My = o,/,, is defined
similarly to My, while each vertext value X; corresponds
to the number of pixels of its corresponding Voronoi cell.
Table 3 gives the summarized CVs. Both measures show
that the area assigned to each vertext is more balanced in
our approach, and this tendency increases as the data size
increases.

We show the running times for Bubble Sets, GMap,
MapSets, and our approach in Table 4, and Figure 7
shows the corresponding layouts. In general, Bubble Sets
and GMap are faster than our approach since they only
compute the Voronoi tessellation once to generate the con-
tour. The bottleneck of our algorithm is that we need to
iteratively compute Voronoi tessellations in order to guide
a vertext to its proper position. Nonetheless, our approach
runs comparably to MapSets, since it also has an iterative
process to glue separate clusters into an aggregated one. We
observe that the MapSets strategy sometimes fails to link all
identical clusters, because the positions of points are fixed
initially (see Figures 7(a-3)-(c-3)).

9.2 Interview with Experts in Biology

To validate the usability of our approach, we shared our
results with six domain experts who are experienced with

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Small Pathway Metabolic Pathway

BubbleSets

(a-4)

Fig. 7. Results generated using the Bubble Sets [18], GMap [31], MapSets [25] and our area
balancing algorithms. The initial layout has been computed using the graphviz library (version 2.40.1), which generate
better results in comparison to previous versions. Readers can refer to supplementary materials (Section 11) for larger
figures. Note that each color here indicates a single cluster, even if it is non-contiguous in some cases.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

TABLE 3
Comparison of space coverage with Bubble Sets [18], GMap [31],
MapSets [25], and ours. We chose k = 5 for the k nearest neighbors.

(Neighbor M)/ (Voronoi My)
Bubble Sets GMap MapSets Ours
Fig. 5 0.195/0.966 | 0.195/0.966 | 0.315/4.779 | 0.181/0.202
Fig. 7(b-4) || 0.233/1.210 | 0.233/1.210 | 0.282/5.549 | 0.201/0.382
Fig. 7(c-4) || 0.293/0.965 | 0.293/0.965 | 0.328/7.836 | 0.262/0.595
Fig. 6 0.280/0.743 | 0.280/0.743 | 0.421/8.276 | 0.392/0.791
TABLE 4

Comparison of running times (in seconds) with Bubble Sets [18],
GMap [31], MapSets [25], and ours.

| Bubble Sets | GMap | MapSets | Ours

Fig. 5 7.03 3.88 7.87 22

Fig. 7(b-4) 27.6 4.59 242.38 245
Fig. 7(c-4) 42.32 7.62 247.08 237
Fig. 6 610.72 8.76 1090.27 1136

manually creating pathway diagrams, and discussed our
selected aesthetic criteria and the quality of the results
with them. The interviews involved one professor (P1) from
Scripps Research in the USA, one professor (P2) from the
University of Vienna specializing in biology, two postdoc-
toral researchers (P3 and P4), and two Ph.D. candidates (P5
and P6) from the Research Center for Molecular Medicine of
the Austrian Academy of Sciences (CeMM), who specialize
in bioinformatics. The professors had more than seven years
experience manually working with the pathway layout, and
the participants had, on average, about three years of expe-
rience. The process began by first explaining how to read
the visualization (see Section 11 for a complete reference),
including the content of the datasets and the corresponding
color coding. We gave all participants enough time (10-
15 minutes) to investigate, question, and understand the
results, until they did not have any further questions about
the visual representation.

The two senior professors (P1 and P2) expressed that
(S1) has evenly distributed vertexts with fewer overlaps,
making the map easier to read because the vertexts retain
mutual distance. P6 expressed that singular clusters help
to quickly spot biological functions, and complex shapes
do not provide additional contextual information (S2). Two
postdoctoral researchers (P3 and P4) considered the visual
integration in (S3) to be more important than (S1) and (S2),
since it helps readers to focus on the network connectivity.

P3 suggested we could eliminate unimportant dupli-
cated vertexts (e.g., H2O) completely from the diagram,
and P4 mentioned that balanced distribution is nice only
if it helps to remove vertext overlaps. This constraint also
untangles high-degree vertices, which eliminates the nature
of highly connected vertices that are often gathered in a
dense region. P5 stated that the diagram with less vertext
occlusion (S1) gives the best readability. All participants
agreed that duplicating the vertexts improves the visual
quality; however, completely duplicating the vertexts helps
to untangle visual clutter, even though it requires more
effort to find all the connected neighbors.

P3 and P5 considered our visual integration helpful
for tracking duplicated vertices; nonetheless, we could add
many visual integrations, which again would complicate the
readability of the diagrams. Four participants appreciated
the adjustment of the input aspect ratio when using our
approach, while the other two thought that it was good

13

to have but not critical. All participants expressed their
interest in using our algorithm. In the end, we also discussed
what they considered are the other important factors for
pathway diagrams. P4 preferred to have the possibility to
adjust parameters to retrieve her preferred results and P5
preferred that the usage should be as simple as possible. P1
strongly recommended to integrate interaction techniques
into the computed diagrams, especially when the diagram
is large. P6 suggested that we could visualize pathways
beyond referring to topological patterns.

P1 and P3-P6 agreed that Bubble Sets, GMap, and
MapSets preserve the network structure well, while our
approach provides contiguous clusters and a more balanced
area to follow. As a trade-off, non-separate and contiguous
clusters were more appreciated, and a more balanced area
improved label readability. We did not receive specific feed-
back from P2 regarding this comparison.

9.3 Limitations and Potential Extensions

Since the present approach is a force-based balancing tech-
nique, it also inherits the same limitations from the con-
ventional force-based approach. One significant drawback
is that the initial position has a strong influence on the
final layout. In our current implementation, we use the
sfdp package, a multi-scale version of Kamada and Kawai’s
approach in GraphViz [26], to compute the initial layout
of the decomposed subgraphs. Another common limitation
is that our technique has the potential to fall into a local
minimum, where a vertext is constrained by the positions of
other vertexts. This could potentially generate unpleasant
octilinear boundaries. Perturbation on vertexts has been
introduced to experimentally avoid a vertext being trapped
by other surrounding forces. As shown in Figure 6, large
graphs require a large canvas for proper investigation. A
possible approach for a fixed canvas size would be to
consider a hierarchical representation, but this in turn would
require careful design and evaluation of its interpretability.

Moreover, as mentioned previously in Section 3, the
structure of the graph has been transformed from a general
graph to a clustered graph through vertext duplication, so
that clusters in the diagram are disjoint. This property also
allows us to apply the approach to visualize multilayer
graphs, since we can compress each layer of the graph
and embed each layer into a polygonal region and can still
utilize the same spanning-tree visual integration to highlight
vertext instances in different layers. We do not claim that
our technique can fully solve multilayer graph visualiza-
tion. However, our method provides an alternative solution
because our original idea mimics the design principles from
domain experts in biology [52], where they manually adjust
pathway diagrams as a multilayer graph.

10 CONCLUSION AND FUTURE WORK

This paper presents a pioneering approach that takes vertext
area into consideration in order to embed a clustered graph
inside arbitrary polygonal areas in a space-balanced fashion.
We achieve this by incorporating a multi-level scheme to
balance vertext area using a top-down model, where we
utilize structure motifs to guide the partitioning in order

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

to approximate the regions effectively. Hairball effects are
controlled via vertext duplication, which is coupled with a
visual integration using a Steiner tree algorithm.

As a future research direction, we plan to extend the
same concept by introducing features other than the points,
and integrate features to multiple hierarchy layers. Such
features may include line features or area features to enable
more complex visual representations together with a graph,
because some experimental analysis requires spatial infor-
mation together with relationship information. For example,
biologists often investigate which pathways occur inside
which portion of a cell. Establishing a motif library is also a
future goal to develop a standard language to convey and
link domain knowledge to representative topological struc-
tures. This can be done through topological structure analy-
sis to partition structures into certain limited disjoint sets. A
more sophisticated vertext duplication technique [51], such
as minimizing the duplication number or the best scheme to
split a vertext, will also be investigated further. Last but not
least, we will make the source code for our system readily
available to the community [8].

ACKNOWLEDGMENTS

The project has received funding from the European Union
Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No. 747985,
from the Vienna Science and Technology Fund (WWTF)
through projects VRG11-010, from the Austrian Science
Fund (FWF) through project P31119, and from King Abdul-
lah University of Science and Technology (KAUST) through
award BAS/1/1680-01-01. The authors would like to thank
Michael Cusack from Research Communication and Publi-
cation Services at KAUST for proofreading.

REFERENCES
[1] Boost C++ Libraries. http://www.boost.org/. Accessed: 2018-02-
15.

[2] CGAL: The Computational Geometry Algorithms Library. https:
//www.cgal.org. Accessed: 2018-08-09.

[3] Eigen: A C++ template library for linear algebra. https://eigen.
tuxfamily.org/. Accessed: 2018-08-09.

[4] Graph drawing contest 2019. http://www.graphdrawing.de/
contest2019/topics.html. Accessed: 2019-03-11.

[5] MCL: a cluster algorithm for graphs. https://micans.org/mcl/
index.html. Accessed: 2018-12-09.

[6] Qt 5.8: Cross-platform software development for embedded &
desktop. https://www.qt.io/. Accessed: 2018-02-15.

[7] Themealdb database. https://www.themealdb.com/. Accessed:
2019-03-11.

[8] Keiro: A package for visualizing graphs, 2020.

[9] B. Alper, N. Riche, G. Ramos, and M. Czerwinski. Design study of
linesets, a novel set visualization technique. IEEE Transactions on
Visualization and Computer Graphics, 17(12):2259-2267, 2011.

[10] S. Auer, V. Kovtun, M. Prinz, A. Kasprzik, M. Stocker, and M. E.
Vidal. Towards a knowledge graph for science. In Proceedings
of the 8th International Conference on Web Intelligence, Mining and
Semantics, 2018.

[11] M. Balzer and O. Deussen. Voronoi treemaps. In Proc. IEEE
Symposium on Information Visualization (InfoVis'05), pp. 49-56, 2005.

[12] E Bertault and M. Miller. An algorithm for drawing compound
graphs. In J. Kratochviyl, ed., Graph Drawing, pp. 197-204, 1999.

[13] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network
analysis in the social sciences. Science, 323(5916):892-895, 2009.

[14] P. Brivio, M. Tarini, and P. Cignoni. Browsing large image datasets
through Voronoi diagrams. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1261-1270, 2010.

14

[15] K. Buchin, W. Meulemans, and B. Speckmann. A new method
for subdivision simplification with applications to urban-area
generalization. In GIS, pp. 261-270, 2011.

[16] G. M. Chaikin. An algorithm for high-speed curve generation.
Computer Graphics and Image Processing, 3(4):346 — 349, 1974.

[17] S.Chaturvedi, C. Dunne, Z. Ashktorab, R. Zachariah, and B. Shnei-
derman. Group-in-a-box meta-layouts for topological clusters and
attribute-based groups: Space-efficient visualizations of network
communities and their ties. Computer Graphics Forum, 33(8):52-68,
2014.

[18] C. Collins, G. Penn, and S. Carpendale. Bubble sets: Revealing
set relations with isocontours over existing visualizations. IEEE
Transactions on Visualization and Computer Graphics, 15(6):1009—
1016, 2009.

[19] W. Cui, Y. Wu, S. Liu, E Wei, M. X. Zhou, and H. Qu. Context
preserving dynamic word cloud visualization. In IEEE Pacific
Visualization Symposium, pp. 121-128, 2010.

[20] D. Delling, A. Gemsa, M. Nollenburg, T. Pajor, and I. Rutter. On d-
regular schematization of embedded paths. Comput. Geom. Theory
Appl., 47(3A):381-406, 2014.

[21] S. Dongen. A cluster algorithm for graphs. Technical report, CWI
(Centre for Mathematics and Computer Science), Amsterdam, The
Netherlands, The Netherlands, 2000.

[22] C. Dunne and B. Shneiderman. Motif simplification: Improving
network visualization readability with fan, connector, and clique
glyphs. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI "13, pp. 3247-3256, 2013.

[23] P. Eades and Q.-W. Feng. Multilevel visualization of clustered
graphs. In Graph Drawing, pp. 101-112, 1997.

[24] P. Eades, Q. Nguyen, and S.-H. Hong. Drawing big graphs using
spectral sparsification. In Graph Drawing and Network Visualization,
pp- 272-286, 2018.

[25] A. Efrat, Y. Hu, S. G. Kobourov, and S. Pupyrev. MapSets:
Visualizing embedded and clustered graphs.]. Graph Algorithms
Appl., 19(2):571-593, 2015.

[26] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz— open source graph drawing tools. In Graph Drawing,
pp. 483-484, 2002.

[27] E Frati. Clustered Graph Drawing, pp. 326-331. Springer, 2016.

[28] D. Fried and S. G. Kobourov. Maps of computer science. In 2014
IEEE Pacific Visualization Symposium, pp. 113120, 2014.

[29] T. M. J. Fruchterman and E. M. Reingold. Graph drawing
by force-directed placement. Software—Practice & Experience,
21(11):1129-1164, 1991.

[30] E. R. Gansner and Y. Hu. Efficient node overlap removal using a
proximity stress model. In Graph Drawing, pp. 206-217, 2009.

[31] E.R. Gansner, Y. Hu, and S. Kobourov. Gmap: Visualizing graphs
and clusters as maps. In 2010 IEEE Pacific Visualization Symposium
(PacificVis), pp. 201-208, 2010.

[32] E. R. Gansner, Y. Hu, and S. Kobourov. Visualizing graphs
and clusters as maps. IEEE Computer Graphics and Applications,
30(6):54-66, 2010.

[33] M. Gronemann and M. Jinger. Drawing clustered graphs as
topographic maps. In Graph Drawing (GD’12), vol. 7704 of Lecture
Notes in Computer Science, pp. 426-438. Springer, 2013.

[34] S. Hachul and M. Jiinger. Drawing large graphs with a potential-
field-based multilevel algorithm. In J. Pach, ed., Graph Drawing,
pp. 285-295, 2005.

[35] N. Henry, A. Bezerianos, and J. Fekete. Improving the readability
of clustered social networks using node duplication. IEEE Transac-
tions on Visualization and Computer Graphics, 14(6):1317-1324, 2008.

[36] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for
solving linear systems. Journal of Research of the National Bureau of
Standards, 49(6):409-436, 1952.

[37] K. E. Hoff, III, J. Keyser, M. Lin, D. Manocha, and T. Culver.
Fast computation of generalized Voronoi diagrams using graphics
hardware. In Proceedings of SIGGRAPH 99, pp. 277-286, 1999.

[38] M. L. Huang and Q. V. Nguyen. A space efficient clustered
visualization of large graphs. In Fourth International Conference
on Image and Graphics (ICIG 2007), pp. 920-927, 2007.

[39] M. Kiveld, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, and
M. A. Porter. Multilayer networks. Journal of Complex Networks,
2(3):203-271, 2014.

[40] R. Klein. Concrete and Abstract Voronoi Diagrams, vol. 400 of Lecture
Notes in Computer Science. 1989.

[41] S. Kobourov, S. Pupyrev, and P. Simonetto. Visualizing graphs as
maps with contiguous regions. In EuroVis - Short Papers, 2014.

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[42]

[43]

[44]

[45]

[46]

(47]

[48]

[49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]
(57]
(58]
[59]

[60]

[61]

[62]

[63]

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for steiner
trees. Acta Informatica, 15(2):141-145, 1981.

K. Laboratories. KEGG PATHWAY Database: Metabolic
pathways. https:/ /www.kegg.jp/kegg-bin/show_pathway?
map01100, 2018. Accessed: 2018-07-20.

G. Li, S. Nickel, M. Nollenburg, 1. Viola, and H.-Y. Wu. World
map of recipes, 2019. 1st Place Award, Creative Topic-"Meal
Ingredients”, of the 28th Annual Graph Drawing Contest.

C.-C. Lin and H.-C. Yen. A new force-directed graph drawing
method based on edge—edge repulsion. Journal of Visual Languages
& Computing, 23(1):29 — 42, 2012.

F. Mcgee, M. Ghoniem, G. Melancon, B. Otjacques, and B. Pinaud.
The state of the art in multilayer network visualization. Computer
Graphics Forum, 38(6):125-149, 2019.

W. Meulemans, N. H. Riche, B. Speckmann, B. Alper, and
T. Dwyer. Kelpfusion: A hybrid set visualization technique. IEEE
Transactions on Visualization and Computer Graphics, 19(11):1846—
1858, 2013.

W. Meulemans, A. van Renssen, and B. Speckmann. Area-
preserving subdivision schematization. In Proceedings of the 6th
International Conference on Geographic Information Science, pp. 160—
174, 2010.

L. Nachmanson, R. Prutkin, B. Lee, N. H. Riche, A. E. Holroyd, and
X. Chen. Graphmaps: Browsing large graphs as interactive maps.
In Graph Drawing and Network Visualization, Springer Lecture Notes
in Computer Science, pp. 3-15, 2015.

M. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences of the United States of
America, 103 23:8577-82, 2006.

S. S. Nielsen, M. Ostaszewski, F. McGee, D. Hoksza, and S. Zorzan.
Machine learning to support the presentation of complex pathway
graphs. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, pp. 1-1, 2019.

A. Noronha, A. D. Dandéelsdéttir, P. Gawron, E. Jéhannsson,
S. Jénsdéttir, S. Jarlsson, J. P. Gunnarsson, S. Brynjélfsson,
R. Schneider, I. Thiele, and R. M. T. Fleming. ReconMap: an
interactive visualization of human metabolism. Bioinformatics,
33(4):605-607, 2017.

S. Nusrat and S. Kobourov. The state of the art in cartograms.
Computer Graphics Forum, 35(3):619-642, 2016.

M. J. Roberts, H. Gray, and]. Lesnik. Preference versus perfor-
mance: Investigating the dissociation between objective measures
and subjective ratings of usability for schematic metro maps
and intuitive theories of design. International Journal of Human-
Computer Studies, 98:109 — 128, 2017.

A. Roy, A. Noronha, A. Puente, A. Zagare, A. Heinken, A. D.
Danielsdoéttir, B. Garcia, D. Merten, D. A. Ravcheev, E. Guerard,
E. John, G. Preciat, H. S. Haraldsdéttir, J. Modamio, L. Heirendt,
L. Wiltgen, L. Friscioni, M. Prendergast, M. Krueger, M. Ro-
drigues, M. Krecke, M. Rouquaya, P. Gawron, R. Schneider,
S. Magnusdéttir, S. Sahoo, Y. Jarosz, I. Thiele, R. M. Fleming,
A. Zinovyev, 1. Kuperstein, and N. Sompairac. The Virtual
Metabolic Human database: integrating human and gut micro-
biome metabolism with nutrition and disease. Nucleic Acids
Research, 47(D1):D614-D624, 2018.

B. Shneiderman. Tree Visualization with Tree-maps: 2-d space-
filling approach. ACM Transactions on Graphics, 11(1):92-99, 1992.
B. Shneiderman and M. Wattenberg. Ordered treemap layouts. In
IEEE Symposium on Information Visualization, pp. 73-78, 2001.

O. Sorkine and D. Cohen-Or. Least-squares meshes. In Proceedings
of the Shape Modeling International, pp. 191-199, 2004.

C. Vehlow, E. Beck, and D. Weiskopf. Visualizing group structures
in graphs: A survey. Computer Graphics Forum, 36(6):201-225, 2017.
L. Verlet. Computer “experiments” on classical fluids. i. thermo-
dynamical properties of lennard-jones molecules. Physical Review
Journals Archive, 159:98-103, 1967.

Y. Wang, Y. Wang, Y. Sun, L. Zhu, K. Lu, C. Fu, M. Sedlmair,
O. Deussen, and B. Chen. Revisiting stress majorization as a
unified framework for interactive constrained graph visualization.
IEEE Transactions on Visualization and Computer Graphics, 24(1):489—
499, 2018.

Y.-S. Wang and M.-T. Chi. Focus+context metro maps. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2528—
2535, 2011.

H.-Y. Wu, B. Niedermann, S. Takahashi, M.]. Roberts, and
M. Nollenburg. A survey on transit map layout — from design,

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

15

machine, and human perspectives.
39(3):619-646, 2020.

H.-Y. Wu, M. Nollenburg, F. L. Sousa, and I. Viola. Metabopolis:
Scalable network layout for biological pathway diagrams in urban
map style. BMC Bioinformatics, 20(1), 2019.

H.-Y. Wu, M. Nollenburg, and I. Viola. Graph models for bio-
logical pathway visualization: State of the art and future chal-
lenges. In 1st workshop on the Visualization of Multilayer Networks,
2019. https://www.cg.tuwien.ac.at/research/publications/2019/
wu-2019-visworkshop / wu-2019-visworkshop-paper.pdf.

H.-Y. Wu, S. Takahashi, and R. Ishida. Overlap-free labeling of
clustered networks based on voronoi tessellation. Journal of Visual
Languages & Computing, 44:106 — 119, 2018.

H.-Y. Wu, S. Takahashi, C.-C. Lin, and H.-C. Yen. Voronoi-based
label placement for metro maps. In Proceedings of the 17th Interna-
tional Conference on Information Visualisation (IV2013), pp. 96-101,
2013.

K.-H. Yeap and M. Sarrafzadeh. Floor-planning by graph dualiza-
tion: 2-concave rectilinear modules. SIAM]. Comput., 22(3):500-
526, 1993.

V. Yoghourdjian, D. Archambault, S. Diehl, T. Dwyer, K. Klein,
H. C. Purchase, and H.-Y. Wu. Exploring the limits of complexity:
A survey of empirical studies on graph visualisation. Visual
Informatics, 2(4):264-282, 2018.

V. Yoghourdjian, T. Dwyer, G. Gange, S. Kieffer, K. Klein, and
K. Marriott. High-quality ultra-compact grid layout of grouped
networks. IEEE Transactions on Visualization and Computer Graphics,
22(1):339-348, 2016.

Y. Zhonghua and W. Lingda. Accelerated layout for large-scale
network based on quadtree. In 2017 8th IEEE International Confer-
ence on Software Engineering and Service Science (ICSESS), pp. 422—
425, 2017.

Computer Graphics Forum,

Hsiang-Yun Wu is Postdoctoral Research Fel-
low at the Institute of Visual Computing &
Human-Centered Technology, TU Wien, Austria.
Her research interests include the algorithm de-
velopment of customized graph representations
and she has been working on map labeling, rail-
way map design, and complex network visualiza-
tion. She received her PhD from The University
of Tokyo, Japan in 2013.

Martin Nollenburg is an associate professor
for graph and geometric algorithms in the Algo-
rithms and Complexity Group, TU Wien, Vienna,
Austria. He received his PhD and habilitation
degrees in computer science from Karlsruhe In-
stitute of Technology (KIT), Germany, in 2009
and 2015, respectively. His research interests
include graph drawing algorithms, computational
geometry, and information visualization with a
focus on applications in network and geovisual-
ization.

lvan Viola is an associate professor in Visual
Computing at King Abdullah University of Sci-
ence and Technology (KAUST), Saudi Arabia.
His research interest is scalable technology for
interactive visualization with the ultimate goal of
constructing, visualizing, and modeling the en-
tire complex biological organism at an atomistic
or molecular detail. This technology will allow
people to interact, explore, study, and under-
stand the life at nanoscale.

