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Kurzfassung

Das Ziel dieser Bachelorarbeit ist die Entwicklung eines Python Frameworks. Die Haupt-
aufgabe des Frameworks ist die Generierung von Datensétzen, welche fiir Oberflichenre-
konstruktion genutzt werden. Diese werden fiir das Trainieren eines Neuronalen Netzwer-
kes benotigt, welches in der Lage ist, ein 3D-Modell anhand einer gegebenen Punktwolke
wiederherstellen kann. Um das Training des Neuronalen Netzes zu optimieren, werden
eine Menge an Trainingsdaten benodtigt. Dieses Framework nutzt Multi-Processing, um
einen schnelleren Generierungsprozess, im Vergleich zur sequentiellen Generierungen
mehrerer 3D-Modelle nacheinander, zu erreichen.

Zusatzlich ist das Framework in der Lage beliebige dhnliche Pipelines zu handhaben.
Die Benutzerln ist in der Lage die einzelnen Schritte so einer Pipeline in einem XML
Dokument zu definieren, welche in der Lage sind, beliebige Programme aufzurufen. Dieser
Punkt macht dieses Framework zu einem Allzweckwerkzeug fiir jegliche Aufgaben, bei
denen eine Menge an Daten unabhéngig voneinander bearbeitet werden miissen.

Die Ergebnisse zeigen einen groflen Performance-Gewinn beim Generieren von Daten-
satzen. Dies spiegelt sich in den durchgefiithrten Benchmarks wieder. Dabei wurde die
Ausfithrungszeit fiir eine fixe Menge an Dateien in verschiedenen Ausfithrungsmodi
gemessen. Der eigens entwickelte Prozesspool zeigt schnellere Zeiten als die Nutzung
von Python’s Prozesspool, welcher jeden Schritt der Pipeline unabhéngig voneinander
bearbeitet. Er ist zudem wesentlich schneller, als jeden Schritt fiir jede Datei sequentiell
auszufiihren.
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Abstract

The aim of this bachelor thesis is the development of a Python framework. The main task
for this framework is the generation of datasets, which can be further used for surface
reconstruction. They are needed for training a neural network, which is then able to
reconstruct meshes on its own given a point cloud of a mesh. In order to optimize the
training of the neural network, a lot of training data is needed. This framework utilizes
multi-processing to achieve a faster generation process in comparison to sequentially
generating one mesh after another.

In addition, the framework is also able to handle any kind of similar pipeline. The user
is able to define the steps of such pipeline in an XML document, which then can make
calls to arbitrary programs. This fact makes the framework an all-purpose tool for any
kind of task that needs to process a lot of data independent from each other.

The results show a great performance increase when generating datasets. This can be
seen in the benchmarks that have been done. The time of execution for a fixed amount
of files has been measured with different modes of execution. The custom process pool
we developed shows a faster time overall compared to using Python’s process pool for
each step of the pipeline independently. It is also way faster in comparison to running
every step for each file sequentially.
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CHAPTER

Introduction

Pipelines can be found in various areas of computer science. In general, a pipeline consists
of multiple components, where the output of one is the input of the next in line. In the
context of a software pipeline, this means that one program gives its output to another
one and so on until we successfully calculate the result.

Looking at the field of Al and neural networks, supervised learning requires training data
that consists of input-output pairs. Preparing such tuples often needs multiple steps,
which can be viewed as such a software pipeline. The focus of this bachelor thesis is
to help with the generation of such training data in the field of surface reconstruction.
Given a point cloud, such a network approximates a mesh’s surface. In order to train a
neural network, which can achieve this task, we need complete meshes and point clouds
that we create from them.

1.1 Problem Statement

In order to train neural networks in the area of surface reconstruction, datasets consisting
of point clouds need to be generated using available meshes. The process of producing
such datasets consists of multiple steps, which can be tedious and error-prone if done
manually. In addition, generating datasets for many meshes can be a very time-consuming
task. We can accelerate this with multi-processing but need to be careful with overhead.
Also, this pipeline must to be easily adaptable, with little to no effort from the user and
without changing the framework code.

1.2 Aim of this Project

The aim of this bachelor’s thesis is the development of a Python framework that can
generate datasets for use in surface reconstruction. The existing code already uses multi-
processing paradigms. However, it proves to be a bit confusing because of duplicate code.
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The focus now lies in keeping high performance, but to generalize the multi-processing to
avoid such code duplication.

Furthermore, the framework needs to be abstract in a way that it can be used outside
the dataset generation context. The users can define their own pipeline in a simple XML
document consisting of edges of a graph. As a result, we construct the pipeline as a
graph where each edge represents a call to a given program. On the other hand, the
nodes represent folders where we save the pipeline input, intermediate files and the final
result. This graph-based approach has the advantage that it can be easily visualized. We
can use graph-based algorithms to e.g. check dependency cycles and allow a depth-first
processing.

1.3 Dataset Generation Pipeline

The specific pipeline for the generation of datasets used in this thesis consists of 6 steps.
In order to provide a quick overview of the complexity of these steps, we summarize them
in the following section. More about the theory and what these datasets are actually
used for, can be found in Points2Surf by Erler et al. [EGO™20).

1.3.1 Convert Meshes

The first step in the pipeline is to convert every mesh of the dataset into a common
file format. There are around five thousand in this dataset that we take from the
ABC-Dataset project [KMJT19| (see Chapter 2). We convert them to the .ply (Stanford
triangle) format in order to provide a clean and explicit representation of the meshes.
The concept of such explicit surfaces is rather simple: Each mesh consists of a list of its
vertices containing its coordinates. Each such vertex can also save additional information
like UV-coordinates and normals. In case of a .ply file, after the list of vertices comes a
list of faces of the mesh.

1.3.2 Clean Meshes

In order to calculate signed distances, which we need in a later step of the pipeline, the
meshes need to be very clean. Besides some smaller corrections, this step serves to filter
meshes that do not fulfill certain properties. The meshes need to represent solids:

e closed and watertight: They do not have any holes in the surface.
e two-manifold: Each edge must be incident to exactly two faces.

e without self-intersections: There should not be any self-intersections within the
mesh.



1.3. Dataset Generation Pipeline

1.3.3 Scale Meshes

This step scales the meshes to the same range. In machine learning context, we call
this normalization. We use it, especially when the data available has different ranges,
to make the learning process of the neural network more efficient. Therefore, we scale
the meshes in such a way that the longest side of the bounding box is between -1 and 1.
An additional advantage of that range is the fact that floating point numbers provide a
better precision around zero.

1.3.4 Sampling with Blensor

The aim of this step is to create point clouds from the given meshes in a realistic way. For
this purpose, we use the BlenSor [GKUPII] project, which is capable of simulating various
kinds of range scanners. The sensor of special interest in this step is the time-of-flight
camera that is finally used to generate the point clouds. An important factor for the
generation are different kinds of artifacts and errors that add a further layer of realism.
Non-uniform sampling and noises are just two types of measuring artifacts that occur in
real world scenarios. Therefore, the neural network must be able to handle them as well,
which is why we enforce them to a certain degree in the point cloud generation.

1.3.5 Get Query Points

Sample points on f(X,Y)
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Figure 1.1: Example how query points can be used in 2D. Graphic shows selection of
query points. The white sections can be seen as the surface of a mesh.
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This step serves two purposes. At first, we convert the explicit geometry from the meshes
to an implicit form. It gets converted to a Signed Distance Field (SDF). An SDF in
short, is a volume in which every point defines the signed distance to the nearest surface
of the actual mesh. Now the calculation of the real signed distance only gets done for a
selection of points (query points) and serves as the ground truth for the neural network.
It uses these query points for learning and is then able to calculate the whole signed
distance field from a given point cloud. After the inference, it reconstructs the explicit
mesh using the Marching Cubes algorithm [LLVT03].

1.3.6 Making Dataset Splits

This final step splits the dataset into two subsets of training and test data. We use the
training set to train the neural network, whereas the test set is for evaluating the results
the network produces. The result of this step are two corresponding text files containing
the names of the point clouds that need to be loaded into the neural network.
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Related Work

This chapter will take a quick peek at a couple of different papers related to similar
approaches and ideas like in this thesis.

In the context of deep learning in the domain of surface reconstruction, it is necessary
to have a rich set of different shapes and meshes in order to train a network. As one
of the main purposes for the framework developed during this thesis is such task, it
makes sense to look at available work. The ABC-Dataset project [KMJ19] is a large
repository of Computer-Aided Design (CAD) models containing information like e.g.
explicitly parameterized curves. This data can be used as a ground truth when it comes
to training neural networks or specific shape reconstruction from point clouds. The
collection includes one million models in total, which they acquired over a time period of
four months from another CAD collection named Onshape. However, these models do not
contain the needed properties, which is why ABC-Dataset put its own pipeline for further
refining this data into place. This pipeline relies heavily on free software to provide more
engagement through the community and is also built to be run in parallel on big clusters.
Unfortunately, it is not specified how exactly it can be parallelized efficiently.

Another example for a collection of meshes is ShapeNet [CFGT15]. The goal of this
project is pretty similar to other comparable repositories. It gathers raw 3D models from
various publicly available resources and then annotates them in different steps. These
semantic annotations range from being language-, geometric- or even physical-related.
The approach for the acquisition of such rich annotations is not exclusively done by hand.
Some types of annotations can be predicted algorithmically and are later checked by
human experts or crowd-sourcing pipelines.

Besides the purpose of this framework, generating datasets, the structure of it is another
special aspect. The idea is to build a graph with edges and nodes that respectively
represent the program calls and folders. In A graph-based approach to Web services
composition by Hashemian et al. [HMO05], they use a similar graph-based method in
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another domain. There, they compose complex web services using a bunch of smaller
web services. They put the information about the known services into a dependency
graph, which then gets processed with algorithms for finding the perfect composition.
Within these algorithms they use other well-known techniques like breadth-first search.
Similarly, we apply depth-first search in this bachelor thesis to achieve quick complete
results while parallelizing the whole pipeline. More about this topic can be found in the
implementation of the custom process pool in the Chapter [3.3.6.
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Method

This chapter is about the actual implementation of the framework. The first two sections
contain definitions, general information and brief descriptions of the external libraries
we use. Furthermore, the third section provides descriptions and explanations of the
different components of the framework. High performance, especially when processing
large amounts of files, is one key aspect of this framework.

3.1 Definitions and General Information

An edge in this context is a part of the pipeline, which processes input files and produces
output files. We use the term edge here, because we store the pipeline internally as a
graph.

A node represents an actual folder in the file system. We connect them via an edge.
Nodes at the beginning of edges are input directories and nodes at the end are output
directories.

In contrast to the graph elements like edges and nodes, there are the actual processing
steps. The graph provides the general structure of the pipeline. The code follows the
correct order of edges and does some kind of work for each one. That includes checking
the available input files and if there are maybe already the correct output files. We
do this via comparing the time stamps of input and output files. The final and most
important step, which we do for each edge, is to make the program call. A call means to
start the binary specified for the current edge, which does the actual work of transforming
an input to an output file. If the framework now runs with multiple input files, it will
make a call to the specified program every time such a file reaches that edge. This means
one edge can make many calls during execution, depending on the number of files to be
processed.
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Another important aspect of this framework is multi-processing. We use multi-processing
for the implementation of the custom process pool and in order to spawn new sub-
processes for program calls. An alternative would be to use multi-threading. However,
there are some limitations when it comes to multi-threading in Python. The so-called
Global Interpreter Lock is a mechanism for making the Python Interpreter thread-safe. It
is a mutex that prevents multiple threads to simultaneously access the interpreter. It was
first introduced to Python in order to avoid race conditions e.g. when manipulating the
reference count of objects. The disadvantage of the Global Interpreter Lock is especially
noticeable with CPU-heavy programs. Multiple threads would essentially become useless,
because only one can be effectively used at a time. Therefore, to avoid problems with
the Global Interpreter Lock, we use multi-processing in this framework instead [Pytb].

3.2 External Libraries

There are two types of libraries that we use in the thesis. One kind we use for the different
steps of the dataset generation pipeline. These have no direct relation to the framework,
as it depends on which actual pipeline the user defined and therefore, we do not explain
them any further. The other ones are necessary for the framework to function correctly.

Framework libraries:

e networkx!| (2.4): Provides a data structure for graphs in which we store the
processing pipeline. In addition, it provides methods for traversal (DFS, BFS),
checking for properties (cyclic?) and visualization.

e pygraphviz® (1.5): Dependency of networkx for drawing graphs.

e tqdm?| (4.46.1): Progress bar to visualize how many calls in the pipeline are already
done.

e xmlschema” (1.2.0): Support for XML Schema. It checks if the pipeline configuration
is valid.

3.3 The Framework

This section provides an overview how working with the framework might look like and
which components we implemented.

"nttps://networkx.github.io/
’https://pygraphviz.github.io/
3https://github.com/tgdm/tgdm
4https://pypi.org/project/xmlschema/
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3.3.1 Configuration

The first step in working with the framework is to have a correctly formatted configuration
file. We made the configuration using XML and it needs to have a certain structure
that we check using an XML schema file (see Chapter 5.1). The reason for using the
XML format is that on one hand, it enables the user to easily write their own extensive
configuration in a simple manner. On the other hand, there is support in many different
programming languages to parse such XML files, like in this case Python. An example
configuration may look like this:

<?xml version="1.0" encoding="UTF-8"7>
<edge—set xmlns:xsi="http://www.w3.org /2001 /XMLSchema—instance"
xsi:noNamespaceSchemal.ocation="edge—definition .xsd" version="0.2">
<edge type="regular">
<name>Convert meshes</name>
<description>Converts meshes in another format using trimesh
</description>
<inputDir>~/00 base meshes</inputDir>
<outputDir>~/01__base_meshes_ ply</outputDir>
<call>python ~/convert__mesh.py</call>
<parameters>
<option name="—t" value=".ply"/>
<argument type="input'/>
<argument type="output'/>
<argument value="example" />
</parameters>
</edge>
</edge—set>

The root element “edge-set” contains multiple (in this example just one) “edge” elements.
This edge connects multiple input (“inputDir”) and output (“outputDir”) folders together.
Another necessary part of the definition is the actual “call” that contains the program
call without any command line arguments. These must be defined separately in the
“parameters” block. There are options and arguments. Options have a flag name and an
optional value while arguments can have two different kinds of types:

e value: A simple fixed value.

e input/output: The program, which gets called, somehow needs to know with which
files it must work. We do this using arguments; however, these should not be
hard-coded in this configuration. The input/output type serve as placeholders for
the defined “inputDir” and “outputDir”. The framework replaces them then at
execution time (see Chapter 3.3.2).
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The "config_ parser.py" module is responsible for working with such a configuration. Its
purpose is to first validate the configuration against the XML schema °. We do this
via the xmlschema library (for reference see Chapter 3.2). Next it parses the whole file
with the Python ElementTree XML API and stores the edges as a graph. We do further
validation, like checking for cycles in the graph, before returning it to the caller.

3.3.2 Building Calls and Execution

During the parsing of the configuration, each edge gets a basic call string with placeholders.
We create such string using the following code:

for p in edge_xml.find("parameters") :
if p.tag == "option":
call += " " + p.attrib["name"]

if "value" in p.attrib and "type" not in p.attrib:

call += " " + p.attrib["value"]
elif "type" in p.attrib and "value" not in p.attrib:
call += " {}"
format_order.append( (IOType.INPUT, inputs.pop (0))
if p.attrib["type"] == "input"

else (IOType.OUTPUT, outputs.pop(0)))

The loop iterates over every child of "parameter" in the XML configuration. Flags and
fixed values get directly put into the string. In case of a dynamic input or output we
use a placeholder string "{}". The format_ order list saves additional information about
these parameters. It saves the exact sequence of the dynamic parameters, so we can later
know which placeholder string needs to be filled with an input or output.

Once the framework runs and an actual call needs to be made in an edge, the following
code builds the concrete call string:

def make_program_call (self, file, inputs, input_files,
outputs, inputs_available=True,
logging_gqueue=None) :
# Fetch the basic call command
program_call = self.get_call()

i =20

o =20

output_folders = []
input_files_dict = {}

params = []
for (format_type, _) in self.get_format_order():
if inputs_available and format_type == IOType.INPUT:

input_file = ""
input_directory = ""
if i ==

input_file = file

SXML schema specification https://www.w3.0rg/TR/xmlschemall-1/
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input_directory = inputs|[0]
else:
input_file = ExecutionModelHelper.find_best_match (file,
input_files[i])
input_directory = inputs|[i]
params.append (path. join (input_directory, input_file))
if input_directory in input_files_dict.keys():
input_files_dict[input_directory] .append (input_file)

else:
input_files_dict[input_directory] = [input_file]
i4+=1
elif format_type == IOType.OUTPUT:

params.append (outputs|[o])
output_folders.append (outputs|o])
o += 1

for o in output_folders:
if not path.exists (o) :
makedirs (o, exist_ok=True)

# Insert the parameters in the placeholders of the call

program_call = program_call.format (xparams)

# Execute command

return ExecutionModelHelper.run_command (program_call, self.get_name(),
None if not input_files_dict else input_files_dict,
output_folders, logging_gqueue=logging_gueue)

The for-loop iterates over the format order of the edge and inserts, depending on the
type, the corresponding input or output directory to a list called params. When this
finishes the original call with the placeholders gets formatted with the params list. After
that, we execute it in the run command method.

def run_command (command, edge, input_files,
output_folders, logging_gueue=None) :
args = command.split (" ")

output = None
returncode = None

if args([0] == "python":
output = StringIO()
try:
sys.stdout = output
name = path.splitext (path.basename (args[1])) [0]
location = args|[1]
called_module_spec = spec_from_file_ location(name, location)
if called_module_spec is not None:
called_module = module_from_spec (called_module_spec)
called_module_spec.loader.exec_module (called_module)
called_module.main(args[2:])
except AttributeError as ex:
print ("Missing main method!")
returncode = 1

11
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except as ex:
returncode = 1
else:
returncode = 0
finally:

sys.stout = sys.__stdout___
output = output.getvalue()
else:
process = subprocess.run(args, stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, universal_newlines=True)
output = process.stdout
returncode = process.returncode

created_files = ExecutionModelHelper.extract_created_files(
output_folders)
logging_information = (edge, input_files, created_files,

returncode, output)
if logging_gqueue is None:
LoggingManager.log_process_execution (xlogging_information)
else:
logging_queue.put (logging_information)

return created_files

We do the execution of calls in two different ways. Depending if we make the call to
another Python script or an arbitrary program. We do the call to a Python script by
dynamically loading it as a module and running its main method. This achieves a huge
performance boost, especially under Windows systems (more details in Chapter 3.3.6).
In case that we call any other program, the framework spawns a sub-process and runs it
there.

3.3.3 Shell

There are multiple ways to use the framework. The whole package can be imported into
a custom Python project to use the classes directly. However, the intended way is to call
the main file. There, the config paths can be set and the whole pipeline runs exactly once.
Alternatively, you can run the main file with the -i flag. This will open an interactive
shell instead, from where the framework can be started. It also provides some additional
functionality like:

e Being able to visualize the pipeline.

e Some functions to access certain information from the log.

3.3.4 Pipeline Visualization

Using the shell, the user is able to export the defined pipeline as a .png file. This provides
a good overview of which dependencies between the different steps exist. An example can
be seen at Figure 3.1. Each node represents a path/folder and each edge a program call.
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3.3.5 Execution Models

The framework provides in total 3 different modes of operations or "execution models".
These modes change the behavior of how exactly the pipeline gets processed.

The first model is a sequential order of execution. The process starts with the first edge
and makes the program call for each input file one after another. Once it finishes the
whole edge, it moves on to the next one. We implemented an own iterator for the correct
sequence of edges. It takes dependencies into account, because some edges need to be
processed before some other.

The next model uses the process pool provided by Python. Each edge is, again, processed
in the same order as in the sequential model. However, inside each edge a pool gets
utilized. The pool splits up the list of input files into even chunks. The size of these
chunks depends on the number of virtual processors available. Each chunk is then
assigned to one sub-process that works independent of the other processes [Pytc].

The last model that we realized is an own variant of a process pool. The idea behind it is
to get a result from each edge as quickly as possible. The pool now spawns for each input
file an own worker process that is only responsible for that file. We limit the amount of
concurrently spawned processes by the virtual processors available (like in the process
pool from Python). How this pool is exactly implemented, we discuss in the next section.

3.3.6 Process Pool

The process pool starts with the graph of the pipeline and a list of input files. Each
input file gets assigned to an own sub-process. We make a sub-process by using the
process class from the multiprocessing module. We store them in a queue and once the
pool starts, they get taken out of it one after another. In order to limit the maximum
amount of concurrent worker processes, it was necessary to implement a sort of limiting
mechanism. This mechanism is a class encapsulating an event object and a value object.
The value object is a wrapper to a value allocated in shared memory, which means every
sub-process has access to it. The event object on the other hand can be set or cleared
and therefore be used as synchronization mechanism. After we spawn the initial amount
of sub-processes, we set the event and it prevents the process pool from spawning new
ones. Once a worker process terminates, the shared value decreases and the event gets
cleared allowing the pool to spawn a new process again. In addition, the user can set
waiting points in the pipeline. This means that before continuing at a certain point, all
processes must reach it. We achieve this behavior through recursively creating a new
process pool with the remaining steps. Using a separate logging thread, we can do the
logging of the events from each worker process. The reason for that, is the fact that the
SQLite wrapper for Python does not allow an opened connection to be shared between
multiple threads or processes. The logging thread shares a queue with every sub-process.
Once one of them makes a call, we put the logs into the queue where the thread takes it
and writes them to the database [Pytc].

13
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Optimization of Python Calls

One big problem, which occurred during development, was when it comes to using the
process pool on Windows. Every program call a worker process from the pool makes
creates a new sub-process of its own in order to run any arbitrary binary. However, this
massively slows down the whole application because of the following reason:

The process object from the multiprocessing module in Python supports multiple ways
of spawning a new process. There is the “fork” method, which forks the main process
and the child process inherits everything from its parent. This method is rather fast, but
the downside is that it only works under UNIX systems. The other method, which is the
only one available under Windows, is “spawn”. It creates a new instance of the Python
interpreter, giving it the necessary resources to work on its own. The big issue with this
method is that it is very slow [Pytc].

In order to fix this problem, we made the following optimization. The framework in
general, supports calls to any arbitrary program that we need for processing the pipeline.
However, when we make a call to another Python script, it is unnecessary to spawn a
new Python interpreter. The current interpreter can dynamically load the script as a
module and run its main method. With that optimization, no new sub-processes need
to be spawned when calling other Python scripts. Since the dataset generation pipeline
consists almost entirely of such scripts, we can achieve a huge speed gain especially under
Windows.

3.3.7 Dynamic Module Loading

The importlib [Pyta] module from Python provides an implementation of the import
statement. However, it also provides functionality to write custom importers and to realize
dynamic module loading during runtime. We use the following code in the framework to
dynamically call external Python code without spawning a separate sub-process:
called_module_spec = spec_from file_location (name, location)
if called_module_spec is not None:

called_module = module_from_spec (called_module_spec)

called_module_spec.loader.exec_module (called_module)
called_module.main (args[2:])

The code works as followed:
1. It first loads the module given the actual name and the location in the file system
using the spec_from_ file location function. This creates a ModuleSpec object.

2. With the module_ from__spec function, we create the actual module object and
return it.

3. In the final step, the exec_module function from the loader, which comes with the
ModuleSpec object, executes the module.



3.3. The Framework

4. However in order to run actual code inside the module, a function must be called.
We do this in the last line that calls the main function of the module with some
command line arguments if available.

3.3.8 Logging

In order to receive sufficient information on what happens during the execution of the
pipeline, we do logging in two ways. There is log file for any kind of unexpected behavior
and exceptions that occur during runtime. It contains a timestamp, an error message
and a stack trace to see where we exactly found the exception.

In addition, we use a simple SQLite 3 database to track information about the executed
edges and program calls that we make. The structure can be seen in the ER model 3.2.
The user is now able to e.g. see which information programs would otherwise print to
the console. This output is, during the runtime of the framework, suppressed in order
to keep the console clean. This database can be read directly using a program able to
read SQLite (e.g. DB Browser for SQLite®) or otherwise use the interactive shell of the
framework. We provide the following logging functionality trough it:

Getting the status code and console output of the call for a given file it created.

Writing the console outputs of all calls of the last run to an own log file.

Get an overview of the edges of the last run. This overview contains which edges we
executed, how many calls we made per edge and how many of them were successful.

Get a list of calls, which lead to the creation of one given file.

Shttps://sqlitebrowser.org/
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Figure 3.1: Example pipeline graph. Each node represents a directory in the file system. We connect the nodes using directed
edges, which correspond to a program call. These calls process files from the folder at the beginning of the edge and put the

resulting files in the folder at the end of the edge.
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Figure 3.2: ER model using Crow’s Foot Notation. Entities are rectangles and attributes
are in ellipses. If we underline an attribute, it is the primary key of that entity. Entities
connect to one another with relations (diamond shape). Relations in this diagram are all
1:n with the 1-side represented as a bar and the n-side as a "crow’s foot".
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CHAPTER

Experiment

This chapter explains the experiment in order to see, if the framework performs better
using the self-developed process pool instead of running everything sequential.

4.1 Hypothesis

We did the development of the framework in a kind of iterative process, where we added
functionality step by step with working prototypes in between iteration cycles. Thus,
multiple versions of the framework, which use different ways of processing the files,
emerged. There are a total of 3 of such processing methods named “execution models”
that are:

e Sequential: FEach file gets processed in sequence before continuing to the next step
of the pipeline.

e Simple Process Pool: Each step gets processed using the available process pool of
Python (multiprocessing module).

e Global Process Pool: An own implementation of a process pool. The idea is to
process a file in its own sub-process through every step of the pipeline (more details
see Section 3.3.6).

Now we make a benchmark by measuring the time of execution for each of these execution
models using a different number of files every time. The number of files used are 1, 3, 10,
50, 100 and 500. We measure the wall-clock time using the perf counter() |'| function
of Python’s time module. We call the function before and after running the framework.

"https://docs.python.org/3/library/time.html#time.perf_counter
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The difference between both returned times is the execution time. We do the whole
benchmark process under a Windows 10 system with an Intel i5-6600K CPU, which has
a total of 4 processors (physical and virtual) and 3.50 GHz clock speed.

The hypothesis that we made here is that both execution models with a kind of process
pool perform better on average than the sequential model. We made this assumption
because the process pools parallelize the execution and therefore utilize multiple cores of
the CPU. However, it cannot be said for sure, because spawning new sub-processes every
time leads to overhead that can potentially slow down the whole process.

4.1.1 Results

The results of the benchmark can be seen in the Table 4.1| and in the Graph |4.1. The
first observation that can be made is that, when only processing one file, the sequential
method is the fastest. This makes sense, because the process pools do not spawn multiple
processes and therefore only produce additional overhead. Once we use more than one file,
the process pools start to gain an advantage in speed compared to sequential processing
especially with a larger number of files. Thus, the hypothesis seems to be true that
the process pools perform in general better. This makes sense because of the complete
parallelization achieved using the process pool. Instead of one file, multiple ones can be
processed at the same time.

Another observation that can be made is that the process pool developed during this
thesis performs at first slightly better than the one Python is using. However, when
processing 500 files, the Global Process Pool is about 20 seconds slower than the other
one. This can be the case because the overhead is bigger than some waiting times at a
certain number of files. Further profiling and analysis is be necessary to determine the
exact cause. The fact that this pool prioritizes producing output files as fast as possible,
makes this execution model nonetheless the most convenient choice between all of them.
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Number of files | Sequential Simple Process Pool Global Process Pool
1 13.7s 23.5s 14.9s

3 58.9s 39.0s 29.7s

10 217.8s 83.8s 79.4s

50 1236.0s 385.2s 377.5s

100 2532.9s 781.0s 764.3s

500 11827.3s 3403.6s 3425.9s

Table 4.1: Benchmark results. Shows execution times for given number of files and for
each execution model. The sequential model processes each edge of the pipeline one after
another. Inside each edge we process each file sequentially as well. The Simple Process
Pool is the available process pool from Python. We use it to split the work of each edge
among multiple processors. Each processor becomes a part of the files which need to
be processed. After an edge is complete we spawn a new processor pool for the next
one. The Global Process Pool is a custom developed process pool. It spawns individual
processes for each input file and works them through the whole pipeline. After a process
is finished it takes the next input file. More details on this process pool can be found in
Chapter |3.3.6.
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Processing times for different execution models

@ Sequential @ Simple Process Pool Global Process Pool

10.000,00
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Time of execution in seconds
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Figure 4.1: Visual representation of benchmark results. The sequential model performs the
slowest except when we only processing one file. Both process pools perform significantly
better than the sequential model. In addition, the Global Process Pool is a little bit
faster than the Simple Process Pool until 500 files. When we process 500 files, the Global
Process Pool becomes about 20 seconds slower. This can be the case because of some
overhead that only becomes visible at a certain number of files.
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CHAPTER

Conclusion & Future work

This thesis implements a framework, with the main purpose of generating datasets for
surface reconstruction. It uses a custom process pool, which utilizes multi-processing
and a depth-first approach. The big advantage here is that if the user wants to process
many files, he will quickly get the final results for the first few inputs, before moving on
to the next input files. This allows the user to already make use of some results while
the framework is still working in the background.

The results of the experiment (Chapter |4.1.1) show that using some kind of process pool
achieves faster results than processing every file in sequence on a single thread/process.
Furthermore, the approach with the custom process pool seems to get lower total
processing times compared to using Python’s process pool until a certain point. However,
in Chapter 4.1.1 we made the observation that with 500 files, the Global Process Pool
starts to fall behind the Simple Process Pool. Further analysis is needed to find out the
exact cause for such behaviour.

5.1 Future work

A next interesting step is to look at possibilities to further increase the speed of the
framework. This can be achieved by combining the framework with a compute cluster.
Many available processors directly influence the speed of the process pool, because more
files can be processed at the same time. In addition, frameworks like Hadoop || can also
be useful, though the typical MapReduce paradigm cannot be directly applied to the
processing pipeline.

'https://hadoop.apache.org/
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Appendix

XML schema

<?xml version="1.0"7>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ve="http: //www.w3.org /2007/XMLSchema—versioning" vc:minVersion="1.1">
<xsd:element name="edge—set ">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="edge' minOccurs="0" maxOccurs="unbounded"
type="edgeType" />
</xsd:sequence>
<xsd:attribute name="version"' type="versionNumber" default="0.1"/>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="edgeType">
<xsd:sequence>
<xsd:element name="name' minOccurs="1" maxOccurs="1"
type="xsd:string" />
<xsd:element name="description" minOccurs="1" maxOccurs="1"
type="xsd:string" />
<xsd:element name="inputDir" minOccurs="1" maxOccurs="unbounded"
type="xsd:string" />
<xsd:element name="outputDir" minOccurs="1" maxOccurs="unbounded"
type="xsd:string" />
<xsd:element name="call" minOccurs="1" maxOccurs="1"
type="xsd:string" />
<xsd:element name="parameters" minOccurs="1" maxOccurs="1"
type="parametersType" />
</xsd:sequence>
<xsd:attribute name="type" type="edgeCategory" default="regular'/>
<xsd:attribute name="require_complete" type="xsd:boolean"/>
</xsd:complexType>
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<xsd:complexType name="parametersType">
<xsd:all>
<xsd:element name="option" minOccurs="0" maxOccurs="unbounded"
type="optionType" />
<xsd:element name="argument"' minOccurs="0" maxOccurs="unbounded"
type="argumentType" />
</xsd:all>
</xsd:complexType>

<xsd:complexType name="optionType">
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="typeType"/>
<xsd:attribute name="value" type="xsd:string" default=""/>
<xsd:assert
test="(Qtype and not (@value)) or  (not(Qtype) and Qvalue)

Looor (not (@Qtype) and, not (@Qvalue)) " />
</xsd:complexType>

<xsd:complexType name="argumentType">
<xsd:attribute name="type" type="typeType"/>
<xsd:attribute name="value" type="xsd:string" default=""/>
<xsd:assert
test="(Q@type,and, ,not (@Qvalue)) jor  (not(@Qtype) and Qvalue)"/>
</xsd:complexType>

<xsd:simpleType name="typeType">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="input"/>
<xsd:enumeration value="output'/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="versionNumber ">
<xsd:restriction base="xsd:string ">
<xsd:pattern value="[0—-9].[0-9]"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="edgeCategory ">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="regular"/>
<xsd:enumeration value="unique"/>
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</xsd:restriction>
</xsd:simpleType>
</xsd:schema>

This XML schema describes how a valid configuration file needs to look like. It itself
is written in XML and defines which elements and in which order they need to occur
to verify correctly. The "xsd" prefix here is a specific namespace used to identify every
element that comes from XML schema itself. The name of that namespace can be
arbitrarily chosen. However, we use "xs" or "xsd" most of the time.

An "xsd:element" represents an XML tag and how it has to look like. It can define what
attributes it can or must have. In addition, a type for the element can be chosen. There
are, on the one hand, predefined types like strings, integers or booleans. These types can
be further restricted and/or extended using the "simpleType" element. Such "simpleType"
can make sense e.g. if you want a string to have a specific pattern or can only be taken
from a fixed set of possibilites. However, these types are only useful if the element should
only contain text or nothing. We use the "complexType" element to define a type in
more detail. It can say e.g. that certain elements should contain a specific number of
elements from another type. Further refinements, like demanding a certain order for the
elements to occur, allow the creation of very complex types.

The introduction of assertions in XML schema 1.1 allows even more control. They can
be used to check and compare certain values or attributes. In this example we use an
assertion to define the complex type named "argumentType". An element that has this
type must either have an attribute named "type" or an attribute named "value". It does
not allow to have none or both attributes like an XOR.
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