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Kurzfassung

Die Synthese eines Bildes aus einer im Computer gespeicherten Szene ist das soge-
nannte Rendering, das beispielsweise mit einigen Vertretern der Klasse der Raytracing-
Algorithmen fotorealistische Ergebnisse liefern kann. Diese Varianten (beispielsweise
das Path Tracing) zeichnen sich allerdings durch eine stochastische Charakteristik aus,
welche in einem hohen Rechenaufwand resultieren. Dies liegt in der Natur stochastischer
Algorithmen, die durch eine hohe Anzahl an Stichproben ein Ergebnis berechnen–im Falle
des Ray Tracing durch eine hohe Anzahl an Strahlen, die zur vollständigen Bildsynthese
nötig sind.

Eine Möglichkeit um das Ray Tracing, sowohl in den stochastischen als auch in den
simpleren Formen, zu beschleunigen ist der Einsatz von spezialisierter Hardware. FPGRay
ist ein solcher Ansatz, der dabei die Verwendung von spezialisierter Hardware mit der
Software auf einem handelsüblichen PC kombiniert um eine Hybridlösung zu bilden.
Dadurch soll die höhere Effizienz spezialisierter Hardware genutzt werden und zeitgleich
eine Zukunftsfähigkeit im Falle sich ändernder Algorithmen erreicht werden.

Die Ergebnisse deuten darauf hin, dass eine solche Effizienzverbesserung möglich ist.
Allerdings war dies im Rahmen der Arbeit nicht realisierbar und die konkrete Imple-
mentation zeigte eine niedrigere Effizienz als reine Softwarelösungen. Die Möglichkeit
der Erreichung einer höheren Effizienz durch diesen Ansatz konnte allerdings durch das
Aufzeigen von FPGRays Potential sichtbar gemacht werden.
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Abstract

The synthesis of an image from a scene stored on a computer is called rendering, which
is able to deliver photo-realistic results, e.g., by using specific variants of the class of
ray tracing algorithms. However, these variants (e.g., path tracing) possess a stochastic
characteristic which results in a high computational expense. This is explained by the
nature of stochastic algorithms, which use a high number of samples to compute a
result—in case of ray tracing, these samples manifest in a high number of rays needed
for a complete rendering.

One possibility to accelerate ray tracing—no matter if using a stochastic or simpler
variants—is the use of customized hardware. FPGRay is such an approach, which
combines the use of customized hardware with the software of an off-the-shelf PC to a
hybrid solution. This allows increasing the efficiency by specialized hardware and delivers
a sustainability in case of changing algorithms at the same time.

The results point towards a possible efficiency gain. Unfortunately, in the scope of this
thesis this was not realizable and the specific implementation showed a lower efficiency
compared to the software implementation. Nevertheless, the possibility to achieve a
higher efficiency with this approach by indicating FPGRay’s potential could be shown.
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CHAPTER 1
Introduction

Rendering is the task of synthesizing an image from a model. Concretely, it refers to
producing an image based on a three-dimensional scene which is stored on a computer
in order to visualize the scene from a certain position and perspective (described by
the so-called camera). This task is essential for many applications. Among the most
famous examples are computer games and computer-generated imagenery (CGI) in
movies. Another application is the prototyping and development of a variety of products
ranging from cars to mobile phones in order to make the development process much
cheaper. In medicine, rendered visualizations can help medical practitioners to detect
diseases or even prevent them. Architects can render visualizations of houses and their
interiors. The advent of virtual reality (VR) makes visualizations even more attractive for
future applications, e.g., visualizing a new apartment with the desired furniture. Some of
these applications aim for highly accurate results, some require fast results, and some
even require both.

Nowadays, fast results can be generated using rasterization. Techniques that are based
on ray tracing, on the other hand, can produce highly realistic results that are generally
much slower. Ray tracing is a class of algorithms which rely on the propagation of light
rays through the scene. Physically correct rendering is one of the reasons to use ray
tracing instead of rasterization. In contrast to a rasterizer, a ray tracer enables physically
based rendering, as the propagation of light rays is an abstraction of light transport
in reality. Because of this, to accurately simulate lighting, no special cases need to be
implemented for realistic rendering. Ultimately, this results in less complex code of a ray
tracer compared to rasterization. For example, for mirrored surfaces, a rasterizer needs
to compute a rendering of the mirrored objects to use it as a map which is used on the
surface of the mirror to generate the final image. In contrast, a ray tracer simply reflects
a ray if it hits a mirror. As the evaluation of the material on a hit point including possibly
spawning a new ray is always done, no additional code is needed; the effect is taken care
of implicitly. Algorithms such as path tracing based on ray tracing use stochastic methods
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1. Introduction

to generate photo-realistic images. This is not possible for all ray-tracing algorithms, as
effects such as global illumination are not considered in basic algorithms of this class.
Because of its photo-realism, path tracing is nowadays widely used for creating realistic
CGI in movies and for many visualization tasks. But the stochastic approach of a path
tracer comes with a significant drawback: A high number of rays is needed to render an
image, thus leading to a high computational expense.

One crucial part of the rendering process is intersection: The task of finding the nearest
object a ray hits along its way. The naive way of finding the first object that hit the
ray is just testing all shapes in a scene for intersection with the ray by evaluating their
respective intersection function. It is obvious that the complexity is linear in the number
of objects. For scenes used in practice with millions of triangles, this is very slow. An
option to make this more efficient is the use of space partitioning: Instead of testing every
object, only a part of the scene is tested. Only if the ray intersects with this part of the
scene, the containing objects are further evaluated. By recursively building partitions,
this leads to a logarithmic complexity. Intersection acceleration makes intersections much
faster, but it is still computationally expensive: When we compared the computation
times of different operations for multiple scenes, intersections amounted to about 50% of
the time.

Challenges. One way to accelerate the rendering process is the use of specialized
hardware. Such systems consist of a custom-built design on a chip or protoyping platform
to perform the ray-tracing computations. The hardware receives the scene data and
renders the desired frame on its own. The key advantage is the increased energy efficiency
and saving of logic resources (i.e., transistors on the chip) which is characteristic for
tailored hardware designs. Furthermore, the throughput is often increased in comparison
to the software-based approach. But all current hardware designs limit the rendering
system such that it supports the rendering techniques which are pre-built only. As ray
tracing is a topic of ongoing research, new techniques such as more accurate material
models, filtering algorithms for the final image, or noise-reduction approaches are still
under development. Traditionally, a new technique requires a new hardware design.
Current hardware designs become obsolete fast if complex algorithms are superseded by
newer alternatives.

Contributions. FPGRay is our approach for accelerating intersection by using a
customized hardware design. In contrast to prior work, it was developed from the
beginning to perform only parts of the rendering task. The use of a software renderer
on a Central Processing Unit (CPU) is accompanied by FPGRay to accelerate specific
operations only. The idea is to support only basic and often used operations to improve
the efficiency of the rendering process. This also allows using fewer hardware resources
by avoiding the implementation of rarely used operations. As the rendering still relies on
a software renderer, such operations can be computed in software in case the frequency
of usage does not make a more efficient hardware implementation appropriate. Moreover,
if a new technique should be introduced to further optimize the rendering or achieve a
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more accurate result, it can be done in software while the renderer can still make use
of the hardware design. Our approach is similar to Graphics Processing Units (GPUs),
which accelerate rasterization.

As a consequence, we also need a similar interface for data transfer as GPUs in terms
of latency, throughput, and accessibility with interaction to a host Personal Computer
(PC). Therefore, FPGRay is built on a Peripheral Component Interconnect Express
(PCIe) card. The FPGRay card communicates via PCIe to an off-the-shelf PC, which
can use the intersection function through an Application Programming Interface (API).
The API can be used to easily add FPGRay’s functionality to existing renderers. As an
example, pbrt-v3 was extended with our functionality. pbrt-v3 also forms the foundation
of FPGRay’s algorithms.

Before we describe our approach in the following sections, we provide some background
information on relevant aspects, in particular, about ray tracing in general, k-d trees, Field
Programmable Gate Arrays (FPGAs), and hardware design in general. Afterwards, related
works are briefly discussed. In the main section, the details about the implementation
are presented. Finally, results, conclusions, and possible avenues for future work are
described.
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CHAPTER 2
Background

2.1 Ray Tracing Explained

Ray tracing is the task of tracing a ray through the scene while testing for intersections
along its way and possibly spawning new rays on hit points of intersected objects. A
traversal with multiple consecutive rays is called a path. The depth of a path is the
number of rays that constitute the path and the number of bounces indicates the number
of objects that were hit during traversal. Simple ray tracing algorithms use paths with a
depth of only one. More complex algorithms such as recursive ray tracing [FW80] use
paths with higher depth only for a few materials like glass. This omits some physical
effects and leads to a lack of realism.

Even more complex algorithms based on path tracing facilitate physically based renderings
that can not be distinguished from real photos. These algorithms are stochastic algorithms,
so they are highly expensive in terms of computation. The stochastic approach is used in
path tracing for numerically computing the rendering equation.

The Rendering Equation. Kajiya [Kaj86] developed a solid basis for physically based
rendering—the so-called rendering equation. This equation generalizes the foundations of
many rendering algorithms. As Kajiya stated, the idea of the rendering equation itself is
not new. But other forms invented before, such as the radiosity equation or recursive ray
tracing, use specialized forms which do not consider similarities between them. In the
following, we do not focus on the equation as it is described in the original paper with
rays going from one point to another. Instead, we focus on the commonly used formula
described in terms of ray directions for path tracing, as it directly shows the behavior of
the lightning simulation at objects.

The equation is given by
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2. Background

Lo(x,ωo) = Le(x,ωo) +
∫

Ω
fr(x,ωi,ωo)Li(x,ωi)(ωi × n) dωi,

where

Lo(x,ωo) is the radiance1 from position x2 in direction ωo,

Le(x,ωo) is the emitted radiance at x in direction ωo,

Li(x,ωi) is the radiance coming towards x from direction ωi,

fr(x,ωi,ωo) is the bidirectional scattering distribution function (BSDF) at the point x,

(ωi × n) is the attenuation based on the incident angle of light. Because of the use of
unit vectors this can be written as cos(θi), where θi is the angle between the two
directions. Finally,∫

Ω
... dωi denotes the integration over the unit hemisphere Ω.

To properly calculate the light at any surface point, this formula needs to be evaluated.
This means that the complete hemisphere Ω needs to be evaluated (see Figure 2.1). But
this is not possible analytically due to the mutual dependencies of surface points. See
Figure 2.2 for an example: To compute the radiance coming from the blue hit point, the
incoming radiance from the red hit point to the blue hit point must be known. But to be
able to compute the radiance coming from the red hit point, the incoming radiance from
the blue hit point needs to be known in turn, as the blue hit point can deliver incoming
radiance to the red one.

Bidirectional Scattering Distribution Function. The BSDF describes the scat-
tering characteristics of a material. It is a function delivering the energy of light of an
outgoing direction for an incoming light direction for a point x. In practice, for each
surface material an object can have, a distinct BSDF is used. In renderers, the outgoing
direction is found by sampling a probability density function which approximates the
BSDF. For example, diffuse surfaces equally distribute light over the complete hemisphere
so the function chooses one of these directions. In contrast, functions for mirrored surfaces
yield only one outgoing direction for one incoming direction.

1The radiance is the energy in watts coming through a unit area m2 per unit angle sr (steradian)—
W/(m2 × sr)

2For path tracers, x is a position on the surface of an object which is hit.
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2.1. Ray Tracing Explained

Ω

x

ωo −ωi

Figure 2.1: The hemisphere over which the rendering equation needs to be integrated.
The output vector points towards the camera from the hit point where the incoming
radiances from all directions irradiate (depicted by the incoming vectors).

Figure 2.2: The two green objects surfaces are diffuse. If the integral of the blue hit
point should be computed, one direction of the hemisphere comes from the red hit point,
whose value is needed. The integral of this hit point in turn requires the integral of the
blue hit point’s integral. The integrals are mutually dependent.

Monte Carlo Rendering. The rendering equation can not be solved analytically. A
widely used approach to solve integrals such as the rendering equation is by using a
numeric integration algorithm which is known as the Monte Carlo method. It is also
used by multiple ray tracing algorithms. When the rendering equation is solved by the
Monte Carlo method, a high number of rays are shot from the hit point in arbitrary
directions. This delivers enough information to compute the integral of the rendering
equation with sufficient accuracy.

Kajiya [Kaj86] came up with an approach different to the idea of shooting a high number
of rays from a hit point in arbitrary directions. Instead of branching and generating a
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2. Background

tree for each camera ray by spawning multiple rays at each bounce, only one direction is
evaluated. This is referred to as a path (or a tree with branching factor 1). By shooting
multiple paths from the same origin considering the probabilities of the BSDFs, different
ways through the scene are evaluated by each path. This approach lowers the number of
rays that are shot in later bounces and, differently to the straightforward Monte Carlo
method, even shoots more camera rays (rays before the first bounce) than any bounce
afterwards. This is owed to the fact that every path starts with a camera ray but can
terminate at the first bounce. The approach of only generating up to one ray per bounce
considers the fact that the first ray contributes most to the reduction of the variance of
the pixel’s integral.

Paths can be considered as samples in the numerical integration process. If the number
of samples per pixel (spp) is high enough, the integrals are accurate enough such that
the image is rendered satisfactory. Such an image is called converged. If the number of
spps is too low, objectionable noise manifests in the rendering that reduces the quality of
the result. Mathematically this is the result of using of too few samples for computing
the rendering equation. The required number of spp is highly dependent on the scene
and in practice, rendering a single frame can take up to days. Increasing the efficiency
of this computationally expensive algorithm is an extensive topic in computer graphics,
which is not constrained to improved sampling algorithms such as bidirectional path
tracing (BDPT) and Metropolis light transport (MLT): Besides such improved sampling
methods, there is also the group of filtering methods to make noise less prominent. Other
works focus on the use of specialized hardware to gain greater efficiency. Increasing the
efficiency is still subject to much ongoing research.

Path Tracing. For basic path tracing (without any improvements), the traversal of
one sample can be described as follows (see Figure 2.3 depicting the elements of the
explanation below).

A path starts at the camera with a ray shot into the scene. The direction of the ray
from the camera is determined by the position of the corresponding pixel on the image
plane deviated with a slight offset. This unique offset for every sample allows to get an
evaluation of the whole pixel area. At the end, the samples are averaged to calculate the
resulting pixel value. For the shot ray an intersection test is performed, i.e., every object
in the scene is tested for intersection with the ray and the first intersected object along
its hit point is returned. For the hit object, the BSDF of the surface material has to be
evaluated. The evaluation may return with a different direction or output point than the
incoming ray, so another ray is shot from the evaluated position and direction against
the scene. This ray is intersected and evaluated exactly as the ray before (increasing the
depth of the path). This is continued until a light source is hit or a stopping criterion is
met, e.g., the maximum allowed depth is reached.

8



2.2. Intersection Acceleration With k-d Trees

mirror
object

glass
object

diffuse object

Figure 2.3: The basic parts of a path tracer. Three samples are shown. The first path
(green) has one bounce at the mirror surface and then hits the light source. The second
path (black) goes through a glass object (first and second bounce) and changes its
direction towards the light at the last bounce (diffuse object). The third path (orange)
does not contribute to the image as no light source is reached.

2.2 Intersection Acceleration With k-d Trees
Multiple algorithms for space partitioning exist. For ray tracing algorithms in general,
the k-d tree and Bounding Volume Hierarchy (BVH) are the most widely used. BVH
performs the same on average but the heavily used traversal routine is less complex
for the k-d tree. We therefore chose the k-d tree for FPGRay (see Figure 2.4). In the
following, we describe pbrt’s [PJH16] k-d tree implementation, as FPGRay is based on it.

y

x

Figure 2.4: A k-d tree splits the scene recursively, ultimately enabling an efficient
intersection of a ray with the scene. In each iteration, a particular axis is chosen and
the scene is subdivided by a plane determined by the split position. Because of the
partitioning, the tree is traversed in such a way that the nearest primitives along the
ray’s direction are intersected first.

The k-d Tree. As any tree in informatics, the k-d tree contains inner nodes and leaf
nodes. The first node is the root node. All inner nodes are descendants of the root.

9



2. Background

Nodes without any children are called leaf nodes. In rendering, the k-d tree contains
the whole scene, which is recursively partitioned. The root node represents the whole
scene, which is split into parts represented by child nodes. The splitting is performed
recursively until the space in a child node is partitioned in such a way, that the maximum
number of allowed primitives is not exceeded. If the maximum specified depth of the tree
is reached, a leaf is generated instead of further evaluating the tree. In a k-d tree only
one split per node is done, which means that the tree is a binary tree. A split is done
along one of the coordinate axes at a certain position. Depending on the implementation,
it is possible that one leaf can contain no objects at all for building a more efficiently
partitioned tree. Emtpy leaf nodes are also used in pbrt [PJH16].

Construction. There are multiple ways to represent a scene with a k-d tree and the
optimal representation cannot be found efficiently. Therefore, several heuristics have
been developed for this purpose. The most famous one is the Surface Area Heuristic
(SAH). It delivers a good approximation of the optimal solution. The heuristic makes
use of the bounding boxes of primitives and inner nodes containing them to compute the
surface area the bounding box of the complete inner node has.

The construction for each node’s children is done by splitting all primitives in it into
multiple bisections as candidates for possible split positions. After evaluating a cost
function for each of the bounding boxes, the SAH uses the candidate with the lowest cost
as child nodes. As this is done independently for every node, an optimal segmentation
(i.e., over multiple nodes) may not be found (this makes the SAH to a greedy algorithms).

The costs are computed for the cases of splitting up a node at different chosen positions
along an axis or to not split it up any further. The cost of not splitting a node any

further is
N∑

i=1
tisect(i) where tisect(i) is the cost of the intersection of primitive i and N

the number of primitives that need to be intersected in that node. The cost to split

at a certain position is defined as ttrav + (1 − be)(pA

NA∑
i=1

tisect(ai) + pB

NB∑
i=1

tisect(bi)). ttrav

denotes the cost of a traversal, tisect(ai) and tisect(ai) are the costs of the intersection of
primitive ai and bi in the corresponding child, pA and pB denote the probabilities that
a traversal ends up in child A or B, NA and NB are the number of primitives of the
corresponding children, and be is a factor for accounting children with no primitives in it.

The costs of the constants tisect(i) and ttrav depend on the complexity of one of these
operations. Furthermore, pbrt does not use different costs for intersections but rather
fix it to the constant tisect, using precisely tisect = 80 and ttrav = 1. This is done as the
relative difference is needed only, so one constant can always be set to 1. The parameter
valuesare optimized for pbrt’s software implementation, especially for the high number
of method calls. As the authors of pbrt state, most implementations use values closer
together because of the use of lower call depths.

Our implementation of the intersection algorithm in FPGRay would also need tisect and
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2.2. Intersection Acceleration With k-d Trees

ttrav values that are much closer to each other for optimal use of the heuristic. Scene trees
tested with FPGRay are nevertheless generated with the same parameters if not stated
otherwise. This also applies to the decision of using a constant tisect cost. This facilitates
a meaningful comparison between hardware and software implementation. The value be
is 0, or if at least one child has no primitives in it, 0.5. By computing the surface area of
the primitives of both children and dividing through the surface area of the complete
node, the probabilities pA and pB can be calculated directly [PJH16].

Based on the costs, the SAH can easily determine the split position by choosing the
split among a certain number of candidate positions depending on the lowest cost. It is
sufficient to just use positions at edges of bounding boxes (see Figure 2.5) as candidates
for splits. This is due to the fact that the algorithm should bisect primitives, for which
it does not matter if the bisection is done directly at an edge or in between two edges.
In cases where the algorithm is allowed to use empty leaf nodes, it can even increase
the efficiency as the space between primitives is maximized. So the algorithm splits all
candidates at each edge along an axis in two partitions, which easily gives a finite number
of possible splits. The split with the smallest cost is used. The smallest cost of the
heuristic results in a good bisection, even for later iterations. Note that the axis where
the candidates are computed is chosen such that it is the one with the maximum extent.
It is however possible for the k-d tree algorithm to check the other axes afterwards, if the
cost function yields values that are close to the values that would have resulted without
splitting.

The generation of child nodes is done the same way recursively until the maximum depth
or the maximum number of primitives per leaf is reached. This results in leaf nodes which
contain only up to the maximum number of allowed primitives. As mentioned above,
leaf nodes with no primitives in it at all are also possible depending on the concrete
implementation.

x

A
B C

a0 b0 a1 b1 c0 c1

Figure 2.5: The SAH considers edges of the bounding boxes that are along the axis with
the maximum extent. Since the computation of the cost function with a split along one
of those edges results in the minimum cost achievable, intermediate positions do not need
to be considered. With this approach, a finite number of split candidates can be easily
and efficiently generated.
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Traversal. Figure 2.6 illustrates the traversal algorithm. Note that the ray finished?
decision checks if the stack is empty or if the next node on the stack has a minimum
extent larger than the current rtmax. If one of those conditions applies, the intersection
operation is finalized.

start

intersect scene’s bounding box

intersection?

traverse root node

child intersects?

both children?

nearer child leaf?

intersect leaf node’s primitives

ray finished?

traverse inner node

fetch node from stack

store second child on stack

end

yes
no

Figure 2.6: The intersection of a ray against a k-d tree.

2.3 FPGAs
For this thesis, hardware acceleration is used to establish a proof of concept that
demonstrates a way to speed up the rendering process. The difference between software,
which runs on hardware, or hardware alone is exactly the absence of software. A CPU
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needs a program to properly compute the data while a dedicated hardware block only
needs the data because the algorithm is implemented in the silicon.

Example: Dot Product. To compute a dot product in software, a program is needed
which consists of multiplications and additions that are executed by a CPU by transferring
the data to the arithmetic logic of it. But for every multiplication and addition the
command has to be loaded, fetched, and the data needs to be loaded from RAM before
it is executed. The operations also can not be parallelized well, so before the next dot
product is performed, the actual one has to be finished first. Hardware, on the other
hand, can pipeline the complete operation and has exactly the needed logic to give a
proper throughput: One data block after the next can be handed over as input and the
data is directly computed and routed from logic unit to logic unit until the result is
computed. The significant efficiency advantage of hardware implementations is already
exploited for high bandwidth applications such as video decoding.

ASICs vs. FPGAs. General purpose hardware such as CPUs or dedicated accelerating
hardware such as GPUs are so-called Application-specific Integrated Circuits (ASICs).
These are produced chips that consist of the designed logic built in silicon. The production
of such an ASIC is costly and requires much time, which only pays off for mass production.
This makes the use of ASICs infeasible for this thesis. Instead, we focus on using an
FPGA.

The FPGA is a chip which can be programmed by the user to build up any desired
hardware. In contrast to a program on a CPU, the loaded design consists of logic cells
that run as the design instead of computing the program with general purpose logic. In
practice, this is not done by a lithographic process on an empty silicon wafer such as
for ASICs. Instead, the FPGA itself is an ASIC with many basic logic cells. The cells
can be connected to the input pins or other cells via a complex routing scheme. This
is also the reason why an FPGA is slower than an ASIC of the same manufacturing
process running the same design. The overhead of this routing and the use of basic logic
cells make FPGAs around a factor of 2-4 slower compared to ASICs. Furthermore, they
also suffer from a 9-12 times higher power consumption and require a 20-40 times larger
area [Ian06].

The performance increase by changing from an FPGA to an ASIC is always possible.
Furthermore, modern FPGAs contain additional logic elements, such as multipliers, which
deliver performance similar to that of an ASIC for the respective operation.

Source Code. The design of an FPGA is written in a hardware description language
that looks similar to programming languages. There are two languages that are often
used: Verilog and Very High Speed Integrated Circuit Hardware Description Language
(VHDL), which is also used for this thesis. Because the thesis’ design is primary using
VHDL, further explanations about the program constructs focus on VHDL. It should be
noted, that Verilog and VHDL can be used together in a design. This is also done in
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FPGRay by using Intellectual Properties (IPs) from Intel which internally make use of
Verilog.

An IP is a design made by others that can be used in an own hardware design. This
is similar to a library in software engineering. Examples are trivial buffers such as the
First in - First out (buffer) (FIFO), but also complex IPs such as complete CPUs. For
FPGAs, basic IPs from the vendor should be used, as specialized logic elements, such as
on-chip memory or multiplier units, can be accessed with them. This is not guaranteed
when using plain code. Another speciality of FPGAs is the so-called HardIP. A HardIP
is a logic element that is not built from basic logic elements, but an element providing a
complex functionality, such as a complete Random Access Memory (RAM) controller.

Similarly to the compilation of a program, a hardware design gets synthesized out of
VHDL or Verilog code. For writing and synthesizing FPGA designs, a so-called Electronic
Design Automation (EDA) from the FPGA’s manufacturer is used, which can be seen as
the equivalent of an Integrated Development Environment (IDE) in software design. In
case of the Arria V used in this thesis, the EDA is Intel’s Quartus Prime [qua20]. It also
delivers the needed IPs for this thesis.

Qsys. This thesis also makes use of Qsys, the system integration tool shipped with
Quartus. It is used to automatize the integration by generating interconnect functionality
between hardware components. With this tool, a complete computer system can be built
on the FPGA. The Qsys system, built from hardware components itself, constitutes a
hardware component that can be integrated in VHDL or Verilog code in the same manner
as an IP or any hardware component written in plain source code. The advantage is that
the interconnection between components inside of a Qsys system is done transparently.
This means that by using standardized hardware interfaces—well defined combinations of
signalling conduits facilitating data transfer—at hardware components, the system adds
translation or synchronisation logic (called adapters by Qsys) between them if needed.

The standardized interface between the components that is used in this thesis is the
so-called Avalon interface from Intel. It has two variants, one for connecting memory-
mapped and one for streaming interfaces. In the memory-mapped variant, an interface
designated as master can read and write data to and from a slave interface at a specific
address, which can be used for, e.g., RAM access. The streaming interface variant is not
using addresses and directly forwards data from the source to the sink interface when
there is any ready. Both variants of interfaces allow many parameters which change the
behavior of the interfaces, e.g., if an interface should be using a conduit indicating when
it is ready for new data.

In this thesis, a Qsys system is created by combining the PCIe controllers to FPGRay’s
logic. Figure 2.7 shows the Qsys main window with FPGRay’s Qsys system as an
example.

To make use of the Qsys system with any hardware language, it needs to expose input
and output conduits. Furthermore, to access the memory-mapped Avalon interface from
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Figure 2.7: The Qsys Main window showing the actual Qsys system of FPGRay.

hardware in the software program, an address range is needed.

Hardware Synthesis. The synthesis of a hardware design for an FPGA consists of
the following parts:

• Analysis and Synthesis: The VHDL or Verilog code is interpreted. The EDA tries
to build the needed logic by mapping it to matching functional units. A schematic
of the design is generated. Errors in code such as syntax errors or more complex
errors such as wrong bit widths between connections or multiple assignments to the
same conduit are found here. As VHDL is not only used for designing hardware,
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some constructs are part of VHDL but not possible to build in hardware. Such
non-synthesizable code is also caught in this stage.

• Fitting: The schematic is placed to specific units on the FPGA and routed together.
The errors that can occur here are problems fitting the design properly. This can
happen due to the use of special functions that are not available, connecting logic
to the wrong pins of the FPGA, or just because there are too little basic logic units,
memory, additional logic elements, or insufficient routing capacities.

• Assembler: Generates a programming file from the completed hardware design.
This file is used to program the FPGA.

• Timing Analysis: The generated hardware design is analyzed and checked with
respect to the desired speed (which is determined by the clock speed). For this, it
is measured whether all routings between two registers (i.e., the logic elements that
hold their output value for a clock cycle and only change them at the rising edge of
a cycle) are short enough. This will not result in an error for the design. But if the
design is too slow on the FPGA, the results can be delayed, ultimately generating
wrong outputs.

Terms and Definitions. As a hardware design has different requirements and thus
terms compared to a software design, a few definitions need to be explained.

A hardware component or logic block—analogous to a class in object-oriented programming—
programmed in VHDL is called a design entity. It contains the entity defining the
interface (the input and output conduits) and the architecture defining its behavior
(the actual implementation). Both can be in the same file or split up in two distinct files.
To expose a design entity such that it can be used as hardware component inside of other
design entities, a component needs to be declared. It describes the interface of a design
entity exactly as an entity, but is written in a scope that is accessible for other design
entities. This is analogous to the declaration of a function in C such that other functions
have access to it. To collect multiple components or separate them from the rest of the
code–similarly to a header file in C–a package file is used.

If a design entity uses another design entity in its own code, it is called instancing. An
IP can also be instanced exactly as a design entity, as long as it is made visible through
a component. A QSys system can also be instanced, similarly to an IP or design entity.
It should be mentioned that instances can also be a hardware component written in
Verilog3.

A conduit in VHDL is called signal. It is possible to merge multiple conduits to a signal
vector. These vectors can be used to represent data flowing through logic. It can be
roughly described as variables in software, but differently to variables, signals form logic
that can be processed. Furthermore, as they are real conduits, a combination of signals

3In reverse direction Verilog is also able to instantiate VHDL design entities, IPs, or QSys systems
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(and signal vectors) can build up an interface such as the already mentioned Avalon
interfaces. Similarly to some programming languages using a keyword such as “var” for
all variables, both signals and signal vectors are referred with the same keyword: In
VHDL it is always called “signal”. The actual data type indicates whether only one signal
or a signal vector is present, e.g., a signal containing a floating point value can be used.
Within the thesis, the term port is also used several times. A port is an interface, which
concretely means that it consists of multiple signals combined together for data exchange
between design entities. The important difference between the terms port and interface is
that a port refers to a non-standardized interface (no Avalon interface variant or similar).
Every time the term is used, the signals and with it the communication protocol (e.g.,
streaming or memory-mapping) are tailored to the connected design entities. In fact, the
signals are not combined in any way in the source code: The port just identifies a logical
combination which makes it easier to refer to belonging signals, e.g., all input signals of
a design entity computing data in a streaming manner can be a port.
The top design file, also called main project file, has a special purpose. It is a VHDL
or Verilog source file combining the whole logic. All design entities used in a hardware
design need to be instanced or coded in this file. From a technical perspective, this is a
normal source file, which could be used as an instance in a bigger project. For the EDA,
it is the starting point of the synthesis. The input and output ports of the design entity
determine the pins of the FPGA to connect peripherals. It should be noted that plain
source files (both VHDL and Verilog) do not contain the pin mappings to identify which
pins of the FPGA should be connected to which signals. This information is dependent
on the EDA and for Quartus, stored in so-called .tcl files.
An architecture can be coded by either making use of structural coding, i.e., by connecting
design entities together—which means they are instantiated inside the architecture of
another design entity—or through behavioral coding. It is possible to mix both in
one architecture to combine already implemented functions with new logic. Behavioral
coding refers to the writing of logic in form of algorithms in so-called processes. The
instructions in a process are executed sequentially, as it is done in a function in software.
But in contrast to software, every process is working in parallel with all other processes.
In the final hardware, each process shows up as dedicated logic besides other logic from
other processes. Processes and instances of design entities can be connected together
arbitrarily by just using signals between them (which again shows that signals are in fact
conduits and not imaginary variables as in software).
This project also makes use of constants, generics, and generate statements. They are
used for making the hardware design parameterizable, similarly to preprocessor directives
in programming languages. All of them are evaluated during the synthesis process of
an EDA program to customize the final design. Constants are used to set the number
of buffer elements the design should have or—in combination with generics—to change
the synthesized functionality, for instance. Generics are constants that can be used to
uniquely parameterize each instantiation of a design entity. They are specified besides
port mappings (the input and output signals described as the interface in an entity),
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during the instantiation. The generate statements are the safe option to synthesize
different hardware depending on the constants and generics values. With the “if generate”
and “for generate” statements, instances can be generated only if they are needed and
the generation of multiple instances is also possible. In practice, EDA programs optimize
unnecessary logic out, which applies even to code which would be still present by not
optimally using the generate statements. In this thesis and by the EDA, this is referred
to as synthesized away. But the amount of code synthesized away is not standardized
amongst EDAs. Depending on the EDA, code might not be synthesized away at all, even
if possible. This results in a higher number of logic units that are used than actually
necessary.

Synchronous Designs. A special type of process is the synchronization process.
Different to other processes which always compute an output depending on the input,
a synchronization process only changes its output once every clock cycle, often at the
rising edge of the clock signal. Synchronization processes are used to introduce the clock
and build up a synchronous design. Nowadays, most hardware is synchronous (e.g., a
clock frequency of 4 GHz of a CPU means that the chip is processing the hardware logic
driven by that clock 4 billion times in a second, or in other words the logic computes
4 billion output values from 4 billion input values) but on a chip it is possible to use
different clocks and also exchange data between those clock domains (e.g., the cores of a
CPU may operate at 4GHz while the on-chip GPU only runs at 1GHz).

The data flow of a synchronous design is a combination of synchronous processes and
processes which do not trigger their processing on a clock signal. For every clock cycle,
the synchronous process changes its output signals only once, presenting the following
stage the signal values the previous stage computed over the last cycle. This means the
computational processes which take a synchronous signal as input to return its output as
input for a synchronous process has exactly the time of the clock cycle to completely
process its logic. If it does not compute the value in time, the wrong value would be
fetched by the synchronous process. Despite this drawback, synchronous designs are
the common case nowadays as their design flow is well known and common tools are
optimized for such designs.

For synchronous designs, the latency is the number of clock cycles a design entity needs
to perform such that it can present valid output signals. So if a result can be computed
in one cycle, the latency of the entity is one. The throughput on the other hand defines
how often new data can be forwarded to the input. If a design entity accepts a new
input date every cycle, its throughput is one. This means different to the latency, the
throughput can be less than one. If the throughput should not decrease but the needed
processing logic is too complex to be processed in one cycle, pipelining is used to split
up the logic into more processes. With this change, the throughput will be the same in
exchange for a higher latency. Each process in such a multi-latency design entity is then
called stage; the data will be forwarded from one stage to the next via the synchronization
process.
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Porting Hardware Designs. VHDL code is portable with respect to the target
hardware. If a design such as FPGRay should be used on a different FPGA, there are
important steps needed to properly port the design, nonetheless. The main reason is the
use of IPs. For the same FPGA vendor, they can often be reused and are regenerated
by the EDA, otherwise they need to be changed to work. This means that the IPs need
to be changed to other IPs having the same specifications (e.g., the same throughput).
It should be noted that besides the VHDL code, there are additional files such as pin
mappings that need to be adapted if necessary. VHDL is also used for ASICs, but any
information regarding that, including porting from an FPGA, is out of the scope of this
thesis.

Design Entity vs. Entity. Please note that in practice, the term entity is used as a
synonym for the whole design entity and does not describe the interface definition. This is
sufficient in practical use, as for the discussion about design entities and its functionality
it is not necessary to distinguish between the entity and architecture. For the sake of
simplicity, we adhere to this tradition in this thesis.
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CHAPTER 3
Related Works

In the past, some other works already focused on the idea to use hardware to accelerate
ray tracing. One of the first approaches was SaarCOR [SWS02]. It uses a k-d tree for
accelerating ray tracing. The aim of the project was to use the hardware design for
rendering a computer game in real time. This was possible by using the computationally
less expensive and non-probabilistic recursive ray tracing algorithm [FW80]. In contrast
to FPGRay, it was only simulated, so they used no board and all benchmarks were based
on timing-accurate simulations.

Woop et al. developed RPU [WSS05], which also only accelerates recursive ray tracing.
The used acceleration structure was a k-d tree and it was implemented on an FPGA. In
contrast to these two implementations, FPGRay aims at accelerated intersection tests
tailored for the needed precision and high number of intersections in photo-realistic
rendering, i.e., path tracing instead of recursive ray tracing.

The T&I-Engine [NPP+11] was the first approach using Single Instruction, Single Data
(SISD) to compute each ray independently. Similarly to SaarCOR, it only relied on a
simulation for evaluating the design and accelerated the intersections using a k-d tree.
Although its aim was real-time rendering based on recursive ray tracing, the design can
be used for basic path tracing too. To support those class of algorithms, techniques such
as sampling and path termination are additionally needed.

SGRT [LLN+12] is based on both a simulation and an FPGA for benchmarks and is able
to perform path tracing although it was mostly used to benchmark recursive ray tracing.
In contrast to all other mentioned works, including FPGRay, it uses a BVH to accelerate
the intersection function. SGRT uses a combination of a simplified processor for ray
generation and performs shading on an ARM CPU of a mobile device for simulation. The
FPGA design handles the scene transfer via Universal Serial Bus (USB) to the prototype.

RayCore by Nah et al. [NKK+14] is the last paper presented here. It also supports path
tracing and was tested with it, but its primary aim was the use of real-time recursive ray
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tracing for mobile devices with low power consumption. An interesting comparison was
done by not using only an FPGA for benchmarking, but also an ASIC, which gives a
good approximation of how much performance gain is possible with an ASIC compared
to an FPGA.

In contrast to all papers presented here, FPGRay is not aimed at real-time rendering. The
focus lies on a high number of rays per scene as it is needed for photo-realistic rendering.
FPGRay is designed as a hybrid solution where not all functionality (i.e., shading, ray
generation) is computed in hardware. Its intended use is the acceleration of a software
renderer running on the CPU of a PC. In contrast to that, all presented papers use a
dedicated solution for shading and ray generation too. Some use a fixed-function design
(SaarCOR and RayCore), some use a simplified processor for it (RPU and T&I-Engine).
This enables them to render a complete frame on chip, which is not possible with FPGRay.
It should be mentioned that the hardware design of FPGRay is the only work which
is intended to be flexible, allowing to build hardware designs with different number of
computation instances.

Furthermore, it should be noted that NVIDIA released the NVIDIA RTX cards in 2018.
In contrast to all other works described in this section, they are consumer products
and not scientific research projects. This also manifests itself in limited information
about the specifications. What is known is the fact that the eponymous RTX cores
are fixed-function hardware for computing the intersection of a scene saved in a BVH.
Benchmarks and other comparisons are omitted here as at the writing of this thesis, the
RTX cards were too new. RTX cards also aim at recursive ray tracing for improving
effects of normal rasterized computer games. It is also not known how much of the needed
work for path tracing can be done on such a card and how it can be used without the
need of using DirectX or Vulkan.
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FPGRay

FPGRay is the complete implementation of a hardware able to accelerate ray tracing
computations. Besides the hardware design, the implementation consists of corresponding
software to access the hardware from a PC. FPGRay can be used by software renderer
to let operations of the ray tracing algorithm be computed in hardware. This implies a
hybrid approach using a combination of specialized hardware and software. In contrast
to previous work using hardware acceleration (or the software-only approach), multiple
advantages speak for the use of a hybrid system:

• Flexibility: If new functionality is needed, e.g., a new material model, this can
be easily added in software without changing the hardware. In contrast to a
hardware-only solution, this allows a sustainable approach which distributes the
initial implementation costs over a longer period.

• Efficiency: Using hardware acceleration for higher efficiency is a good idea, but it
does not make sense to implement all functionality as a hardware design. Computing
inherently sequential operations in software also saves expensive hardware resources.
However, the implementation of all needed functionality for rendering in hardware
was needed in previous works, as in case of the hardware-only approach this was
the only possibility to enable the rendering at all.

• Utilization: Nowadays, CPUs with many cores combined with much system memory
are common. If hardware acceleration is used, these resources have reserves that
can be used for other computational tasks the hardware is not able to perform.

In light of these points, we identify intersecting the ray with the scene using an acceleration
data structure (in our case, a kd-tree) as the most important operation for ray tracing.
In a ray tracing system, they are always required, regardless of the actual rendering
algorithm. They are needed for every ray, which makes them a heavily used operation.
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As already mentioned, intersections amounted to almost 50% of the overall rendering time
for the tested scenes—despite the use of acceleration structures (k-d trees and BVHs).
The only (negligible) drawback is that intersection is not a well predictable operation
as the number of iterations needed to traverse the acceleration structure completely is
highly dependent on the scene and the particular ray.

The combination of the flexibility and efficiency advantage over previous works is a
direct consequence of FPGRay’s design. Instead of facilitating real-time rendering with
ray tracers, FPGRay aims at photo-realistic rendering, which cannot be computed in
real-time as of now. However, the use of new techniques is crucial to achieve appropriate
photo realism. The only viable option is to implement such techniques in software assisted
by hardware as the needed hardware implementation to support those would be too
laborious.

A key characteristic of the hardware design is the possibility to change the number
of processing units to tailor the design to different FPGAs. This degree of flexibility
should not be seen as an advantage over current approaches. It is more the result of
the development which needs this parameterization for utilizing the FPGA resources
the best way. The possibility to even add further functionality to the hardware design
without needing to change the actual hardware (i.e., the FPGA card) is a property of the
FPGA itself and would apply to all previous FPGA-based works. The only difference is
that previous works do not seem to be adaptable with the same ease by just changing
constants, but this is independent of the mentioned contributions.

To achieve higher efficiency by making use of parallelization, multiple rays at once can be
sent as a batch. The implementations of intersection and traversal algorithms are based
on pbrt-v3, which manifests itself in many similarities between pbrt and FPGRay on the
algorithmic side.

Overview

Figure 4.1 depicts a rough overview of FPGRay’s composition. If a program (rendering
SW, such as pbrt; not part of FPGRay) wants to use FPGRay, it has to establish a
connection via the C++ API (Section 4.6). The API abstracts the data transfer and
connection handling to circumvent the direct use of the driver. The PCIe driver
(Section 4.5) is responsible for transferring the data and commands at kernel level
to the hardware. The complete communication between FPGRay and the software
on a PC is done via the PCIe interface. On the hardware side, after the low level
communication, the data ends up at FPGRayIF (Section 4.1). In this entity, all instances
used for computation of FPGRay’s functions are present. The data is computed here
and then kept available to be read back from software side.

With the depicted configuration, the hardware design can be used for intersection
tasks. In the default parameterization, FPGRay allows ray-scene intersections against
a scene stored in a k-d tree, which is its intended main operation. By changing the
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Figure 4.1: FPGRay’s schematic

parameters before synthesis, parts of the intersection procedure can be done alone too.
The intersection operation for a scene stored in a k-d tree is done in three steps:

1. Load the tree’s data to the RAM of the FPGA.

2. Configure the intersection instance by specifying the tree information and the
memory locations of the tree transferred before.

3. Intersect rays with the loaded scene.

From the API side, a user program can use FPGRay’s functions by calling the corre-
sponding API function. The data is handed over as a continuous memory space.

As basic functionality, the FPGRay hardware design always supports the communication
via the PCIe interface and the data transfer to and from the on-board DDR3 RAM.
An actual hardware design on an FPGA can support the intersection of a k-d tree
(kdintersect, Section 4.2; synthesized by default) or optionally only a part of the k-
d tree intersection, if synthesized with the corresponding parameters1. The optional
operations are legacy operations which are partly still used by kdintersect, namely
the intersection of a triangle (kdintersecttri, Section 4.3.2), intersecting a sphere

1Precisely, by setting VHDL constants located in FPGRayIF.
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(kdintersectsp, not used any more by kdintersect), or the traversal of a node of a k-d
tree (kdinnernode, Section 4.3.1).

Protocol. The communication protocol is very basic. FPGRay just awaits a command
including the number of data blocks that should be computed. After that, the data
blocks are sent as raw data without separators or terminators.

Lower Level. To access the PCIe interface on the software side, a Linux kernel
module [ALK, LKM] as a driver is needed. On the hardware side, to make use of the
PCIe interface, the FPGRayIF entity is supplemented by IPs from Altera. The actual
composition of this hardware design, which is abstracted in the (Figure 4.1) by the green
arrow, is further explained in Section 4.7.1.

The communication on software side is done by writing and reading to a special memory
location, exactly as it is done when accessing RAM. This can be done because the driver is
mapping this location to the PCIe interface, ultimately transferring data to this interface
instead of accessing the RAM. To get a higher throughput, a Direct Memory Access
(DMA) is used for transfer. This means, instead of transferring data word-wise, the PC’s
hardware copies a block of data at once.

The next sections contain a more detailed overview over the different components of the
hardware design. After that, the PCIe driver and the API are explained in more detail.
At the end, some implementation details are also discussed.

4.1 FPGRayIF
FPGRayIF (FPGRay InterFace) is the entity that accepts data from the PCIe interface
on the hardware side and forwards the data to the demanded entity. For being able to
determine the correct entity which should be fed with the data, a state machine is used.
The state machine gets to know its state by the first data word of a data transfer, which
is containing the command. The state machine then forwards the amount of data which
was announced by the command. In the final step, the state machine returns to its idle
state to await the next command.

As already mentioned, some operations can be chosen to be not synthesized in the final
hardware design. This helps to save resources, but if such an operation would be initiated,
the PC could freeze. To overcome this problem, the state machine automatically mimics
the data flow of unsynthesized operations and generates data blocks with dummy values
to ensure a safe operation.

Operations which are finished save their data into an output buffer within FPGRayIF.
The software takes the data from this buffer via the PCIe interface. A special purpose of
the output buffer is to ensure that the data is always in-order. This means, the order of
the rays sent from software should be kept when the results are received. As a k-d tree
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intersection needs a different number of tree traversals and intersections for each ray, the
runtimes can vary greatly. FPGRay’s implementation kdintersect (Section 4.2) outputs
a finalized ray without taking care of the order. To overcome this problem, the output
buffer has a resorting functionality, automatically storing the ray in the correct position
and not in FIFO manner.

4.2 kdintersect

The main part of this thesis is the implementation of the intersection routine for a k-d
tree. The concrete implementation is based on pbrt’s KdTreeAccel class and the Triangle
class. The decision for using pbrt was a practical one. Both the code basis and the
documentation (i.e., the book [PJH16]) are intended to be educational. Thus the technical
details are extensively discussed, including the problems of computational errors due to
the finite precision of floating point numbers. pbrt is also using a simple code base. In
contrast to that, many renderers, such as Mitsuba [Jak10], are highly optimized. Because
of the different workflow needed for FPGRay compared to a software-only approach,
those optimizations are a disadvantage. Another advantage is the relation of pbrt with
LuxCoreRender [lux20]. LuxCoreRender is based on pbrt-v1 and uses the same class
structure as the pbrt-v3 version used by this thesis. This makes another renderer besides
pbrt, which is more optimized, easily extendable for the use with FPGRay.

kdintersect only implements the intersection (the traversal of the k-d tree and the
intersection of the contained primitives) and is not able to construct a k-d tree scene
from primitives. The absence of a hardware-accelerated tree construction operation is
due to the fact that the used SAH algorithm is not parallelizable and sufficiently fast in
software. The reason for this is that the tree construction is only done once per scene,
but the intersection is performed multiple million, possibly billion, times. So the possible
acceleration of the construction is negligible especially in comparison to the hardware
resources that can be better used for the actual intersection. It should be noted that
other algorithms to construct k-d trees in real time exist [ZHWG08, CKl+10], which
could further improve the rendering efficiency. Moreover, for dynamic scenes (e.g., when
using animations) this eliminates a possible bottleneck in case of highly varying scenes.

Basic Characteristics. kdintersect is the complete implementation needed to intersect
a ray against a scene’s k-d tree. It is therefore instancing many entities to achieve a
better structure, which will be explained further in the following sections. The kdintersect
entity performs initial computations directly in its entity, which is further described in
Section 4.2.1. The initial computations are done to intersect the bounding box of the
scene’s k-d tree to check whether the ray is intersecting anything at all.

kdintersect takes a ray consisting of the origin, direction, a unique ray identification
number (rayid), and the rtmax value of the ray as input. The usage of the rtmax value
originates from pbrt, where it defines the maximum distance at which a ray can get
intersected (the range of the ray). Initially, it has the value of infinity and is used during
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intersection to save the distance of the nearest intersected primitive. rtmax is one of the
output signals alongside the primitiveid, the identification number of the intersected
primitive. Furthermore, the ray’s origin, direction and rayid will also be forwarded to
the output. The rayid is crucial as the order of a ray is not retained by this entity and
the resorting at the end will be done based on it.

Structure. kdintersect has three types of entities which do the actual computations
necessary for intersection. All of them are derived from parts of pbrt’s KdTreeAccel inter-
section functionality and the triangle intersection function. The two entities performing
the operations of intersecting a triangle (kdintersecttri, Section 4.3.2) and traversing
through an inner node of the k-d tree (kdinnernode, Section 4.3.1) are distinct entities
which can also be used multiple times to increase the throughput of the kdintersect entity.
These distinct entities are not directly instanced in kdintersect, but rather in the kdsched-
uler entity (Section 4.3). The third part is not a distinct entity but rather kdintersect’s
preparation part, which performs the initial computations needed for traversing through
the scene. As the check of the scene’s bounding box against a ray needs to be done
only once, this computational logic can reside as a singleton in kdintersect. Figure 4.2
shows the schematic of kdintersect. Besides the preparation being computational logic
directly written in kdintersect, only one entity is directly instanced: kdscheduler, which
encapsulates all logic needed for the actual traversal and intersection.

kdscheduler

traversal instance triangle intersection instance

kdintersect’s
preparation
Intersection

with treebounds
&

directioninversion

manage scenes

chgscn buffered memory controller

inray outray

Figure 4.2: The schematic of kdintersect.

Restrictions. In comparison to pbrt’s intersection routine, there are a few constraints
owing to technical reasons:

• The k-d tree is the only intersection routine that is supported. BVH or direct
intersection of a triangle via kdintersect is not possible.2

2However, a triangle could be intersected directly by using FPGRay’s own kdintersecttri entity
(Section 4.3.2).
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• Only one k-d tree containing the whole scene is supported. Nesting of multiple k-d
trees is not supported.

• Other shapes than triangles are not supported.3

• Alpha textures are not supported in any primitive.

Specialties. kdintersect offers a high degree of flexibility with regard to resource usage.
It allows to tailor the design depending on the targeted scenes and the FPGA’s resources
using various parameters. As an example, the number of intersection and traversal
instances can be parameterized.

kdintersect is able to process rays of multiple scenes in parallel. The support for multiple
scenes in parallel is important for animations, where a scene can change from one frame
to another. For identifying the scene a ray should be intersected, the sceneid of the ray
is used, which is set by the “change scene” signal. This functionality is implemented to
ensure a proper utilization even in case of a scene change. Without it, a ray of a new
scene would need to wait for entering kdintersect until the last ray of the scene before
was completely intersected. As an arbitrary ray can take longer than other rays, only
one ray might be intersected for a long time, lowering the throughput.

The following sections describe the used entities inside kdintersect in more detail.

4.2.1 kdintersect’s Preparation

Before entering the tree, the bounding box of the k-d tree is checked for intersection. Only
if this intersection is present, an intersection of the ray with the scene is possible. The
logic for computing this bounding box intersection is located in kdintersect as preparation
logic before feeding the data into the kdscheduler (Section 4.3). See Figure 4.3 for
the concrete logic. The kdscheduler gets the result as a bit signal (i.e., the output of
isnt_false_already). The inverted directions of the ray (rinvdx, rinvdy, and rinvdz)
are additionally forwarded to the kdscheduler to the input, as these values are needed for
further computations. The computation of the bounding box intersection is done using
pbrt’s geometry class implementation for bounding boxes.

4.3 kdscheduler

The kdscheduler is the entity connecting all entities together to properly intersect a ray
with a scene stored in a k-d tree, except the test if a ray intersects the scene at all (which
is located in kdintersect, Section 4.2). This includes entities for traversing inner nodes,
fetching nodes and primitives, and intersecting primitives.

3However, a sphere could be intersected with FPGRay’s own kdintersectsp entity.

29



4. FPGRay

chgscn

set_scenecache

c

1 indx

a ÷ b

1 indy

a ÷ b

1 indz

a ÷ b

c[0] inox

a − b

c[1] inoy

a − b

c[2] inoz

a − b

c[3] inox

a − b

c[4] inoy

a − b

c[5] inoz

a − b

inrtmax

a × b
tnearx_0

a × b
tneary_0

a × b
tnearz_0

a × b
tfarx_0

a × b
tfary_0

a × b
tfarz_0

a < b a < b a < b

swap_tfar_tnear

1+2×gamma(3) 1+2×gamma(3) 1+2×gamma(3)
tfarx_2

a × b

tfary_2

a × b

tfarz_2

a × b

tnearx_2 tneary_2 tnearz_2

0

a < b a < b

sett0t1x
t0x t1x

a < b a < b

sett0t1y
t0y

a < b

t1y

a < b

sett0t1

a < b

a < b

t0 t1

a < b

isnt_false_already

to kdscheduler

output
constant
input
cache

Figure 4.3: The logic needed to compute an intersection of a bounding box with a ray.
Note that any conduit at the input or output of an operation or process on the same
height as other conduits is in the same cycle (i.e., synchronized). The only exceptions for
this are the two partitions through the red lines.

Most of the parameterizable parts of kdintersect apply to this entity. The most notable
parameters are the number of traversal instances and intersection instances. These
settings do not only affect the concrete structure of kdscheduler: Many entities adapt to
these parameters to deliver enough ports or use different versions of buffers to prevent
overflows, for instance. This results in many possible data flows and also alters parts
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of the code used for the synthesized design. This variability is also the reason for the
name: All computation and data fetching instances are connected and controlled here.
See Figure 4.4 for the schematic.

innernode chain intersection path

preprocessed ray

t

root not
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newray
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priority priority

kdstack kdmemmerger
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triangle intersection instance

nf nodefetcher

pf primitivefetcher

buffer

merging buffer, filling
outputs from all inputs

Figure 4.4: The schematic of kdscheduler. The number of the green kdinnernode instances,
the red kdintersecttri instances and the kdleaf instances is determined by parameters.
Although it does not seem so, kdintersect can be parameterized to do the reinsertion
of the intersection path to the innernode chain on all positions. This includes the first
position, where also the input data is taken.

The kdscheduler entity can be roughly split into two computation blocks which interact
with each other. The innernode chain is responsible for traversing through the inner
nodes of the k-d tree while the intersection path performs the decoding of leaf nodes
and the actual intersection of triangles. At the end of an intersection, the ray is written
to a final buffer to be ultimately forwarded to the output. It should be noted that
this output is the output of kdintersect, which means that there is no further processing
needed.
Besides the ray data going through the data flow, a ray also occupies a stack for storing
not yet processed tree nodes. Instances in both computational blocks need access to these
ray stacks. For this, the instances of entities needing access to the stack are connected to
the kdstack instance (Section 4.3.5) inside of kdscheduler, which stores and manages all
stacks. More precisely, the kdstack depicted in Figure 4.4 is not a single instance. It
is possible that the kdscheduler uses multiple kdstack instances. These instances are
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abstracted for the other entities in the kdscheduler such that the instances behave like a
single kdstack instance. This design decision is due to optimization reasons; more details
about this can be found in Section 4.3.5.

Some entities in both computational blocks also need access to data from RAM, which get
this access by a connection to the kdmemmerger instance (Section 4.3.4), also instanced
in kdscheduler. The kdmemmerger routes the instances needing memory access to the
FPGA’s RAM, arbitrating the data transfer. kdmemmerger is therefore the only instance
inside of kdintersect which has a direct connection to the RAM.

Each instance needing access to a stack or RAM has an own port to it, as depicted in
Figure 4.4. For instance, each traversal instance has its own port at the kdstack.

The kdscheduler begins its operation with the newray buffer, where all precomputed
rays from kdintersect’s preparation arrive. This buffer is responsible for applying a flow
control to the input data to avoid an overflow inside of kdscheduler. If there is space left
in the innernode chain, a new ray can be inserted into the chain every cycle.

The Innernode Chain. The innernode chain is basically a combination of elements
that is able to traverse an inner node of a k-d tree. An element consists of a few entities.
Multiple of those elements can be chained together multiple times to traverse rays with
larger throughput. Each element’s end is connected to the beginning of the next element.
With this approach, a ray inserted into the first element can travel along the chain as
it traverses into the depth of the k-d tree. This enables not only the next ray to be
inserted in the next cycle. It is also possible to insert a new ray even if an older ray is
needing another traversal through an element of the innernode chain, which increases the
throughput. Only in case the depth of a k-d tree is greater than the number of elements,
the insertion of a new ray is blocked. In that case, the last element forwards the ray back
to the first element, which goes through the chain again. As the number of elements can
be parameterized (with the number of traversal instances), the achievable throughput
depends on the actual synthesized hardware design.

One element of the innernode chain consists of an instance of a kdinnernode entity
(Section 4.3.1) followed by a buffer to prevent an overflow in the following kdnodefetcher
instance (Section 4.3.3), which fetches the next node from RAM. The initial insertion
of a ray starts at the first kdinnernode instance. The output of a kdnodefetcher leaves
the innernode chain when it identifies a leaf node. The ray is then forwarded to the
intersection path. The intersection path itself can fetch an inner node through the
kdnodefetcher instances at the bottom of the intersection path. In case of such a node,
the ray gets reinserted to the innernode chain again (and this is the only possibility for a
ray coming back to the innernode chain). As both, each element of the innernode chain’s
end and the returning path from the intersection path return an inner node which is
already fetched and decoded by the kdnodefetcher entity, it can be forwarded to the
kdinnernode instance on the beginning of an element directly.
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Please note that, in contrast to the depiction, the reinsertion from the intersection path
can also be done at the first element of the innernode chain. In that case, the ray from
the intersection path will be prioritized over the rays from the newray buffer and those
coming from the last element of the chain.

The Intersection Path. The intersection path performs the actual intersections of
primitives by using the kdintersecttri entity (Section 4.3.2). Before intersecting primitives,
they must be fetched first, which is done by the kdprimitivefetcher (Section 4.3.3).
Furthermore, as leaf nodes coming from the innernode chain may not contain the
primitives data directly, some logic is needed to decode the leaf node to identify the
primitives to load. This decoding is done by kdleaf (Section 4.3.6). It delivers the
primitiveids with which the primitives can be fetched and intersected. Lastly, to find
the nearest intersection of a leaf node, the kdcompare entity (Section 4.3.7) compares all
intersection results of the node. As a finished leaf node results in either a finished ray or
another traverse through the k-d tree, additional kdnodefetchers are used at the end of
the intersection path. If a ray is not completely traversed, these fetchers either forward
the ray to the beginning of the intersection path in case of another leaf node being found
or route them back to the innernode chain when an inner node was encountered.

To increase the throughput, the intersection path may use multiple kdleaf instances. The
number of instances is automatically configured, depending on the number of traversal
and intersection instances that are parameterized. To deal with any configuration, an
arbiter is used to merge the data for the following primitive fetching. When only one
kdleaf instance is used, the data is directly forwarded to the primitive fetchers. In case
of multiple instances, the arbiter works in a different version. In this mode, the arbiter
lets one kdleaf instance exclusively finish to forward a leaf node’s result to not split it in
the middle. Only after a full leaf node was forwarded, the arbiter takes the data of a
different kdleaf.

The number of kdintersecttri and kdprimitivefetcher instances depend on the number of
intersection instances that were parameterized. The number of kdnodefetcher instances
in the intersection path are set automatically depending on the intersection instances
and may be higher than the number of intersection instances in order to avoid lowering
the throughput.

Finishing an Intersection. If an intersection is evaluated completely, it is forwarded
to the final buffer. The direct way from the input of kdscheduler to the final buffer
is also possible. This path is taken for all rays which do not intersect the bounding box of
the scene at all (i.e., rays for which root not false already is false, which are rejected
by kdintersect’s preparation ,Section 4.2.1, already). The final buffer outputs the ray
(consisting of rayid, origin, direction, and rtmax) besides the primitiveid.

Latency and Throughput. Most entities used in kdintersect have a certain latency
but because of full pipelining ability, they can sustain a throughput of one. This means,
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every cycle a new ray can be processed. This also applies to the data flow of kdscheduler.
The only exception is kdleaf, where multiple possible inputs are merged to one to optimize
resource usage. In practice, the only possible decrease of throughput comes from the
fetchers. This is owed to the fact that the RAM is too slow to be accessed by all fetchers
at once, forcing some of them to stall the data until the RAM returns their requests.
Furthermore, a decrease can also occur due to the caches which may not be able to
process all requests in time if the RAM latency is too high.

It should be mentioned that a low number of intersection and traversal instances lowers
the throughput of the kdscheduler entity depending on the complexity of the scene it
intersects. This is due to the mentioned fact that the innernode chain returns nodes
from the end of the chain to the beginning, if the depth of the scene’s k-d tree is too
high. So even if the distinct instances used for the innernode chain do not suffer from a
throughput penalty, the fact that a ray is processed twice by the same instances—which
technically still sustains the throughput—implies that the throughput in terms of rays
per cycle decreases.

4.3.1 kdinnernode

The kdinnernode entity implements the computation of a traversal along an inner node
in a k-d tree. It takes the ray and the data of the node, consisting of the split axis, split
position along this axis, and the references to the child nodes, as input. The output
consists of the ray including the references of the children of the node. It traverses
through the inner node evaluating which of the two children should be evaluated next.
This child is always forwarded. The other child is only forwarded to the output if its
space is traversed by the ray. There are two differences to the implementation of pbrt-v3
that only concern the saving and loading of the next children. Instead of loading the
next child in kdinnernode, the output consists of the index which is forwarded to the
kdnodefetcher (Section 4.3.3) in FPGRay. Also, FPGRay does not save a possible second
child of the k-d tree in the stack, this data is directly sent as output to the kdstack
(Section 4.3.5), where the data is put onto the stack.

We omit a description of the implementation details and only provide a high-level overview
of the needed logic (see Figure 4.5), as the implementation is almost identical to the
one in pbrt-v3 (namely the code of KdTreeAccel::Intersect inside the !node->IsLeaf()
branch).

4.3.2 kdintersecttri

The kdintersecttri entity implements the logic to intersect a triangle against a ray. The
triangle corner points are the inputs which have to be provided in the cycle in which
the ray is forwarded. The implementation of this entity is directly taken from pbrt-v3’s
Triangle::Intersect method from the beginning of it until the part commented with
Compute $\delta_t$ term for triangle $t$ error bounds and check _t_ (including
this part). It takes the ray and the primitive to intersect including its primitiveid as
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Figure 4.5: The logic to evaluate the children of an inner node and forward them in the
right order. Note that conduits of inputs and outputs (applies also to the inputs and
outputs to the instances) drawn in the same height are synchronous, i.e., in the same
cycle of their computation. The only exception is the splitting depicted by the red line.

input. kdintersecttri checks at the end of a valid intersection if the distance to it (the t
value) is smaller than the ray’s rtmax. This indicates a closer intersection than the one
found previously. In this case, the ray’s rtmax value and the primitiveid are updated
accordingly to form the new output. Otherwise, the output of this entity equals the
input. The implementation of the logic as it is done in FPGRay is seen in Figure 4.6.
kdintersecttri forwards the stack index to the stacking logic to fetch the next stack
element 4 cycles before the finished computation is forwarded to the output. This is done
to avoid any latency due to the stacking logic after the primitive intersection.

Because FPGRay only has access to the scene data but nothing else such as textures,
alpha textures can not be tested against intersection. Alpha textures give the ability
to additionally define areas on a shape that do not lead to an intersection even if the
shape is intersected. As FPGRay does not test against alpha textures but pbrt does in
the Triangle::Intersect method, using alpha textures would lead to different results of
the intersection functions. For this reason alpha textures are not supported in any scene
using FPGRay.

4.3.3 Data Fetcher

kdintersect (Section 4.2) needs three types of fetcher entities for delivering the needed
data from RAM. One type is used for fetching nodes (kdnodefetcher), one for fetching
primitives (kdprimitivefetcher), and one for fetching the indices of primitives that should
be intersected in one node (kdprimindicesfetcher). All three entities have only small
differences and use the same underlying kdcachedfetcher for the actual data fetching and
caching.
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Figure 4.6: The logic to intersect a triangle against a ray. Notice that this entity is the
only one making explicitly use of double precision floating point operations (operations
marked with DP). It should be mentioned that only the input and output signals are in
the same cycle but conduits of other operations or processes may not be on the same
cycle if they are at the same height.

The distinct types only instance kdcachedfetcher and split the different types of signals
for final presentation or processing. This allows to save much code. The kdnodefetcher
and kdprimitivefetcher entities can be seen in Figure 4.4 labeled as nf and pf. The
kdprimindicesfetcher is contained exactly once in each kdleaf instance (Section 4.3.6).
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kdcachedfetcher

The kdcachedfetcher implements the cache and the interface to the RAM. It is able to
fetch data with an arbitrary bit width and can also save data of arbitrary bit width (that
is different to the bit width of the fetched data) in a wait queue during fetching. With
two operation modes, it is built to deliver the base logic for all needed fetchers in this
thesis.

Each kdcachedfetcher is connected to the kdmemmerger (Section 4.3.4), as there is no
connection from a fetcher to the RAM directly. The kdcachedfetcher is fetching data via
the kdmemmerger and caches it. The fetcher is abstract as it only uses the index of the
loading object—in FPGRay this is either a node, a primitive, or primitive indices—and
the sceneid to identify the address of the data in RAM. Data which is needed after the
fetcher but not during fetching (e.g., the ray’s data) is passed through, which means
the data is stored in a wait queue and forwarded at the output besides the fetched data.
If multiple signals need to be passed through, they need to be concatenated and split
afterwards. Besides the passed-through data, the fetched data (either from RAM or
cache) is returned.

The fetcher outputs a ready signal (named rdy) at the input port—which consists
additionally of the mentioned sceneid, index to fetch and the signal for data that should
be passed-through—such that a flow control can be used. If any queue inside the fetcher
is full, the signal rdy is set to ‘0’. In practice, this often happens due to the latency
and limited throughput of the RAM. As a result, the fetchers are the only instances in
kdintersect (Section 4.2) that use flow control, giving them a variable throughput.

Two Operation Modes. The fetcher is parameterizable by generics. The operation
mode can be changed to out-of-order by setting ALLOW_REORDER to ‘1’. In this mode,
the fetcher forwards data when it is available, i.e., when it is present in cache. Data
that is fetched from the RAM is forwarded via the main output port and cached data is
forwarded via a second port. This enables to maximize the throughput by forwarding data
when it is available. Furthermore, the latency suffers from less penalty. If ALLOW_REORDER
is set to ‘0’, the fetcher is working in-order. In this mode, all data at the output has
the same order as the data fed into the fetcher. All data is forwarded via the main
output port no matter if cached or from RAM. The second output always outputs zeroes.
This mode suffers from a throughput and latency penalty due to the stalling of already
available data. Nevertheless, when the order of the data needs to be preserved, this
penalty must be accepted.

To be able to satisfy the needed properties for the concrete types of fetchers, the main
output port itself uses a flow control similar to a ready signal. With this, it is able to
stall readily available data while still presenting it on the output port until it should
be forwarded (to present the next finished date). The second port does not exhibit this
special behavior and just forwards data when it is ready.
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kdnodefetcher

The kdnodefetcher is used to fetch all nodes of the k-d tree. This applies to inner
nodes as well to leaf nodes. The fetcher is able to extract the type of the fetched nodes
(that indicate whether a node is an inner node or a leaf node). This allows the fetcher
to forward the data to the primitive intersection instances or the traversal instances
depending on the node type.

The input ray values including the actual bounding values of the k-d tree are passed-
through by an instance of kdcachedfetcher. The id of the requested node together with
the sceneid is issued in the corresponding input signals. The kdcachedfetcher is used
in out-of-order mode as the order of nodes does not matter. As an advantage, already
cached data can be forwarded before data already waiting in the queue for the RAM
interface, allowing shorter latency. Additionally, this increases the throughput because
the next data fetching can be started earlier as the queues inside the kdcachedfetcher are
emptied earlier.

Each kdnodefetcher also includes two kdnodedecode instances. Each instance of this
entity evaluates the data of an already fetched node. Its input therefore consists of a ray
with a raw fetched node (i.e., the output of the kdcachedfetcher), which is evaluated for
whether it is an inner node or a leaf node. Depending on the result, the data is forwarded
either to the traversal output port or the intersection output port. The node’s data is
properly formatted for one of the outputs (leaf node output or inner node output) of the
kdnodefetcher i.e., the values are extracted from the raw data of the fetched node. The
entity decodes in one cycle, which can not be changed.

The connection scheme inside a kdnodefetcher entity is illustrated in Figure 4.7. An inter-
esting point about the fetcher is the fact that the innernode outputs of the kdnodedecode
instances are buffered whereas both outputs for leaf nodes are directly forwarded.

kdprimindicesfetcher

In FPGRay, primitives are stored in a contiguous RAM space. As each primitive is stored
only once, leaf nodes with multiple primitives can not use just a range of this space. A
good example that demonstrates the problem would be two leaf nodes having a common
first primitive with all the others being different. To find the correct primitives, a third
RAM memory space, besides those for nodes and primitives, which stores the primitive
indices, is used. These hold the pointers to the primitives for each leaf node with more
than one primitive in a consecutive manner. The kdprimindicesfetcher is able to fetch
and forward up to four of these indices in one cycle. This is owed to the fact that one
data block from RAM holds 4 primitive indices.

This entity uses one kdcachedfetcher instance for fetching. Besides the ray data, the
fetcher takes the index of the data block containing the desired indices, the number of
primitives that should be fetched, the offset of the first index in the first data block, the
sceneid, and a final flag as input. The data block index and the sceneid are used as

38



4.3. kdscheduler
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Figure 4.7: A kdnodefetcher instance consists of a kdcachedfetcher and two kdnodedecode
instances. A buffer for inner nodes is buffering data if two inner nodes have finished
fetching at the same cycle.

input for the fetching address. All other signals are passed through. The kdcachedfetcher
is used in in-order mode, as blocks need to stay in order. This is important because
a fetched block is the index of a primitive of a leaf node which needs to be fetched
afterwards. A leaf node can contain multiple primitives and to allow an independent
(i.e., parallel) intersection for each of them, the complete ray’s data is copied for every
primitive. But to be able to correctly separate different rays, the last ray copy is flagged.
If the ray copy marking the final copy of this node—indicated by the mentioned final
flag—is not the last copy in the data flow, the node can be split up further, corrupting
multiple rays.

The kdcachedfetcher’s output, besides the passed through data, is a block consisting
of four indices. This block is obtained from a memory space that stores all indices for
all leaf nodes consecutively. Because not all leaf nodes contain exactly a multiple of
four primitives, the first primitive belonging to a node may not be the first in the block.
kdpriminidcesfetcher thus computes the correct starting position (and analogously the
end position) to forward only the indices belonging to the desired node.

For improving the throughput, up to four output ports can be configured to forward all
four indices in parallel in the same cycle (or less if not all indices are needed by a leaf
node). This configuration is done automatically when the number of triangle intersection
instances is greater than one. If less than four output ports are used, the output of
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kdcachedfetcher’s main output port is stalled until all indices of the block are forwarded.

The fetcher also alters the final flag of the input. At the input, it indicates the last
indices block of a ray. The fetcher issues the final flag at the output only for the last
primitive of this block, ultimately marking the last primitive of the leaf node of a ray.

kdprimitivefetcher

The kdprimitivefetcher fetches the primitive data from RAM and delivers the 3 points of
a triangle.

This entity uses one kdcachedfetcher instance for fetching. Besides the ray data, the
primitiveid, a final flag, and the number of the cluster this ray is contained in are
passed through. The cluster number is used to identify a ray without the need of the
rayid. Cluster numbers are used later on by the kdcompare entity (Section 4.3.7) for
more efficient comparisons. The address of the requested primitive and the sceneid is
used for kdcachedfetcher’s address inputs. Similarly to the kdprimindicesfetcher entity,
the kdprimitivefetcher needs to be in in-order mode because a split ray copy of a leaf
node could be interchanged with one of another leaf node, ending up in not being able to
merge the ray back properly.

The main output port from the kdcachedfetcher is stalled if the primitive fetcher is waiting
to forward the output. Thus the primitive fetcher just controls when the kdcachedfetcher
should forward the output and does not have an additional buffer.

The primitive fetcher has two modes for outputting the primitive data including the ray
data. In normal mode, which is configured by setting the generic SYNC_OUTPUT to ‘0’,
each output is forwarded when the data is ready.

If the generic is set to ‘1’, the primitive fetcher is doing its work in combination with other
primitive fetchers, syncing the outputs. This mode ensures that primitives intersected
in parallel that are intended to be in the same cycle are kept so by stalling all fetched
primitives as long as all of a cycle can be forwarded. For this synchronization, the
kdprimitivefetcher uses additional input and output signals. All kdprimitivefetchers
exchange a few outputs with the other instances before the actual forwarding of the
outputs is performed. The exchanged values are the rayid, the primitiveid and the
validity signals of every fetcher. These outputs are compared with the reference values
handed over at the input to identify the readiness to return the desired values. Only if the
expected and current values are equal, all kdprimitivefetchers forward the data in sync
(which is ensured as all expected values are the same for all fetchers). The synchronization
is done to be able to use multiple fetchers and triangle intersection instances in parallel
because in such a case it has to be ensured that split up rays cannot be mixed up and
bring the design into an undefined state.
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4.3.4 kdmemmerger

The connection from the RAM interface to all fetchers is established by one instance of
the kdmemmerger entity. All three types of data fetchers are connected to this merger
such that the actual transfer with the RAM is centralized. Figure 4.8 shows the use of
the three port types and the merging to two ports for RAM access. It should be noted
that this number is fixed to two ports to optimize for the actual FPGA used.

kdmemmerger

nf

I/O
ray

nf

I/O
ray

pif

I/O
ray

pif

I/O
ray

pf

I/O
ray

pf

I/O
ray

RAM
PORT 1

RAM
PORT 2

PORT 1 PORT 2

nf kdnodefetcher pf kdprimitivefetcher pif kdprimindicesfetcher

Figure 4.8: The connection scheme of kdmemmerger. Each type of fetcher has its own
array of ports. Depending on the number of fetchers, different numbers of ports per array
are used. Only the two ports to the RAM are fixed.

The kdmemmerger has a distinct buffer for every port to stall requests if the RAM ports
are busy. Although this can absorb a sizeable amount of requests for a few cycles, it
is assumed that the number of RAM ports—and of course its overall throughput—is
sufficient to deliver enough data on average. The kdmemmerger issues no ready signal
to prevent an overflow if the number of RAM ports is not sufficient for the number of
fetchers used. Because of the big buffers used, this is only an issue if the RAM or the
interface to it is too slow. If FPGRay would issue too many requests, this could only be
prevented by reducing the throughput of FPGRay itself (e.g., by lowering the number of
stacks).

4.3.5 kdstack

Each ray needs its distinct stack for saving nodes that are candidates for future evaluation.
As kdintersect (Section 4.2) needs to compute many rays in parallel for a good utilization,
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a high number of stacks is needed. To use multiple stacks, the kdstack entity provides a
parameterizable number of stacks. The abstraction mentioned in kdscheduler (Section 4.3)
that mimics only one instance of the kdstack even in case of multiple is technically
implemented in kdscheduler and kdstack together. Other optimizations of the stacking
logic that are described further, however, are entirely implemented inside of kdstack and
are only configured by other entities instancing it.

The stack consists of three entities:

• kdstack: Main entity containing the whole logic needed for stack allocation. It also
includes the instances of the other two entities.

• stackcommunication: Entity connecting multiple stacks together.

• stack: The basic entity containing one stack and the needed logic for maintaining
the stack pointer.

Depending on the parameterized latencies of the basic floating point operations and the
number of kdintersecttri (Section 4.3.2) and kdinnernode (Section 4.3.1) instances used,
many stacks can be needed.

kdstack. The main entity is responsible for arbiting all read and write accesses to the
stack that happen in any entity used in kdintersect (Section 4.2). As every kdinnernode
instance (Section 4.3.1) needs to write to a stack, each instance has a distinct port to
kdstack. It is used to write the second child of the node onto the stack if it needs to be
evaluated during tree traversal. Besides the node index, the minimum and maximum
extent of that node and the stack index are handed over by kdinnernode as input. For
every kdnodefetcher, 2 read ports are needed. The reason is that every kdnodefetcher can
output 2 leaf nodes in parallel. If these nodes contain no primitives at all, all rays would
need to read the next node from stack to traverse the k-d tree further. Additionally, for
every kdintersecttri instance, an own port to read from the stack is needed. For each
reading port, the stack index is needed as input and the output consists of the node
index, minimum and maximum extent, and a zero bit signalling an empty stack. In
case of an empty stack, the values must be ignored. See Figure 4.9 for the connections
between the other entities of kdintersect.

kdstack also provides reset ports. For every possible finished intersection, one port is
provided. Additionally, for every kdnodefetcher two ports are needed. They are needed
in case a ray fetches an empty leaf node that is also the last node of the traversal
(resulting in the end of the traversal and thus release of the stack). If a ray has finished
its evaluation through kdintersect, the stack index of it gets handed over to properly
reset the concerning stack. This is done by setting the stack pointer of this stack to zero.
The input of every reset is only the stack index and there is no returning value.
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Figure 4.9: The connection scheme of kdstack, showing ports of read (r), write (w), and
reset (rst) access type. * is the number of ports of the comparison instance (kdintersecttri
+1 or one if kdintersecttri = 1), + is the number of ports one kdleaf instance (Section 4.3.6)
has (of each of the two needed types): It is for full kdleafs 8 or 16 (2 ports from every
kdinnernode instance, where 4 or 8 are connected to each full kdleaf, depending on the
configuration) and for the last kdleaf 2×(remaining kdinnernode instances)+1.

Stack Allocation. kdstack maintains the number of available stacks as well as the
allocation and releasing of stacks. For signalling the availability of a free stack, an output
bit signal is provided including an index pointing to the next free stack. If the free stack
bit is false, the indicated free stack is in fact not available and using it would result in a
collision. The allocation of a stack must be indicated by an own signal. The release of
a stack is done by issuing a reset through one of the reset ports, which also resets the
stack pointer. Differently to the reset, an allocation can be done only once per cycle.
Precisely, it is issued only by the newray buffer in kdscheduler, when a ray leaves the
buffer towards the innernode chain (see Figure 4.4).

Multiple kdstack Instances. The mentioned configuration where multiple kdstack
instances mimic a single instance is technically used to optimize the routing further. Each
kdstack instance gets an equal number of stacks it exclusively maintains and instances
inside of it. The conversion of the stack addresses is then done in kdscheduler. Outside of
the conversion, a single instance is mimicked and each kdstack instance is treated as it is
the only instance. The connection scheme seen by other instances is therefore illustrated
in Figure 4.9.

A Stack Element. If a read or write operation occurs, kdstack uses 3 cycles to perform
the operation on the stack. This is due to technical reasons to save resources on the
FPGA (see Section 4.7.8 for further information). Every variable is written in an own
cycle resulting in an increase or decrease of 3 entries on the stack for one stack operation.
Figure 4.10 shows how the variables are stored on stack.

kdstack does not directly perform the stack operations and instancing the memory logic.
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Figure 4.10: This is how a stack element on the stack actually looks like.

For this, it instances the stackcommunication entity where the read, write, and reset
operations are processed.

For technical reasons, each stack has a maximum depth (i.e., number of elements) of
85, which means a deeper k-d tree is not supported. As this is even more than pbrt’s
maximum of 64 entries, a bottleneck should not be expected in this regard.

stackcommunication

This entity is responsible for generating instances of the stack entities. It connects them
together in parallel, distributing access to them via the same connections. If data needs
to be returned, the stackcommunication traces which stack needs to return data to the
kdstack. At the cycle the returned data is available, the corresponding stack’s output is
routed to the kdstack.

As many stacks can be needed, an efficient routing between the stacks is crucial. Due
to this, the communication is encapsulated in a distinct entity. This enables easy code
changes of this connection to optimize timing or resource usage without changing the
actual stack logic.

stack

The stack entity is the actual implementation of the stack memory with its stack pointer.
It should be noted that this memory is not part of the RAM but rather on-chip memory,
exactly like the buffers. In the context of the kdstack, one element requires three entries,
i.e., if kdstack writes one element to the stack, three entries are written—for the stack
these are distinct elements. This means the stack can be used with a different number of
entries per stack element.

4.3.6 kdleaf

This entity summarizes the entire logic needed to evaluate a leaf node and decides where
to hand over the processed node further. It is possible to have more than one instance of
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kdleaf in a kdintersect instance (Section 4.2). To learn more about how the number of
instances is obtained or how to influence it, see Section 4.7.9.

Figure 4.11 depicts kdleaf’s entities and own provided logic and the internal connections
of them. Depending on the number of primitives a leaf node possesses, different paths
are used through the kdleaf entity. One kdprimindicesfetcher instance (Section 4.3.3)
is needed to fetch the indices of multiple primitives in case a leaf node holds multiple
primitives to intersect.

kdleaf

leafnodes

nPrims >0=0

nPrim>1

prepare pif

pif to kdmemmerger-port

nPrim=1

build output

to arbiter

from stack retrieving
next node

stack empty
OR

rtmax<tmin

tto finalbuffer

f

to nodefetcher-buffers

Figure 4.11: The internal scheme of kdleaf. Depending on the number of primitives a
node has, three paths can be taken. The path on the left can be taken by nodes with no
primitives at all, the right directly from the buffers to build output if a node has only
one primitive. The complete run through the rightmost path with a kdprimindicesfetcher
is only done for leaf nodes with more than one primitive.

Path One: No Primitives. kdintersect’s (Section 4.2) k-d tree can have leaf nodes
with no primitives at all (left branch of Figure 4.11). This means the node is completely
evaluated already and the next node of the ray’s traversal can be fetched (by first
fetching its node index from the stack). If there are no further nodes on the stack or
the rtmax value of the ray is already lower as the node’s minimum extent tmin, the ray
gets forwarded to the final buffer. Otherwise, the ray is forwarded to the kdnodefetcher
entities to load the next node from RAM.

Path Two: A Single Primitive. If a node has exactly one primitive in it, it is
forwarded from the input buffers to the output process build output and is ready to be
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processed by the arbiter in kdscheduler (Section 4.3), which ultimately forwards the data
to the kdprimitivefetchers (Section 4.3.3). This is possible because the leaf node stores
the address of the single primitive directly instead of making use of the primitive indices
array.

Path Three: Multiple Primitives. If a node has more than one primitive in it,
additional computations need to be done to be ready for the output processes. Concretely,
one kdprimindicesfetcher is needed to be able to fetch primitive addresses of nodes with
multiple primitives in it. If a node with multiple primitives in it occurs, it hands over
the index of the first primitive’s index in the primindices array including the number of
primitives that should be intersected. The primitives indices are stored in the primindices
array one after another after the first index. As for many primitives, multiple index
pages—each page (i.e., one data block fetched from the RAM) consisting of 4 primitive
indices—need to be fetched, the prepare pif process is able to copy a ray multiple
times to generate multiple fetching requests. It also computes the starting index inside a
page, as multiple node indices could be stored in one index page. Independently of the
possible copying of a ray, prepare pif marks the last copy (or original if no copies were
made) of a ray with a final flag. This signals the end of a ray to the kdcompare entity
(Section 4.3.7), such that the comparison between intersection results can be finished. It
should be noted that with one primitive (path two), no comparison is possible: Each ray
is automatically marked with the final flag.

The data from prepare pif is forwarded to the kdprimindicesfetcher, which fetches the
actual primitive addresses which are stored at the primitive indices. Similar to prepare
pif, the ray can get copied again, as each index of the page can belong to the current
node. If the page is the last of a node, the final flag marker is only set at the last primitive.
The primitive addresses which are fetched are forwarded to the output process, where
they take the same way as those of path two.

The output process build output at the end has two versions, depending on the cor-
responding arbiter type kdscheduler is using. One version is the simple process that
forwards data directly and the other is the complex version that requires a buffer to be able
to properly operate with multiple kdleaf instances in parallel. For further explanations
about that please refer to Section 4.7.9.

Cluster Numbers. The more complex version of the build output process generates
so-called cluster numbers. Each forwarded primitive gets this number, which is unique for
the node (but not primitive) in each cycle. The number indicates the group of primitives
for which comparisons must be performed. This also means that in one cycle, comparisons
of different rays with different leaf nodes can be done independently. The numbering and
primitive position is in order, so only neighboring primitives can be of the same node.
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The simple buffer does not need such cluster numbers, as it is only synthesized for the
case of one primitive being forwarded per cycle. So there is no need for distinction in the
comparison stage.

4.3.7 kdcompare

The kdcompare entity is used to extract the rtmax value of a ray after its intersection
with primitives of a node. For this task, the entity has to find the nearest intersecting
primitive of the node saving its primitiveid and rtmax value as the ray’s data after the
intersection. It should be noted that a comparison of the intersection of interest with
intersections that are already done is not necessary here. kdintersecttri (Section 4.3.2)
already gets two primitiveids (the current nearest intersection and the one which is
intersected) as input besides the old rtmax value and outputs the nearer of the two. So
the only comparison that must be done here is between multiple primitive intersections
within a node. The kdcompare entity gets the ray with its primitiveid, the stack index,
a cluster number, a final flag, and the data from the stack for fetching the next node
as input. This input port is replicated for each kdintersecttri instance, which makes
it possible to process multiple rays per cycle. For each of these ports there are two
output ports. One is forwarding to the final buffer (Figure 4.4) and the other to the
kdnodefetcher (Section 4.3.3) for further evaluation.

Plain Comparison. For designs using one kdintersecttri instance, an optimized plain
comparison function is used. The complete comparison is always finished with a fixed
latency of 3 cycles, beginning at the cycle where the last primitive of a leaf node was
intersected. If a comparison is not finished, the function is able to store the intermediate
result for multiple cycles where no new data appears.

IDLEstart

CMP R

validvalid,finalflag

valid,finalflag

valid

ray + primitive

data
valid

STATE=
IDLE

a ≤ b

no
data

STATE=
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output

Figure 4.12: The logic for comparing primitives over multiple cycles, including the state
machine that is used. Note that only the feedback functionality is depicted here for
simplicity.

The functionality of the feedback loop is depicted in Figure 4.12. The loop is built such
that every possible state (i.e., single primitive node, begin, middle, or end of a multiple
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primitive node) of the data flow can be forwarded through it. In case of leaf nodes with
only one primitive, the data is transferred through both inputs of the comparison function
in “IDLE” state. If a leaf node contains multiple primitives, the loop’s state changes to
“CMPR” after the first primitive of the node—so it also forwards its data to both inputs
of the comparison function—and switches back only if the final primitive was forwarded.
In the “CMPR” state, one input of the comparison function always gets the result of the
comparison of the last iteration as input. If no new data arrives, the other input also
gets the comparison result as input to “store” the intermediate value in the feedback
loop. When new data arrives, the newly finished primitive’s intersection will be compared
with the stored comparison value. After the last primitive exited the feedback loop
(bringing it again back in “CMPR” state if necessary), the plain comparison evaluates
the final comparison result with the stack’s data. The output is then forwarded to the
final buffer (Figure 4.4) if the stack is empty or if the current ray’s rtmax value is smaller
than the node’s minimum extent tmin. Otherwise, it is put back to the kdnodefetcher’s
input (of the intersection path, as seen in Figure 4.4). Please note that in practice,
the functionality is performed over more than one clock cycle and the state machine is
performing only with the rtmax value and the rest of the data is forwarded at the end.
The plain comparison does not need cluster numbers and thus ignores it.

Complex Comparison. If multiple kdintersecttri instances are used, the complex
comparison function has to be used. It uses comparison stages, each able to compare
pairs of two primitives and its comparison results. By comparing a pair and merging
two rtmax values to the lower value, the number of rtmax values can be halved with each
stage. Ultimately, this results in the need of a logarithmic number of comparison stages
in terms of kdintersecttri instances. It does not matter whether the primitives forwarded
to this function in the same cycle are of the same node or different nodes or any mixture
of them. Similarly to the plain comparison, the intermediate comparison value can be
stored if primitives still need to be compared in future cycles (or if the entity needs to
wait for new data).

It would be possible to use this version for any number of intersection instances, even in
case of one kdintersecttri instance. However, the plain comparison should be preferred in
such situations as it provides higher efficiency. This should only be seen as side note, as
the comparison function will be chosen automatically depending on the set parameters.

Please refer to Section 4.7.10 for more information about the complex comparison function.

4.4 Parameterization Recommendations
When FPGRay should be adapted (e.g., to fit on a different FPGA model properly), a
few recommendations ease the proper parameterization of kdscheduler (Section 4.3):

• Computing instances: The number of kdinnernode instances (Section 4.3.1) should
be greater than the number of kdintersecttri instances (Section 4.3.2). This is due
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to the fact that a practical k-d tree uses a depth that is greater than the number
of primitives in one node. This means that in order to intersect one primitive,
multiple inner nodes need to be traversed. The design is therefore more limited by
the number of kdinnernode instances than the number of kdintersecttri instances.

• Cache sizes: The number of cache elements should be increased as much as possible
(as the timing is more limiting than the number of logic resources). Experiments
also showed that the RAM access is so slow that bigger caches can even almost
facilitate the same throughput as an additional computing instance would in case
of low hardware resources. For more in-depth information about the cache refer to
the implementation details of the cache (Section 4.7.6).

• Stacks: As explained before, a low number of kdinnernode instances limit the
throughput more than the number of kdintersecttri instances. As a result, providing
enough stacks to fully utilize the kdinnernode instances is sufficient. As a rule of
thumb it is sufficient to use 2 times the number of stacks than the latency of the
whole kdinnernode entity, multiplied with the number of used instances.

• Tradeoffs: When combining all of the recommendations above, the available re-
sources of the FPGA should be utilized by first setting the number of computing
instances and with it the number of stacks. Then, the size of the caches should
be increased with the remaining resources. Experiments showed that the design
with two or three kdinnernode instances need at least 64 elements in order to
avoid an over-utilization of the RAM. If this number of cache elements can not be
synthesized on the FPGA or when scenes with many primitives are used, it may be
better to sacrifice a computing instance for more cache elements. Such a design
can be faster because the data access from cache increases the throughput more
than one additional computing instance which is in turn waiting longer for data.

4.5 PCIe Driver

The driver accessing the PCIe interface is a Linux kernel module driver [ALK, LKM]
and as such, it is written in C code. Because of this, the data transfer between the API
(Section 4.6)—which provides FPGRay’s functionality to user programs—and the driver
is done by making use of plain C structs. The driver gets pointers to arrays of such
structs to gain access to the user program’s data. As C structs store data plainly, they
can be directly used as data block, as the variables lie in consecutive memory locations.
Accordingly, the DMA can copy the data one by one to the FPGA. This is in contrast to
the classes and structs typically used by renderers. pbrt, for example, uses C++ classes
for rays, which must be changed when using FPGRay.

The driver running in kernel mode takes the pointers to data from a struct the API hands
over. This is done every time a function call to the driver is performed. The supported
functions are:
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• Configure a transfer: Sets the number of data units to transfer, the operation that
should be performed by FPGRay and the delays to use.

• Reset the FPGA: Sends a reset request to the resetter entity in the FPGA. After
sending the acknowledge, the FPGA shortly waits to safely finish the acknowledge
and needs time to properly reset. Thus to safely be ready again, the function waits
500 ms before returning.

• Read a register: Reads a register of one of the reserved addresses in FPGRay. These
registers deliver debug and profiling information about FPGRay. Note that this
function could read output data of FPGRay or reset the FPGA but should not be
used for that.

The actual data transfer and the desired operations are done by a different system call.
This call just starts the operation and needs to be called after the configuration of the
transfer. All calls from a user program are blocking, i.e., the driver stops the program’s
execution until the data is computed and transferred back from the FPGA.

To configure a transfer, the following parameters can be used:

• command: The 32-bit command for FPGRay containing the operation and the
number of units (e.g., rays, memory lines) to process. The command is the value
which is used by FPGRay’s state machine (FPGRayIF, Section 4.1) and is directly
handed over.

• read and write pattern: The number of data blocks a unit contains (one 128-bit data
block corresponds to one line of the PCIe interface or RAM) in sending direction to
the FPGA and receiving direction. In the case of different numbers of data blocks
per direction, the transfer needs to be adjusted to ensure maximum throughput
and simultaneously avoid overflows in the overall system. This is done by using
so-called patterns. The bigger data block is transferred continuously, while the
smaller data block is transferred with pauses in between. For a k-d tree intersection
(kdintersect, Section 4.2), two 128 bit blocks are needed as input to the FPGA
and one as output. This would result in a continuous read and a write only every
second data transfer period.

• offset parameter: This parameter defines how many DMA operations (i.e., data
transfer periods) should be read only until the first write operation should be
started (which may then run simultaneously, depending on the read and write
pattern and total number of transfer periods needed). Because each transfer period
consists of the transfer of 1024 data blocks (read, write, or both simultaneously),
the write back starts after the read of the 1024×(offset parameter) th data block.

• source and destination pointer: Marks the beginning of the memory spaces a user
program wants to get data taken from or written to.
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Depending on the function and command with which FPGRay is used, not all parameters
may be used. If a pointer is not needed, the null pointer can be used.

4.6 API
This project does not stop at the driver to make the usage of FPGRay more convenient.
The API is used to abstract the hardware and also the hardware-near implementation of
the driver. It provides a simple interface for using FPGRay in software by instancing
a C++ class. The API itself is written in C++ but makes use of the data structures
specified in the C driver. This is owed to the fact that the driver is programmed in C
and the data structures should be handed over efficiently. All functions of the driver can
be accessed through the API.

Here is a list of the functions that are available:

• bool connected(): Indicates whether the FPGA card is properly connected via
the API.

• int resetFPGA(bool output): Resets the whole card including the RAM. Returns
0 on success, 1 if not. Set output to true to print the resetter instance’s response
(0x19E5E7 will be sent by FPGRay if the reset was issued correctly).

• int readRegister(int addr): Returns the register’s content at address addr.
Only the offset address is needed as the function starts at the base address of the
FPGRayIF instance (Section 4.1).

• int loadScene(int *src, int numunits): Writes numunits 128-bit wide data
blocks beginning from src+1 to the RAM of the FPGA. The starting target address
is the content of src plus one, which is incremented for every data block. This is
the function that should be used for loading scene data to the RAM. The increment
of the base address is done because FPGRay interprets the first (offset-)address 0
as null pointer.

• int storeRAM(int *dest, int address, int numunits): Reads numunits 128-bit
wide data blocks from the FPGA’s RAM to dest. Begins at the position address
with the copy operation. As this function is for debug/raw reading, the address is
not incremented by one as in loadScene().

• int processRaw(int *dest, int *src): Transfers data beginning at location
src+1 to FPGRay and the resulting data returned from the FPGA after processing
to dest. As this function uses the raw mode of the underlying driver function, the
command needs to be present at the first position of the data field src.

• int processFunc(int *dest, int *src, int numunits, uint8_t func, uint8_t
read_pattern, uint8_t write_pattern, uint8_t writeafterreadoffset): Per-
forms the DMA transfer and lets the operation func compute on the FPGA. The
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parameters that are used are explained in Section 4.5. More in-depth information
can be found in Section 4.7.11. This method is used for nearly all of FPGRays
method calls, which just call this function with properly set parameters.

• traverseNode/intersectPrimitive/intersectTriangle(int *dest, int *src,
int numunits): Use the instanced kdinnernode (Section 4.3.1), kdintersectsp,
or kdintersecttri (Section 4.3.2) for intersecting a ray. Essentially, they all only
call processFunc() with proper parameters and do not check if the operation is
synthesized by design (this needs to be done manually by reading the function
register of FPGRay).

• int kdIntersectChgScn(...): This function is used to set the k-d tree scene’s root
node and the addresses of RAM locations for the kdintersect instance (Section 4.2).
This is done by a struct which is handed over to processFunc().

• int kdIntersect(int *dest, int *src, int numunits, int readafter): This
function uses FPGRay’s kdintersect to intersect rays found in src together with the
loaded scene in the RAM of the FPGA. With the readafter parameter, the offset
parameter of the PCIe driver can be configured. Similarly to kdIntersectChgScn(),
it does not check if kdintersect is synthesized in the current design.

The memory blocks handed over via src and dest need to be arrays of plain C structs
which are provided in the API.

The usage of FPGRay via API is simple, which is exemplified with this code:
1 #include "FPGRay.h"
2 /*
3 * The data of the scene needs to be present in those blocks already (so
4 * these variables need to be defined and filled outside of FPGRay 's API):
5 * primmemoryblock , nodememoryblock , primindicesmemoryblock
6 * Furthermore , the following variables need correct values and also need
7 * to be defined outside of FPGRay 's API and this example already:
8 * num_primitives , num_nodes , num_primitiveindices , worldspminx , worldspminy ,
9 * worldspminz , worldspmaxx , worldspmaxy , worldspmaxz , rootnodeIndex ,
10 * rootnodeAboveChild , primbaseaddr , SplitPos , primindicesbase , SplitAxis
11 */
12 int main (){
13 FPGRay *hw = new FPGRay (); // connect to FPGRay
14 if(!hw->connected ()) return -1; //check if connected
15 hw->resetFPGA(true); //reset the Hardware
16
17 //load the scene into FPGRay 's RAM
18 hw->loadScene ((int*) primmemoryblock ,num_primitives );
19 hw->loadScene ((int*) nodememoryblock ,num_nodes );
20 hw->loadScene ((int*) primindicesmemoryblock ,num_primitiveindices );
21 //set the scene information for kdintersect
22 hw->kdIntersectChgScn(worldspminx , worldspminy , worldspminz , worldspmaxx ,
23 worldspmaxy , worldspmaxz , rootnodeIndex , rootnodeAboveChild ,
24 primbaseaddr , SplitPos , primindicesbase , SplitAxis );
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25
26 // allocate the memory for the number of rays an intersection should be done
27 struct inIntersectRay *input= (struct inIntersectRay *)
28 malloc(sizeof(struct inIntersectRay )* num_units );
29 input [0].ox = 21.42; //And so on to fill in the data of the rays
30 // allocate the memory for the output
31 struct outIntersectRay *output = (struct outIntersectRay *)
32 malloc(sizeof(struct outIntersectRay )* num_units );
33
34 // perform the operation
35 hw->kdIntersect ((int*)output ,(int*)input ,num_units ,2);
36
37 cout << "first␣rays␣rtmax␣is␣" << output [0]. rtmax;
38
39 delete hw; // disconnect from FPGRay
40 return 0;
41 }

Lets take a closer look at a few lines:
FPGRay *hw = new FPGRay (); // connect to FPGRay
if(!hw->connected ()) return -1; //check if connected
delete hw; // disconnect from FPGRay

After creating a new instance of the FPGRay class from the API, the PCIe card should
be connected. With the method connected(), this can be checked. Likely causes for
not getting a connection are the absence of the hardware design on the FPGA (trying
to connect to the “empty” card with no design loaded), the card not being connected,
or the missing installation of the driver. To close the connection, the class needs to be
destroyed to properly disconnect from the card. If no dynamic memory allocation is
desired (e.g., in a small method calling FPGRay), it is possible to instance the card in
the scope with FPGRay hw; like every other C++ class.
hw->loadScene ((int*) primmemoryblock ,num_primitives );

hw->kdIntersectChgScn(worldspminx , worldspminy , worldspminz ,
worldspmaxx , worldspmaxy , worldspmaxz ,
rootnodeIndex , rootnodeAboveChild , primbaseaddr ,
SplitPos , primindicesbase , SplitAxis );

With the loadScene() method, arbitrary data can be loaded to the RAM of the FPGA.
The method is used to load the scene data. One call for the primitives, one for the
nodes and the third one for the indices of the primitives are needed. The loading of
data can of course be split further such that these three types can be loaded in parts.
For bigger scenes this would be necessary, as at maximum 268,435,440 Bytes can be
loaded at once.4 The kdIntersectChgScn(...) method is used to forward the additional

4In practice, this is no problem at the moment, as the PCIe card used for the thesis only has 256
MiB RAM anyway.
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parameters computed during the scene generation beforehand (outside of this example
and the FPGRay API) to the kdintersect entity. rootnodeIndex, primbaseaddr, and
primindicesbase, identify the memory locations of the scene data.
struct inIntersectRay *input= (struct inIntersectRay *)

malloc(sizeof(struct inIntersectRay )* num_units );

FPGRay uses C structs (see FPGRay.h for exact definitions) to send rays and receive
the computed results. Multiple rays can be sent at once by using an array of those
structs. This can be done with static or dynamic memory allocation. For more than
a few rays, the code above (using dynamic memory allocation) must be used to avoid
a stack overflow. The struct that should be used changes depending on the performed
operation and on the direction (in/out). The structs can be filled with data and read
like any other struct to easily set the data for FPGRay and fetch the result back:
input [0].ox = 21.42;
input [1]. rayid = 14;

cout << "first␣rays␣rtmax␣is␣" << output [0]. rtmax;
cout << "second␣rays␣rayid␣is␣" << output [1]. rayid;

The actual operation is done by calling the corresponding method. The needed parameters
are the starting addresses to the source and destination memory blocks as pointers and
the number of units on which the computation should be performed. Note the cast to
int* for the arrays of structs:
hw->kdIntersect ((int*)output ,(int*)input ,num_units ,2);

After the call of this method, the results are stored in the output memory block. Note
that the memory blocks have to be allocated beforehand to avoid any errors5

We omit the explanation of the extraction of a scene from pbrt but show an actual
snippet for performing a ray-intersection test:

1 bool KdTreeAccel :: Intersect(const Ray &ray , SurfaceInteraction *isect) const {
2 ProfilePhase p(Prof:: AccelIntersect );
3 FPGRay *hw = new FPGRay ();// connect to FPGRay
4 //Set values from ray
5 struct inIntersectRay input;
6 input.rayid = 1;
7 input.ox = ray.o.x;
8 input.oy = ray.o.y;
9 input.oz = ray.o.z;
10 input.dx = ray.d.x;
11 input.dy = ray.d.y;
12 input.dz = ray.d.z;
13 input.rtmax = ray.tMax;
14 // prepare memoryblock

5Similar to a segmentation fault, a crash of the program will happen without proper allocation.
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15 struct outIntersectRay memblock;
16 //let FPGA do the computation
17 hw->kdIntersect ((int*) &memblock , (int*) &input , 1, 1);
18 if(memblock.intersected == 0) return false;
19
20 // intersection = true -> compute surface interaction
21 const std::shared_ptr <Primitive > &prim = primitives[memblock.primitiveid ];
22 prim ->Intersect(ray , isect);
23 return true;
24 }

This intersection method is the alternative version of the original KdTreeAccel::Intersect(...)
method that is accelerated by FPGRay. The code is similar to the example above and
much smaller than the original intersection method. It should be noted that the resulting
primitive, found by FPGRay, is intersected again by the pbrt method to properly populate
pbrt’s intersection object.

4.7 Implementation Details

In this section, we provide a deeper look into FPGRay. We discuss details about how the
components work to justify some design decisions. We also give additional information
about some key parameters and how they change the hardware design. As the details
refer to the information of the higher-level discussions in the previous sections, reading
the previous sections before this one is highly recommended.

4.7.1 Hardware Design

As stated, FPGRayIF (Section 4.1) does not handle the physical and protocol-specific
communication of the PCIe interface. For this, the HardIP of the FPGA is used, together
with additional IPs, such as an on-chip memory for storing DMA requests. Besides
FPGRayIF (which is the top entity, encapsulating all functionality with respect to ray
tracing), there is another entity used for interfacing with software, the so called resetter.

The QSys integration tool provided by the Quartus EDA from Altera is used to properly
connect all those components. See Figure 4.13 and Figure 4.14 for a view of the used
Qsys system. Two reasons speak for the Qsys approach. First, with Qsys, we do not
need to build the arbitration between multiple entities connected to the same bus. There
is no need for connecting interfaces together by plain VHDL and therefore running the
risk of needing additional translation code to properly connect different entities. Instead,
all needed translation is done implicitly by the bus used in Qsys. The second reason for
Qsys is the saved work by building the design upon the reference design. The used Qsys
system is based on a demo for showing the DMA operation between the PC and the
FPGA’s RAM. So the only modification needed on the hardware side was the removal
of the RAM controller and the inclusion of FPGRayIF and the resetter in its place.
The connection between the PCIe IPs, FPGRayIF, and the resetter is done inside the
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Qsys system by using the Avalon memory-mapped interface with one bus connecting all
entities.

As the interface only needs to perform basic data transfer, no experiments were carried
out by using additional features of the PCIe interface (e.g., interrupts).

The complete hardware design consists of the top design file instancing the mentioned
Qsys system (Figure 4.13 and Figure 4.14) and the DDR3 RAM controller, which is
instanced outside of the Qsys system. It should be noted that there is no arbitration or
adapter used between the Qsys system and the DDR3 controller, as the only entity using
it is FPGRayIF (i.e., this connection is an exported conduit from Qsys connected to the
controller’s conduit). Besides the internals of the used IPs, the top design file (taken
from the reference design) is the only code written in Verilog. All other code is written
in VHDL.

To have debugging capabilities even without a PCIe connection, additional code was
added in the top design file of the project to make use of the FPGA card’s Light-emitting
Diodes (LEDs). The design was also extended to allow the reset of the card from within
the Qsys project. This enables the user to reset the card via software through the
resetter entity. As the reset button is located on the PCIe card and therefore difficult
to access, this is the only viable possibility for performing a reset.

All IPs used in this thesis are coming from Altera. Additionally, all computational logic,
including logic written on our own, have a throughput of one. Entities which rely on
RAM access times—which is the case for all fetching entities—can have a throughput
lower than one. In contrast to the throughput, the latency depends on the entity (and
set parameters).

Accessing the Main Entities. To get access to FPGRayIF and the resetter via
software, they have been assigned to an exclusive address space (starting at the “Base”
address specified by the columns in Figure 4.13 and Figure 4.14). This means that if
the PCIe interface gets data for a specific address, the data is sent to either FPGRayIF
or the resetter, depending on the applicable address space. Writing or reading to an
address mapped to one of the spaces, transfers data from and to the entities instead of
transferring data to the PC’s RAM. Because of this behavior, such an interface is called
memory-mapped. FPGRay should actually get one ray after the other and return the
performed intersection results in the same order. This is the behavior of a streaming
interface, but the use of a memory-mapped interface instead of this desired interface has
a simple reason: The provided IPs for PCIe only allow the use of the memory-mapped
mode. Making use of the streaming behavior would need much more work. In particular,
it would require extensive knowledge about the PCIe specification.

The resetter is an entity listening to the PCIe interface’s bus for a reset command from
software. Additionally, a distinct port directly (i.e., without a conversion from Qsys)
connected to FPGRayIF exists. Over this port, the resetter receives an alive signal.
This signal is used to feed a timer inside the resetter, which automatically resets the
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Figure 4.13: The part of the Qsys system FPGRay is composed of which is needed for
the PCIe communication. clk_0 is a clock source using via exported conduit a pin of the
FPGA. For configuration of the PCIe-controller HardIP pcie_256_hip_avmm_0, the two
components on the top are needed. Note the connections which are done via the Avalon
bus (“Avalon Memory Mapped Master/Slave” in the “Description”). They are indicated
by the lines in the “Connections” column and connect the data transfer between all of
FPGRays components.
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Figure 4.14: The part of the Qsys system FPGRay is composed of which is containing
the FPGRay specific components FPGRayIF_0 and resetter_0. Additionally, a small
on-chip memory (to store DMA requests) is seen at the top, including a second clock
source clk_1 FPGRays components are using. Note the connections which connect their
Avalon bus interfaces to those of the PCIe components shown in Figure 4.13.

FPGA after getting no alive signal for about 10 seconds. This feature is generally known
as watchdog timer. It is used for resetting the FPGA if the PCIe interface is blocking
(e.g., because of a corrupted DMA transfer) and a reset can not be sent from software.

It should be noted that FPGRayIF and the resetter always return with the empty word
(all bits set to ‘1’) on read access when no data is available (which is always the case
for the resetter). Only when a function is processing data at the moment, the read is
blocking until the accessed address’ data is available. An exception from this rule are
special registers listening on reserved addresses that always forward the register’s content
on access. The reset command at the resetter is such a special register (and besides the
activation or deactivation of the watchdog via another special register the resetter’s
only functionality). When no function is performed, both entities ignore any received
data with no command (i.e., all bits of a data block are set to ‘0’). This behavior ensures
that reading and writing can always be done safely, even when no operation should be
performed on the transferred data. This enables the driver to use data blocks of fixed
size (1024 per DMA operation) and still allows an arbitrary number of data blocks with
actual content, which facilitates simpler code for the driver. As the driver writes and
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reads empty data, accepting and returning it is crucial in order to avoid blocking a read,
which can crash the host PC.

4.7.2 FPGRayIF

FPGRayIF (basic explanations in Section 4.1) holds the state machine for correctly
routing input data to the entities that perform the ray-tracing-related operations. It also
instances not only those entities but also contains the output buffer for providing finished
data to be read back by software and logic to ensure the data is kept in order.

Resorting. To translate between the memory-mapping interface and the actual desired
streaming behavior, FPGRayIF possesses some extra logic.

On the input side, an additional buffer for all data transfers—except for those belonging
to kdintersect’s (Section 4.2) operation6—is used. It is resorting data arriving out-of-order
from the PCIe interface transparently. Out-of-order data only occurs seldomly and the
magnitude of the displacements tends to be small, so a very small buffer can be used
here. The reason for the resorting is due to the PCIe interface specification, which does
not require to preserve the order of requests (i.e., data transfers). But as the DMA sends
requests in order, the nearly in-order data transfer is noticeable.

At the output side of FPGRayIF, results are stored in a buffer. As it allows random
access, the PCIe interface can read data out-of-order directly without the need of an
additional buffer. The resulting data is written into the output buffer in-order. The only
exception is kdintersect, which uses a resorting logic to fill the output buffer out-of-order.
This needs to be done as individual rays of a k-d tree intersection can get shuffled due
to the different number of operations an intersection of a ray can take. The resorting
logic therefore tracks the ray order and returns each result at the correct position in the
output buffer. As FPGRay uses its own internal ray IDs for sorting, the used rayids can
be chosen arbitrarily.

DDR3 Controller. FPGRayIF directly connects to the DDR3 RAM controller in the
top design file. The connection is done via the fabric interface provided by the HardIP. It
enables the usage of two Avalon memory-mapped interfaces with the frequency at which
FPGRayIF operates, transparently transferring between the clock domains of FPGRayIF
and the DDR3 interface. The DDR3 controller runs at 533 MHz, which is the maximum
the controller supports.7 The interfaces are connected to kdintersect and additionally,
the first interface of the RAM has a second connection to the input state machine of
FPGRayIF on the request side and a connection to the output buffer on the response
side. This connection is used to load scene data from the PC to the RAM. Note that
requests to the RAM are buffered.

6As kdintersect returns rays out-of-order a resorting needs to be done anyway. kdintersect therefore
marks the rearrangement at the input and resorts these changed positions at the end only.

7FPGRayIF (and with it all computational logic concerning ray-tracing operations) runs at 100 MHz.
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I/O. The part of FPGRayIF providing the output logic is completely independent
of the input state machine and does not use a state machine. By designing the entity
like this, it is possible to perform operations in arbitrary order. For example, if a scene
has been loaded and intersection operations have been performed, further intersections
can be done or a new scene can be loaded. It is still possible to read the data of the
first operation even if the input state machine is already performing another operation.
Additionally, further operations could be easily added by adding a new case to the state
machine and just routing a new operation to a new entity—the output logic stays as is
and only needs to know the number of data blocks that should be awaited as for any
other operation.

The communication protocol of the state machine is as follows. The first data block,
containing 32 bits of data, encodes the command on the upper 8 bits. The lower 24
bits determine the number of data units on which the operation should be performed.
Then, without any termination symbol, the data units are sent one after another. After
receiving a data block, the state machine is in the state named after the operation that
should be performed, routing any input to the corresponding function. Notice that for
all operations, one data unit needs to be a multiple of 128 bits8. If no data needs to be
sent (for just reading data from RAM), only the command is sent.

As in practice the usage scenario only consists of performing one operation at a time, it
is not supported to do multiple operations. Every operation has to be finished before
starting the next one (but its result does not need to be read from the output buffer).
The only exception is the issuing of the same operation again. This is crucial due to the
fact that no arbitration between multiple simultaneous operations is done on the output
side. With this approach hardware resources are saved. It is also not a problem when
using the provided driver, as it never performs multiple operations simultaneously.

Supported Operations. Per default, FPGRay is always able to perform the direct
passthrough or inversion of input data (operations NOP, INV), write data (LOAD) to the
card’s RAM, or read from it (STORE). All other operations that can be used, can be
synthesized into the final hardware through constants in the FPGRayIF entity. Apart
from the passthrough (not needing many resources) or the RAM access (basic operation),
not synthesizing all operations can save hardware resources for other operations. As an
example, the final hardware design for this thesis only contains the k-d tree intersection
function KdINT (which additionally provides the function CHGSCN to load the k-d tree
parameters into kdintersect) to spend all available hardware resources for it. All other
operations9 are not present. However, except kdintersectsp, all operations are used inside
of kdintersect; the distinct use of those operations was implemented for testing purposes.

If an operation is not synthesized in the current design, FPGRayIF returns the same
amount of data as the called operation, filled with a “not synthesized” pattern. This is

8This bit width for one data block is the bit width of the PCIe interface on hardware side.
9INTERS – intersect a sphere (kdintersectsp), INTERTRI – intersect a triangle (kdintersecttri, Sec-

tion 4.3.2), TRAV – traverse an inner node of a k-d tree (kdinnernode, Section 4.3.1)
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done to avoid freezes.

Besides the normal operation using the state machine and the output logic, FPGRayIF
possesses additional registers residing on specific addresses in the upper end of the address
range assigned to FPGRayIF. Because the addresses are on the upper part of the address
range, they will not be accessed mistakenly during normal operation. The registers
provide profiling and debugging information. For example, the operations synthesized
and thus usable in the current design can be read through a register. Another example is
a register tracking buffer overflows throughout the used instances. For a more detailed
view about the synthesizable operations, reserved registers, and parameters, see the
parameter list in Section 4.7.12.

It should be noted that the optionally synthesizable operation INTERS is the only synthe-
sizable operation which is not part of kdintersect. kdintersectsp was the first primitive
intersection entity, used to intersect a sphere instead of a triangle. It is not used any
more and only available as a distinct operation. It is also the only logic which needs
a fixed latency for the floating point operations (i.e., 1 cycle latency for comparisons
and 10 cycles for all other operations); this does not apply to other entities as explained
further in the following section.

4.7.3 kdintersect

kdintersect, as the entity containing all intersection-related entities, possesses some
characteristics that are not discussed in the main section (Section 4.2).

If no primitive intersection was found for a ray, its rtmax value will be kept and the
primitiveid with index 0 will be returned. Furthermore, indices such as the primitiveid
and the stackid are shifted inside kdintersect to reserve 0 as null pointer. For the
primitiveid this convention is kept up to the the output, so FPGRayIF (Section 4.1)
converts it before forwarding it to the output buffer.

In detail, there are two possible reasons for the reordering of rays inside of kdintersect.
First, each ray can need a different number of nodes to traverse and the number of
primitive intersections is also not the same. Secondly, the rays can also get reordered
when requesting nodes. This is due to the cache, which is using the out-of-order operation
mode for nodes, returning data from the cache faster than from the RAM.

Dealing With Multiple Scenes. In all hardware designs used for this thesis, kdin-
tersect can intersect rays against 16 different scenes in parallel. As in practice only two
different scenes are intersected in parallel—at the point where the next animation frame
is intersected—this number is sufficient. The use of a different scene for all following rays
is done when the CHGSCN function is called from software. To allow parallel operation, the
rayid needs to be unique over multiple scenes10. The bookkeeping of scenes is managed

10Note that FPGRayIF generates for proper resorting own rayids which is the reason why this is
always fulfilled for kdintersect even when the software does not send unique rayids.
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by the process set_scenecache (see Figure 4.3).

kdintersect can also use a different scene for every ray. In that operation mode
(USE_DEDICATED_SCNID), each ray must supply the index of the scene against which
the intersection should be done.

Changing IPs. For each floating point operation used inside kdintersect, different IPs
can be used by changing only the implementation in FPGRay_pkg. The latency can be
any natural number (in clock cycles) and can be also changed there. This enables the
easy change of IPs to adapt the design for other FPGAs. Note that only one delay value
can be used for all comparison functions.

The commonly used 32-bit IEEE754 standard is used to represent floating point values.
But like many software ray tracers, the bit width can be changed. In this case, additional
steps are needed: The IPs for floating point operations and all constants must be adapted.
The used constants are also defined in FPGRay_pkg and are basic constants such as 0
as well as precomputed values for the gamma function used for intersecting triangles.
Furthermore, FPGRayIF would need adaptions because many bit width values are
hardcoded for allowing a simpler PCIe interfacing logic.

4.7.4 kdscheduler

kdscheduler has a special path for supporting k-d trees with primitives only (i.e., the
root node is a leaf), which is not depicted in the overview diagram (Figure 4.4). The
path is forwarding data before entering the newray buffer to a special input port of a
kdleaf instance (refer to Section 4.3.6; the last instance if multiple exist).

The stack plays a central role for the flow control of kdintersect (Section 4.2). As a ray
can only enter the computation from the newray buffer of the kdscheduler when a free
stack is available, the number of stacks control the number of concurrently computable
rays. If there is only one stack, each ray can only start to traverse if the complete
intersection of the previous ray is done. An exception is the use of primitive-only scenes.

kdscheduler is the entity that is responsible for the flow control of the whole kdintersect
entity: The ready signal of kdintersect depends on the occupancy of the newray buffer.
The entity does not ignore data on the input port if it is not ready, which means it must
be ensured that no data is fed while the ready bit signals zero to prevent overflows.

In contrast to the PCIe interface, the RAM must answer data in the same order as
requested.

4.7.5 kdintersecttri

The intersection function of a triangle against a ray conforms to pbrt’s implementation
with one exception: The values e0, e1, and e2 are always computed with double precision
while pbrt is doing it only as a fallback if the accuracy of single precision is not sufficient.
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kdintersecttri is able to compute the values b0, b1, and b2, which can be found in
pbrt’s code below the comment Compute barycentric coordinates and $t$ value
for triangle intersection. All computations below this comment are not needed in
kdintersect (Section 4.2), as this is the code which is not required for the actual task of
finding the nearest primitive. Therefore, the values b0, b1, and b2 are synthesized out
per default. They can be included if the computations performed on the FPGA should
be further used in software.

4.7.6 kdcachedfetcher

The kdcachedfetcher can be used in in-order and out-of-order mode. Both modes use the
main output port to provide fetched data for the following entities in producer-consumer
manner. This means that when data is available, it is presented at the output and the
following entity has to acknowledge its use. With that behavior, the other fetcher types
can stall the output without the need for a distinct buffer. In out-of-order mode, a second
output port is delivering data that is found in cache (thus the main output port delivers
only data fetched from RAM) without producer-consumer behavior, i.e., it just forwards
the data.

Implementation Details. Internally, the fetcher stores all requests in a waitbuffer.
A second buffer, the uniquewaitbuffer, is used to store only those requests that are sent
to RAM. Those requests are unique as only the first request of an address which is not
in cache is forwarded to the RAM. The response may therefore be requested by multiple
entries in the waitbuffer. As in general, fetched data has a high locality, the same data
is requested often which allows the use of a much smaller uniquewaitbuffer compared
to a waitbuffer.

For storing passed through data, an on-chip FIFO is instanced. As the waitbuffer
contains only a few elements, the minimum possible 256 elements for the FIFO are used.
The cache itself is an on-chip RAM with a size that is determined by a generic (i.e., the
number of cache elements of the fetcher).

Other aspects that are parameterizable by generics are the number of elements the
waitbuffer and the uniquewaitbuffer should have; and the bit widths of the memory
index, the sceneid, the data that should be fetched, and the passed-through data.

The memory index and sceneid combination is used as tag to identify the origin of a
cache entry in RAM. This tag is checked to identify either a cache hit (element is in
cache) or a cache miss (not found; fetch the element from RAM). As on scene change a
sceneid can refer to a new scene, the fetcher is notified for scene changes and flushes
the entire cache—by deleting the tag array and resetting the clock algorithm explained
below—in such a case11.

11It has a performance impact on the tag array to find and delete only those entries with the obsolete
scene, but this array is a timing critical part of the cache already. Therefore, the cache is flushed
completely
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Clock Algorithm. kdcachedfetcher uses the clock algorithm [TR01] to replace cache
entries with new data. The algorithm uses a pointer to a cache entry, which traverses all
entries in a clockwise manner and an array of bits indicating an access for each entry.
See Figure 4.15 for an example. Initially, all bits are set to 0. If an entry was accessed
(i.e., read or write from cache) the bit of that entry is set to 1.
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0
0
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(1a) (1b) (1c) (2a) (2b) (2c)
Figure 4.15: The function of the clock algorithm.

Given a cache with an access pattern as illustrated in Figure 4.15 (1a), the insertion of a
new date is as follows. The pointer walks from its last position along the cache entries,
finding the next cache entry which has its bit set to 0. On its way, all bits of value 1
are reset (Figure 4.15 (1b)). The bit of the entry which stores the new data is set to 1
and the pointer increments its position (Figure 4.15 (1c)). If all the bits in the access
pattern are set (Figure 4.15 (2a)), the pointer walks around all entries once, ultimately
finding the entry it was at the beginning with its bit set to 0 (Figure 4.15 (2b)). The
fetched data is inserted in the found entry and the pointer is incremented by one position
(Figure 4.15 (2c)).

4.7.7 kdmemmerger

For every cycle, the kdmemmerger forwards one request from a fetcher to one of the
RAM interfaces. The requests can be buffered for each fetcher and processed in a round-
robin manner to avoid overflows and starvation. Two additional buffers store requests
already sent to RAM to be able to properly route them back to the correct fetcher in a
non-buffered manner.

This entity needs RAM interfaces with a streaming behavior, whereas the Altera HardIP
DDR3 controller uses a memory-mapped interface. To overcome this, the input from the
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kdmemmerger to the RAM interface is buffered. On the response side, no buffering is
needed as the streaming and memory-mapped interfaces are the same for this side.

The kdmemmerger stores the base addresses (i.e., the starting address of a memory space)
for all scenes. But besides the sceneid of a request, the base address also depends on the
type of fetcher that has sent it (i.e., node, primitive, or indices fetcher). If a fetcher sends
a request, the base address will be added to the request’s address resulting in the absolute
address of the RAM lines. With this separation, the fetchers use only abstract array
indices without the knowledge of the actual memory locations. For primitive fetchers,
the kdmemmerger additionally splits a request into three RAM requests, as a triangle’s
data is constituted by three RAM lines.

4.7.8 kdstack

The stack is needed to store a child node for further evaluation when another child node
is evaluated first. This applies to every ray, so to be able to compute multiple rays in
parallel, multiple stacks are needed. kdstack therefore supplies a parameterizable number
of stacks and maintains them.

It is crucial that each stack is only accessed once until the operation is completely finished,
as the operations require multiple cycles. Violating this rule results in data corruption,
as the stacks are not secured against parallel access. FPGRay waits the minimum needed
number of cycles for avoiding collisions. This is ensured as the fetchers which are in
between stack accesses have a sufficiently high latency and furthermore—in the case of a
split ray—only a ray copy that is flagged as final accesses its stack.

Stack. The stack entity uses an on-chip RAM block as memory. As explained previously,
one stack element needs 3 entries in the stack memory. This is done for saving resources
as on the used Arria V FPGA, one memory block has at least 256 entries but provides
only up to 40 bits of data per entry. The split of the access into three cycles of operation
does not add much latency as most of the accesses can be anticipated and thus started
earlier than needed.

The stack pointer is also located in the stack entity, which means it has to indicate an
empty stack for other entities. This is done by an empty signal. To preserve a constant
latency for an empty stack as well, kdstack always performs three read accesses and does
not check for the empty bit. The stack has an underflow protection to allow such reads,
but as the stack depth is very high in practice, an overflow protection is not used.

4.7.9 kdleaf

One kdleaf entity is instanced for every 8 kdnodefetcher instances (Section 4.3.3), process-
ing only the leaf nodes coming from its 8 fetchers. By setting the DINDS (double indices)
parameter to ‘1’, the number of kdleaf instances is doubled, making each instance
processing the outputs of only 4 fetchers. The last instance, which may not process 8
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(resp. 4) fetchers if there are not a multiple of 8 (resp. 4) fetchers instanced, additionally
processes all root-only k-d trees (i.e., scenes where the root node is a leaf node). Those
nodes are processed the same as the other inputs with the exception of being routed to
the final output buffer of kdscheduler (Section 4.3) in any case as there is no other node
which could be evaluated afterwards. Please note that such root-only k-d trees are just a
node containing the whole scene by referencing all primitives in it; such trees are corner
cases which should not be used in practice.

Single-primitive nodes are stored at the input buffer of the corresponding input port.
They are kept on these buffers until it is requested by the merging output buffer at the
end of kdleaf (build output in Figure 4.11).

Simple and Complex Output Buffers. The output buffer in a kdleaf instance
(build output in Figure 4.11) communicates with the arbiter in kdscheduler (Section 4.3,
see Figure 4.4). For the two versions of the output buffer, a matching arbiter as a
counterpart is available. The simpler output is optimized for one primitive intersection
instance and one kdleaf instance. The more complex version needs to be used when more
than one primitive intersection instance or more than one kdleaf instance is used (but
could be always used). However, the simpler buffer should be used if possible because the
complex buffer uses much more logic resources. This is due to the fact that the on-chip
memory buffer does not support more than one memory access per cycle; but for the
complex buffer multiple accesses are needed.

The simple buffer just forwards one primitive of the kdprimindicesfetcher (Section 4.3.3)
each cycle as long as the fetcher has not finished the output of all primitives of a node.
Otherwise, a single node primitive is forwarded from an input buffer. This is done in
round-robin manner to avoid starvation.

The complex buffer needs a distinct buffer to prepare a certain number of primitives which
are presented as output to the arbiter. The data flow is done in a producer-consumer
manner: Only if the arbiter acknowledges the output, the next primitives from the buffer
are presented. This needs to be done as the arbiter might choose a different kdleaf
instance to take data from. The number of primitives that are presented to the arbiter is
the number of intersection instances used. In contrast to the simple buffer, the complex
buffer fills its buffer such that single-node primitives can occur before and after primitives
from the kdprimindicesfetcher, but never in between of those primitives. It is also ensured
that the buffer has enough empty slots to store primitives from the kdprimindicesfetcher
to avoid a data loss. An overflow protection is not used as the buffer’s size is chosen such
that the arbiter takes primitives from it often and fast enough.

Note that the arbiter also ensures that a node is not split in case of multiple kdleaf
instances, i.e., the arbiter only takes data from another kdleaf instance if the current
instance returned a completed node. Furthermore, a round-robin fetching of data from
kdleaf instances to avoid starvation is used as well.
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4.7.10 kdcompare

The complex comparison can be used for any number of synthesized primitive intersection
instances. To efficiently compare multiple primitives which finished their intersection in
parallel, comparisons are also done in parallel.

The Helper Entity. The merging of resulting intersections is done by multiple in-
stances of the complexcmp_stage entity. It merges intersections as depicted in Figure 4.16.
To be able to perform this operation, the entity needs the primitiveid, rtmax, the final
flag, the cluster number, and the stack index position for each input port. The stack index
position is the index of the port of the complexcmp_stage entity from which the stack’s
data should be used as stack data for the own port. complexcmp_stage returns with the
same number of output ports but the number of outputs forwarded are less than inputs
as only merged outputs are forwarded. Note that even if primitives of different nodes can
be merged in parallel they must be consecutive, i.e., all primitives of node 1 and after
that all primitives of node 2; mixed primitives are not supported. complexcmp_stage can
merge n inputs to n

2 outputs (n
2 + 1 when n is odd) in the best case by comparing all

primitives in pairs.

result1 no data result3 result4 result5 resultn−1 no data

take
smaller
rtmax

take
smaller
rtmax

merged1 no data no data merged4 no data mergedn−1 no data

2 primitives of node 1
n primitives of node 2
1 primitive of node 3

Figure 4.16: One instance of the complexcmp_stage checks for inputs with the same
cluster number (i.e., are intersection results of the same node) and merges them in a
pairwise manner. The entity can merge pairs of multiple nodes independently in the
same cycle. Merged inputs are returned at the left of the two possible output ports
which is desired for the final comparison step. The merged result at the output is the
primitiveid with the smaller rtmax value. Note that the stack index is always taken
from the right input, as the last primitive of a node shows up at the rightmost position
and is the only primitive which contains valid stack data.

Note that all comparisons between rtmax values in the simple and complex comparison
are done with the fpgray_cmpaleb comparison function. It always uses a latency of zero
(which is needed for the loopback comparison of the comparison state machine at the
end) and automatically adapts to any given floating point specification set in FPGRay_pkg.
Note that fpgray_cmpaleb is independent from FPGRay and can be used standalone.
Each complexcmp_stage instance uses a different number of fpgray_cmpaleb instances
to merge inputs together. The number is set automatically and depends on the number
of inputs which have to be merged.
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Complex Comparison. The complex comparison provides an input port for each
kdintersecttri instance and the same number of output port pairs plus an additional one
(each pair consists of a port to fetch the next node and one to finalize a ray’s intersection
completely). This is done to forward finalized intersections without bottleneck. With this
configuration, each intersection and a collected intersection result over multiple cycles
can be forwarded in the same cycle.

The comparison starts by merging all intersection results of a cycle together to have only
one result per leaf node. This is done by concatenating a certain (automatically computed)
number of complexcmp_stage instances together. At the end, the final comparison uses
the same state machine as the simple comparison (Figure 4.12) to merge intersection
results over multiple cycles if a node is not finished within a cycle. The same state
machine can be used as it is ensured that only one comparison per cycle can be unfinished.
In parallel to the multi-cycle state machine, the stack’s data is checked if the ray is
finished or the tree needs to be further traversed. This check is also done for all rays
finished in this cycle. Note that this check can only be done at the end, as the stack’s
data is only loaded by the ray copy with the final flag, i.e., the last flag.

It should be noted that the number of stages and as such, the number of kdintersecttri
instances can be arbitrary. In practice, there is a limit nonetheless. This is due to the
fact that the overall intersection path (Figure 4.4) has a high number of interconnections
between its entities. This results in a very limited number of kdintersecttri instances
compared to the high number of elements possible in the innernode chain. As the number
of traversal instances should be more than those of intersection instances anyway, this is
not a big issue.

4.7.11 PCIe Driver

The communication is done via the PCIe interface on the hardware level and needs a
driver on the software side to be able to use the hardware in programs. To use the FPGA
card, it has to be plugged into a PCIe port before booting up. After booting up a Linux
distribution, the so-called driver has to be installed. As this is a Linux kernel module
driver [ALK, LKM], this has to be done after every restart of the PC. Furthermore, the
Linux headers need to be installed such that the module can get compiled for the used
kernel. The compilation is done automatically during installation.

The driver is based on the driver used in Altera’s reference design for testing the PCIe
communication. The driver is provided as source code and can be installed via the make
file named install. This process requires root access. All other operations for FPGRay
can be run by a non-root user.

An important note on changing the driver: When compiling and reinstalling the driver
(simply by using the install make file with no parameters), it is necessary to reset
FPGRay before reinstalling the new driver to avoid freezing the PC.
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Basic Properties. The DMA transfer is viewed from the FPGA’s perspective, which
means a read transfer is the operation of sending data to the FPGA and a write transfer
describes the reception of data.

The driver is only able to properly handle one FPGA card on a PC, but the same card
can be accessed by multiple driver handles in parallel. As all driver handles use the same
DMA descriptors for controlling the transfer, a simultaneous use is only recommended
when a second driver instance is used for accessing reserved registers (e.g., to read
statistics or reset the device in case of a failure).

The configuration of a DMA transfer (as discussed in the higher level section), the access
to reserved registers, or the reset is done by the function altera_dma_exec_cmd(). The
actual DMA transfer is performed by the function transfer_DMA_simul() afterwards.
Not configuring the transfer properly before can even crash the PC as the driver is
running in kernel mode.

Note that it would be technically possible to do the whole data transfer without using a
DMA, but since experiments indicated an unacceptable throughput (only a few MB/s),
a function using direct access was discarded. In contrast, the access to the reserved
registers is only a transfer of a few bytes, so using the DMA, which would add additional
overhead, is not practical in this case. Furthermore, an undisturbed register access during
DMA transfer is possible. For data transfer of much data, such as intersection payloads,
the DMA overhead pays off, so the DMA is always used for such transfers.

transfer_DMA_simul()

The function transfer_DMA_simul() configures the DMA such that it always transfers
1024 data blocks (each being 128-bit wide, the bit width of the PCIe interface). The
function awaits the end of the transfer and triggers further transfers if more data should
be transferred. As DMA descriptors for configuring write and read access in parallel
exist, the function transfers in full-duplex mode when needed. Besides being faster, this
also prevents overflows of the FPGA’s output buffer by writing data back before the
end of the read transfer. Note that a transfer of less than 1024 data blocks (or more
by chaining multiple DMA descriptors together) is possible, but transfer_DMA_simul()
never makes use of this. This makes the code simpler, and in practice the used settings
have proven to be a good choice with regard to performance.

If a transfer requires less than 1024 data blocks, the function pads the empty data blocks
before reading and crops the unused data after writing back. The only limitation is that
a multiple of 16 bytes (i.e., 128-bit, one data block) needs to be transferred. As in such a
case padding is transferred, which reduces efficiency, it should not be used too extensively
(e.g., by using only 1 data block per call). The function allows the use of 1 to 16,777,215
data units. Note that a data unit (e.g., one ray) can use more than one data block (i.e.,
more than 128 bit), which means one function call can transfer more than 16,777,215×16
bytes of data.
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transfer_DMA_simul() supports the configuration of the transfer by the struct specified
in the higher level section of the API (Section 4.5). With the three parameters “Offset”,
“Read Pattern”, and “Write pattern”, any operation FPGRay supports can be performed.
As the values are handed over from user space, the driver can handle new functions in
future releases without change; only the API needs to be adapted by calling the driver
with different parameters. The “Offset” determines how many DMA transfers should be
read only before starting with the full-duplex operation. The “Read Pattern” and “Write
Pattern” are needed to specify the number of 128-bit data blocks one unit of the operation
has in each direction—transfer_DMA_simul() uses them to properly synchronize the
transfer for a different number of data blocks per unit.

4.7.12 Parameter List

As mentioned, FPGRay is able to be tailored to different target FPGAs. The needed
changes can be done mostly by changing parameters, which are technically constants
or generics of different entities. All constants regarding ray tracing are collected in one
package file (FPGRay_pkg.vhd), which also contains the declarations of all components
used in FPGRay. Furthermore, in combination with the instantiations of the used floating
point and on-chip IPs, all configurations and changes of any IP can be done in this
package.

The constants presented here are often used to control the number (which can also be
zero) of instances by using the for generate and if generate program constructs defined
in VHDL. FPGRay uses these constructs to synthesize away logic that is not needed for
the parameterized design. The constructs are not used if the additionally generated logic
does not need many resources (in case the EDA does not find the unnecessary code) and
using such constructs would lower the code readability.

The types seen in the following are data types of VHDL signals. Besides numbers
(integer and natural as an integer with range from 0 to max(integer)), there are the
std_logic and std_logic_vector types. std_logic is a bit signal such as a valid signal,
but as it is able to model electric lines there are additional values besides ‘0’ and ‘1’ (in
fact, there are 9 values). In case of the specified constants below, they should be always
set to either ‘0’ or ‘1’ to represent false or true. A std_logic_vector is a vector of
std_logic signals. Such vectors are needed for parallel data lines, e.g., any floating point
value is in fact an std_logic_vector of BIT_WIDTH_FP std_logic elements.
The following list gives a complete overview over all constants that can be configured:

Constant Type Default Description
Bit widths

BIT_WIDTH_FP natural 32 The bit width of a floating point value
BIT_WIDTH_EXP natural 8 The bit width of the exponent of the float-

ing point value. Per default this is 8 bit
for IEEE754 single precision. This con-
stant together with BIT_WIDTH_MANTISSA is
needed for fpgray_cmpaleb (Section 4.7.10)
to know the used floating point format
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BIT_WIDTH_MANTISSA natural 23 The bit width of the mantissa of the floating
point value

BIT_WIDTH_PRIMIDS natural 32 The bit width of primitive identification
numbers (primitiveids, equals the primi-
tive’s index in memory), also used for prim-
itive indices used together with the indices
memory space

BIT_WIDTH_RAYIDS natural 32 The bit width of ray identification numbers
(rayids)

BIT_WIDTH_STACKIDS natural 8 The bit width of stack identification num-
bers (stackids)

BIT_WIDTH_ALTS natural 8 The bit width of scene identification num-
bers (sceneids)

BIT_WIDTH_NUMPRIMS natural 8 The bit width of the number of primitives
a leaf node can contain

BIT_WIDTH_NODEIDS natural 32 The bit width of node identification num-
bers (the index of a node in memory)

Parameterization of kdintersect
NUM_SCENES natural 16 The number of scenes kdintersect can store

in parallel to use them for rays
NUM_INNERNODES natural 1 The number of kdinnernode instances that

are used
NUM_INTERSECTTRI natural 1 The number of kdintersecttri instances that

are used
DINDS natural 0 DoubleINDices parameter (allowed range

0-1): if 1, one kdleaf instance for every 4
kdnodefetchers is used, else 1 every 8

NUM_STACKS natural 32 The number of stacks the kdintersect in-
stance has in total

NUM_CACHE_ELEM_PRIMITIVES natural 32 The number of cache elements each kdprim-
itivefetcher instance should have

NUM_CACHE_ELEM_PRINDICIES natural 32 The number of cache elements each kdpri-
mindicesfetcher instance should have

NUM_CACHE_ELEM_INNERNODES natural 32 The number of cache elements each kdnode-
fetcher instance should have

NUM_BUFFERELEM_INNERNODEUAD natural 4 The number of elements the
uniquewaitbuffer of each kdnodefetcher
should have

NUM_BUFFERELEM_INNERNODEAD natural 4 The number of elements the waitbuffer of
each kdnodefetcher should have

NUM_BUFFERELEM_PRIMITIVEUA natural 4 The number of elements the
uniquewaitbuffer of each kdprimi-
tivefetcher should have

NUM_BUFFERELEM_PRIMITIVEAD natural 4 The number of elements the waitbuffer of
each kdprimitivefetcher should have

NUM_BUFFERELEM_INDICESUA natural 4 The number of elements the
uniquewaitbuffer of each kdprimindices-
fetcher should have

NUM_BUFFERELEM_INDICESAD natural 4 The number of elements the waitbuffer of
each kdprimindicesfetcher should have
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NUM_BUFFERELEM_INNERNODEOB natural 8 The number of elements the buffer merg-
ing the inner node outputs of both kdnod-
edecode instances should have (the buffer
depicted in Figure 4.7). Please note that
this is no on-chip memory.

NUM_BUFFERELEM_NEWRAYBUFFER natural 256 How many entries the newray buffer of
kdscheduler (Figure 4.4) should have

NUM_BUFFERELEM_FINALBUFFERS natural 256 How many entries each final buffer (Fig-
ure 4.4) should have (there is one for each
output which is forwarding rays to the out-
put of kdscheduler)

NUM_BUFFERELEM_LEAFOUTPUTBUFFER natural 256 How many buffer elements the complex
version of the build output buffer (Fig-
ure 4.11) of a kdleaf instance should have
(note that no on-chip memory is used). Is
ignored if the simple version buffer is used

BIT_WIDTH_DDR3ADDR natural 25 The bit width of the address line to the
DDR3 RAM controller. Only subject to
change when using a different FPGA board
with less or more RAM

DELAY_* natural – The constants used to specifiy the latency of
each floating point operation. Constants ex-
ist for: FPCMP (one for all comparison func-
tions), FPADD, FPSUB, FPMULT, FPDIV, FPSQRT,
FPCONVERTTODP (for conversion function con-
verting standard floating point value to dou-
ble precision), FPCONVERTFROMDP (for con-
verting back double precision to the stan-
dard used representation), DPFPMULT, and
DPFPSUB

Additionally, there are also constants whose values are computed automatically based on
the constants set above (but it may sometimes be useful to manually change them too):

Constant Type Default Description
Bit widths
NUM_STACKBLOCKS natural 1 The number of blocks in which each kdstack

instance should be (equally) divided, used
for allowing a better timing by lowering the
path lengths (this is the setting choosing how
many stackcommunication instances one kd-
stack should use)

NUM_KDSTACK_UNITS natural 1 The number of kdstack instances in one kdin-
tersect instance should be used. This is the set-
ting defining if a single kdstack instance should
be used or the abstracted version where the
kdscheduler mimics multiple kdstack instances
that they exist alone
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BEGINRETURNINDX natural NUM_INNERNODES/2 The index of the innernode chain element,
where the reinsertion of rays from the intersec-
tion path should start (Figure 4.4), assuming
the first element getting data from the newray
buffer is defined as elment index 0. May be
changed to a manual index for very small or
very big designs to optimize the data flow to
normally encountered scenes, for which the
simple default computation is not viable

It should be noted that FPGRayIF (Section 4.1) relies on additional constants that are
only used internally. These parameters cannot be found in FPGRay_pkg.vhd as FPGRayIF,
as the interfacing entity, is exceptional, e.g., by not using bit width constants for all
signals (but rather use fixed bit widths for optimized data transfer between the PCIe
interface). Because of this, changing constants for bit widths in FPGRay_pkg.vhd does
not affect all signals in FPGRayIF and makes manual changes necessary. All constants
tailored to the current PCIe interface are therefore collectively stored in FPGRayIF.vhd.
In particular, this applies to the following constants:

Constant Type Default Description
GENINTERS std_logic ‘0’ Determines if a dedicated kdintersectsp in-

stance to be used as a function should be
synthesized

GENINTERTRI std_logic ‘0’ Determines if a dedicated kdintersecttri in-
stance to be used as a function should be
synthesized

GENTRAV std_logic ‘0’ Determines if a dedicated kdinnernode in-
stance to be used as a function should be
synthesized

GENkdINT std_logic ‘1’ Determines if a dedicated kdintersect in-
stance to be used as a function should be
synthesized

INTERTRI_GENBS std_logic ‘0’ Determines if the b values (Figure 4.6) of
the dedicated kdintersecttri instance should
be computed and thus written to software.
This is not supported for the instances in-
side of kdintersect as the values got not
space reserved in the instance to be able to
store them up through the data flow until
it could be forwarded to software

NUM_BLOCKS natural 1024 The number of PCIe data blocks that are
sent with one DMA transfer

NUM_BUFFERELEM_OUTPUTBUFFER natural 8192 The number of elements the output buffer
of FPGRayIF should have

Lastly, the profiling and debug registers of FPGRayIF, which can be read from software,
are always 32-bit wide values. In detail these are:

73



4. FPGRay

Address Description
131,072 Returns the number of readily computed data blocks the output buffer of FPGRayIF

contains. As data may not be returned in-order, the data blocks which contain the
data do not have to be consecutive in the buffer

131,073 Returns the functions which are synthesized at the current FPGRayIF instance. From
Least Significant Bit (LSB) beginning, the 4 bits indicate INTERS (intersect a sphere
with kdintersectsp), TRAV (traverse an inner node of a k-d tree with kdinnernode,
INTERTRI (intersect a triangle with kdintersecttri), and kdINT (intersect against a k-d
tree scene with kdintersect

131,074 Returns the number of resets which were performed since power up
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CHAPTER 5
Results

The evaluation of FPGRay showed that it is in the current form not usable for the
intended use as hybrid solution in combination with a PC. Nevertheless, after a closer
look at some specific characteristics of FPGRay, one can see that this goal can be reached
by removing some of the found bottlenecks. But as during the writing of this thesis, the
first GPUs supporting ray tracing operations with fixed-function hardware have been
introduced and are now already available, such hardware is the better solution for most
of the target audience. This is due to the much lower costs by saving the development
of custom hardware. How and under which circumstances a further use of FPGRay or
similar custom hardware designs are still a viable option is elaborated in more detail in
the last section of this chapter.

A variety of tests have been performed on FPGRay. The basic evaluation was performed
by synthesizing multiple designs for the Arria V GX1 FPGA. The FPGA is contained on
the “Arria V GX Starter Kit” from Intel, which is a PCIe card made for development
and evaluation purposes. The PCIe card was plugged into the PC which was used for
the software-related benchmarks too.

Either the number of basic logic elements or the routing capabilities of the FPGA were
the factors that limited a further increase of FPGRay’s parameters. The hardware
multiplying units, registers (i.e., the logic elements that introduce the clock and thus
separating stages), and the on-chip memory were never the limiting resources. For more
details on the FPGA’s intrinsics mentioned in this paragraph, please refer to Section 2.3.
Furthermore, the HardIPs for the PCIe interface and the DDR3 RAM controller were
used. Note that the PCIe interface supports up to 2GB/s, either via 8 lanes at Gen1 or 4
lanes via Gen2, and the RAM controller supports up to DDR3-533. As the card’s two 128
MiB DDR3-1066 chips are fast enough, the DDR3-533 specification is used. Although the

1The specific model is the Arria V 5AGXFB3H4F35C4
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card can load a design on power up from the onboard memory, each design was loaded
via the PC.

The host PC consists of an AMD Ryzen 3700X with 32 GB DDR4-3200 RAM and runs
Manjaro Linux KDE with kernel 5.4.

5.1 Test Scenes and Designs
Multiple designs were synthesized or simulated to evaluate the characteristics of FPGRay.
All hardware designs shared the following basic characteristics:

• The buffer sizes to stall data and prevent overflows are set to 256 entries, which is
the minimum possible size for on-chip buffers. The only exceptions are the stalling
buffers before the kdprimitivefetcher (Section 4.3.3) and kdprimindicesfetcher
(Section 4.3.3) instances (which use 512 entries).

• The delays of the floating point operations are set to the minimum possible values
for these IPs.

• FPGRayIF (Section 4.1, and with it all ray-tracing-related operations) run at a
clock speed of 100 MHz.

• kdintersect (Section 4.2) and FPGRayIF both use the default parameters as stated
in Section 4.7.12.

Based on these constants, the following designs were used:

Design No. instances No. entries No. stacks statistics
1I 1/1 32 32 No
1Is 1/1 32 32 Yes
1ILs 1/1 64 32 Yes
1IXLs 1/1 128 32 Yes

1IXLSLs 1/1 64 128 Yes
1ILSLs 1/1 64 96 Yes

1IXLSXLs 1/1 128 128 Yes
2Is 2/1 64 64 Yes
3I 3/1 64 96 No

1ILc 1/1 64 32 -
1IXXL 1/1 256 32 -

4I 4/1 256 128 -
8I 8/1 256 256 -
8I2 8/2 256 320 -

The “No. instances” indicate the number of traversal and the number of intersection
instances, the “No. entries” the number of entries per cache, and “statistics” stands for

76



5.1. Test Scenes and Designs

the ability of the design to collect additional statistics such as latencies. The blue colored
designs are synthesized and usable on the FPGA, the orange colored are only available
for simulation as they do not fit on the used FPGA. This was necessary as the limit for
the FPGA was the 3I design, which already had a basic logic resource usage at around
90%.

The naming conventions of the design should be read as follows: All digits are used to
indicate the number of the computational instances. The digit on the left of the separator
“I” is for the number of traversal instances (i.e., kdinnernode, Section 4.3.1). The number
on the right of “I” indicates the number of intersection instances (i.e., kdintersecttri,
Section 4.3.2); a missing number stands for a single instance. As for 1I, multiple designs
were used, the size identifiers L, XL, and XXL mark parameters with a setting higher
than the default 1I design. If the size identifier is followed by “S”, it is identifying a
design with a higher number of stacks. If the identifier is followed by “s”, the number of
cache entries are increased. The “s” at the end of a design identifies the presence of the
mentioned statistics functionality.

Note that the simulation-specific designs contain only the kdintersect instance, i.e., they
were not simulated with its PCIe connection via FPGRayIF. Furthermore, they do not
include the statistics functionality because all desired information can be taken from the
simulation anyway. To allow a direct comparison between these different designs used for
the FPGA and simulation tests, the designs 1ILs and 1ILc (where c is the abbreviation
for “comparison”) use the same parameters.

To test the designs, five scenes were used: Two from Benedikt Bitterli’s rendering resources
page [Bit16] and three from the official test scenes of pbrt-v3 [pbr20]. In detail, these
were:

• “Pontiac GTO 67”: referred as “car2”, using 1600x900@512spp for the PC bench-
marks, 160x90@1spp with FPGRay

• “Japanese Classroom”: referred as “classroom”, using 800x450@512spp for the PC
benchmarks, 80x45@2spp with FPGRay

• “bathroom”: using 1200x760@512spp for the PC benchmarks, 120x76@1spp with
FPGRay

• “coffee-splash”: referred as “coffee”, using 1000x800@512spp for the PC benchmarks,
100x80@2spp with FPGRay

• “head”: using 1280x720@512spp for the PC benchmarks, 128x72@1spp with
FPGRay

All of these scenes were modified to use the k-d tree accelerator, different resolutions,
and different spps. See Figure 5.1 and Figure 5.2 for a rendering of the test scenes.

Note that all scenes use a path tracer, the bathroom scene uses BDPT.
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Figure 5.1: The test scenes from Benedikt Bitterli’s page. “Pontiac GTO 67” is seen on
the left and “Japanese Classroom” on the right.

Figure 5.2: The test scenes from the official pbrt-v3 page. “bathroom” is seen on the left,
“coffee-splash” in the middle, and “head” on the right side.

5.2 Synthetic Tests
The evaluation of the synthesized designs was done with a synthetic test program. This
was done as a renderer supporting the desired batched call was not implemented, as such
an implementation would have exceeded the scope of this thesis2. To benefit from the
parallelism FPGRay provides, multiple rays per function call, via batches, need to be
transferred.

The synthetic test program uses test dumps containing the scene’s data and a large
number of rays which should be intersected. The test dumps can be produced by
rendering a scene with k-d tree with our modified pbrt-v3 version called pbrt-fpgray.
These dumps additionally contain pbrt’s intersection results such that the test program
can verify FPGRay’s outputs. It should be noted that the verification is done by accepting
small differences in the rtmax values between FPGRay and pbrt as the implementations
differ slightly3. Furthermore, because of these differences the obtained primitiveids
are accepted too when the rtmax values differ within the acceptable margin. For each
benchmark run, such occurrences are additionally collected for manual inspection.

The tests performed with the synthetic test program load the scene dump to FPGRay
2pbrt-fpgray’s intersection method using FPGRay (presented in the API section, Section 4.6) supports

the call with only 1 ray/Batch.
3The differences of rtmax values lie within the magnitude of 10−6.
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and send multiple ray batches to simulate the use in a renderer. For each benchmark,
three runs over 10,000 batches were performed. Each run starts at the first ray of the test
dump and fills the desired batch size with subsequent rays. Each of the 10,000 batches
starts with the second ray of the previous batch as the new first. Initially, this overlapping
was done to test different rays without requiring many different rays. However, it was
kept to potentially break the locality of neighboring rays from time to time; as seen in
later tests, this works, as the caches are not large enough to have the data of old rays
still present. The reported runtime is the average of all batches over three runs. In the
benchmarks, the used batch sizes can be identified by the rays/batch (r/b) values. For
comparison, benchmarks without FPGRay were performed with pbrt-fpgray. For these
tests, the default settings of pbrt-v3 were used, with the measurement of the intersection
throughput as only activated extension. As this means that pbrt-fpgray is using the same
code as pbrt-v3 during the actual rendering, we denote tests performed with pbrt-fpgray
as pbrt-v3 to express the use of the software-only renderer.

The time measurements take only the API call to FPGRay into account, so the extraction
of rays from the test dump and the verification afterwards is unaccounted for. The
measurements were done by using the C++ std::chrono::high_resolution_clock. The
measurements of the rays/second (r/s) are done by pbrt-fpgray itself by evaluating the
collected statistics of the profiling system from pbrt-v3 at the end of the run. Only the
calls tagged “ray intersections” are taken into account, “shadow ray intersections” are
not included. This resembles the rays the test dump is containing as only calls for ray
intersections are used to dump rays.

As stated before, the resolutions and spps of the test scenes were changed. When using
any test on FPGRay, a smaller resolution and spp setting of a scene was used. These
changes were necessary to test a big part of the rendered frame with the small test dumps
in order to avoid a throughput distortion by rendering only over a small part with high
locality or beneficial frame contents. Unfortunately, using test dumps generated from the
renderings using the settings for the software renderer was not feasible. This would have
resulted in long runtimes and large files sizes for the test dumps for the high number of
scenes and designs that were tested. As an example, the fastest scene for pbrt-v3 was
the head scene with around 30 seconds; running the synthetic test program over the
corresponding test dump for the fastest 3I design only would have taken approximately
17 hours. The bathroom scene as worst case with 14 minutes with pbrt-v3 would have
taken 14 days with the 3I design. These extreme runtimes would have been caused by
the runs with small batch sizes as seen later on.

Note that the test dumps are generated as plain text files to allow an easier debugging.
However, even if optimally sized binary dumps would have been used, the dump files
for the amount of rays needed for the high resolution and spp settings would have taken
around 120 GB for all five scenes.

On the other hand, pbrt-v3 needs a higher number of rays to obtain valid benchmark
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results4, therefore the higher resolutions and spps were necessary for the software render-
ing.

To verify the assumption that this benchmark procedure was not beneficial for FPGRay,
a few examples were tested. The classroom, bathroom, head and car2 scenes were tested
with the first part of the test dump that is generated by the scenes using the settings from
pbrt-v3’s runs. The same tests as in this section were performed with different starting
rays for the first batch (i.e., rays 0, 100k, 200k, 500k, 1M) to get a higher accuracy of the
achievable throughput for the whole test dump. Furthermore, a test with no overlapping
(i.e., a following batch uses the first ray of the dump not being in the previous batch) was
performed for 10,000 batches (again averaging over three of those runs). For these tests,
only a batch size of 1024 was tested to save time. For the classroom and bathroom scenes,
the assumption holds and slightly higher throughputs from 1% to 10% were seen. For the
car2 scene, the 100k, 200k, and non-overlapping results achieved a lower throughput of
7% and only for the other tests a comparable to 1% higher throughput was achieved. The
head scene was even much faster than in the following tests, from around 60% to a factor
of 10. As another test enlightens, the FPGA would achieve much narrower throughputs
for the head scene for those different settings, but the PCIe interface limits the smaller
test dump. Using the throughputs measured without the overhead of the interface, the
head scene is, similar to the classroom and bathroom scenes, only slightly faster by 10%.
As a conclusion it can be stated that the different scenes settings are not beneficial for
FPGRay.

1 2 4 8 64 128 256 512 1024
0 · 100

5 · 106

1 · 107

r/b

r/
s

car2

1IXLs

1ILSLs

1IXLSXLs

2Is

3I

Figure 5.3: Synthetic test run results performed on the car2 scene.

Results. Figure 5.3, Figure 5.4 and Figure 5.5 depict the results of the test runs. The
car2 scene was merged to a single plot as it was the only one which showed a very
different behavior not being affected by most parameter changes. To verify that designs
supporting the collection of statistical data, which are marked with an “s” in their name,

4pbrt-v3 measures profiling information on 0.01 second basis, so a short rendering results in a high
distortion of the throughput
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Figure 5.4: Synthetic test run results performed on the classroom and bathroom scenes.
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Figure 5.5: Synthetic test run results performed on the coffee and head scenes.
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do not suffer from a throughput penalty, one run with a design differing only in the
statistical functionality was performed with the classroom scene. The 1I and 1Is designs
depicted in Figure 5.4 (a) deliver exactly the same throughput. Differently to software,
where debugging information causes a performance penalty, this is possible as additional
hardware is used, which does not alter the rest of the design. For this reason, each
design supports the collection of statistics if enough hardware resources are available.
Note that the batch sizes are not limited to powers of two: Any batch size can be used
without detrimental effects on performance. However, the batch size is still limited to
a maximum value of 1024 rays, as FPGRayIF’s output buffer uses 2048 entries, which
provides enough space for one finalized batch and a second ongoing. Using more than
1024 r/b can cause data loss. Note that because of a problem which is circumscribed to
FPGRayIF, but not properly identified further, the tests with 16 and 32 r/b are omitted,
as in this range a freeze of the interface has often been experienced.

Analyzing the Results. At the first look, for all designs and scenes tested, a small
batch size yields in low throughput. The bad utilization of the hardware’s pipeline
is apparent. On the other hand, for all designs except the car2 scene (and much less
prominent, the head scene), when increasing the batch size, at some point the linear
throughput gain flattens. The design is fully utilized and larger batches only allow
marginal gains. When a bigger design is used, the point the throughput curve flattens
is delayed. For the bathroom and coffee scenes when using the 3I design, this is seen
relatively late at 512 r/b, but as a significant flattening. Such gains after full utilization
are possible as the design is not fully utilized at the beginning and end of the batch
were not all possibly computable rays are processed; a higher batch size raises the ratio
between full utilization and the beginning and end parts. As all plots concerning the stack
sizes show, for 1I designs, the stack size is chosen well enough to not be the bottleneck.
In contrast, the cache sizes and the number of traversal instances limit the throughput
for all except the car2 scene, which is only limited by the number of traversal instances.
When choosing caches that are four times larger, the throughput of the 1I design increases
between 25% for the classroom scene to 47% for the coffee scene for 1024 r/b. When
using a second traversal instance but leaving the number of cache entries per fetcher the
same, all scenes except the car2 scene showed a 79 - 85% higher throughput for 1024 r/b.

The car2 scene behaved completely different compared to all other scenes on the used
designs when increasing the batch size. It is not limited by cache sizes as well as stacks
for the 1I designs; all deliver the same throughput. On the other hand when using more
traversal instances, the throughput increases linearly even up to 1024 r/b. From one
to two instances 60%, and from one to three instances 102% higher throughput was
observed.

The head scene behaves for most designs like the others. When increasing the number of
traversal instances, the flattening throughput gain is much less prominent than for other
scenes; the curvature is similar to that of the car2 scene.

The measurements for all except the car2 scene are as expected: Increasing the batch size,
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a linear throughput gain can be reached until the number of computational instances
limit it. Additionally, a limit of the caches can be seen. As we elaborate in more detail
later, the memory and with it the caches are highly utilized. The car2 scene, which has a
lower utilization for the memory subsystem on average, is therefore not memory bound.
Furthermore, the head scene is also much less memory bound, which is another similarity
to the car2 scene. For all scenes, the similar progression suggests that for bigger designs,
significant throughput gains can be reached by using higher batch sizes. They also show
that if FPGRay should be used without loosing too much performance, a high batch size
is important. Note that for the computational instances to be the limiting factor, the
stack sizes need to be set properly. As seen, this is in fact the case for the 1I designs
but may not be the case for bigger designs, especially for 3I, which is near the limit of
the FPGA’s resources. The number of stacks is the primary limiting factor and even
more limiting than the number of computational instances. The reason is the number
limits the concurrently computable rays and thus prevents proper utilization; the linear
gain for increasing batch sizes would flatten at the point the number of stacks equals the
batch size.

At first glance, these results seem to be in discrepancy to the expectations when knowing
the design’s intrinsics. The design is able to retain a throughput of one as long as the
fetchers do not stall due to high memory latency. But to deliver this throughput, the
design must contain enough computational instances to not reroute the same ray multiple
times through the same instance. If a reroute happens, the ray is processed by the same
instance (e.g., a traversal instance) a second time, which would stall the insertion of a
new ray. This stall would lower the throughput only marginally. But if this happens
too many times, a severe throughput penalty can be observed. This relation between
throughput and the number of computational instances is seen for nearly all scenes, which
explains the limiting factor being the number of instances. The car2 and head scenes, on
the other hand, does not suffer as much from this relation, as many rays end after a low
number of bounces (or even without entering kdscheduler’s computational parts, as they
do not intersect the scene at all). This explains why the RAM is not that highly utilized
for the car2 and head scenes, as many rays do not even require any data. The reason is
the scene itself, which contains no background, i.e., every ray that does not intersect the
car or the floor, respectively the head for the head scene, is not intersecting anything
at all. The scenes are therefore facilitating a throughput near to the optimum that is
attainable with the current design, where no computational instance lowers it by being
used two times for the same ray. For the other scenes, this optimum can not be reached
by only 3 traversal instances (and one intersection instance). Note that the maximum
throughput for these designs would be 50 Mrays/s, as the FPGRayIF interface needs
two cycles for one ray and runs at 100 MHz.

Hardware vs. Software. The following table lists the highest observed throughputs
for the scenes tested with FPGRay compared to the software rendering by pbrt-v3:
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in kr/s pbrt-v3 FPGRay factor
classroom 10 014.5 782 12.8

car2 18 527.3 10 771.1 1.7
bathroom 8954.1 1089.3 8.2
coffee 9726.6 1359.2 7.2
head 13 131.6 1313 10

When compared to a pure software implementation, it can be seen that the software is
much faster. The well-performing car2 scene is still by a factor of 2 times faster with
CPU-only rendering and the much slower classroom scene is one magnitude (a factor of
13) slower on the FPGA. The software implementation yields an 8 to 10 times higher
throughput for all scenes. This means that the presented design can not be used for the
proposed hybrid approach on modern PCs as it would slow down the rendering. The
utilization of both specialized hardware and a PC is therefore not achievable with our
setup.

Nevertheless, some bottlenecks have been identified during testing which point to possible
improvements or extensions to be able to reach that goal. A more detailed description of
those bottlenecks follows in the next section.

5.3 Special Tests

In this section, we present a few tests that focus on a few key aspects in order to
explore the problems that lead to a low throughput. Furthermore, some predictions
of the performance increase due to particular improvements are presented. Lastly, we
present more in-depth comparisons between the throughput of CPU-based vs. GPU-based
renderers, as well as the power consumptions of all shown configurations.

5.3.1 RAM And Cache Latencies

Of the designs presented in Section 5.2, the ones designated with “s” are capable of
tracking statistics, such as cache and RAM latencies. With these measures, the hit rate
of the caches and thus their efficiency can be evaluated. When the hit rate is high, only a
low number of the data requests are forwarded to the RAM, i.e., the cache is big enough
to store data which is often requested.

By investigating these statistics, some interesting conclusions can be made. For example,
if we look at the hit rate of the caches, the efficiency of the caching can be seen. The
following table lists the average hit rates of the fetchers (using the last 2048 fetching
requests as data):
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classroom bathroom coffee
r/b Hit rate (%) Hit rate (%) Hit rate (%)

1Is 64 19 22 59
1024 25 27 35

1ILs 64 26 27 48
1024 34 38 46

1IXLs 64 35 37 59
1024 44 49 56

2Is 64 30 31 53
1024 38 42 49

The test scenes are split into two groups. The first group with the head and car2 scene
has a hit rate of 100%. This is another advantage which allows those two scenes to
achieve a higher throughput without encountering a flattening in throughput increase at
specific r/b.

The other group consists of the remaining scenes that, with the exception of the coffee
scene reaching 59% at its best, barely reached a 50% hit rate. This means that the
majority of data accesses is directly served by the RAM. It can also be seen that the 1I
designs can nearly double the hit rate by using a cache that is four times larger compared
to the other ones. 2Is achieves a higher hit rate than 1ILs despite using 64 entries per
fetcher for both designs. But 2Is has slightly more cache entries, as it has one cache more
than the 1I designs due to the additional traversal instance. The fluctuations between 64
r/b and 1024 r/b show the locality of data which is preserved longer for 1024 r/b. The
reason is that inside of a batch, subsequent rays are spatially close (i.e., they have a high
locality). But when switching between batches, the last ray has a low locality to the first
ray of the following batch.

Note that the high hit rate of 100% for the two scenes (which would mean no RAM
access at all) can be reached as the observed data is just collected from the last 2048
rays during rendering, after the initial requests were fetched already. This is also the
case for the other scenes, so the significant difference of the hit rates between those two
groups of scenes are assumed to be representative.

The tracked latencies for fetching from the cache or the RAM reveals significant differences,
namely 3-4 cycles against 17-41, with an overall latency of 14-21 cycles, which is inversely
proportional to the cache sizes for the group of scenes with a low hit rate. These latencies
are similar to the access latency from kdintersect to the RAM alone (18 cycles on average).
Because of the high hit rates for the car2 and the head scene, a much lower average of 4
cycles had been observed. Note that the latency for accessing the RAM increased over
time, which indicates that it is at the limit.

These findings lead to two conclusions:

• The number of cache entries are too low. By quadrupling their number, the hit
rate nearly doubles. It is still low with around 50%, as hit rates of over 90% are
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often seen in practice.

• The locality of the data allows a higher cache efficiency. Using a higher batch
size and thus more locality in the data, the hit rate increased between 25-32%.
Increasing the locality can be done independently to the cache sizes with different
sampling patterns in the software (e.g., by using tiled rendering).

As shown, the hit rate can be increased. This not only lowers the utilization of the RAM
but further increases the throughput due to much lower fetching latency and additionally
causes less stalling in the buffers before them. Furthermore, a lower latency for each ray
results in more rays being able to be processed at the same time.

5.3.2 FPGA Runtimes

Another statistical variable which is taken by the “s” variants of hardware designs is the
runtime of kdintersect alone, i.e., the raw intersection time without the overhead of the
data transfer from hardware to the API in software. In fact, two values are taken: the
raw time (being only the latency of a ray through kdintersect) and the theoretical output
time. The theoretical output time is adding the latency caused by not reading each
finished ray instantly but rather waiting until it is in turn. This means, the consecutive
access of the DMA is simulated to assess the moment the results could be read back. This
moment is compared to the time instant forwarding the ray to kdintersect for computing
the latency. The table shows the averaged r/s for the last 2048 rays:

rays/Batch kr/s kr/s (theoretical) kr/s (software) factor
classroom

1ILs 64 352.2 351.9 302.2 1.16
1024 401.4 401.4 423.7 0.95

2Is 64 538.4 537.4 428.4 1.25
1024 739.4 739.4 782 0.95

bathroom

1ILs 64 341 340.8 319.5 1.07
1024 474.3 474.3 496.6 0.95

2Is 64 550.2 548.5 425.1 1.29
1024 892.8 892.7 889.8 1.00

coffee

1ILs 64 410.2 409.3 367 1.12
1024 607.6 607.5 604.9 1.00

2Is 64 646.9 643.3 479.5 1.34
1024 1132 1131.9 1110.9 1.02
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rays/Batch kr/s kr/s (theoretical) kr/s (software) factor
head

1ILs 64 7960.8 7950.9 353.4 22.50
1024 9502.6 9501.7 613.7 15.48

2Is 64 12 191.9 12 168.7 447.3 27.21
1024 16 664 16 661.2 1106.4 15.06

car2

2Is 64 5358.0 5165.1 811.8 6.36
1024 11 282.5 11 117.7 8527.4 1.3

When comparing these latencies with the actual r/s measured by software (as done
for the synthetic tests), it shows that kdintersect respectively the hardware-accelerated
intersection gets slowed down by the data transfer between software when using a small
number of r/b. The impact on the speed from the software r/s to the theoretically
achievable r/s ranges from a factor of nearly zero up to 27. The impact is gone for most
scenes when using 1024 r/b. For the classroom and bathroom scenes, the throughput
with the overhead of the data transfer is even higher than the estimated theoretical limit
(theoretical r/s). But as the FPGA runtimes show a few rays only and the software was
benchmarked over multiple thousands, this discrepancy can be explained by fluctuations
in the runtimes. Nevertheless, some scenes are even limited by the interface when using
1024 r/b. For the car2 scene, the overhead is acceptable, but the head scene is still
heavily limited. The current data transfer approach is therefore not optimal. The scenes
reaching the highest theoretical throughput and suffering from the used data transfer
dramatically indicate that the transfer with the most scenes is less problematic because
of the low throughput that is needed to utilize FPGRay on the current hardware. It also
indicates, besides the high hit rate, that the head scene is small enough to avoid too
many rays going through the same instances inside of kdintersect multiple times just as
the car2 scene, respectively also has a high number of rays not intersecting the scene at
all.

5.3.3 Simulated Tests

As the used FPGA is too small for big designs, the designs 1ILc, 1IXXL, 4I, 8I, and
8I2 have been tested through simulations. This is done by using the Modelsim software,
included in Quartus. The simulation is done with kdintersect only and the test bench
feeding it with data is faking the RAM with an on-chip memory in the test bench (this
is done as it dramatically increases the simulation speed). As the on-chip memory is
limited in size, the classroom scene, which has a low number of primitives, was used.
Because it is the worst performing scene, it can be assumed that the other scenes would
achieve at least the same throughput. The statisticsbuffer entity used in FPGRay on
hardware designs to measure the runtime of operations in clock cycles is also used here
to measure the runtime of rays (which is used for computing the rays/second).
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As the benchmark is simulating only kdintersect, the overhead of the PCIe interface
is avoided and thus the results can be compared best with the FPGA runtimes of the
section before. However, the simulations should be seen as approximations only. This
is because the simulation is only done at behavioral level, so there is no proof that the
simulated design runs with the desired timing on a real FPGA.

The test bench (i.e., a VHDL code file which is not synthesizable but made for simulation
only) uses the scene’s and ray’s data from the same test dumps that were used for the real
benchmarks, so the parameters for the classroom scene are also 80x45@2spp. In contrast
to the synthetic tests (Section 5.2), each simulation is only performed once (as the runs
are deterministic) and always start with the first ray of a test dump. Furthermore, only
one batch per batch size is tested and not multiple runs (as the simulation is very time
consuming). The latency of the simulated RAM interface is set to 18, which is the
actual measured average latency observed during the tests on the FPGA. The designs
introduced in Section 5.1 were using the same parameters as the synthesized designs with
the exception of using no resource optimization for the stacks.

Figure 5.6 shows the results of the simulations. Note that the missing results for higher
batch sizes are due to problems with the designs. The investigations showed that an
overflow happens in the design when intersecting too many rays (for 1024 r/b with 8I it
was identified at the buffer stalling primitives before the fetcher). This issue could not
be fixed even when using bigger caches, a faster RAM access would be necessary.

Note that, 1ILc was around 20% faster than its synthesized equivalent 1ILs in the
synthetic tests, even though both designs utilize the same design parameters. But as
the simulation only computes one run and always uses 18 cycles for RAM access, these
benchmarks can not be compared exactly. Lastly, in comparison to 1ILc consisting only
of kdintersect, 1ILs is a synthesized design that uses FPGRayIF and the PCIe interface;
the results depicted come from the synthetic tests which already include any overhead of
the data transfer.

The results show that increasing the number of computational units allows a higher
throughput. E.g., if we compare 1IXXL with 8I2 (using the same cache sizes), the
throughput for 128 r/b is roughly 4 times higher. But even for this highest obtainable
throughput, the software-only rendering is slightly over 4 times faster. Nevertheless,
by using a bigger design on a hardware with more resources (and a faster RAM), the
throughput can be increased further. The tests allow the conclusion that the bottleneck
is in fact the amount of resources on the FPGA and not the design. Furthermore, the
throughput increase with more computational units is not only seen in the simulation:
when comparing the synthetic test results of the classroom scene with the 1ILs and
2Is designs (using the same number of cache entries), a nearly doubled throughput was
observed.
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Figure 5.6: The results of the simulated intersection operation of kdintersect for the
classroom scene. Note that 1Is is the synthetic test’s result for reference.

5.3.4 Latency

In this thesis the term latency was often used. Whilst performing the benchmarks of
the FPGA runtimes (Section 5.3.2) and simulations (Section 5.3.3), the actual latencies
were directly observed: The runtimes the “s” designs deliver are the latencies of each
ray in the unit of cycles and the simulated tests can be depicted as timing diagrams
(Figure 5.7). The runtimes show for the slowest and fastest renderings an average latency
of 772 cycles for the car2 scene and 10721 for the classroom scene. This represents the
throughput, which is depicted in the plots of the synthetic tests and shows that the
number of computational instances each ray in the classroom scene traverses through is
much higher (around 10 times when taking into account that the lower hit rates of the
fetchers additionally increase the latency by the fetchers). The other scenes’ rays were
intersected in this range of cycles, which means that a ray in these scenes traversed less
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computational instances than those of the classroom scene on average.

Figure 5.7: The timing diagram of a simulation of 4I with the classroom scene showing
the input and output of a ray from kdintersect.

For a more detailed view, one simulated ray intersection during the simulated test
benchmark of the classroom scene is taken and its latencies are further explored: The
128th ray of the 256 rays batch is taken, as it is the first ray of this batch size which was
not intersected by a preceding batch already. Furthermore, this batch size is high enough
to utilize the cache and thus give a good example of an arbitrary ray in the middle of
the intersection batches where some data still needs to be fetched from RAM. This ray
has a total runtime and thus latency of 30173 cycles. Independent from the scene, the
current hardware design has fixed latencies of 14 cycles for a node traversal and 77 cycles
for an intersection. Furthermore, kdintersect’s preparation for the initial bounding box
intersection test has a latency of 27 cycles. The following table shows the number of
traversal (t), intersection (i), node fetcher of the innernode chain (nf), node fetcher of the
intersection path (nfp), primitive fetcher (pf), kdleaf (l, Section 4.3.6), and number of
kdcompare (c, Section 4.3.7) uses of the observed 128th ray. The used simulated design
was 1Ic, but the number of calls are the same regardless of the design; only the instance
which works on a specific call may vary on bigger designs.

t i nf nfp pf l c
46 4 46 9 4 10 1
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The measured overall latency is not the sum of the latencies of these calls. The reason is
that the latencies of stalling before the fetchers is not taken into account in the presented
measurements. Furthermore, some operations are processed in parallel, which lessens the
detrimental effects of individual latencies.

5.3.5 Power Consumption

Unfortunately, the power consumption of the FPGA card can only be read from a PC
with the Windows driver. But as FPGRay uses a Linux driver for operation, the on-board
consumption measures can not be performed. To still deliver a rough approximation for
the power consumption and thus compute the efficiency of the design, a power meter
was used. The concrete model5 was plugged between the PC and the power plug and
measured with a tolerance of 1%. As the measurements were done for the complete
PC, some fluctuations need to be considered. The following table lists the measured
consumptions:

consumption (Watt, W)
PC idle (with FPGA card plugged in) 76 - 79 (80 - 86)

PC rendering classroom (with FPGA card plugged in) 160 (181)
PC rendering car2 (with FPGA card plugged in) 162 - 164 (174 - 176)

PC rendering bathroom (with FPGA card plugged in) 169 (180)
PC rendering coffee (with FPGA card plugged in) 172 (175)
PC rendering head (with FPGA card plugged in) 176 (182)

PC stress 1T 112-117
PC rendering with FPGRay (any scene) 110 - 120

FPGA card with default design (and fan on) 7.4 (9.6)
FPGA card with 3IL (and fan on) 9.5 (11.8)

Note that the measurements named “FPGA card” used the card’s dedicated power supply
plugged into the power meter, i.e., without measuring the power consumption of the PC.
Only the 3IL design was used for this measurement to maximize the resource usage on
the FPGA and is, as 3I, using three traversal instances. The only difference to 3I is the
use of 128 cache entries for the primitive fetcher.

All measurements show that the FPGA card consumes between 7 and 12 W, depending on
the loaded design. For the same design, the consumption exhibited no difference outside
the tolerance. This behavior is typical for FPGAs, as they only have basic power saving
features which are not used in FPGRay. The measured power consumption is therefore,
apart from a negligible difference (due to the power needed for switching between ‘1’ and
‘0’ or keeping the conduit’s power level), the same for idle and full load.

PCs, in particular modern CPUs, possess advanced power saving features which resulted
in a difference of around 100% between idle and rendering with full CPU load. For the

5TS Electronic EMG-1
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used CPU, the highest allowed consumption is defined by the Package Power Tracking
(PPT) at 88 W [ryz20].

When comparing the overall consumption delta between FPGRay and pbrt-fpgray not
using the FPGA, the software rendering has a delta of around 100 W (which is more than
the CPU is allowed to consume [ryz20]). In contrast, FPGRay exhibits a delta of roughly
40 W when compared to not having the card plugged in at all. As seen in the card-only
measurements, most of this consumption delta is coming from the PC. In detail, it is the
single CPU thread being utilized nearly 100% by the synthetic test program. To verify
this, a comparable consumption could be seen by just using the Linux program “stress”
for applying a high load to the CPU [str20b] at 1 thread.

Additionally, by modifying the synthetic test program to show the consumption of
FPGRay alone without the consumption of reading and verifying the test dump, it
was shown that the consumption decreased to 106-110 W but the throughput did not
increase. This leads to the conclusion that the single-threaded API use is not a bottleneck.
Furthermore, a different data transfer to the FPGA (e.g., by interrupts) may be able to
reduce the consumption.

5.3.6 CPUs vs. GPUs

Besides using only CPUs for rendering, GPUs are supported by multiple renderers
nowadays. Unfortunately, FPGRay, pbrt-fpgray, and pbrt-v3 do not support GPUs as
rendering target, which makes a direct comparison with the same program impossible.
Furthermore, the related LuxCoreRender [lux20] would support GPUs, but does not
support k-d trees or pbrt scenes any more.

This means that only a rough approximation for the throughput comparison of a GPU
compared to a CPU based on different scenes and renderers can be made. For more
variety, Blenders’ Cycles [ble20b] path tracer and through the offical Blender add-on,
LuxCoreRender were used. Both were fed by the same Blender scenes. All tests were
done with the default rendering settings for the path tracing algorithm and tiled rendering
was activated. For LuxCoreRender, CPU tests were performed with the C++ renderer
and GPU tests with the OpenCL renderer with the GPU being the only activated device.
The tests were performed on the PC that was used for the synthetic tests consisting of a
Ryzen 3700X, 32 GB DDR4-3200 RAM and an AMD Radeon RX4806. The consumption
measurements were done in the same way as in the previous section. As the FPGA card
was plugged in, the same idle consumption of around 80 - 86 W was measured.

Four test scenes were used: Two pbrt-v3 test scenes [pbr20], bathroom and coffee, for
which the Blender scenes are available and two from the official Blender homepage [ble20a]
in order to have scenes similar to the car2 and classroom scenes. For the classroom scene,
the equally named “Class room” scene was used to show a closed room with various
objects in it (Figure 5.8). For the car2 scene, the “Car Demo” (Figure 5.9) was modified

6Having 8 GB GDDR5 RAM and using as boost clock for the GPU 1290MHz.
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Figure 5.8: The test scene “Class room”. The left image depicts the intended outcome as
rendered by Cycles, the right how it is processed by LuxCoreRender.

Figure 5.9: The test scene “Car Demo”. The left image depicts the intended outcome as
rendered by Cycles, the right image shows how it is rendered by LuxCoreRender.

Figure 5.10: The three different renderings of the bathroom scene. The left image is the
result of pbrt-v3, the middle image from Cycles, and the right image was rendered by
LuxCoreRender.

by removing the second car and the floor/wall combination. The “Car Demo” scene
provided a scene file for CPU and one for GPU rendering, which was used with the
corresponding renderers.

With Cycles, each test scene was completely rendered as specified by the default settings.
The time was taken together with the measured power consumption. The preparation
times (e.g., building of the BVH or compiling rendering kernels) were subtracted for the
reported runtimes. With LuxCoreRender, the r/s were taken from the metrics samples/s
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Figure 5.11: The three different renderings of the coffee scene. The left image is the
result of pbrt-v3, the middle image from Cycles, and the right image was rendered by
LuxCoreRender.

and rays/sample after the rendering held these values for multiple seconds, which was
done to avoid registering misleading values during the rendering startup. In contrast to
Cycles, LuxCoreRender renders the scene until it is fully converged. As not all material
models of the test scenes are supported by LuxCoreRender, the materials were converted
by the “Use Cycles settings” function in Blender. The resulting renderings therefore
differ from those of Cycles, see Figure 5.8 and Figure 5.9 as an example. Furthermore,
as different algorithms (e.g., BVH vs. k-d tree for intersection acceleration), material
models, and different camera perspectives were used, the bathroom and coffee scenes
are not directly comparable to pbrt-v3 too, as seen in Figure 5.10 and Figure 5.11.
Those differences make the comparability between Cycles and LuxCoreRender (or pbrt)
impossible but for each renderer, the performance differences between CPU and GPU
rendering is a valid indicator for the general performance increase by using GPUs. Note
that differently to the other tests, the complete rendering was measured and not the
intersection time. Please note that the GPU engines perform the complete rendering on
the device and not only the intersection operation, so they are not hybrid approaches.

Cycles Renderer
scene Car Demo Class room bathroom coffee

t [s] P [W] t [s] P [W] t [s] P [W] t [s] P [W]
CPU 52.15 186 481.88 194 4085.8 196 384.52 188
GPU 93.35 190 1156.98 190 7918.03 191 503.04 191
LuxCoreRender
scene Car Demo Class room bathroom coffee

Mr/s P [W] Mr/s P [W] Mr/s P [W] Mr/s P [W]
CPU 7.82 190 6 197 8.8 199 10.92 192
GPU 32.30 180 16.25 179 18 184 27.54 184

As the results show, the GPU is surprisingly slower than the CPU path tracer when
using Cycles. Moreover, the same consumption could be measured and the resulting
images, although not being the same, are for both versions noisy in a similar way. The
CPU is therefore 70 - 140% faster.
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For LuxCoreRender, the results showed the expected throughput increase when using
the GPU for rendering. The scenes achieved a 2 - 4 times higher throughput.

As final note, it should be mentioned that the used renderers are built with the
OpenCL [ope20] API. There is also the proprietary CUDA [cud20] environment for
implementing such general purpose computations on GPUs. As CUDA is a common
standard in comparison to OpenCL, it may be possible that optimizations have been
done already for renderers using this platform to achieve an even higher throughput. But
as CUDA is NVIDIA exclusive, it could not be used on the benchmarking PC that had
an AMD card installed.

5.4 Efficiency of FPGRay

The throughput of FPGRay is inferior to the CPU implementation. But when it comes
to the efficiency, FPGRay can be more efficient, depending on the design and scene.
Using the deltas respective the observed consumption for the FPGA card and compare
them with the achievable throughputs of the synthetic tests (Section 5.2) to estimate
the total efficiency7, the FPGA card alone shows a competitive efficiency to the PC.
For the car2 scene, FPGRay even wins the duel clearly with 898 krays/W against 211
krays/W. A much lower efficiency was observed for the coffee scene with 113 kr/W vs.
111 kr/W for pbrt-v3. The bathroom scene achieved a comparable efficiency with a small
advantage for pbrt-v3 with 91 kr/W vs. 102 kr/W. For the head scene, the PC took the
lead with 149 kr/W against the 109 kr/W of the FPGA. The classroom scene for which
FPGRay performed worst is also the scene with the biggest lead for pbrt-v3: 114 kr/W
stand against the 65 kr/W of FPGRay. It should be noted that by increasing the cache
sizes, a significant throughput and thus efficiency increase would be possible by realizing
larger caches. Furthermore, for the head scene it would be sufficient to improve the PCIe
interface, as the achieved throughput on the FPGA was by far higher than in software.
To summarize, while FPGRay in combination with the used FPGA is not inefficient, it is
too slow for a proper use with a modern PC.

The deltas of the power consumption measurements of the complete PC for the CPU
implementation with pbrt-v3 against the synthetic tests of FPGRay lead to similar results
with a more obvious advantage for the software-only approach. FPGRay still performs
well for the car2 scene with 269 krays/W against 211 krays/W. But for all other scenes,
the PC takes over the lead with a significant difference.

Figure 5.12 lists all efficiency computations collected for CPU, GPU, and FPGA rendering.
The CPU-based renderers pbrt-v3 and LuxCoreRender achieved different results for the
similar scenes. While the GPU version of LuxCoreRender was able to achieve a higher
efficiency for all scenes, FPGRay only performs better than the CPU-based renderers for
the car2 scene, which illustrates that FPGRay does not scale well for different scenes,

740 W for FPGRay, 88 W for the PC and 12 W for the FPGA card alone was used. The throughputs
used were the highest achievable results observed during the synthetic tests.
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Figure 5.12: The absolute efficency of the renderers supporting special hardware.
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renderers, an approximate comparison between FPGRay and a GPU implementation can
be made.
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which is possible with the GPU implementation. The results lead to the conclusion that
the GPU renderers are superior to the CPU renderers, which is not the case for FPGRay.

Lastly, for Figure 5.13, we have aggregated the results of both CPU renderers and
normalized the result to 100% in order to provide an approximate comparison between
the FPGA and the GPU approach. This was done by mapping both CPU implemen-
tations (i.e., LuxCoreRender and pbrt-v3 of Figure 5.12) and their similar scenes (e.g.,
LuxCoreRender’s Car Demo with pbrt-v3’s car2 scene) together to the normalized 100%.
Therefore, the GPU (i.e., LuxCoreRenderGPU) and FPGA (i.e., synthetic test results
of FPGRay) implementations are depicted in relation to its CPU-based counterpart.
Unsurprisingly, in the current implementation, FPGRay achieved a higher efficiency in
comparison to the CPU for the car2 scene and a lower efficiency for the other scenes.
Furthermore, the GPU renderer is superior in terms of efficiency.

5.5 Analyzing the Results

The previous sections not only provided comparisons but also showed different aspects
of FPGRay that could not be investigated by simple tests on demo scenes to expose
unseen potential. The main benefit of FPGRay should be the efficiency gain compared
to a CPU-only solution. Unfortunately, the efficiency measures led to an underwhelming
outcome. The most important question emerging from the presented tests is how the
results should be interpreted.

FPGRay is in its current state not usable for the aimed scenario. But the use of
specialized hardware to increase the efficiency and even accelerate the rendering is still a
viable approach. This can be exemplified with the first GPUs containing such hardware
instances for real-time graphics. As the manufacturers of these GPUs are substantial
companies with enough resources to develop advanced hardware designs, it is enough
for most of the target audience to use them and build their renderers on it instead of
developing a new and costly design.

However, if new or more advanced techniques should be elaborated which are not likely to
be implemented in new GPUs, at least for some time, FPGRay can be used by extending
its functionality. In other words, if hardware designs should be used in the field of research,
FPGRay is a viable option. For production rendering, visualizations, or development of
new products, GPUs provide the highest efficiency with low implementation effort.

In any case, it should be noted that FPGRay has to be improved to allow a proper usage.
The special tests section (Section 5.3) showed already some bottlenecks of the presented
design. In the following, we address some of them and explore the impact of possible
solutions.

Cache Sizes. Quadrupling the cache sizes increased the hit rate to around 70% and
achieved a 20 - 40% higher throughput (even for the head scene with an already high
hit rate, which increased its throughput by 39%). Taking the (even for such cache sizes
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low) hit rate of around 40 - 50% into account, an improvement of the hit rate of at
least a factor 2 is possible. This means, by additionally quadrupling or better 8-folding
the cache sizes relative to the biggest size used, the throughput could increase again by
40%, increasing the hit rate to around 90%. The assumable gain makes the increase of
cache sizes desirable, even if it would result in a higher latency for cache accessess. This
throughput gain would not increase the power consumption significantly as long as the
design fits on the current or a bigger FPGA of the same series. This would result in an
efficiency gain equal to the throughput increase of around 40%.

Improving the Interface. As the FPGA runtimes (Section 5.3.2) exposed, the PCIe
interface can limit the throughput already for small scenes. When improving the through-
put on the FPGA, the interface could prove to be a serious bottleneck. Furthermore,
the measured power consumption of FPGRay’s distinct units revealed that most of the
power was consumed by the PC: of the measured 40 W, only 12 W were consumed by
the FPGA. So an improved interface would not only avoid a bottleneck at the PCIe
interface, it would also reduce the needed power. Although the power consumption from
the PC might be decreased further, we assume that the delta can be halved, which would
in turn double the efficiency. As the PC only needs to call the API, initiating the driver
transferring the rays to and from the FPGA, such a power reduction is possible. It
should be noted that we did not take the fact that the ray data needs to be transferred
to appropriate memory structures for use with FPGRay into account. This assumes that
a renderer is built using such structures anyway to avoid a translation between different
structures for the PC and FPGRay.

An improved interface would also allow to use fewer resources on the FPGA, which in
turn could be used for other improvements mentioned in this section. As a side effect,
more than 1024 r/b could be used stably.

Number of Computational Instances. By using two instead of one traversal in-
stance, the throughput nearly doubled. For 4 instances at 1024 r/b, an increase of 2.6,
using one instance as a baseline, was observed. As the synthetic tests (Section 5.2) and
FPGA runtimes indicated, the bigger designs are able to increase the throughput for
higher batch sizes more than for smaller ones. It is therefore likely that using more
computational instances and a higher batch size would increase the throughput linearly
as seen for the smaller designs. Extrapolating from the used three traversal instances
to 8, this would even, with sublinear scaling, allow to double the throughput. This
would not fit on the current FPGA, so the efficiency would not double when using a
bigger, more power-consuming FPGA. Nevertheless, when using 8 traversal and a second
intersection instance or even using more than 8 traversal instances to fill up a bigger
FPGA, a doubling of the efficiency could be posssible. Note that as stated before, to
be able to retrieve this gain through higher batch sizes, an improved interface would be
necessary.
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Changing the FPGA. As already mentioned, a bigger FPGA could be used to
increase the throughput. But a different FPGA can also deliver a higher efficiency by
just using an improved design or new special function blocks itself. Furthermore, the
efficiency can be improved by using an FPGA with a newer manufacturing process.
Chip manufacturing companies state that by using a newer manufacturing node, the
efficiency increases by around 30%. The AMD Radeon Vega 56, Vega 64 and Vega
VII prove this by technically using the same architecture for all designs which was
produced in Samsung/Globalfoundry’s 14 nm process node for the Vega 56/64 and
TSMC’s 7 nm process node for the Vega VII. The Vega VII delivers either 30% higher
performance for the same consumption or delivers a 30% higher efficiency through higher
performance while consuming less [veg20b, veg20c, veg20a]. Note that the used CPU for
the thesis’ tests also uses the TSMC 7 nm process, while the FPGA uses the TSMC 28 nm
process [arr20a]. This means that those two chips are apart by at least 4 manufacturing
nodes, which results in at least a 2.5 times higher efficiency for the CPU. Furthermore,
the currently used Arria V FPGA can be changed to an Arria 10 using the 20 nm node,
which delivers 20% more efficiency without changing the design at all [arr20c].

Using a bigger FPGA can improve the throughput without much higher power con-
sumption. As the device table [arr20b] shows, the currently used Arria FPGA could be
changed to a model with 40% more of the limiting basic logic resources. This model could
accommodate the 4I design with ease and should even allow up to 6 traversal instances.
The mentioned Arria 10 series allows, besides the newer processing node, to use around 3
times more logic resources. Furthermore, the biggest and most recent FPGA series from
Intel, the Stratix [str20a] and Agilex [agi20] series provide 20 respectively 4 times more
resources and use the 14 respectively 10 nm process node. This gives a big potential for
accommodating bigger designs if the high prices can be afforded.

FPGAs vs. ASICs. As mentioned in the background chapter, an ASIC is the best
option for hardware designs. Unfortunately, they are prohibitively expensive to develop
and prepare for production. But it should be stated that a significant efficiency gain could
be achieved by using an ASIC for the design. As Ian Kuon and Jonathan Rose [Ian06]
found out, an ASIC has a 9 - 12 times lower power consumption than a comparable
FPGA of the same process node. Furthermore, the FPGA is still slower by a factor of 2 -
4. This enables the ASIC to get a at least 18 times higher efficiency.

When accumulating the extrapolated efficiency increases that are possible from the
existing design, it can be assumed that the efficiency can be 2.8 times higher when just
improving the caches and interface. If the saved space from the improvements is used for
a fourth traversal instance, those three improvements would allow a gain of the factor
3.6. This would suffice already to be on par in terms of efficiency with the CPU renderer
for all except the classroom scene without changing the FPGA.

Furthermore, if a newer FPGA of the same Arria series is used, the design could reach
an even higher efficiency for every tested scene. Moreover, when using the available
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resources of a bigger FPGA to also improve the throughput, it would be fast enough
to allow its intended use besides the CPU while not being the bottleneck. This is
based on the assumption that 8 instead of 4 traversal instances can be accommodated
and achieve a doubled throughput, which delivers for the worst scene classroom an
efficiency at least 20% higher than the CPU renderer. Note that for the newer and bigger
Arria, the same power consumption is assumed, as more hardware resources increase the
power consumption subproportionally to the throughput increase and a more advanced
manufacturing node is used to compensate a higher consumption. Furthermore, for
achieving or even exceed these predicted increases, the RAM respectively its interface to
the FPGA needs to be scaled in terms of throughput appropriately.

An even bigger FPGA of the high-end series or an ASIC is therefore not even necessary
to outperform current CPUs when extrapolating the results. Nevertheless, to achieve a 4
times higher efficiency than the CPU to even outperform GPUs, such an FPGA or even
an ASIC could be needed.
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CHAPTER 6
Future Work

After having discussed the impact of possible improvements in the previous section, ideas
of how to implement them and various future work are presented below.

6.1 Improvements

6.1.1 PCIe Interface

As seen in the FPGA runtimes benchmark (Section 5.3.2), the transfer via the PCIe
interface needs to be improved to avoid a bottleneck. Furthermore, the efficiency is
subpar with the current approach. Technically, the interface is implemented as DMA,
which is defined as a dedicated controller that has direct access to the PC’s RAM. But the
DMA is used in a simple in-order mode, copying data consecutively. This is the standard
behavior of the PCIe HardIP adopted from Altera’s reference design for FPGRay. For
the feeding of data to kdintersect, this is no problem, but for the resulting rays which
are returned out-of-order, a random-access scheme would be preferred. Using a random
scheme would make the output buffer inside of FPGRayIF unnecessary, which would
save resources. Furthermore, as rays are sent to the PC’s RAM instead of waiting for a
specific order, the throughput is maximized.
It should be noted that PCIe supports the use of interrupts, which can be used to
implement callbacks for asynchronuous function calls and thus avoid the currently used
polling behavior. Nevertheless, interrupts were not considered for this thesis and it is
unclear if an improvement is possible by using them, so this would be another aspect
which could be investigated further.

6.1.2 Caching and Memory Interface

The tests showed that even a cache size of 128 entries per fetcher is not sufficient for a
good hit rate of the caches. But the cache was optimized for latency, which only allows
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the use of 128 entries to meet the timing requirements. By changing the cache to support
a higher number of entries by sacrifying latency, the hit rate could be improved and with
it, the overall throughput of FPGRay.

The memory interface is built to support two ports to the RAM. But this limits the
throughput to 2 accesses per cycle. If a faster memory controller is used, the kdmemmerger
(Section 4.3.4) would be the bottleneck. To avoid this, the merger needs to be extended
to split memory accesses to multiple ports.

6.2 Extensions

6.2.1 Optimized Algorithms

The entities FPGRay uses are taken from pbrt-v3. Compared to the papers discussed in
the related works (Chapter 3), the number of operations a triangle intersection needs is
much higher. By using optimized algorithms, the latency of a computational instance
decreases, which also results in a lower number of stacks needed. Finally, the design
either needs fewer resources or a bigger design can be used on the same FPGA, which
increases the throughput.

6.2.2 New Operations

The intersection operation is an essential and heavily used operation for every ray tracing
algorithm. But FPGRayIF could instance additional functions to support more parts of
the rendering process. This may even be extended to use multiple operations consecutively
before returning the data back to software.

6.2.3 pbrt-fpgray Part 2

Currently, a pbrt version extending pbrt-v3 with the use of FPGRay is provided. But
this extension only interchanges the computation of a k-d tree intersection with a method
that makes use of FPGRay. The function therefore intersects each ray with its own batch,
which is inefficient. To make use of the parallelism of the FPGA, pbrt (or any other
renderer) needs to be rewritten to render with batches. The optimal solution should send
multiple samples and use tiles to optimally make use of the locality of the rays. When
performing path tracing, the paths should be split into distinct rays such that for each
bounce, the locality of the rays is maximized. The renderer should support collecting a
high number of rays for a single batch—at least 128—to reach the limit of the FPGA
throughput.

Only the usage of a real renderer instead of the synthetic test program makes a proper
comparison of the hybrid approach vs. the software approach possible. The current tests
do not enlight possible bottlenecks when rendering and communicating with the same
data, i.e., if the synchronization between the rendering threads and the communication
thread to the FPGA is working without long waiting times.
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6.2. Extensions

6.2.4 Ray Storage

The rays’ data should be stored in structs rather than classes in ray tracers. As the
batches are arrays of structs, this avoids the conversion and decreases the overhead of the
data transfer between the PC and FPGRay. Depending on the PC’s platform, it should
be considered to use the low-level allocation function dma_alloc_coherent() of Linux’
DMA-API. Additionally to using structs, this may omit the copy operation between the
renderer’s allocated memory and the memory space used for DMA, but is not supported
on all platforms.
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CHAPTER 7
Conclusion

FPGRay is an approach to accelerate path tracing with the use of an FPGA. This is
done by providing a PCIe card plugged into a PC and appropriate drivers to use this
hardware for acceleration. With such a hybrid approach between hardware and software,
the advantages of both can be combined. The customized hardware design enables
an increase in the overall efficiency but still saves hardware resources because not all
computations needed for ray tracing need to be built in silicon. Such computations are
done in software to utilize the resources of a modern PC. The approach thus results in
the possibility to concentrate on heavily used tasks of the rendering algorithm, which
should be done by the hardware design to increase the efficiency. As ideal candidate for
such an operation, the intersection of a ray against a k-d tree scene was chosen to be
implemented in hardware.

The flexibility the software part of FPGRay delivers allows adding new techniques to the
rendering process without changing the hardware design. The efficiency improvement
is still present as long as the hardware-accelerated k-d tree intersection routine can be
used. This sustainability of FPGRay is unique compared to all previous work, which
required a new hardware design in case of just one changed aspect inside of the ray-tracing
algorithm.

To make use of FPGRay from software, a driver for Linux-based PCs and a C++ API
were implemented. Furthermore, a short demo implementation of pbrt’s k-d intersection
method for FPGRay showed the functionality of the system. Because of the naive
implementation, which just replaces the original method and does not consider the
needed batch sizes for efficient hardware acceleration, further work to properly extend a
renderer with FPGRay’s functionality is necessary.

For allowing realistic benchmarks in the needed—batched—data flow, a synthetic test
program was implemented that makes use of scene and ray data generated through
the rendering of a scene with pbrt-v3. As FPGRay’s hardware design is flexible and
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7. Conclusion

configurable (e.g., in the number of traversal instances), the synthetic test program used
the generated test dumps to evaluate the throughput of different designs synthesized
on the FPGA. The results showed—although working—bad throughput in comparison
to the host PC of FPGRay rendering the scenes in software alone. Depending on the
tested scene, the throughput was from a factor of 2 to around a magnitude worse than
using the software renderer. As a direct comparison was not feasible, renderers with
CPU as well as GPU renderers were fed with similar scenes to provide an approximate
comparison between GPU rendering and FPGRay. Unsurprisingly, as GPU rendering
achieves a higher throughput compared to its CPU counterparts, FPGRay is also having
a lower throughput in comparison.

After testing different parts of FPGRay to find the reason for its bad performance, some
key problems in the hardware design were found. The memory subsystem adds a high
throughput penalty to FPGRay because the caches are too small to buffer the RAM
access of the PCIe card properly. This stresses the RAM interface in a way that it easily
gets over-utilized because it is working at the limit. Another problem is the interface
between the PCIe card and the PC, which is not only a problematic part of the hardware
design operating at the limit but rather uses a non-optimal data transfer. Moreover, the
currently used FPGA was too small to fit a design with enough computational units to
process the PC’s data fast enough. These main drawbacks of the current implementation
do not allow FPGRay to unfold its full potential.

The final measurements of the power consumption nevertheless showed a beneficial
efficiency of FPGRay. However, the absolute throughput is too low for current PCs.
Therefore, it acts as bottleneck of the overall system and makes a use in the intended
hybrid form not viable. Unfortunately, FPGRay could not surpass the efficiency of GPU
renderers. In its current design, the efficiency is therefore not improved over exisiting
solutions.

Lastly, the tests indicated that FPGRay has much untapped potential to improve the
efficiency and with it, the throughput, which in turn may allow surpassing existing
approaches. Unfortunately, the indicated possibilities for improvements could not be
further explored in the scope of this thesis.

In the scope of the thesis, FPGRay was not able to reach its goal. Nevertheless, on
its basis, multiple improvements were presented that show how and for which expected
impact the goals can be reached. However, as dedicated ray-tracing hardware was
introduced to GPUs recently, the efforts to implement those improvements are only
feasible for a few specific purposes, in particular, all topics that focus on the investigation
or implementation of any new or optimized hardware-accelerated functionality in the
field of ray tracing.
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