
Alexander Reznicek
Masterstudium Technische Informatik

FPGRay
TU Wien Informatics

Institute of Visual Computing and Human-Centered Technology
Research Unit of Computer Graphics

Supervisor: Assoc. Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Dipl.-Ing. Hiroyuki Sakai

Motivation
Ray tracing is a technique to generate photo-realistic renderings based on a solid physical
foundation. Because of this, it is used for various applications that rely on qualitative ima-
gery. Furthermore, implementations are less complex than needed for rasterization when
targeting for high quality. Unfortunately, ray tracing is much slower for rendering images.

FPGRay
Our approach provides a hardware acceleration for the k-d tree intersection
algorithm through a PCIe card containing an FPGA with its own RAM to store
the scene‘s data. The scene and rays to intersect are loaded from a PC via the
PCIe interface. To access the functionality from software, a driver and C++
API for the Linux operating systems are provided. It can be used to extend the
functionality of existing renderers.
FPGRay therefore combines the FPGA and the CPU for rendering, representing
a hybrid solution. This solves some drawbacks of a CPU- or hardware-only
renderer:
• Only functions that are frequently used and viable for hardware implemen-

tation need to be implemented.
• Seldomly used functions are processed on the CPU for higher utilization of

all available resources.
• New functions can be realized as a CPU implementation, the hardware does

not need to be changed.

Results

• FPGRay needs a high batch size for proper utilization
• Bigger caches (see the classroom scene with three dif-

ferent cache sizes) increase the throughput at higher
batch sizes

FPGRay provides the intersection of a k-d tree through the hardware block (entity) „kdintersect“.
The entity supports an easy parameterization to test designs with different cache sizes, number of
computational units and many more. This allows to assess the impact of the different parameters
to the overall throughput and thus efficiency. Additionally, this flexible design eases the deploye-
ment on different FPGAs of different sizes for which the design can be adapted.
For verification, the renderer pbrt-v3, which provided the algorithms for kdintersect, was extended
to pbrt-fpgray to use FPGRay instead of its own intersection functionality. But as hardware needs
a high data rate respectively parallelization for proper utilization, a synthetic test program was writ-
ten to support the intersection of multiple rays with one API call in ray batches. pbrt-fpgray can be
used for generating compatible test dumps with ray batches during the rendering of a scene.

• Increasing the number of computational
units (see the coffee and head scenes
with 1, 2, or 3 traversal instances) incre-
ases the throughput too

• The overall throughput and efficiency of the currently used
designs and FPGA is worse than that of CPU or GPU-only
solutions

• Multiple bottlenecks and possible solutions indicate that FP-
GRay can surpass the poor efficiency through optimizations

Problem Statement
When using ray tracing algorithms to render photore-
alistic images, a high number of samples is needed
due to the stochastic nature of those algorithms. This
results a in high computational expense. Besides im-
provements that have been accomplished for the va-
rious algorithms, an approach for increasing the ef-
ficiency is to use hardware for accelerating existing
algorithms. Previous works relied on a hardware de-
sign for the complete rendering pipeline and suffered
from these problems:
• All operations have to be provided by the design, i.e.,

resources of the PC are unused.
• New techniques make the hardware design

obsolete.

