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Abstract
Background: Medical visualization employs elements from 
computer graphics to create meaningful, interactive visual 
representations of medical data, and it has become an influ-
ential field of research for many advanced applications like 
radiation oncology, among others. Visual representations 
employ the user’s cognitive capabilities to support and ac-
celerate diagnostic, planning, and quality assurance work-
flows based on involved patient data. Summary: This article 
discusses the basic underlying principles of visualization in 
the application domain of radiation oncology. The main vi-
sualization strategies, such as slice-based representations 
and surface and volume rendering are presented. Interac-
tion topics, i.e., the combination of visualization and auto-
mated analysis methods, are also discussed. Key Messages: 
Slice-based representations are a common approach in ra-
diation oncology, while volume visualization also has a long-
standing history in the field. Perception within both repre-
sentations can benefit further from advanced approaches, 
such as image fusion and multivolume or hybrid rendering. 
While traditional slice-based and volume representations 

keep evolving, the dimensionality and complexity of medi-
cal data are also increasing. To address this, visual analytics 
strategies are valuable, particularly for cohort or uncertainty 
visualization. Interactive visual analytics approaches repre-
sent a new opportunity to integrate knowledgeable experts 
and their cognitive abilities in exploratory processes which 
cannot be conducted by solely automatized methods.

© 2020 S. Karger AG, Basel

Introduction

Visualization is the field of computer science that 
combines computer graphics elements to create visual 
data representations that make use of human vision and 
cognition [1]. Visual representations often support hu-
man interaction, to enhance the user’s cognitive capabil-
ities [2]. Visualization is used for data exploration to gen-
erate new knowledge [3, 4], data analysis to verify hypoth-
eses [5], and data presentation to communicate and 
externalize knowledge [6].

Visualization is used in many different application do-
mains, including the medical field [6]. This use of tech-
nology is referred to as “medical visualization”. Medical 
visualization emerged a couple of decades ago and be-
came an influential field of research for many advanced 
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applications, including radiation oncology. The aim of 
this review is to provide insight into the fundamental 
principles of medical visualization and exemplify their 
typical application in radiation oncology.

Medical visualization can be classified as follows:
 − Scientific visualization involves data with geometric 

structure or inherent spatial information, typically re-
lated to spatial data [7]. In medical visualization, these 
spatial data are medical imaging data, such as com-
puted tomography (CT) and magnetic resonance im-
aging (MRI), or other data sources, such as radiother-
apy treatment plans [8].

 − Information visualization deals with abstract, non-
physical data [7]. In medical visualization, such data 
are, for example, retrieved from medical health re-
cords [9].

 − Visual analytics [10] integrates concepts from the two 
previous categories with other disciplines, such as data 
mining, machine learning, or statistics. This is done in 
highly interactive environments that support data ex-
ploration and analysis [4, 11].

The (Medical) Visualization Pipeline
The visualization process consists of several steps [1]. 

These are known as the “visualization pipeline” and are 
presented in Figure 1. Visualization of medical image 

data follows the common visualization pipeline but is 
tuned to medical data and domain-specific requirements.

Initially, raw data are collected. In the medical do-
main, this happens during the imaging acquisition phase. 
The patient is scanned, and anatomical, pathological, 
and/or functional information is gathered in a stack of 
individual images of a specific modality, such as CT or 
MRI. Each image of a volume dataset represents a thin 
slice of the scanned patient and consists of elements, 
called pixels, arranged on a two-dimensional (2D) grid. 
These images are then reconstructed into volumes by 
various methods [6]. The reconstructed volumetric data-
set combines 2D images into a 3D grid and consists of 
elements, called voxels. This configuration is shown in 
Figure 2b. Since a volume dataset is defined only at dis-
crete grid positions, in-between samples are accessed by 
interpolation [12].

Image enhancement is then conducted to prepare the 
data for visualization [12]. This involves noise suppres-
sion, smoothening, and contrast enhancement methods. 
Segmentation is often performed on medical images to 
derive meaningful anatomical or pathological structures 
that can be reliably rendered. Multiple manual, automat-
ic, or semiautomatic segmentation algorithms exist and 
are implemented depending on the data and application 
[6, 12].
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Fig. 1. The main steps of the medical visualization pipeline (image acquisition, enhancement, segmentation, and 
mapping) and a simple example involving aortic aneurysm visualization.
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The enhanced and/or segmented data are subsequent-
ly mapped to graphical elements, i.e., points, lines, sur-
faces, or volumes, employing their graphical properties, 
i.e., size, orientation, color, texture, or shape [6]. The 
main techniques to visualize medical data on a screen are 
the following:

Slice-based representations include 2D slice-by-slice 
views with which the user can easily interact, as seen in 
Figure 3a. The slices often represent the three main ana-
tomical planes. These slices are rendered in grayscale, and 
sometimes additional features are overlaid employing 
color and/or transparency.

Surface representations, surface rendering, or indirect 
volume rendering require the prior segmentation of 
structures, as seen in Figure 3b (left). For example, this 
can be the result of a manual delineation or an automatic 
segmentation algorithm. After segmentation, the struc-
ture contours are mapped to polygonal surfaces, and dis-

tinct colors and transparencies are assigned to each struc-
ture before rendering.

Volume representations, volume rendering, or direct 
volume rendering (DVR) require the direct projection of 
the entire data volume on the screen. Volume rendering 
is computationally intensive and consists of four steps, 
depicted in Figure 2a. For each pixel of the final image on 
the screen, a ray of sight is shot through the volume (ray 
casting) and samples are selected on positions along the 
ray (sampling). At these positions, materials, e.g., differ-
ent kinds of tissue, are determined, and colors and trans-
parencies are assigned to them (classification). Finally, all 
sample values along the ray are accumulated and numer-
ically approximated to be represented on the screen 
(compositing).

Hybrid and multivolume representations are combi-
nations of the above three categories, as depicted in Fig-
ure 3b.
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Fig. 2. a The main steps of the volume ren-
dering process. b Schematic overview of ar-
bitrary slices can be extracted from 3D vol-
umes and how volumes are defined by a 
stack of slices commonly acquired by an 
imaging device. c Schematic overview of 
the ray casting algorithm and volume fu-
sion. The ray is sampled at discrete posi-
tions to evaluate the volume-rendering in-
tegral. 
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Visualization Principles in Radiation Oncology

In this section, we indicate the most significant trends 
within medical visualization research that are applied to 
radiation oncology. The goal of this review is not to pres-
ent a comprehensive state-of-the-art report, as this has 
been already performed by Schlachter et al. [13]. Instead, 
we discuss selected principles of visualization in radiation 
oncology, in particular scientific visualization and visual 
analytics.

Scientific Visualization for Radiation Oncology
Volume visualization helps the understanding of 3D 

anatomical spatial relationships [14]. For example, in ra-
diotherapy planning, it aids in the understanding of the 
relationship between anatomy and the radiation dose dis-
tribution. Imaging devices, such as CT scanners, usually 
create several projections of the human body which first 
need to be reconstructed into 2D slices to obtain the vol-
umetric dataset. Reconstruction methods, such as filtered 
back-projection [6], are used to create a stack of slices, 
which are shown in Figure 2b. This is done in the follow-
ing way. Assume a reconstructed CT dataset with a 1.17 
× 1.17 × 2 mm3 resolution. This resolution is anisotropic 

and can be problematic for image and, later, volume dis-
play and interpretation. To account for anisotropy, trans-
forming the sample position and interpolating on the 
stack of slices is common in ray traversal, as depicted in 
Figure 2c. Alternatively, resampling the slices is also pos-
sible, but might lead to a loss of information or the addi-
tion of unnecessary data values. After this step, the data 
are ready for 2D and/or 3D visualization.

2D Representations
In 2D representations, a standard slice-based approach 

is multiplanar reformation (MPR), a technique that ex-
tracts 2D slices from a 3D volume [15]. Although slices 
can be extracted in arbitrary orientations, a common way 
is to show three orthogonal planes, i.e., axial, coronal and 
sagittal, as shown in Figure 3a. Slice-based representa-
tions show a section of a volume defined by the intersec-
tion with a plane, as depicted in Figure 2b. The image 
information of the volume, e.g., an axial slice, is “refor-
matted” onto the plane and then displayed in the respec-
tive window. During reformatting, slice distance and in-
slice resolution are considered, to assure physically cor-
rect data display.

Combining surface and volume

Isodose surface

Target volume Margin volume

4D-PET/Ct

a

b

c

Fig. 3. a MPR views together with volume rendering of a head CT with segmentation data. b Surface representa-
tion of segmentation data (left) combined with CT data (right). c 4D-PET/CT combined with segmentation data 
and an isodose surface.
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Another important aspect is window/level. The basic 
concept of window/level is to apply a linear grayscale 
transform function specified by two parameters: window 
width (WW) and window level or window center (WL) 
to define how a subset of the entire dynamic range of the 
underlying data will be mapped to pixel intensities in the 
display. The WW defines the (relative) range of values, 
e.g., a Hounsfield unit range for CT, and the WL is the 
midpoint of this range. When mapped to gray-level val-
ues (a pixel intensity of 0–255 on an 8-bit display), values 
smaller or equal to WL – (WW/2) are black (0), values 
greater or equal to WL + (WW/2) are white (255), and 
values in-between are mapped onto their corresponding 
pixel intensity. This is depicted in Figure 4a.

3D Representations
We distinguish two general approaches for projecting 

3D volume data onto the screen plane: DVR and surface 
rendering, also called indirect volume rendering. The lat-
ter usually involves image processing techniques, such as 
segmentation, to obtain triangulated surface meshes of 
distinct data structures [6]. Image enhancement and seg-
mentation are beyond the scope of this paper. Please refer 
to the book by Gonzalez and Woods [12] for further in-
formation.

Direct Volume Rendering. DVR creates an interactive 
visualization of a volume without any intermediate pre-
processing step. The method commonly assumes a sim-
plified, physically motivated absorption/emission model 
of light propagation [16]. For DVR, multiple approaches 
exist, such as splatting, shear-warp, and texture mapping 
[15, 17]. One of the most prominent and flexible DVR 

techniques is ray casting [17], especially since the exis-
tence of acceleration techniques using graphics hardware 
[18]. The idea behind ray casting is to cast a ray for each 
pixel of the screen from the origin of the camera through 
the volume. The rendering integral [17] is directly evalu-
ated along the rays traversing the volume delivering the 
final pixel values. A schematic overview for one light ray 
is depicted in Figure 2a, c. The book by Engel et al. [17] 
offers a more detailed description.

Alpha blending [16] is a popular optical-blending 
technique, often implemented by using the Riemann sum 
to discretize the continuous function of the volume-ren-
dering integral. Each sample in the approximation is as-
signed a color and opacity value. The Riemann sum when 
blending front-to-back for the current sample i is then 
given by:

Ci + 1 = Ci + (ci  ×  ki)  ×  (1 – Ki) and Ki + 1 = Ki + ki  ×  (1 – Ki), 

where ci is the color and ki is the opacity of the current 
sample, and Ci and Ki are the accumulated values. The 
iteration schema for the composition of the color is de-
picted in Figure 2a (right).

Other simpler projection and compositing techniques 
exist, such as X-ray projection, and maximum intensity 
projection (MIP) [15]. When using MIP (Fig. 2c), only 
the value with highest intensity would be considered 
along the ray, but all other sample values would not con-
tribute.

Transfer Functions. Volumetric data commonly con-
sist of scalar values that represent a physical property, e.g., 
Hounsfield units denote radiodensity in CT data. In DVR, 
physical properties are assigned to optical properties, i.e., 

WW

WL

Image plane 3D surfaces Slice-based view
Viewing ray

Click position
(screen space)

Intersection point Synchronize

ba

Fig. 4. a A widget used for defining a 1D transfer function. The 
upper part shows the histogram of a CT volume and points can be 
added to define the opacity transfer function, and the lower part to 
define the color transfer function, respectively. The concept of 
window/level is shown on top of the widget. Values outside the 

window are either black (to the left) or white (to the right). b Sche-
matic overview of volume picking using a viewing sent from a 
screen position to determine the intersection with the depicted 
surfaces and synchronize a slice-based view.
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color and transparency, as shown in Figure 3. Here, bones 
are displayed as opaque and skin tissue as more transpar-
ent. To obtain this, when the ray “hits” a bone, the accu-
mulated opacity Ki reaches a maximum value (opaque), 
i.e., no further light is visible from “behind” this point.

A widely used approach for assigning optical proper-
ties to the data values is by means of transfer functions in 
a process called classification [17], as shown in Figure 2a. 
When using a transfer function, each scalar value is as-
signed a color and opacity analogous to the window/level 
in slice-based representations. A common choice for col-
or and opacity representation is RGBA, where the color 
is represented as combinations of red (R), green (G), and 
blue (B) channels, together with the opacity or alpha 
channel (A). The color transfer function c: ℝ → ℝ3 and 
opacity transfer function k: ℝ → ℝ are user-defined and 
can be defined graphically as depicted in Figure 4a. More 
complex approaches involve multidimensional transfer 
functions, e.g., those found in the survey by Ljung et al. 
[19].

Surface Representations. Delineations stemming from 
manual contouring, e.g., on axial slices (Fig. 2b), or binary 

volumes from segmentation algorithms are usually trans-
formed into 3D meshes before rendering. For instance, 
delineations of target volumes in radiotherapy planning 
are commonly represented as surfaces, as well as isodose 
surfaces defined by Gy values. Surfaces can be visualized 
as opaque or with transparency, the latter enabling a better 
overview and understanding of the location of inner sur-
faces within outer surfaces [6]. For the correct rendering, 
all geometry primitives must be depth-sorted to be dis-
played in the correct spatial order, e.g., from back to front, 
to allow for a correct blending. In Figure 3b (left) surface 
rendering of multiple, nested, and transparent contours of 
a lung cancer patient are visualized. Figure 3c shows, ad-
ditionally, the isodose surfaces. In the corresponding 
MPR views, the segmentations (or isodoses) are often vi-
sualized as the outline of an area or as a filled (transparent) 
area overlaid on the slices (Fig. 3a). Here, the filled regions 
are used to highlight the overlap of two delineations. More 
information on surface rendering can be found in the 
books by Engel et al. [17] and Preim and Botha [6], where 
concepts for volume data in general are also discussed, 
such as shaded surface display for CT.

a

b

Fig. 5. a The main components of the visual analytics process. b An example of a tool for the exploration and 
analysis of the variability of pelvic organs [5].
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Hybrid and Multivolume Representations
Hybrid Representations. Combining volume with sur-

face rendering is essential in radiation oncology, to show, 
for example, combined isodose surfaces, delineations, 
and volumes in the same view (Fig. 3c). Technically, com-
bining surfaces, as depicted in Figure 3b (left), with vol-
ume rendering (right) is quite challenging. In the example 
of ray casting, the algorithm needs to include the surface 
at the correct depth, as schematically depicted in Figure 
2c, during the evaluation of the ray samples. This usually 
involves more advanced techniques and data structuring 
to correctly visualize these complex scenarios [20]. Real-
ization for MPR views is simpler, as graphics program-
ming languages, e.g., OpenGL [17], allow for directly 
overlaying image data with contour data, i.e., meshes or 
closed polygons.

Image Fusion and Multivolume Rendering. For multi-
modal visualization, processing is often required. When 
combining datasets from multiple modalities using sepa-
rate scanners, registration needs to be performed to align 
the volumes. This is often costly in terms of processing 
time, so acceleration techniques may be necessary [21]. 
However, even when the transformation is known, differ-
ent spatial resolutions, e.g., aligned PET/CT data with a 4 
× 4 × 4 mm3/1.17 × 1.17 × 2 mm3 resolution, add to the 
complexity. One way to implement fusion during ray 
casting is on the classification level [22], where the optical 
properties for a sample point of two or more volumes are 
combined (Fig. 2c). The fusion of the volume I1 and I2 is 
simply given by a weighted linear combination. Let c1 and 
c2 denote the color value of I1 and I2 at world position x 
(Fig. 2c). Then the fusion of the color is given by cf = α  ×  
c1 + (1 – α)  ×  c2, and can be defined for the absorption, 
respectively. The parameter α ∈ [0, 1] ⊂ ℝ is user-defined 
and can be implemented, for instance, as a slider for 
changing the weight. This parameter can also be used for 
the slice-based visualization of the axial, sagittal, and cor-
onal views, where the images are fused, respectively. The 
fusion for slice-based visualizations is usually easier to 
implement as graphics programming languages allow for 
directly blending (overlaying) whole images. A more de-
tailed overview can be found in the surveys on medical 
image fusion by James and Dasarathy [23], on multimod-
al data visualization by Lawonn et al. [24], and on multi-
volume ray casting approaches by Lux and Fröhlich [25].

Volume Rendering Using Graphics Processing Unit. 
Most of the previously discussed algorithms can leverage 
modern graphics processing units (GPUs). For most of 
the algorithms GPU-based acceleration techniques for 
volume rendering exist [18]. A survey comparing differ-

ent ray casting techniques using GPUs is provided by 
Schubert and Scholl [22].

Interaction
An integral part of medical visualization is interaction. 

One of the most common interaction tasks is to change 
visual parameters [6], e.g., change transfer functions by 
adding points to the widget shown in Figure 4a, and 
therefore changing the optical properties assigned to the 
scalar values of a dataset as explained above. A common 
interaction for slice-based visualization is panning and 
zooming, to refine the visual area of interest by moving 
the screen or the view on the screen (pan) and zooming 
into the area of interest. Navigation through the volume 
along the cutting direction for MPR views is another ex-
ample. Here, the visualizations must be aware of slice dis-
tances to correctly display and move the cutting plane, as 
shown in Figure 2b. For volume rendering, interaction 
techniques such as 3D picking (Fig. 4b), where the closest 
surface point along the view direction from the 2D mouse 
position can be selected and the 2D views will be rear-
ranged to show the position of the surface point. More 
advanced interactions include cutting and clipping [26], 
used in Figure 3c to “cut open” the volume, or volume 
masking, where certain regions can be assigned to a seg-
mentation to further influence the volume fusion [8].

Visual Analytics for Radiation Oncology
Up to this point, we have discussed the visualization of 

medical data which have a 3D anatomical spatial arrange-
ment, such as CT or MRI data and RT treatment plans. 
However, additional nonspatial data might be available, 
such as electronic health records of a patient or data from 
population studies. For these data, the methods discussed 
in the previous section are not sufficient. Moreover, given 
the steadily increasing dimensionality and complexity of 
medical data, new strategies have emerged as a natural 
response for visualization, exploration, and analysis. For 
instance, the need to integrate morphological with func-
tional information has led to multimodal imaging [24]. 
Despite recent advances in data analysis techniques, the 
exploration of multimodal data using the methods in the 
previous section is still cumbersome. Interactive ap-
proaches represent a new opportunity to integrate knowl-
edgeable experts and their cognitive abilities in the ex-
ploratory process.

According to Keim et al. [27]: “Visual analytics com-
bines automated analysis techniques with interactive vi-
sualizations for effective understanding, reasoning and 
decision making on the basis of very large and complex 
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datasets”. The process and components of visual analytics 
are depicted in Figure 5a. Visual analytics makes use of 
the visualizations discussed above (The Visualization 
Pipeline), as well as other commonly employed visual 
representations from the domain of information visual-
ization, such as scatterplots, scatterplot matrices, or par-
allel coordinates plots. Additionally, visualization is com-
bined with other disciplines, most commonly statistics, 
data mining, or machine learning. A human-in-the-loop 
approach is essential in visual analytics solutions, inte-
grating human strengths for sense and decision-making 
with semiautomated data analysis [2, 7]. This is enabled 
by interaction. Visual analytics incorporates several fun-
damental techniques, methods and concepts:

 − The visual analytics seeking mantra [10] is summa-
rized as: Analyze first – Show the important – Zoom, 
filter and analyze further – Details- on-demand. Ini-
tially, processes for the reduction or abstraction of the 
data are employed, so that only the important data can 
be displayed. For example, data mining serves the pur-
pose of removing outliers or of computing clusters or 
correlations. Then, users zoom in and filter the data for 
more detailed information. At the end, all detailed in-
formation is shown on demand through interaction.

 − Multiple (coordinated) views [28] are widely used in 
visual analytics. This refers to employing multiple 
views that allow the observation of data and their in-
between relations from different perspectives. Multi-
ple views are usually combined with brushing and 
linking (discussed below) to facilitate the identifica-
tion of relationships within data.

 − Brushing and linking [29] (B/L) is a concept that in-
volves selecting one or several interesting data subsets 
in one view and highlighting corresponding subsets in 
another. This method is meant to overcome the short-
comings of single techniques, and it provides more in-
formation than the exploration of individual views.

 − Focus + context [1] (F + C) is required to present items 
at different levels of detail. More interesting or relevant 
data subsets are presented with more detail, while less 
important ones are presented with less detail. These 
are, however, retained in the view to provide the con-
text for a better understanding and insight.

 − Overview + detail [30] is related to the combined use 
of multiple views and F + C. Here, at least two views 
are presented to the user: one with a rough overview 
on the entire visualization space and one with a de-
tailed view of a smaller portion of the space. 
Visual analytics solutions tend to be powerful and 

complex. Often, target users are not able to fully exploit 

the potential of such systems. Guided visual analytics puts 
emphasis on the effective use of such systems by domain 
experts by integrating guidance concepts [31].

Due to the tight and interactive coupling of the com-
ponents of visual analytics, it is preferable to present a few 
example applications focusing on two tasks, often en-
countered in radiation oncology. In this article, we focus 
on (i) radiotherapy-related approaches for the explora-
tion of tissue characterization employed in the target vol-
umes definition, and (ii) strategies for the analysis and 
assessment of organ segmentation outcomes.

In the first category, visual analytics for tissue charac-
terization initially provided solutions, such as the interac-
tive framework of Coto et al. [32] for the exploration and 
analysis of breast dynamic contrast-enhanced (DCE) 
MRI data. Here, 2D and 3D anatomic representations of 
patient data are used together with scatterplots represent-
ing the contrast agent enhancement. These are integrated 
through B/L, enabling the identification and character-
ization of breast lesions. In other solutions, the entire 
space of tissue characteristics is visualized after a dimen-
sionality reduction step [3, 33, 34].

In the second category, visual analytics approaches 
have been employed for the analysis and assessment of 
automatic segmentations, which rely heavily on the inter-
action concepts discussed above. Organ segmentations 
can be used, e.g., as input to radiotherapy treatment plan-
ning. Therefore, their accuracy is crucial. There are ap-
proaches that focus on supporting both cohort and indi-
vidual patient investigation for the detailed assessment of 
organ segmentation accuracy [35]. Reiter et al. [4] inves-
tigated how the shape and size of organs affect the accu-
racy of automatic segmentation methods and enable 
quick identification of segmentation errors and their cor-
relation to anatomical features, depicted in Figure 5b. Vi-
sual analytics within the domain of radiotherapy has been 
further investigated by Raidou et al. [11], tackling several 
steps of the treatment pipeline.

Discussion

Slice-based representations are still one of the most 
common (and maybe preferred) ways to visualize imaging 
data. This might be because contouring is often performed 
on axial slice views, making the adaptation to other visu-
alizations difficult. Also, slices are easier to use as they re-
quire fewer visual parameters, e.g., transfer functions ver-
sus level/window. Additionally, in the presence of multi-
ple volumes, contours and isodose surfaces, the views are 
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often described as “cluttered”, i.e., too much information 
is displayed at once. Advanced concepts such as smart vis-
ibility [36, 37] or cutaway views [38] are employed to show 
only the most relevant information. The former usually 
requires knowledge of the underlying data whereas the 
latter requires user interaction [24]. Still, enhancing slice-
based representations is an ongoing task [39].

Volume visualization has a long history in radiation on-
cology. Visualizations employing region boundary surfac-
es to display anatomy, polygonal meshes to display treat-
ment beams, and isodose surfaces to display dose were al-
ready presented 30 years ago [14]. Even though advanced 
volume rendering can, for instance, improve the assess-
ment of contours in 4D imaging [8], simpler techniques, 
such as MIP might still be preferred, as they can suffice for 
a specific application [40]. Another important aspect of 
volume rendering is perception. When discussing delinea-
tion visualizations, illustrative techniques can be employed 
to greatly enhance depth perception [41]. Volumetric illu-
mination can further improve perception [42].

While traditional slice-based and volume representa-
tions keep evolving, at the same time the dimensionality of 
medical data is “exploding”. Patient cohort acquisitions are 
often employed in retrospective studies, and population 
studies are becoming widespread [43]. The data of these 
studies are complex and heterogeneous, but they offer 
valuable information for clinical research. For this kind of 
data, visual analytics can be particularly suitable. Early ex-
amples of visual analytics tools for the analysis of cohort or 
population data within the radiation oncology domain in-
volve topics related to anatomical variability and its effect 
on therapy. Raidou et al. [5] targeted the exploration of the 
anatomical variability of the bladder and the analysis of 
potential toxicity risk for prostate cancer patients. Shape 
analysis is conducted using unfoldings of the involved or-
gans on a plane, where several attributes can be color-en-
coded. Regarding chemotherapy optimization, ChemoEx-
plorer supports the analysis of different treatment strate-
gies and an understanding of how different groups of 
patients respond to selected therapies, combining visual-
izations of imaging and non-imaging health record data 
that facilitate the comparison of patient subgroups [9].

Moreover, uncertainty associated with medical data 
often needs to be addressed. Uncertainty is present in all 
kinds of medical data and processes and relates to differ-
ent concepts, such as errors, imprecisions, subjectivity, 
sensitivity to (small) parameter changes, and non-speci-
ficity [44]. In medical visualization research, uncertainty 
has drawn more attention in the last few years [45]. Nguy-
en et al. [46] have proposed the use of an interactive ex-

ploratory tool that supports uncertainty minimization in 
kinetic imaging, while iCoCooN [47] enables, in addition, 
the identification of relations between kinetic parameters 
and their variability. Both tools are equipped with inter-
active brushing that bidirectionally links the observations 
in the kinetic space to patient anatomy.

Finally, an important component of medical visualiza-
tion is the assessment of the usefulness of the developed 
techniques and applications. Often, this is done with em-
pirical evaluations involving participants from the target 
user group [48], but more concrete guidelines are re-
quired that incorporate both qualitative and quantitative 
methods. For example, as processing is often required, 
quantitatively evaluating the results of a visualization is 
important, e.g., in registration applications [49]. Algo-
rithm verification, such as for the comparative evaluation 
of volume-rendering algorithms [50], is also required, to 
increase the level of trust in commonly employed visual 
data analysis strategies. There is, too, an increasing need 
for evaluations with respect to usability, functionality and 
user experience, in realistic settings [34], to obtain valid 
feedback on developed visualization tools.

Conclusion

We have summarized the basic underlying principles 
of volume visualization and visual analytics in the appli-
cation domain of radiation oncology. Important topics, 
such as DVR and surface rendering of common data used 
in radiation oncology applications, as well as user interac-
tion, have been presented. More advanced techniques, in-
cluding multivolume rendering and perception-motivat-
ed visualizations, and topics such as the evaluation of vi-
sualization designs have been discussed. We anticipate 
that future challenges related to the complexity of data 
and processes of radiation oncology can benefit from the 
domain of visual analytics.
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