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Kurzfassung

Echtzeit-Verdeckungserkennung ist ein wertvolles Werzeug zur Erhöhung der Perfor-
mance von Echtzeit-Rendering Anwendungen durch das Erkennen und Entfernen von
unsichtbarer Geometrie aus der Rendering Pipeline. Durch neue Rendering Applicati-
on Programming Interfaces (APIs) wie Vulkan und moderne Hardware können solche
Verdeckungserkennungs-Algorithmen noch leistungsstärker werden. Diese Bachelorarbeit
versucht die Leistungsfähigkeit von Coherent Hierarchical Culling Revisited (CHC++)
unter dieser neuen Umgebung durch verschiedene Optimierungen des Algorithmus si-
cherzustellen und zu evaluieren. Die Änderungen beinhalten das Zusammenlegen von
aufeinanderfolgenden draw-calls und Occlusion Queries in einen einzigen GPU-Queue
submit, um den Mehraufwand auf der CPU und GPU zu reduzieren. Zusätzlich wurde
die Unterstützung von alpha-überblendeten transparenten Objekten zum Algorithmus
hinzugefügt, was die korrekte Verdeckungserkennung und das Darstellen dieser Objekte
erlaubt. Der Algorithmus funktioniert gut in Umgebungen mit viel Verdeckung und
seine Leistungsfähigkeit bleibt stabil in einem Schlechtesten-Fall Szenario. Aber der
Leistungsanstieg der originalen Implementierung konnte nicht repliziert werden, was
sich aber auf die Unterschiede in den Rendering APIs und Verbesserung der Hardware
zurückführen lässt.
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Abstract

Real-time occlusion culling is a valuable tool to increase the performance of real-time
rendering applications by detecting and removing invisible geometry from the rendering
pipeline. Through new rendering Application Programming Interfaces (APIs) like Vulkan
and modern hardware, these culling algorithms can become even more powerful. This
thesis tries to ensure and evaluate the performance of Coherent Hierarchical Culling
Revisited (CHC++) in this new environment by performing various optimisations to
the algorithm. The changes include the batching of consecutive draw-calls and occlusion
queries into single GPU-queue submits to reduce the overhead on the CPU and GPU. Ad-
ditionally, the support for alpha-blended transparent objects was added to the algorithm,
which allows for correct culling and rendering of these objects. The algorithm performs
great in environments with high occlusion and does not degrade in performance in the
worst case scenario. But the high performance increase of the original implementation
could not be replicated, which is attributed to the difference in rendering APIs and
hardware improvements.
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CHAPTER 1
Introduction

Performance is critical in real-time rendering applications, therefore a lot of optimizations
need to be applied to the rendering pipeline to keep up with the ever-growing demand
in visual fidelity. As scenes get bigger and bigger and geometry density increases, more
performance is needed. One of the biggest problems is that in a naive rendering pipeline,
where every 3D model is rendered every frame, a lot of the rendering power is lost to
geometry that is not visible in the final render. Depending on the viewpoint, a lot of
the geometry is outside of the view frustum or is completely occluded by other geometry
and therefore invisible. Therefore, a lot of performance can be gained in most situations
by culling these invisible objects from the rendering pipeline and only render visible
geometry. Culling geometry outside the view-frustum, called View-Frustum Culling
(VFC), has been studied extensively and efficient algorithms have been established. On
the other hand, culling occluded geometry, simply called occlusion culling, has proven to
be harder to accomplish as it is more difficult to detect the visibility of objects than to
check if something is outside a given volume. Figure 1.1a and figure 1.1b compare which
objects are culled when using VFC. In addition, figure 1.1c depicts how many objects can
be culled if occlusion culling is used. There are many different approaches for real-time
occlusion culling, most of which are designed with older, more synchronous graphics APIs
like OpenGL in mind. This thesis presents an implementation of one of these algorithms
called Coherent Hierarchical Culling Revisited (CHC++) [MBW08] with the rather new
asynchronous graphics API Vulkan, to show how this algorithm performs with today’s
hardware and API.

The following section details why this thesis tries to adapt CHC++ to work efficiently
with Vulkan. The chapters afterwards show what alternative occlusion culling methods
are available, what problems were encountered while adapting CHC++, how these were
solved and what results were gathered while evaluating.
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1. Introduction

(a) All geometry. (b) Frustum culling. (c) Occlusion culling.

Figure 1.1: A scene of multiple objects and a viewing frustum in different rendering
modes. 1.1a shows all the geometry that could be rendered. 1.1b shows what is rendered
with frustum culling enabled - only the objects inside the frustum are rendered. 1.1c
shows what objects are rendered with occlusion culling enabled - only visible objects are
rendered.

1.1 Motivation

In real-time rendering applications it is essential to maintain frames per second (FPS)
upwards of 60 FPS and with newer monitors up to 144 and 240 FPS or even more.
To reach these numbers, powerful hardware is needed, but also the software needs
to be optimised to be able to output the high-fidelity graphics of modern games and
visualisations at this rate. Therefore, no computational capacity should be wasted on
things that do not contribute to the final render to get the best performance out of the
application. In other terms, performance should not depend on overall scene complexity,
but on the complexity of the part of a scene that is actually seen by the virtual camera.

To do so, sophisticated culling mechanisms need to be implemented to reduce the overall
load on the GPU and CPU. As already mentioned, frustum culling can be achieved rather
easily because it can be done analytically, for example by determining if the bounding
box of a 3D object is completely outside one of the planes of the viewing frustum. But
detecting occlusion—or rather visibility of geometry—is more difficult because complex
visibility interactions cannot be calculated analytically. Occluder fusion—i.e., multiple
objects combined occlude another object—needs to be taken into account, which can be
hard to achieve. So other techniques have to be used like occlusion queries or Hierarchical-
Z (Hi-Z) culling, which are detailed in later chapters. Although occlusion detection proves
to be harder to do, a lot of research has been done on the topic and many approaches
have been published by research institutions and game engine developers.

Also, the adoption of newer asynchronous graphics APIs like Vulkan and DirectX 12
provide more possibilities to improve these visibility detection methods. The biggest
performance improvement these new APIs provide is fewer abstractions and command
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1.2. Approach

queues. Lower abstractions means that they give a lot more power to the developer of
the graphics application while reducing the amount of work that needs to be done by
the graphics driver. Command queues are used to record multiple API commands into a
buffer before actually sending them to the GPU. This command buffer is later submitted
to be executed asynchronously by the GPU in a single API call to the graphics driver.
This enables the batching of multiple draw calls that are then submitted and executed
on the GPU independent of the CPU to increase parallelism and to reduce the number
of API calls.

This thesis tries to adapt and optimize the CHC++ algorithm to see how well it performs
with Vulkan on modern hardware compared to the original implementation provided in
conjunction with [BMW09]. CHC++ was originally developed for OpenGL before the
release of OpenGL version 3.0, so a lot of improvements to the API happened since then.
Also because hardware has improved significantly over the past years, we hoped to see big
performance gains by adapting CHC++ into a modern setting. The adapted algorithm
still performs great, but the major performance increase of the original implementation
could not be replicated in Vulkan. How this was achieved is detailed in the following
chapters.

1.2 Approach
At first, a naive re-implementation of the original algorithm presented in [MBW08] using
excessive synchronisation to present a more synchronous workflow and to be more true
to the original OpenGL implementation was made. This naive implementation was
evaluated to find bottlenecks and problems that arise when running CHC++ on Vulkan.
The bulk of the problems, detailed in chapter 3, were the excessive synchronisation and
the many graphics-queue submits that caused too much overhead. Then the optimised
version of the algorithm was implemented by finding proper solutions, which are detailed
in chapter 4, to the detected problems. This implementation was further profiled to find
additional bottlenecks and adapted to solve these issues.

Results were evaluated on multiple test scenes with high geometric density, some with high
potential for occlusion culling and some with less to compare how the implementation
performs in different scenarios, which is presented in chapter 5. To get comparable
results, walkthroughs of the scenes were recorded and rerun with different rendering
modes enabled. Statistics were gathered and plotted to evaluate the results. Additionally,
profiling tools like Nvidia Nsight were used for evaluation.
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CHAPTER 2
Related work

This chapter presents an overview of different occlusion culling methods. This includes
early approaches like cell-based and portal culling techniques. Then it gives an introduc-
tion to occlusion queries and how they are used in Coherent Hierarchical Culling (CHC)
and CHC++. Later sections show how Hi-Z culling can be used in different ways to
detect visibility and what culling mechanism some selected game engine developers use
in their graphics pipelines. At the end, it also presents the commercially available Umbra
3 occlusion culling middleware that can be integrated into nearly any rendering pipeline
without the cost of implementing your own solution.

2.1 Early approaches
In general, there are two types of occlusion culling called point and area culling. The
difference is, that point-based culling calculates the occlusion from a fixed viewpoint,
whereas area based culling calculates it for a defined area or volume like regular cells.
In comparison, occlusion has to be calculated every frame for point culling because the
viewpoint can change every frame. But it is less expensive to calculate as only this one
viewpoint needs to be taken into account. A lot of real-time occlusion culling methods
use point-based culling, since it can be done by using occlusion queries (section 2.2) or
Hi-Z culling (section 2.3) for example, but there are many more options available.

Area culling, on the other hand, is harder to compute as the occlusion needs to be
calculated for the entire volume of each cell. When determining the visibility from one
such cell, other invisible cells need to be invisible from every point inside the current cell
to stay conservative. The other way round, every visible cell needs to be visible from
at least one point inside of the current cell’s volume. Because finding every other cell
that is visible from a tested cell is really expensive, this calculation is mostly done in a
pre-process and not at runtime. For every tested cell, all the cells that are visible from
inside its volume are saved in a list, which allows for fast lookup at runtime. At runtime,
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2. Related work

Figure 2.1: Portal culling is depicted. There are multiple cells, denoted by the letters
A-H, that are connected by portals. The eye represents the viewpoint, visualising the
multiple frustums resulting from the recursive portal culling algorithm. For example, the
star is completely occluded, as it is outside of cell F’s frustum. Reprinted from the portal
culling chapter in [AM18].

it is checked which cell contains the current viewpoint. Then this cell’s list of visible cells
is frustum culled and the geometry of the remaining visible cells is rendered, which makes
the occlusion culling fast as only the list needs to be looked up. On the other hand, this
will not cull every object that is invisible for the given viewpoint, because the visibility is
calculated for the whole cell and not only for the viewpoint. Therefore, everything in a
visible cell needs to be rendered, even if some of the geometry is occluded inside the cell.

Another early approach is portal culling, which can mainly be used in indoor scenes
or when areas are cut off by huge obstacles but are still connected by corridors, like
mountains and tunnels. It works by defining areas—like rooms—and portals—like doors,
windows or corridors—and then creating an adjacency graph where neighbouring areas
are connected by the portals. At runtime, the view frustum is used to determine which
adjacent cells are visible from the viewpoint by checking which portals are inside the
frustum. Then the frustum is shrunk to fit into the connecting portals. This is done
recursively, starting with the area that contains the viewpoint to all the areas that are
connected by the visible portals. An example can be seen in figure 2.1. Now there are
different frustums for the visible cells which are then used for frustum culling in the
respective cells. This results in a rather simple and fast form of occlusion culling, but
can only be used if portals can be placed in the scene. Therefore, this approach is not
really suitable for large open-world scenarios, as portals cannot be placed in a meaningful
manner. Also, occlusion inside of a cell cannot be determined with this approach as
occlusion is only detected between different cells through the portals. But this still
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2.2. Occlusion queries

provides a meaningful reduction of rendered geometry in a lot of cases [AM18].

2.2 Occlusion queries

Occlusion queries provide an alternate rendering mode in which the newly rendered
geometry is tested against the depth buffer to report the number of visible fragments
or to only report if a fragment is visible at all. This is supported in both software and
hardware nowadays. Therefore, occluder geometry can be rendered to fill the depth buffer
before testing other occludees against the occluder depth. In this case, the occluder
and occludee geometry should be simple, so it can be rasterized quickly. Additionally,
the testing geometry must be a conservative boundary approximation of the actual
mesh. The results of the queries can then be used to determine which tested meshes are
occluded and which are not. Figure 2.2 shows the result of an occlusion query where the
axis-aligned bounding box (AABB) of a chair is tested against the depth buffer. This
chair is visible because much of its bounding box is visible (green). If an object turns out
to be occluded, we saved the time of pushing a potentially complex object through the
rendering pipeline. If it is not occluded we wasted additional time on the query itself.
Although queries are asynchronous—as in the CPU can perform work while the query is
processing on the GPU—the latency of when the result is available can be rather long.
Therefore, it is desirable to keep the number of queries to a minimum and test multiple
objects that are likely occluded together in a single query. Else the time the CPU has to
stall till the results are ready gets too long, causing poor performance [AM18].

OpenGL also provides conditional rendering with occlusion queries. This means, that
rendering operations can be tied to an occlusion query, where the draw-calls are only
executed if the query return that the geometry is visible. Ergo an object is automatically
rendered if its occludee geometry is visible. This removes the problem of having to wait
for occlusion queries on the CPU, but it could still cause stalls in the graphics pipeline
itself. Also, implementations or performance comparisons of this approach could not be
found, so it is hard to say how this compares to other approaches.

The following subsections describe different occlusion culling methods utilising occlusion
queries. These methods try to interleave rendering with occlusion testing to solve the
high latency problem of the test results.

2.2.1 Coherent Hierarchical Culling (CHC)

Bittner et al. proposed a new method called Coherent Hierarchical Culling (CHC) in 2004
which tries to reduce the number of occlusion queries and also eliminate CPU stalls and
GPU starvation by interleaving rendering and queries. The algorithm uses a kd-tree for
breadth-first front-to-back traversal of the scene geometry. Only leaf nodes and interior
nodes that were invisible in previous frames are occlusion queried, visible interior nodes
do not need to be queried. Also, previously visible leaf nodes are assumed to stay visible
and are therefore rendered immediately and also queried. All the queries are put into a
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Figure 2.2: A visualisation of an occlusion query. The green part shows which pixels of
the chairs bounding box got through the depth test resulting in the occlusion query to
return that the object is visible. The red parts show how many pixels of the bounding
box are occluded by other geometry. Would every pixel be red, the object would be fully
occluded and the query would return that the object is invisible and therefore does not
need to be rendered. The figure was created using RenderDoc.

queue so they can be checked for completion repeatedly. While traversing a tree node, it
is checked if the first query already completed. If it did not yet complete, traversal is
continued as already described. If it has completed and the checked node is invisible, the
whole subtree can be culled. If a node turns out to be visible, its children need to be
queried too.

This results in an interleaving of rendering and occlusion queries, where the CPU can do
further draw-calls or start occlusion queries while the GPU performs previously issued
rendering operations and occlusion queries. This minimises the amount of CPU stalls
while also keeping the GPU busy. Also, it reduces the amount of queries needed, as only
leaf nodes and previously invisible interior nodes need to be queried. In addition, if an
interior node is invisible, the whole subtree can be skipped, further reducing the number
of queries.

As a result, this approach improves performance over standard VFC in most cases, but
still performs slower in cases where hardly any occlusion is observed and the additional
overhead of the queries makes it slower. Furthermore, temporal and spatial coherence
can be leveraged even more effectively, which will be explained in the following section
[BWPP04].

8



2.2. Occlusion queries

Figure 2.3: The different queues of CHC++ and how they work together. Reprinted
from [MBW08]

2.2.2 Coherent Hierarchical Culling revisited (CHC++)

Mattausch and Bittner et al. further developed CHC++, an updated version of CHC. It
optimises CHC by further leveraging temporal and spatial coherence, which is done by
adaptively predicting the visibility of objects and batching queries depending on how
likely some objects will be occluded together. This, in turn, reduces the number of queries
and also the number of API calls and state changes, thus speeding up the algorithm
greatly in comparison to CHC and others.

The core algorithm remained roughly the same, with some additions and changes. The
main additions are the three queues: the i-queue, v-queue and render queue. While
traversing the Bounding Volume Hierarchy (BVH) tree, the i-queue is filled with all
the previously invisible nodes and the v-queue with the previously visible nodes that
are scheduled for an occlusion test. The render-queue is filled with all the previously
visible nodes that need to be rendered. In addition, the render-queue can also be used for
material sorting to decrease the number of state changes by grouping meshes with similar
materials. Then material state changes only need to be done between material groups.
The different queues and how they interact with one another can be seen in figure 2.3.

Instead of rendering previously visible nodes immediately, they are added to the render-
queue for later rendering to reduce the number of state changes and they are also added to
the v-queue if they need to be queried again. It is assumed that previously visible nodes
will likely stay visible for some frames, so they do not need to be queried every frame,
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thus reducing the number of queries. The amount of frames to wait is temporally jittered,
so the re-tests do not fall into a regular pattern and do not cause lag spikes. Previously
invisible nodes are added to the i-queue and occlusion queries are only executed after the
queue reaches a certain batch size, in order to also minimise state changes. Before the
queries are executed, the render-queue is rendered to fill the depth-buffer. Also, multiple
objects of the i-queue are combined into a single query using a cost-benefit heuristic,
so that objects that are likely invisible again are tested together, further reducing the
number of needed occlusion queries. In addition, tight bounds are rendered instead of the
bounding box when checking for occlusion. The tight bounds are simply the bounding
boxes of the nodes further down the BVH tree, selected by a heuristic. This reduces the
amount of falsely visible detected nodes, because the testing geometry fits the actual
object more tightly, which improves the occlusion classification.

The reported results show a significant improvement over other tested methods like
simple VFC, CHC and Near Optimal Hierarchical Culling [GBK06], outperforming them
in all test cases. The main improvement is caused by the reduction in state changes by
batching the queries with the aforementioned queues [MBW08].

This thesis evaluates how this method holds up when implemented and optimised for the
Vulkan rendering API in comparison to the paper’s implementation in OpenGL.

2.3 Hierarchical-Z culling
Another interesting approach, that has gained more interest in the last few years is Hi-Z
culling. This technique is also used in modern graphics hardware to speed up the depth
check by reducing the number of z-buffer lookups. Taking z-max culling as an example,
the max z-value of all the pixels in a fixed size tile is saved in a separate buffer. Then
the min z-value inside that tile of the tested triangle is compared to the max value. If
the min value is higher than the max value, the triangle is invisible and per-pixel depth
testing is not needed, which spares time [AM18].

A similar approach can be taken to perform such a check manually for occlusion culling
before sending all the geometry through the graphics pipeline. The basic idea behind
this technique is to first render the depth of the occluders into a depth buffer and then
calculate hierarchical MIP levels of the buffer. Each higher level contains the max value
of the four corresponding pixels in the previous level to stay conservative. A selection of
MIP levels of such a depth buffer can be seen in figure 2.4. Afterwards, the bounding
geometry of the occludees that need to be tested is sent to the GPU, which calculates the
screen space bounding rectangle. The size of the rectangle is in turn used to calculate
the MIP level on which the depth should be looked up. The level is calculated in a
way that the screen space rectangle will only overlap up to four of the MIP-levels pixels.
Therefore, only the four pixels need to be looked up and compared to the depth of the
screen space rectangle to determine occlusion, as can be seen in figure 2.5. There is one
problem though, objects that are large on the screen are looked up in higher MIP levels
where the depth is more coarse, which results in the occlusion detection being overly
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2.3. Hierarchical-Z culling

Figure 2.4: Three levels of the generated Hi-Z depth map used for Hi-Z culling. Reprinted
from [Dan10].

Figure 2.5: Shows the pixels of the lookup MIP level of the Hi-Z hierarchy. The AABB of
the object is shown in green. Red shows the screen-space bounding box of the AABB and
blue shows the texels that need to be looked up in the MIP level to check for occlusion.

conservative. But because large objects are more likely to be visible either way and a
better and slower occlusion test of such an object could be slower than rendering, being
overly conservative becomes less of an issue.

This idea is not new: in 1993 Greene et al. presented a paper in which they use an
object space octree and a Hi-Z depth map to check if octree cells are occluded. Then
the previously visible cells are immediately rendered in the next frame to pre-fill the
z-buffer to leverage temporal coherence [GKM93]. Since then graphics hardware and
APIs have made major progress, which makes this kind of approach feasible to implement
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for demanding real-time rendering applications.

In a blog post, Daniel Rákos shows how this technique can be implemented. First, he
renders the occluders into a framebuffer and then generates the Hi-Z depth map through
multiple fullscreen quad passes. This map is then used in conjunction with a geometry
shader that only emits primitives if the object passes the occlusion test, eliminating the
need to wait for the results on the CPU [Dan10].

Nick Darnell also provides an implementation in DirectX where he renders the occluders
into a downsized depth buffer and performs the Hi-Z build on that. Then he uses a
compute pass on the objects’ bounding spheres to calculate the screen-space size and
perform the occlusion tests. Then he reads the results back to the CPU [Nic10].

In addition, similar approaches are presented in blog posts by Stephen Hill and Daniel
Collin [SD11] and Kotas Anagnostou [Kot17], showing that the Hi-Z approach can be
implemented in many different ways.

There are also several other open-source implementations of Hi-Z culling available, some
are included in the blog posts that were already mentioned. Another implementation
was provided by Nvidia. This project is publicly available and includes a test scene with
different modes of culling and drawing [Nvi20]. The culling methods include frustum,
Hi-Z and raster culling. Raster culling uses a geometry shader to generate and render
bounding boxes and if a fragment passed the depth test, the object is marked as visible
in a buffer. They also compare how simple CPU readback rendering (copying the data
back to the main memory and drawing visible objects again) compares to using multi
draw indirect (MDI) and the Nvidia command list (NVCmdLst). With the last two
approaches, they do not need to synchronise the GPU and CPU at all, as the data stays
on the GPU. With MDI they manipulate the GL_DRAW_INDIRECT_BUFFER to
only render visible objects after culling. NVCmdLst operates on a binary token stream
that represents GL commands which are then executed by the driver to reduce CPU
load on API calls. This way a lot of state changes can be performed cheaply as they
are handled by the driver directly, removing the overhead of doing multiple API calls.
This is somewhat similar to the MDI approach but NVCmdLst also includes a terminate
token that can be used to terminate indirect draws. With MDI, empty draw commands
are still issued which costs GPU time. This can be eliminated with the terminate token
[Nvi20].

2.3.1 Masked Software Occlusion Culling

Intel also took up the idea of using a depth map to cull objects but took a different
approach. In a talk at Game Developer Conference (GDC) 2013, they presented Software
Occlusion Culling. This method uses software rasterization of the occluders to the depth
buffer using the CPU. To do this performantly, they tile the depth map so that each
tile can be efficiently rasterized in few instructions with the Single Instruction, Multiple
Data (SIMD) instruction set. Then it performs a depth test of the AABBs of the scene
objects. If a visible pixel is detected, the object is immediately rendered and if not, every
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pixel of the AABB has to be checked which costs more performance [Int13]. In 2016 they
published a paper called "Masked Software Occlusion Culling" which is based on Software
Occlusion Culling. There they do not store the actual depth per tile pixel, but only store
a bitmask and two float depth values for the zeros (Z0) and ones (Z1) of the mask per
tile. The Z0 depth is either set to the clear value or to the depth of a triangle that covers
the whole tile. The Z1 depth is the merged depth of other contributing triangles. This
can then be used for fast "hierarchical" Z occlusion culling on the CPU as multiple tiles
can be checked simultaneously as more data fits into the SIMD registers. In comparison
to standard Hi-Z culling, it is a bit more conservative but still performs better than some
other Hi-Z implementations [HAAM16].

2.4 Culling methods in high-end game engines

This section presents occlusion culling techniques that are currently used by some of the
most well-known game engines and game development companies. Culling methods vary
widely, some use the middleware Umbra 3 and others use highly optimised algorithms
that perform culling on single triangles in multiple stages. The following subsections
present an overview of the methods used in the widely used game engines Unity, Unreal
Engine 4 and CryEngine. In addition, it presents the well-optimised approach used in
the Frostbite engine and the occlusion culling middleware Umbra 3, which is used in
many triple-A game titles.

2.4.1 Unity

In current versions, Unity includes the middleware occlusion culling library Umbra 3 as
its occlusion culling system. This system is abstracted behind a simple-to-use interface,
where the user can tweak settings on the size of the largest occluder and the smallest
holes that are present in the occluders. Then the occlusion information can be baked into
an acceleration structure, used by Umbra at runtime, to perform culling. The pre-process
baking step performs voxelisation on the scenes and determines which parts are connected
and places portals there. This information is then used at runtime to perform visibility
detection. A more detailed explanation is provided in the Umbra 3 section 2.4.5.

This system is easy to use as occluders and occludees only need to be tagged correctly in
the engine. After that, the occlusion data just needs to be baked, although the parameters
need tweaking depending on the scene for best performance. But the baking process can
take a really long time depending on the parameters and the complexity of the scene.
Unity also provides some debug views, as Umbra can be overly conservative, which can
cause errors with some geometry and parameter settings [Uni19, Hou13].

2.4.2 Unreal Engine 4

Unreal Engine 4 (UE4) provides several occlusion culling methods to choose from out of
the box. These include standard distance and view frustum culling but also precomputed
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visibility and dynamic occlusion culling. The first and default dynamic occlusion culling
technique is hardware occlusion queries, which was already detailed above. The difference
is that the results are read back a frame later because of the latency of the queries. But
this can cause objects to pop in on fast camera movement as they can become visible a
frame too late. They also include Hi-Z culling, which is stated to be more conservative
but works the same as occlusion queries in terms of frame latency. For mobile, they also
provide software occlusion queries that rasterize a defined LOD level of the geometry on
the CPU to perform culling. In addition, they include round-robin occlusion which is
used for VR: It calculates occlusion only for one eye alternating each frame. Results are
also used a frame later which can cause errors as stated previously [Gam20].

2.4.3 CryEngine

Crytek called their occlusion culling method Coverage Buffer. Their occlusion culling
system uses the last frame’s depth buffer and down-samples and reprojects it on the
CPU. Then the AABBs of the occludees are rasterized on the CPU for z-testing. Their
approach is not conservative as it can happen that it culls objects that are actually visible.
On the other hand, they achieve better performance this way [Sco15].

2.4.4 Frostbite

EA put a lot of work into optimising Frostbite’s culling mechanisms for the current
console generation and PC. Graham Wihlidal presented their graphics pipeline at the
GDC 2016 [Gra16]. The engine is mainly optimised for the AMD GCN architecture
and different culling mechanics are performed, some of which even per triangle. AMD
open-sourced this solution as GeometryFX as a part of AMD GPUOpen.

In Frostbite, rendering is performed in batches of meshes—meshes that have the same
shader and vertex strides—which are sent to the GPU in a single MDI buffer. Then
coarse culling is performed on clusters of 256 triangles. These clusters and their bounding
cones are calculated in a pre-process step. The optimal bounding cones are found by
projecting the normals of each of the clusters 256 triangles onto a unit sphere. Then
the minimum enclosing circle of all the points on the sphere is found. The angle of the
cone is the diameter of this circle and the cone normal is projected back to the Cartesian
coordinates. There the clusters’ bounding cone is used for backface culling by comparing
its direction and angle to the view direction, the bounding sphere is used for frustum
culling and the screen space bounding box is used for Hi-Z culling. Then the indirect
draws are compacted and zero size draws are removed for better performance [US15].
Afterwards, per triangle culling is performed on the remaining geometry. First backface
culling is performed. Then the min and max extents of the bounding box are used for
small triangle culling. If two min/maxed edges fall onto the same pixel edge, the triangle
gets discarded, as the triangle is between the pixel centres and would not be rasterized.
Then simple frustum culling with four planes is performed again to further reduce the
number of triangles. At last, a Hi-Z depth map is used for occlusion culling again. They
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generate the depth map with the help of the HTILE metadata available on the GCN
hardware or via software rasterization or a depth pre-pass on PC. Although this culling
system is rather complicated it saves a good share of the rendering cost as they could
cull nearly up to 80% of the triangles in their test scene [Gra16].

2.4.5 Umbra 3

Umbra 3 is an occlusion culling middleware that can be integrated into an existing
game engine. It is built to operate on arbitrary polygon soups and uses a pre-process to
generate the occlusion culling data structures and a runtime stage to perform the actual
culling [3D18]. Because it is cheaper to license than to implement it yourself and because
of its great performance, it is used by many AAA development studios and publishers,
some of which are Activision, Bethesda, Capcom USA, Square Enix, CD Project Red
[BS], the Unity game engine [Uni19] and more. Umbra provides a scalable approach for
fast and conservative occlusion culling of any given triangle soup [Gam].

The preprocess

In the pre-processing stage, the polygon soup is split into a regular axis-aligned grid,
where each cell is further voxelised. This can be seen in figure 2.6. Each voxel is then
classified as solid or empty by flood filling the cell. Portals are defined at the faces of
the cell with adjacent empty voxels. This is in turn used to create a connected cell and
portal graph of the voxelised scene. Static objects are also voxelised and assigned to a
cell to make culling easier later on.

Because this results in a lot of portals, the graph is further simplified by merging portal
cells that do not contribute much to occlusion. This is done iteratively until a certain
occlusion score threshold or memory threshold is reached. But this representation is
still too complex for runtime traversal, so another simplified version is created called the
view-tree. To do so, adjacent voxels with the same classification are grouped together.
Also, regions where the camera will never be, like high up or below the map, can be
collapsed into single cells. A top-down view of such a graph can be seen in figure 2.7.

Because this pre-process takes a lot of computational power and memory, the generation
is split into separate tiles. These tiles can be calculated independently from each other in
parallel and on distributed systems. In addition, not every tile needs to be recalculated if
something is changed, further improving generation performance for incremental updates.
Therefore this system can also be used in huge open world scenarios [3D18].

Runtime occlusion culling

For the real-time part, the cells of a tile are processed in a front-to-back breadth-first
fashion. There the portals are software-rasterized into a one-bit coverage buffer, where
each set bit represents empty space of the cell that is visible through the portal. Then all
the screen space bounds of the cell’s static objects are tested against the coverage. If the

15



2. Related work

Figure 2.6: The voxelisation of the occluder geometry used in Umbra 3. Reprinted from
[3D18]

bounding rectangle overlaps a set bit, it is visible. Because static objects got assigned to
the cells in the pre-process, this can be done easily.

Because dynamic objects cannot be assigned to cells easily at this point, another solution
is used. While traversing, a low-resolution depth buffer is generated with the cell’s
bounds. This buffer is then used to cull any dynamic object in the scene [3D18].
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Figure 2.7: The optimised cells generated in the Umbra 3 pre-process. Reprinted from
[3D18]
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CHAPTER 3
Problems

Re-implementing CHC++ for a newer hardware and graphics API—in our case the
Vulkan API—comes with some challenges that need overcoming to achieve similar results
as in the original study [MBW08]. Most notably is the difference between OpenGL, which
was used in the original paper, and Vulkan, as these two APIs are rather different in terms
of draw call submission, state changes and synchronisation. This especially becomes a
problem because of the dynamic nature of the CHC++ algorithm, as it repeatedly has
to switch between rendering and occlusion queries. Also, some benefit of using occlusion
culling in comparison to no culling is likely lost because the improved design and low-
overhead nature of the Vulkan API, which means that more optimisations are needed
to get better performance out of CHC++. In addition, transparency was not addressed
in the original paper, therefore a new solution had to be found to correctly render
transparent and alpha-blended geometry while still being able to cull said geometry.

The following sections detail the problems that were encountered while implementing
and analysing the behaviours of CHC++ in Vulkan on modern hardware. Solutions to
these problems are presented in the Implementation chapter afterwards.

3.1 Vulkan vs. OpenGL

Although OpenGL and Vulkan have some things in common, setting the current state
and performing work on the GPU is handled rather differently. In OpenGL, a global state
called the OpenGL context is used to define certain rendering parameters which can be
changed at will through different OpenGL commands. For example, this can be changing
a setting of the fixed function states, binding a shader or texture, or changing blending
behaviour. Each of these API calls needs to go through the graphics driver to be validated
and executed, which costs time. Because a lot of such state changes are often needed to
get the context into a desirable configuration, a significant overhead is introduced. The
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same goes for draw commands, which can be executed any time—provided the state is
correct.

Vulkan on the other hand uses a more object-oriented approach without the need of such
a global state. Therefore, objects that represent a collection of configurations are used.
As an example, one of these objects is the Pipeline State Object (PSO), which is an
object containing the configurations of the shaders and its needed data bindings, the
viewport, the rasterizer and more. Therefore only one API call is needed to change the
whole pipeline, whereas OpenGL needs multiple. This reduces the amount of needed
API calls immensely, which results in less overhead and better performance in most cases.
Because Vulkan uses these objects to define states, nearly everything has to be specified
explicitly. This can make developing Vulkan applications difficult as most things that
are implicitly specified in OpenGL need to be taken care of in detail. This leads to a lot
of boilerplate code needed to perform simple tasks, which can be daunting at first and
also lead to errors more easily. On the other hand, this provides the developer with the
most flexibility to achieve optimal performance.

Vulkan also has a different concept for performing operations on the GPU. Most operations
are not simply started by a call to some API function but instead need to be recorded
in a so-called command buffer. A command buffer then needs to be submitted to a
queue for execution on the GPU. These command buffers are created on the CPU and
can also be used multiple times without the need to re-record them. Therefore only
a single submission to the GPU is needed to perform a multitude of pipeline state
changes, resource bindings, compute passes, synchronisation, draw calls and so on. This
vastly increases the amount of work that can be done in a single API call, reducing
the overhead to a minimum. Although the driver executes most OpenGL commands
asynchronously, Vulkan enables the developer to decide when a huge chunk of work—a
command buffer—should be executed asynchronously on the GPU. This makes it easier
to schedule parallel computations on both the CPU and GPU, but also introduces the
need for explicit synchronisation on both sides.

Therein lie some of the major problems that were encountered while implementing
CHC++ for Vulkan, which will be discussed in the following subsections.

3.1.1 Command buffers

Due to the fact that command buffers aggregate multiple draw calls into a single submit,
draw calls become rather cheap in comparison to OpenGL where each draw call has to
go through the driver separately. Unless something like MDI is used, which can be used
to write multiple draw parameters into a single buffer which only need one draw call to
execute.

CHC++ is dynamic by nature because rendering and occlusion queries are interleaved to
reduce both CPU stalls and GPU starvation. This is achieved by issuing queries only
after enough nodes are accumulated. Then the renderqueue is drawn and the queries are
issued. This can be implemented straightforwardly in OpenGL, simply by issuing draw
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calls and queries. But this becomes a problem when you need to think about command
buffers, as you need a varying amount of them which need to be allocated.

Therefore, command buffer management needs to be taken care of. Because the number
of submissions vary between frames, the amount of needed command buffers also varies.
One could either allocate command buffers at runtime, which will cost time or allocate a
fixed amount of buffers and reuse them when needed. Allocating at runtime will likely
introduce more overhead, which could cause lag spikes in cases where a lot of them need
to be allocated. In turn, a fixed amount will increase memory usage and could cause
CPU stalls when all buffers are in flight (in computation on the GPU) and the CPU
needs to wait on the completion of one of them.

3.1.2 Submission overhead

As previously stated, command buffer submits come with an overhead both on the CPU
and GPU side, therefore submissions should be kept to a minimum. Because of that, it
needs to be decided what should be recorded into a single command buffer and what
needs to be split up into multiple. CHC++ relies on work being executed on the GPU
while the CPU is doing traversal of the BVH, so it can submit previously visible queries
while waiting on the already submitted queries to finish.

Therefore, multiple submits need to happen in order for that to be possible, else the
CPU would just stall until all the queries are completed. One could simply submit at
each state change from rendering to queries, but that would result in many submissions
causing poorer performance because of the overhead. Or different draws and queries could
be batched into single submits reducing the number of submissions. What makes this
difficult is that at multiple stages in the algorithm either geometry needs to be rendered
or occlusion queries need to be issued. The problem therein is, that it is not known
in advance when the switch from rendering to occlusion queries happens, as additional
queries could be issued when another query finishes in the middle of the BVH traversal.
For example, when a multiquery—a single occlusion query for multiple BVH nodes—fails,
occlusion queries for each of the nodes in the multiquery need to be issued, but it is not
known when the next batch of queries are issued, making it hard to batch. The same
problem occurs when issuing v-queue queries while waiting for other queries to complete.
A proper balance needs to be found to ensure that the overhead is kept to a minimum
and the CHC++ operation is not hindered.

3.1.3 Synchronisation

In the case of CHC++ in OpenGL, synchronisation is not a problem, as the draw calls
and framebuffer accesses are implicitly synchronised. In Vulkan however, everything
needs to be specified explicitly and synchronisation is not an exception. Command buffer
submission needs to be synchronised on the GPU and CPU because they are executed
asynchronously. Semaphores can be used to synchronise different submits on the GPU
to establish a before-after relationship between certain pipeline stages. The state of a
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semaphore can also be checked on the CPU side. Additionally, because command buffers
cannot be re-recorded while they are being executed on the GPU, fences are needed
to synchronise them on the CPU side to know when they have finished executing. A
fence is signalled when the command buffer execution has completed, which enables the
re-recording of said buffer. Pipeline barriers can be used for synchronisation inside of a
command buffer, as commands are not necessarily executed in the recorded order.

In the case of CHC++ it needs to be guaranteed that rendering has finished and all
depth values have been written before the occlusion queries are executed. Also, the
next rendering step needs to wait for the queries to finish, as the depth buffer cannot
be written while the queries are executing. Therefore, depending on how the command
buffers are used, semaphores and pipeline barriers need to be utilised to ensure proper
ordering on the GPU side. In addition, command buffer submits need to use fences in
order to ensure that they are only re-recorded if they have already completed execution.

3.2 Transparency
Transparency and alpha masked geometry was not part of either CHC and CHC++, but
is vital for modern games and rendering in general. Transparent objects are a bit of a
special case for occlusion culling because they need to be handled a bit differently than
solid geometry. Foremost, transparent or alpha masked objects also need to be culled
the same as other objects, as they can be occluded like others. But transparent objects
especially are not allowed to occlude other geometry and therefore need to be taken out
of the depth buffer rasterization that is needed for the occlusion queries. Alpha masked
objects can still be used as occluders, if only the silhouette could be rendered into the
depth buffer and not the geometry itself, which could cause false positives while culling.

Additionally, transparent objects need to be alpha blended correctly to get the right
resulting colour. The easiest way for that is to render them back-to-front after everything
else has already been rendered. Therefore, rendering for these objects needs to be
postponed and cannot happen while the render-queue is rendered. This also falls in line
with not rendering to the depth buffer for culling, solving one problem while solving
another.
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CHAPTER 4
Implementation

The application was developed in C++ version 17 and Vulkan SDK version 1.2.131.2. At
first, a naive re-implementation was made with excessive synchronisation on the CPU to
see where problems with Vulkan arise. Step by step these problems, as detailed in chapter
3, were found and solutions were integrated. Because of the dynamic nature of CHC++,
some of these problems were hard to find. Therefore, profiling of the application via
Nvidia Nsight and statistics exported from the application were vital to finding them.

A lot of the algorithm is identical to the original algorithm with the additions to solve
the problems in conjunction with Vulkan. A Surface Area Heuristics - Bounding Volume
Hierarchy (SAH-BVH) of the axis-aligned bounding boxes of the scene’s objects was
generated at runtime, but without tight bounds for the leaf-nodes, as this would only
provide a minor performance enhancement. The scenes were loaded from glTF files.
Heuristics used by the original CHC++ algorithm—mainly the generation of multiqueries—
stayed the same, as they should not have changed by much. The following sections detail
the solutions to the problems described in chapter 3.

4.1 Handling command buffers

As stated in sections 3.1 and 3.1.1 it is not trivial to port an algorithm from OpenGL
to Vulkan due to their major differences in handling draw calls. Command buffers need
to be handled accordingly because it is not known in advance how many are needed for
each frame in CHC++. As a simple solution, this implementation uses a ring-buffer of
command buffers with a fixed size. This means, whenever the last command buffer of
the ring-buffer was used, the first one is used again the next time, so no new command
buffers need to be allocated at runtime. Looking at the pseudocode of algorithm 4.1 at
line 22 the function StartCommandBuffer() simply retrieves a new command buffer
from the ring-buffer and starts recording draw commands.
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For this thesis, this is a sufficient solution, but it also has some drawbacks if implemented
in a bigger project. The main problem is having the right amount of buffers at hand
to never run out while rendering, because if all the command buffers are in use at the
same time, the CPU needs to wait for one to finish. This could probably be solved by
dynamically allocating additional command buffers when more are needed. This would
improve performance if the time needed to allocate a new buffer is less than the time
waited on the completion of a buffer. This project just uses a sufficiently sized ring-buffer,
so this case never occurs.

4.1.1 Synchronisation

With multiple command buffer submits per frame, proper synchronisation is needed.
Therefore, the command buffer ring-buffer does not only store command buffers but also
a fence and semaphore primitive for each command buffer. This enables synchronisation
before we start recording on the CPU using the buffers fence, stalling if the command
buffer is already in execution. Although this should not happen with a sufficiently sized
amount of command buffer, this needs to be done to avoid undefined behaviour. In
addition, the semaphores allow us to easily achieve synchronisation on the GPU side, as
we can simply retrieve the semaphore of the previous submit from the ring-buffer. This
makes it possible to effortlessly chain multiple queue submits with proper synchronisation.

4.2 Reducing queue submits
Looking back to section 3.1.2, submission overhead can become a problem when too
many submissions are issued to the queue. While implementing, it became apparent that
this is the main issue that needs to be solved in order for CHC++ to reach acceptable
performance under Vulkan. The reason is that without proper batching, a lot of small
submissions need to be made, that suffer from overhead that is bigger than the actual
work being done on the GPU. Therefore, a lot of work went into finding out where the
drawing commands and occlusion queries can be batched into single submits as much as
possible.

4.2.1 Batching draws and queries

Looking at the original CHC++ algorithm, it can be observed that the renderqueue
is always rendered before one or multiple occlusion queries are issued. This leads to
the first most obvious choice to create a batch. This can be seen in the function
IssueMultiQueries() at line 26 in algorithm 4.1. There the command buffer is started
in the beginning, then the draw commands of the renderqueue and the query commands
of the occlusion queries are recorded. At last, the command buffer is submitted. A
pipeline barrier is recorded between the draw and query commands to ensure that all
draw commands finished writing the depth buffer before the queries are executed. This
allows for the execution of a multitude of draw and query commands with a single queue
submit.
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Algorithm 4.1: Opti-CHC++ — Traversal
1 Function Traverse():
2 DistanceQueue.push(Root);
3 while !DistanceQueue.Empty() || !QueryQueue.Empty() do

// Handle Queries
4 CheckQueries();

// Actual Traversal
5 if !DistanceQueue.Empty() then
6 N = DistanceQueue.Pop();
7 if InsideViewFrustum(N) then
8 if IntersectsNearPlane(N) then
9 N.IsVisible=True;

10 PullUpVisibility(N);
11 TraverseNode(N);
12 else
13 if !WasVisible(N) then
14 QueryPreviouslyInvisibleNode(N);
15 else
16 if N.IsLeaf() && QueryReasonable then
17 vQueue.Push(N);
18 TraverseNode(N);

// Issue queries, if nothing else to do
19 if DistanceQueue.Empty() && QueryQueue.Empty() then
20 IssueMultiQueries();

21 if !RenderQueue.Empty() || !vQueue.Empty() then
22 StartCommandBuffer();
23 RenderRenderQueue();
24 while !vQueue.Empty() do
25 IssueQuery(vQueue.Pop());
26 SubmitCommandBuffer();
27 while !QueryQueue.Empty() do
28 HandleOcclusionQuery(QueryQueue.Pop());
29 RenderTransparentMeshes();
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This is also used in the function CheckQueries() (line 1 in algorithm 4.2) where v-queue
nodes are recorded to a single command buffer, as long as the first query has not yet
finished, which would otherwise cause a lot of submits. Although this eliminates most
of the small submits, they can still happen when only a single node of the v-queue is
queried and then the first query finishes for example. But it could be observed that this
is an adequate solution nevertheless, as the edge cases do not happen too often to cause
a significant performance impact.

Algorithm 4.2: Opti-CHC++ — Functions 1
1 Function CheckQueries():
2 while !QueryQueue.Empty() && (DistanceQueue.Empty() ||

FirstResultAvailable) do
3 while !FirstResultAvailable && !vQueue.Empty do
4 if !CommandBufferStarted then
5 StartCommandBuffer();
6 RenderRenderQueue();
7 IssueQuery(vQueue.Pop());
8 CheckFirstQueryAvailability();
9 if CommandBufferStarted then

10 SubmitCommandBuffer();
11 HandleOcclusionQuery(QueryQueue.Pop());

It was also observed that the if at line 19 in algorithm 4.1 caused a lot of small submits
with its original if condition that only contained a check if the distance-queue was empty.
This simply happened too often, which was not a problem in OpenGL. Now with the
added check—if the query-queue is also empty—this happens far less often, which in
turn reduces the amount of submits.

4.2.2 Batching failed multiqueries

Because multiqueries test multiple nodes in a single query to reduce the number of
queries, all of them need to be re-tested when one such multiquery fails. In the original
implementation, these nodes are tested immediately when the failed query is checked.
In scenarios, where not much is rendered and queried, this does not become much of a
problem as this does not happen all too often, because the multiquery creation heuristic
performs well. There the higher submission count overhead does not degrade performance
by much. However, the more queries are issued, the higher the amount of failed queries.
This would mean the number of submits would scale directly with the number of failed
queries, which causes significant performance penalties in low-occlusion and high-density
viewpoints of a scene. Because the queries are checked while traversing, this could happen
at any point, making batching harder. Therefore another solution had to be found.
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The solution we found is to accumulate all the nodes of the failed multiqueries and
issue their occlusion queries at a later point. For this, another queue—the c-queue—was
introduced. Then, whenever we encounter a failed multiquery, we add its nodes to the
c-queue (line 16 in algorithm 4.3). Now whenever multiqueries are issued, the queries
of the c-queue nodes are also issued afterwards. This effectively reduced the submits to
a minimum, even if a lot of the multiqueries fail. Also delaying their checks can yield
better culling results, as more of the visible geometry has been drawn at that point.

4.3 Handling transparency
As stated in section 3.2, transparency rendering was not handled by the original algorithm
and was therefore integrated into this implementation. Two separate queues were added,
one for alpha-blended and one for alpha-masked geometry. Now, each time a transparent
object is added to the renderqueue, it is actually added to either the alpha-blended
or alpha-masked queue. Because the BVH tree is already traversed front-to-back, the
objects in the two alpha queues just need to be rendered in reverse order at the end of
the traversal to achieve back-to-front sorting.

First of all, this enables the correct rendering of transparent objects with correct blending
because of the back-to-front order. Additionally, the transparent objects are also correctly
culled if they are out of the viewing frustum or occluded, as this approach does not
interfere with the general culling algorithm, i.e., the transparent objects are not handled
differently while culling. Also, because the transparent meshes are never added to the
actual renderqueue, they are not present in the depth buffer while checking for occlusion.
This elegantly solves the problem that transparent objects should not be considered as
occluders.
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Algorithm 4.3: Opti-CHC++ — Functions 2
1 Function TraverseNode(Node):
2 if Node.IsLeaf() then
3 if Node.IsOpaque() then
4 RenderQueue.Push(Node);
5 else
6 TransparentQueue.Push(Node);
7 else
8 DistanceQueue.Push(Node.Children);

9 Function PullUpVisibility(Node):
10 while !Node.IsVisible do
11 Node.IsVisisble = true;
12 Node = Node.Parent;

13 Function HandleOcclusionQuery(Query):
14 if Query.Visible then
15 if Query.NodeCount > 1 then

// handle failed multiquery
16 cQueue.AddAll(Query.Nodes);
17 else

// handle failed single node query
18 PullUpVisibility(Query.FirstNode());
19 TraverseNode(Query.FirstNode());
20 else
21 Query.SetNodesInvisible();

22 Function QueryPreviouslyInvisibleNode(Node):
23 iQueue.Push(Node);

// Issue queries when batch size is reached
24 if iQueue.Size() > batchSize then
25 IssueMultiQueries();

26 Function IssueMultiQueries():
27 StartCommandBuffer();
28 RenderRenderQueue();
29 while !iQueue.Empty() do
30 MQ = GetNextMultiQuery(iQueue);
31 IssueQuery(iQueue);
32 iQueue.PopNodes(MQ.Nodes);
33 while !cQueue.Empty() do
34 IssueQuery(cQueue.Pop());
35 SubmitCommandBuffer();
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CHAPTER 5
Results and Discussion

The main goal of this thesis was to adapt CHC++ to a modern rendering API—Vulkan
in our case—and evaluate how the results compare to the previous implementation and
how it performs on today’s hardware.

The project was tested on a Windows 10 x64 PC with an Intel i5 6600k CPU overclocked
to 4.5 GHz, 16 GB of RAM and an Asus Strix - Nvidia GTX 1070 GPU at default
clock rates. As a main test scene we used the Neu Rungholt Minecraft map by kesha,
because it contains a lot of buildings which provide a lot of occlusion. The map was
exported via mineways into an OBJ format, in a way that every chunk and material
are in a separate mesh to get a more fine-grained subdivision of the map. Splitting the
world into smaller pieces allows for more fine-grained occlusion culling than it would have
if only split by material. The OBJ file was then converted to glTF using the NodeJS
tool obj2gltf . Additionally, the Lumberyard Bistro [Lum17] was used for testing, as it
provides high and low occlusion areas with a lot of transparent objects. The sub-models
were imported into Blender and then exported as a single glTF file. Texture size was
halved to not overflow GPU memory and materials were manually edited in the glTF file
to have correct transparency.

A walkthrough was recorded for each scene, which was subsequently replayed using
different rendering methods. Statistics were recorded at every frame while replaying.
GPU times were recorded using Vulkan Timestamp queries for accurate measurements.
Generated graphs and the Nvidia Nsight System profiling tool were used for evaluation.

5.1 Results
The new optimised CHC++ algorithm titled Opti-CHC++ shows significant performance
gains in high occlusion environments over VFC and is on par or slightly worse in low
occlusion environments. This can be seen in the frame time comparison of the New
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Rungholt walkthrough in figure 5.1. The unoptimised CHC++ performs nearly as good
as the optimised version in most cases but exhibits huge spikes in frame time when a lot of
queue submits happen. Opti-CHC++ also performs great in the worst-case scenario here,
where the camera looks down at the whole city and most geometry is not occluded. This
can be seen in the graph after frame 3500, where the camera is gradually rising upwards.
In this case, it can also be observed that the unoptimised version of CHC++ starts to
perform consistently worse than VFC and even no-culling. Additionally, framerate is
more stable when compared to VFC and the unoptimised version. Opti-CHC++ stays far
over 144 FPS until the worst-case happens, whereas VFC fluctuates repeatedly because
of the much higher overdraw.

0 1000 2000 3000 4000

0
5

10
15

20
25

Frame time comparison

Frame

F
ra

m
e 

tim
e 

in
 m

s

60
 fp

s
14

4 
fp

s

Opti−CHC++
Unoptimised−CHC++
Frustum Culling
No−Culling

Figure 5.1: CPU Frame time comparison of Opti-CHC++ vs. Unoptimised-CHC++ vs.
Frustum Culling vs. No-Culling in the Neu Rungholt walkthrough.

On average, Opti-CHC++ reaches around 497 FPS and VFC reaches around 200 FPS
in the Neu Rungholt walkthrough. This shows that Opti-CHC++ is nearly 2.5 times
faster than VFC in this test scene. In addition, Opti-CHC++ does not fall below 91
FPS, whereas the FPS of VFC fall as low as 45. Opti-CHC++ was also around 1.6 times
faster on average in this scene than the unoptimised version.

In comparison, the walkthrough of the Lumberyard Bistro depicted in figure 5.2 does not
perform as well. It only performs better from frame 400 to 800, where the entire interior

30



5.1. Results

of the Bistro is occluded. In the rest of the walkthrough, almost no geometry is occluded.
Although Opti-CHC++ does not perform better than VFC in this case, it does not
perform significantly worse in this scenario. This means that the overhead caused by the
occlusion checks does not degrade performance by much and Opti-CHC++ is therefore
a viable occlusion culling solution. In huge parts of this walkthrough the unoptimised
version of CHC++ performs significantly worse than without culling, because of the huge
overhead of the many submits and excessive synchronisation.
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Figure 5.2: CPU Frame time comparison of Opti-CHC++ vs. Frustum Culling vs.
No-Culling in the Lumberyard Bistro walkthrough.

Also, all the transparent objects like glasses, bottles and foliage are correctly rendered
and culled in this scene because of our transparency handling addition to the algorithm,
as can be seen in figure 5.3.

Opti-CHC++ and VFC both reach the the same average FPS of 295 in the Bistro. This
shows that there is not much benefit from using this occlusion culling method if the
scene does not contain much occlusion. On the other hand, this further solidifies the
argument that Opti-CHC++ does not degrade in performance in such cases. In this
scene, Opti-CHC++ is also around 1.3 times faster than the unoptimised version on
average.

Looking at GPU frame timing of the Rungholt walkthrough in figure 5.4, it can be
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Figure 5.3: The correct alpha blending of the glasses and window panes in the Lumberyard
Bistro scene can be seen on the left. On the right, the correct alpha cutouts of the leaves
in the Neu Rungholt scene can be seen. There the correct blending of the water and the
window panes in the background can be observed.

observed that most of the time is used by rendering and only a tiny amount is used by
the queries itself. Towards the end of the graph, the gap between the rendering and the
overall frame-time widens, showing the amount of additional overhead introduced by
multiple queue submits. Figure 5.7a and 5.7b also show how much the number of queries
and therefore submits increase in this timespan as more of the scene becomes visible.
This and the profiling done in Nvidia Nsight Systems in figure 5.5 shows that the GPU
is nearly fully utilised while rendering a frame. This means that the graphics card is
optimally used and hardly any starvation happens.

But looking at the frame-timing on the CPU side, it can be seen that the majority of the
time is wasted on waiting on the completion of occlusion queries as can be seen in figure
5.6. This means that the CPU is stalling for most of the frame, which is not desirable,
as this time could be used to perform other tasks on the same thread. This could be
attributed to the significant performance increase of today’s hardware and because work
is submitted less often to the GPU, increasing the latency of the occlusion queries. But
because most modern rendering engines operate multi-threaded, this is less of a problem
as other threads are not stalled. In addition, it can be noticed that the queue submission
time has been brought to a minimum by various optimizations discussed in chapter 4.

Additionally, VFC renders around 8.1 million triangles on average, Opti-CHC++ 1.2
million and an optimal culling solution 450.000 in the Neu Rungholt scene as scan be
seen in figure 5.8. This shows that Opti-CHC++ provides approximately a 6.8 times
reduction of rendered triangles over VFC in this scene. But it also shows that it still
renders approximately 2.6 times more triangles than an optimal culling solution. The
reason for that is that visible objects are assumed to stay visible for some frames and
visibility changes are ignored in this time period, resulting in objects that are wrongly
classified as visible. But because this is an integral part of the CHC++ algorithm
to improve performance, a different approach is likely necessary to get the number of
rendered triangles to optimal levels.

However, in the Lumberyard Bistro scene VFC renders around 1.2 million triangles
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Figure 5.4: GPU Frame timing of the Neu Rungholt walkthrough. Shows that most of
the time is used by rendering and overhead when a lot of submits happen.

on average, Opti-CHC++ 625.000 and with optimal culling 470.000 which can be seen
in figure 5.9. This only results in an approximate 2 times improvement from VFC to
Opti-CHC++, likely due to low occlusion in this scene. Opti-CHC++ still renders around
1.3 times more triangles than the optimal solutions, likely because of the same reason as
in the Rungholt scene. But it shows that triangle numbers and performance can still be
improved in high and low occlusion scenes.

5.2 Discussion
Although the optimised CHC++ algorithm performs well in Vulkan, the performance
difference between CHC++ and VFC found in the original paper could not be replicated.
Looking at figure 5.10 it can be seen that the difference is a lot bigger than with Opti-
CHC++ which can be seen in figure 5.1 and 5.2. Also, the original implementation
performed consistently better, never falling back to the performance levels of VFC.

Sadly it is not entirely clear what OpenGL version the original implementation used,
but it is likely version 3.0 or earlier, as this version was released in the same year as
the CHC++ paper. The performance difference of the original CHC++ implementation
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Figure 5.5: Screenshot of Nvidia Nsight System profiler of a frame of the Rungholt
scene. The top row shows the time needed on the CPU for the command buffer creation.
The next rows show the frame time on the CPU and GPU for this frame. Submits are
back-to-back in the Queue 1 row, showing that the GPU is nearly fully utilised. The
GPU Markers row show how much is rendered (green) and queried (cyan) per render
pass (magenta).

was far greater back then, assumedly because OpenGL API calls were more expensive
as a lot of API features of newer versions were not available. This probably made the
benefit from reducing state changes and occlusion queries far greater than it is now with
Vulkan. Also, the binary that accompanied the original implementation in [BMW09]
was tested on newer hardware. Comparing the performance of CHC++ and VFC in
this application, CHC++ performed up to ten times faster than VFC, showing similar
performance differences than on older hardware used in the original paper. This further
proves the point, that the high performance increase of CHC++ could be attributed
to the older OpenGL version being used in the original implementation because it still
performs similarly. Figures 5.8 and 5.9 also show that that the number of culled triangles
approaches the optimum, meaning that the original performance difference is likely not
attainable in modern implementations. This is because further reduction in rendered
triangles will likely not yield as big of performance improvement. Additionally, a lot of
OpenGL extensions that could increase performance in this case were not yet available.
Therefore, a new implementation with more sophisticated OpenGL methods—like Zero-
Driver Overhead [CGJT14] using MDI—would probably yield similar results to Vulkan
in terms of performance difference.

Furthermore, most of the game engines described in section 2.4 use either Umbra 3 or
some form of Hi-Z culling and only Unreal Engine 4 uses occlusion queries. This shows
that there is a reason why almost all of them do not use occlusion queries, which is
most likely the high latency from occlusion query to result. Even UE4 uses the occlusion
culling results one frame later as a simple solution to reduce the latency, which in turn
introduces unwanted artefacts. Even though CHC++ solves the latency problems of
occlusion queries, a simpler more straight-forward algorithm—using Hi-Z culling for
example—could prove to yield better results. Simpler algorithms and scheduling could
mean that less time is lost to multiple submits and also that more of the geometry can
be culled than CHC++ if visibility does not need to be assumed for multiple frames.
Different techniques for occlusion detection are presented in chapter 2 and some ideas on
other possible approaches are shown in section 6.2.
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Figure 5.6: CPU frame timing of Opti-CHC++ in the Neu Rungholt scene. Shows that
most time is spent on waiting on the completion of occlusion queries and that the queue
submission time has been brought to a minimum.

Even though Opti-CHC++ does not achieve the high performance increase over VFC
as the original implementation, it still provides a nearly optimal reduction in rendered
triangles with an up to 2.5 times performance increase over VFC in high occlusion scenes.
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Figure 5.7: Shows the number of queries and queue submits of the Rungholt walkthrough.
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Figure 5.8: Number of rendered triangles in the Neu Rungholt scene.
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Figure 5.9: Number of rendered triangles in the Lumberyard Bistro scene.

Figure 5.10: Frame timing of the original CHC++ implementation. Reprinted from
[MBW08].
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CHAPTER 6
Conclusion

6.1 Summary

This thesis provides an adapted implementation of CHC++ that efficiently runs on
Vulkan and modern hardware. This could be achieved by batching draw calls and
subsequent occlusion queries into single command buffer submits, which reduces the
amount of overhead. An additional queue—the c-queue—was introduced to store the
nodes of failed multiqueries for later execution. The occlusion queries of these nodes get
issued in the same submit as other queries to further reduce the number of command
buffer submissions. This allows the GPU to perform a chunk of work while the CPU
can traverse the rest of the BVH tree and generate the next command buffer. Proper
synchronisation also allows for multiple command buffers to be in execution at the same
time. Additionally, proper transparency support was added by storing alpha-masked
and alpha-blended nodes into separate render queues that are rendered backwards in
a back-to-front order at the end of traversal for correct blending. This also allows for
correct culling of transparent geometry by not considering them as occluders but still
culling them if occluded. Although the high performance difference between CHC++ and
VFC of the original implementation could not be replicated, the algorithm still provides
great performance enhancement in scenes with high occlusion and does not degenerate in
worst-case scenarios. Our optimised version of CHC++ performed up to 2.5 times better
than standard VFC on average in the Neu Rungholt Minecraft map test scene and was
as fast as VFC in the Lumberyard Bistro test scene with low occlusion.

6.2 Outlook

Although Opti-CHC++ has been greatly optimised to run on Vulkan and on modern
hardware, there are still some things to consider to potentially further improve its
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effectiveness. Some of these possible improvement ideas are elaborated in the following
subsections.

6.2.1 Multithreading

One of the main characteristics of the algorithm is that it is single-threaded. Therefore,
making the algorithm multithreaded could be beneficial. But doing so might prove
difficult or even impossible, as it relies on the BVH being traversed breadth-first. So if
the BVH tree is just split into subtrees that are traversed on a separate thread, separate
render targets for each would also be needed. These would need to be combined in
the end somehow. Note that this will result in non-optimal culling as occluders in one
rendertarget could occlude objects in another and vice-versa.

A more optimal approach would be to split the viewport into multiple pieces and perform
some form of tiled rendering where each tile only considers BVH nodes inside its frustum.
In this case, nodes that intersect the inner frustum planes would need to be considered
specially by either traversing them multiple times or once at the end of the algorithm.
Whether this is a feasible approach and would actually yield more performance would
need to be evaluated in more detail.

6.2.2 Make algorithm GPU resident

Another possible improvement could be putting the whole algorithm on the GPU. This
entails putting the entire BVH in GPU memory and managing it there. The algorithm
would need to run in a compute shader. Here arises the first problem as you would need
to perform draw calls and occlusion queries from withing the compute shader, which is
not possible at the moment. Otherwise a CPU roundtrip is still needed to make the draw
and query calls and then compute shader needs to be restarted if it has not finished with
the traversal. This reintroduces the need to stall the CPU or perform other work in the
meantime. But if this is done in conjunction with indirect drawing, the command buffer
can be reused, keeping the CPU load to a minimum. Since the algorithm is already GPU
bound, this could also hinder performance instead of increasing it. On the other hand lot
of CPU resources will be freed that can be utilised for other tasks.

6.2.3 Replace occlusion queries with another method

The biggest problem with occlusion queries is the high latency between issuing the query
and when its results are ready. Therefore, one could try using a different method to
detect occlusion like Hi-Z culling. Then a Hi-Z depth buffer needs to be created each time
a switch from rendering to queries happens and then the culling needs to be performed
in a compute shader. But the Hi-Z generation could be too much additional overhead,
as this could happen quite often in case of CHC++. Because of that, changes to the
algorithm are likely needed to reduce the amount of Hi-Z recalculations. One could for
example postpone the culling until every visible object has been drawn, then only one
culling pass is needed for the previously-invisible and v-queue nodes. Depending on how
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fast the Hi-Z culling pass is, this could either improve or decrease performance overall,
as it still needs to be waited for its results to perform additional draws. Additionally,
this could make it more feasibly to put the algorithm on the GPU, as occlusion queries
do not need to be issued from the GPU and MDI can be used to eliminate the need for a
CPU stall.
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