Gaze-Dependent Simulation of Light Perception in Virtual Reality

ISMAR 2020

Laura R. Luidolt1
Michael Wimmer1
Katharina Krösl2

1TU Wien, Austria
2VRVis Forschungs-GmbH, Austria
Introduction

brightness range

tone mapping
Introduction
Introduction

- Perceptual algorithms necessary!
 - Medically based
 - Account for viewing direction, pupil size
Contribution

- Post-processing workflow
 - Accurate simulation of light perception in VR/AR
- Medically-based, perceptual effects
 - In real-time VR/AR
 - Following optometrist advice
- Eye tracking for measuring light incidence
- Pilot user study, comparison of
 - Real-world low-light situation
 - And VR simulation
<table>
<thead>
<tr>
<th>Motivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>▫ Overview</td>
</tr>
<tr>
<td>▫ Methodology</td>
</tr>
<tr>
<td>▫ Evaluation</td>
</tr>
<tr>
<td>▫ Conclusion</td>
</tr>
</tbody>
</table>

Temporal Eye Adaptation
- Visual adjustment to bright and dark
- Adaptation of rods and cones over time

Perceptual Glare
- Colorful patterns when viewing bright light sources
- Scattering of light in the eye

Visual Acuity Reduction
- Blurred details in low light scenes
- Rods not present in fovea (point of sharpest vision)

Scotopic Color Vision
- Color shift towards blue in low light scenes
- Rods more sensitive to longer wavelength light than cones

Based on Krawczyk et al., 2005 and Ritschel et al., 2009
<table>
<thead>
<tr>
<th>Temporal Eye Adaptation</th>
<th>Perceptual Glare</th>
<th>Visual Acuity Reduction</th>
<th>Scotopic Color Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual adjustment to bright and dark</td>
<td>Colorful patterns when viewing bright light sources</td>
<td>Blurred details in low light scenes</td>
<td>Color shift towards blue in low light scenes</td>
</tr>
<tr>
<td>Adaptation of rods and cones over time</td>
<td>Scattering of light in the eye</td>
<td>Rods not present in fovea (point of sharpest vision)</td>
<td>Rods more sensitive to longer wavelength light than cones</td>
</tr>
</tbody>
</table>

Based on Krawczyk et al., 2005 and Ritschel et al., 2009
<table>
<thead>
<tr>
<th>Temporal Eye Adaptation</th>
<th>Perceptual Glare</th>
<th>Visual Acuity Reduction</th>
<th>Scotopic Color Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual adjustment to bright and dark</td>
<td>Colorful patterns when viewing bright light sources</td>
<td>Blurred details in low light scenes</td>
<td>Color shift towards blue in low light scenes</td>
</tr>
<tr>
<td>Adaptation of rods and cones over time</td>
<td>Scattering of light in the eye</td>
<td>Rods not present in fovea (point of sharpest vision)</td>
<td>Rods more sensitive to longer wavelength light than cones</td>
</tr>
</tbody>
</table>

Based on Krawczyk et al., 2005 and Ritschel et al., 2009
Visual adjustment to bright and dark

Temporal Eye Adaptation

Adaptation of rods and cones over time

Perceptual Glare

Scattering of light in the eye

Colorful patterns when viewing bright light sources

Visual Acuity Reduction

Rods not present in fovea (point of sharpest vision)

Blurred details in low light scenes

Scotopic Color Vision

Rods more sensitive to longer wavelength light than cones

Color shift towards blue in low light scenes

Based on Krawczyk et al., 2005 and Ritschel et al., 2009
<table>
<thead>
<tr>
<th>Temporal Eye Adaptation</th>
<th>Perceptual Glare</th>
<th>Visual Acuity Reduction</th>
<th>Scotopic Color Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual adjustment to bright and dark</td>
<td>Colorful patterns when viewing bright light sources</td>
<td>Blurred details in low light scenes</td>
<td>Color shift towards blue in low light scenes</td>
</tr>
<tr>
<td>Adaptation of rods and cones over time</td>
<td>Scattering of light in the eye</td>
<td>Rods not present in fovea (point of sharpest vision)</td>
<td>Rods more sensitive to longer wavelength light than cones</td>
</tr>
</tbody>
</table>

Based on Krawczyk et al., 2005 and Ritschel et al., 2009
Temporal Eye Adaptation

\[L_i = L_{i-1} + (Y - L_{i-1}) \cdot
\left(1 - e^{-ft/\tau(Y)}\right) \]

- Target luminance Y
- Temporally filtered luminance \(L_i \) of frame i
- Photoreceptor adaptation times \(\tau \)
Perceptual Glare

Motivation ▫ Overview ▫ Methodology ▼ Adaptation ▼ Glare ▼ VA reduction ▼ Color shift ▼ Evaluation ▼ Conclusion ▼

Image adapted from commons.wikimedia.org/wiki/File:Eyesection.svg
Perceptual Glare

Motivation

Overview

Methodology

Adaptation

Glare

VA reduction

Color shift

Evaluation

Conclusion

Image adapted from commons.wikimedia.org/wiki/File:Eyesection.svg
Perceptual Glare

\[
M(x, y) = \frac{1}{(\lambda d)^2} \left| \frac{1}{N} \cdot \mathcal{F} \left[P(x, y) \cdot e^{i \frac{\pi}{\lambda d} (x^2 + y^2)} \right] \right|^2
\]

After Ritschel et al., 2009
Perceptual Glare

Monochromatic PSF
Diffraction on the retina of a single wavelength light source

Spectral PSF
Combination of multiple wavelengths to simulate spectral light
Diffraction on the retina of a single wavelength light source

Monochromatic PSF

Spectral PSF

Combination of multiple wavelengths to simulate spectral light
Perceptual Glare

\[
(1 - \cdot (1 -)) + \cdot =
\]
Perceptual Glare

Motivation
Overview
Methodology
Adaptation
Glare
VA reduction
Color shift
Evaluation
Conclusion
Visual Acuity Reduction

- $\sigma(L) = \max(1 - L, 0)$
 - Gaussian variance σ
 - Pixel’s lightness L
Evaluation

Qualitative user study with 5 participants
Conclusion

Real-time VR/AR post-processing workflow
Using eye tracking
Based on medical research
Pilot user study

- temporal eye adaptation
- perceptual glare
- visual acuity reduction
- scotopic color vision

Related article: “CatARact: Simulating Cataracts in Augmented Reality”, Krösl et al., 2020
Gaze-Dependent Simulation of Light Perception in Virtual Reality

Laura R. Luidolt, luidolt@cg.tuwien.ac.at
Michael Wimmer, wimmer@cg.tuwien.ac.at
Katharina Krösl, kroesl@vrvis.at

Thank you for your attention!