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Kurzfassung

Diese Arbeit behandelt die Erweiterung der bekannten Quake III Spiel-Engine mittels
Ray Tracing in Echtzeit. Hierbei wird untersucht, inwieweit Ray Tracing mithilfe der
neuesten Grafikkarten-Generation von NVIDIA implementiert werden kann. Ermöglicht
wird die Berechnung von Ray-Tracing Effekten in Echtzeit durch eine dedizierte Hardware-
Unterstützung, welche Ray Tracing Algorithmen beschleunigen soll. Zugriff zu diesen
Features wird durch eine neue API ermöglicht. Zudem werden Strategien besprochen
wie Offline Ray Tracing Algorithmen in einer Real Time (Online) Umgebung effizient
angewendet werden können.

Hierfür wird zuerst Quake III mit einem Vulkan Backend ausgestattet, um in weiterer
Folge, Distributed Ray Tracing zu implementieren, welches dann für das Darstellen der
gesamten Spielewelt zuständig ist. Lediglich die user interface Elemente werden vom
Rasterizer übernommen.

Das Ziel ist es zu analysieren, inwieweit es möglich ist, mittels RTX Ray Tracing in
eine Spiele Engine einzubauen und welche Abstriche an Qualität und Performance
man in Betracht ziehen muss unter der Voraussetzung 30/60 Bilder pro Sekunde zu
erreichen. Zudem werden Strategien besprochen, welche Qualität, Performance oder
beides verbessern.
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Abstract

This work discusses the extension of the popular Quake III game engine using real-time
raytracing. It investigates how ray tracing can be implemented using the most recent
graphics card generation by NVIDIA, which offers dedicated hardware support and
acceleration via an new API. In addition, strategies will be discussed about how offline
ray-tracing algorithms can be transformed to an online real-time context.

In order to implement ray tracing, Quake III needs to be extended with a Vulkan backend.
Next, distributed ray tracing is implemented and is used to render the whole game world
except for the user interface (UI) elements. The UI will be handled by the rasterizer.

The performance and efficiency of ray tracing in a game engine using the RTX hardware
features is analyzed and discussed. The focus lies on how quality and performance relate
to each other, and how far ray tracing can be pushed with still acceptable frame rate of
around 30/60 frames per second. Furthermore, implementation strategies that improve
the quality, performance or both will be discussed.
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CHAPTER 1
Introduction

1.1 Motivation

Computer graphics, which is a sub-field of computer science, is focused on generating
or manipulating images with the aid of a computer. It is a crucial part in digital
photography, film, video games, cell phones and more. Since the goal of computer
graphics is to efficiently produce results based on defined requirements, the complexity of
the used algorithms also increases further. Quality factors of the image can be resolution,
low number of artifacts, amount of details or complexity of the content. Since images
and computer screens can have millions of pixels and standard central processing units
(CPUs) can only handle one pixel at a time (or more, e.g., 8 pixels if multithreading is
available), it can be difficult to execute complex calculations for all the pixels in a given
time frame. To solve this problem, graphics processing units (GPUs) were developed,
which are designed to execute instructions in parallel. The advantage is that these
operations are mostly identical and are therefore optimal for an execution in parallel
(single instruction, multiple data (SIMD)). This enables the calculation of multiple pixels
at once, and therefore decreases the required time for the same calculation done on the
CPU. Since a huge motivation of computer graphics is to achieve photo realistic results,
there is active research regarding improving the algorithm and hardware in order to reach
this goal. There are many different use cases where photo-realism is desired. One example
would be for architects or designers since they want to create virtual environments that
represent the final product as closely as possible. Also, the movie industry makes use of
computer graphic to produce movies completely from imagination or adding 3D models
and effects to existing scenes captured from the real world. In both cases it is desired to
close the gap between fake and reality. The use case that is most related to this thesis are
computer games. Their goal is to immerse the player in a virtual world, which becomes
easier the more realistic the game’s visuals look. Especial with Virtual Reality (VR)
headsets emerging, photorealism is becoming an important topic in order to provide an
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1. Introduction

immersive experience for the player.

There are various techniques that can be utilized to render a scene in the most realistic
way possible. One key component for achieving a realistic image is the correct shading of
the objects based on all the light sources. There are many approaches, which differ in the
accuracy of their result to achieve this. The accuracy is often in relation to the necessary
computational cost. Games, for instance, use fast but less accurate algorithms, while
professional applications require exact algorithms that require much more computational
effort and are thus slower. Therefore, offline implementations have fewer time constraints
and produce better visual results, while online implementations have real-time constraints
but produce a lower quality result since they need to make use of simple approximations.
One approach to achieve results with a high accuracy is called ray tracing and is mostly
used to calculate illumination, reflections and shadows. The idea behind it is to shoot a
ray from the eye through a scene and test it for intersection with the scene. Through
this technique, a physically based simulation of the light can be calculated.

Ray tracing was barely used in computer games because of the real-time constraints,
limited computing power of most machines and the missing hardware acceleration through
graphics cards. With the introduction of programmable shaders and the support for
dynamic loops in shaders, which were introduced in Shader Model 3.0, the implementation
of ray tracing became feasible. In 2018 NVIDIA released their new RTX GeForce graphics
card generation [nvg], which are the first consumer-grade GPUs with dedicated ray-tracing
cores. These processors are optimized for ray tracing and should increase the performance
of ray-tracing algorithms. NVIDIA also developed an interface which should unify their
usage.

This new technology gives us the opportunity to accelerate offline ray-tracing approaches
to make them usable in an online context. It is now the question to which extent this new
hardware support allows the use of ray tracing to calculate physically correct lighting in
an established game engine. Since the source code of Quake III is open source, we decided
to use Quake III for this purpose and extend it with ray-tracing effects for illumination,
shadows and reflections/refractions.

1.2 Problem Statement

The original implementation from Quake III is from 1999 and uses the OpenGL API
for rendering, which currently does not support RTX (also, the implemented OpenGL
version is version 1 and thus very old). Therefore, the code needs to be refactored and a
renderer based on the modern Vulkan API [vul] must be implemented.

For the ray-tracing implementation we opted for distributed ray tracing instead of path
tracing to keep the already high implementation overhead of this thesis manageable.
Distributed ray tracing skips some aspects compared to path tracing but introduces the
same problems we would face with path tracing. Since both depend on the use of random
samples, noticeable noise will be contained in the produced images if the amount of used
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1.2. Problem Statement

samples per pixel (SPP) is too low. Even with hardware acceleration from dedicated
processors provided through NVIDIA’s new RTX technology we face the problem that a
naive ray-tracing implementation is still too computationally expensive. Therefore, the
implementation must be improved through various optimizations in order to produce a
clean output image every 16.6 ms (equals 60 frames per second (FPS)).

Old games, as it is the case with Quake III, often produce its lighting with the help of
light maps. These precalculated textures are generated with more lights than computers
at that time could handle during the game’s execution. At run-time, the light maps can
then be used to produce the desired shading quality of the scene with just a minimal
performance impact. This means Quake III provides no predefined lights, and in order
to produce a comparable shading of the scene, numerous lights must be created, which
further increases the workload on the GPU.

Correctly blending transparent textures is also a nontrivial task when using ray/path
tracing. In a rasterizer-focused engine, textures are designed to blend from back to front.
A ray/path tracer does this from front to back in most cases.

Figure 1.1: Ray-traced Quake III.
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1. Introduction

1.3 Contribution

We will discuss important aspects of modifying ray-tracing algorithms for real-time
applications and explore the possibilities of them in a commercial game engine.

The effects we use for distributed ray tracing are soft shadows and anti-aliasing. We
turned off depth of field throughout our analysis because its visual contribution was
unsatisfying and did not go well with the feeling of the game. Since the amount of
SPP we can calculate each frame in a real-time application is limited, anti-aliasing and
especially soft shadows add noticeable noise to the ray-traced output. The more SPP we
use, the less noise is produced by these effects, in the optimal case we would prefer the
use of only one SPP. The second type of noise we experience is produced by subsampling
of the lights. This noise compared to the noise produced by the distributed ray-tracing
effects is from a discrete distribution instead of a continuous distribution. Nevertheless,
a denoiser is effective against both types.

In order to make real-time ray tracing feasible, we start with the implementation of a
denoiser. Schied et al. [SPD18] developed a denoiser for real-time path tracing which can
produce a clean image with the use of just one SPP. It is called adaptive spatiotemporal
variance-guided filtering (A-SVGF), is state-of-the-art and uses the knowledge from
multiple previous frames to clean up the current image. Since the denoiser’s output
quality depends on the degree of noise in the input image, we must reduce the noise as
much as possible. Therefore, we introduce a light-culling strategy which should help to
save performance, and thus to improve the visual quality using the potentially visible set
(PVS) provided by Quake III. Originally, Quake III uses the PVS in combination with
the rasterizer for geometry culling. We can repurpose it for our light-culling strategy and
cull lights that have no contribution on a per-pixel basis. This strategy should not be
limited to Quake III’s PVS but also be applicable to any PVS. With the help of light
culling, it is now possible to produce results comparable in terms of visual quality to the
results produced by the denoiser while still being able to maintain an acceptable frame
rate. An additional strategy we employ is called light subsampling, which improves the
performance but results in a high amount of noise, since the number of contributing
lights is too low.

When we combine the denoiser, light culling and light subsampling, we can produce
a high-quality shading of the scene with the lowest impact on performance out of all
combinations. Based on these observations, we will discuss how quality and performance
relate to each other.

1.4 Structure of this Work

In the next chapter, we will discuss the background knowledge for the fundamental parts
of this thesis. Ray tracing, path tracing and other important technical terms related to
these technologies will be discussed.
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1.4. Structure of this Work

In Chapter 3, we look at research literature about ray tracing in an offline/online context
and the RTX technology. This is necessary to understand the current state of research
for these topics and to build a solid knowledge foundation for the various aspects of this
thesis.

In Chapter 4, we will discuss the overall architecture of the implementation. We start
with a discussion on how to transition from an offline to an online ray-tracer, and what
changes are necessary to achieve acceptable performance of 30 or 60 FPS. Thereafter,
the structure for the distributed ray tracing backend will be explained from a high-level
point of view. Here, different parts that produce the final output, but also architectural
strategies (e.g., our light culling approach) used in the implementation are discussed.

Chapter 5 is used to point out all the changes that were required in order to make the
original Quake III source code compatible with modern computers and further enable
the implementation of a ray-tracer. This also includes the implementation of a Vulkan
backend.

In Chapter 6, the implementation of the distributed ray-tracer will be explained in more
detail. In contrast to Chapter 4, where we talked about the high-level architectural view,
this time we will take a look at the low-level implementation. This chapter will not
contain Quake III related code and therefore can be seen as a general implementation of
a real-time distributed ray-tracer.

Chapters 7 and 8 are used to evaluate the results by comparing and analyzing different
aspects of the final implementation with focus on quality and performance. In the last
chapter we will draw a conclusion based on this gained knowledge about the possibilities
of real-time ray tracing in commercial game engines.
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CHAPTER 2
Background

There are many different variations of ray and path tracing, which differ in visual quality,
computational efficiency and accuracy of the models used for simulating light. Since we
cannot focus on all of them, we will only discuss variations that are relevant for this thesis.
The goal of this chapter is to discuss the fundamental concepts for ray tracing and path
tracing and therefore only the simplest forms of these techniques are discussed. More
advanced solutions to the discussed problems below are included in the next chapter,
which deals with recent research publications in the field of ray/path tracing.

The fundamental idea of ray and path tracing is to shoot a ray through a scene of objects
and check if the ray hits one of those objects. There are some difficulties we need to
overcome in order to make this feasible on a computer. One problem is finding a way to
organize all objects of the scene in a way that it is possible to check them for collision as
fast as possible. One approach is to use a bounding volume hierarchy (BVH), which is a
tree like data structure that organizes the objects based on their bounding volume. This
has the advantage that we can eliminate all branches which are not relevant for a given ray
and speed up the calculation of the intersection. Another problem especially for real-time
ray tracing is how quickly the BVH can be updated for moving and deforming objects in
the scene. Based on solutions for these problems ray and path-tracing algorithms can be
realized. There is a lot of research happening which the focus on improving these basic
ray and path-tracing implementations. The goal mostly lies on improving quality and
performance. In the following sections we will talk about some of these basic approaches.

2.1 Ray Tracing

2.1.1 Whitted Ray Tracing

Whitted ray tracing [Whi80] is the simplest form of ray tracing and has the advantage
that it is deterministic, in contrast to path tracing, which uses stochastic processes that
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2. Background

manifest themselves as noise in the images. If the surface that is hit is reflective, the
ray gets reflected by the normal of the surface at the intersection point. For transparent
surfaces like water or glass the ray splits up into an reflection and refraction ray. The
Fresnel equation is used to calculate the directions of the two new rays starting from
the point of intersection. In case of a opaque surface the algorithm stops and uses a
illumination model such as the Phong illumination model to calculate the shading of the
object at the intersection point. So called shadow rays are used to check if a given point
is in shadow. This is done by shooting rays from a given point in the direction of all light
sources. See Figure 2.1 for a graphical representation of one example ray. Pseudocode
for Whitted ray tracing can be found in Algorithm 2.1.

Figure 2.1: Illustration of a ray path in case of a Whitted ray-tracer. The ray gets reflected
and refracted multiple times till it hits a opaque surface and stops. R = Reflection Ray;
T = Refraction or Transmission Ray; S = Shadow Ray; N = Normal; [wrt]

2.1.2 Distributed Ray Tracing

Another ray-tracing algorithm is called distributed ray tracing. It is based on Whitted
ray tracing and extends it with effects for soft shadows, anti-aliasing, motion blur, depth
of field and glossy reflections [CPC84]. In Table 2.1 the effects are explained in more
detail. Since these effects depend on Monte Carlo (MC) sampling (explained in a later
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2.2. Path Tracing

section), the end result can contain noise, which needs to be filtered out or reduced by
using more samples per pixel (SPP), which means that for each pixel multiple rays with
different random values are traced and their contributions are averaged. With the help
of the MC method, the result gets more precise with each sample and converges against
the exact solution (ground truth).

soft shadows Instead of only using a fixed position from the surface of the
light to calculate the shadow, we select a random position.

anti-aliasing Normally the ray is shot through the pixel center. When we
randomly select the position inside the pixel, we can reduce
aliasing in the resulting image.

motion blur Blurs the vision depending on the movement and the move-
ment speed of the camera. This is done by shooting multiple
rays, with each ray intersecting the scene at a different ran-
dom time. All the results are then averaged.

depth of field Blur object by their distance to the camera. The distance at
which objects are sharp/blurred depends on the set aperture
and focal length. These two values define a focal point
through which the ray has to travel. Before shooting the ray,
a random offset is added to the start point of the ray.

glossy reflections By randomly changing the direction of the reflection ray
when a reflective surface was hit, a blurred reflection image
can be calculated.

Table 2.1: Distributed ray tracing effects. Note that all these effect introduce noise to
the image. In order to reduce/remove this noise more than one SPP is required.

2.2 Path Tracing

In order to get one step closer to modeling the light distribution of the real world, one
important factor is still missing from ray tracing. In the real world, not only the direct
light contributes to the shading of a surface but also the indirect light. Since every
object that receives light also emits some light from its hemisphere to its surrounding,
this is an endless chain of dependencies. In Equation 2.1 a formal definition of the light
distribution called the rendering equation can be seen. The formula contains an integral
over the hemisphere, which again depends on the lighting of all the points visible in this
hemisphere. Since such recursive integrals are too hard or even infeasible to calculate
conventionally or analytically, MC integration is used, where we basically choose one
random bounce direction from the hemisphere and limit the bounce depth by a fixed
value. There is a more advanced technique for setting the bounce depth, which is called
Russian Roulette Path Termination. After each bounce a random decision is made, which
depends on the throughput (contribution) of the ray, if the ray should be terminated
or continued. This is connected to an important characteristic the indirect lighting has.

9



2. Background

Algorithm 2.1: Whitted Ray Tracing Pseudocode

1 Function trace(ray, depth):
2 if depth >= MaxDept then
3 return black
4 end
5 checkIntersection(ray, scene)
6 if ray hit nothing then
7 return black
8 else
9 if material == opaque then

10 shootShadowRays()
11 return shading
12 else if material == mirror then
13 reflectRay()
14 return trace(reflectedRay, depth++)

15 else if material == transparent then
16 reflectRay()
17 refractRay()
18 return blend(trace(reflectedRay, depth++), trace(refractedRay,

depth++))

19 end

20

21 Function main():
22 for each pixel do
23 initRay()
24 trace(ray, 0)

25 end

With every bounce, the contribution to a pixel decreases, while the calculation complexity
increases. Ray tracing with the addition of these (indirect) bounces is called path tracing
and is used for global illumination (GI). Since path tracing needs a high amount of
random samples, the end result is in comparison to ray tracing, prone to noise when
the SPP is low. This characteristic makes path tracing unattractive for heavily time
dependent use-cases. There are strategies which apply simplifications or modifications
to the path-tracing algorithm in order to get results faster, but this comes along with
the loss of accuracy. As a result, the image will not converge exactly against the ground
truth and is thus called biased.[Kaj86]

10



2.3. Monte Carlo Method

Lo(x, x′) = g(x, x′)
[

Le(x, x′) +

∫

Ω
f(x, x′′, x′′′)Li(x

′, x′′)dx′′

]

where :

g(x, x′) Geometry term

Lo(x, x′) Light received by camera

Le(x, x′) Light emitted by surface

Li(x
′, x′′) Light received from hemisphere

∫

Ω
... dx′′ Integral over hemisphere

f(x, x′′, x′′′) Bidirectional reflectance distribution function (BRDF)

(2.1)

2.3 Monte Carlo Method

In order to realise distributed ray tracing and path tracing, we need to make use of
MC integration. This technique is used to solve definite integrals, which cannot be
solved analytically because they are too complex. As stated in the previous section, the
rendering equation cannot be calculated conventionally or analytically, therefore it is
approximated by solving the integral through randomly sampling within the integral
bounds. All results are weighted by the probability of each sample and summed up.
Based on the properties of MC integration, the result converges closer to the ground truth
with each additional sample. This can be used to calculate a single, simple integral like
∫ b

a sin(x)dx, or multiple larger integrals, like it is the case with the Rendering Equation
(Equation 2.1). This can easily be shown visually (see Figure 2.2), by drawing a function
inside a box of known size and test the function for multiple random samples that are
within this box. If the sample is below the function, it is a hit, otherwise a miss. The
ratio of the total number of samples used, compared to how many of this samples were
hits, divided by the domain area contains our approximation of the functions integral. In
the following subsections we will discuss the MC estimator in more detail.

2.3.1 Estimator

Let us take a look at the MC estimator from a formal point of view. In order to integrate
a function f(x) within the continuous domain Ω (Equation 2.2), we must calculate its
estimator (Equation 2.6).

I =

∫

Ω
f(x)dx (2.2)

In order for this to work, we have to make use of the cumulative distribution function
(CDF) and the probability density function (PDF). The CDF describes the probability
that a random variable X takes on a value being less or equal than a threshold x (Equation
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2. Background

Figure 2.2: Approximation of π through the MC method with 27000 sample points. We
are calculating the ratio between the area below the curve and the 1 × 1 square. This

can be expressed as
π
4

r2

r2 . Since we are only considering a fourth of a circle, the result is
π
4 and has to be multiplied by 4 to get the approximation of π.

2.3). The PDF is the derivative of the CDF and describes how likely it is that a random
variable X takes on a value being equal to x (Equation 2.4).

CDFX(x) = P (X ≤ x) (2.3)

PDFX(x) =
d

dx
CDFX(x) (2.4)

This enables the calculation of the probability that a random variable X takes on a value
that is within the bounds of a interval [a, b]. This can also be interpreted as the weighted
combination of all PDF’s across a given interval (Equation 2.5). If we integrate over the
full extend of the distributions domain, the result is always 1.

P (a ≤ x ≤ b) =

∫ b

a
PDFX(x)dx (2.5)

The estimator and its variance for function f(x) can then be defined as shown in Equation
2.6 and 2.7.

E [f(x)] =

∫

Ω
f(x)PDFX(x)dx (2.6)

σ2 [f(x)] = E
[

(f(x) − E[f(x)])2
]

(2.7)
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2.3. Monte Carlo Method

Furthermore, based on these definitions, we can show that for any constant c the following
statements about the estimator and variance are true (see Equation 2.8 and 2.9).

E[cf(x)] = cE(f(x)) (2.8)

σ2 [cf(x)] = cσ2 [f(x)] (2.9)

This means the expected value of the sum of multiple random variables is the sum of
their individual expected values (Equation 2.10). With these properties we can define a
simpler expression for the variance (Equation 2.11).

E

[

∑

i

f(xi)

]

=
∑

i

E [f(xi)] (2.10)

σ2 [f(x)] = E
[

f(x)2
]

− E [f(x)]2 (2.11)

We can use this knowledge to integrate the one dimensional function f(x) from a to b

with N random samples xi ∈ [a, b] and a PDF of 1
(b−a) . Equation 2.12 shows the MC

estimator for computing I from Equation 2.2.

E [f(x)] = (b − a)
1

N

N
∑

i=0

f(xi) (2.12)

The more samples we use, the more the variance decreases, and the estimate converges
towards the ground truth. The quality of this process depends on the random samples
selected, which we will discuss next. For ray/path tracing there is an additional improve-
ment that is often used called next even estimation (NEE). We will cover NEE in the
Illumination Section.

2.3.2 Random Values

One important part of MC Integration, which can optimize how fast the result converges
against the ground truth, are the random values that are used. The random values
that are calculated from microscopic phenomena are called true random number. True
random numbers can but, in most cases are not well distributed (non uniformly). Since
it is beneficial for MC to use uniformly distributed random numbers, we cannot use
true random numbers. The second option is to use random numbers generated by an
algorithm. These are called pseudo-random numbers, which are predictable and, in most
cases, non uniformly distributed. When multiple such non uniformly distributed random
values are shown as a grey scale image, we call it white noise (shown in Figure 2.4).
There exist algorithms, which can produce uniformly distributed random numbers to
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2. Background

a certain degree. These sequences are called low discrepancy sequences. Discrepancy
describes how uniformly distributed a sequence is. A discrepancy of 0 means that a
sequence is completely equidistributed, while a high discrepancy means the values are on
the contrary not uniformly distributed. This is visualized in Figure 2.3 for the often used
Halton and Sobol sequence.

Figure 2.3: 620 random 2D points calculated with the use of the Halton and Sobal
sequence, in comparison to an ordinary random generator. [quae]

These low-discrepancy sequence generators differ in the degree of uniformity they can
produce, together with the computational effort these calculations require. Especially in
a real-time use case, calculating these uniformly distributed random numbers on the fly
is too taxing for the computer, therefore they can be precomputed and saved in the form
of a texture. Such a random number sequence is often called blue noise when visualized
(seen Figure 2.4). In other words this means that, similar samples contained in the
texture are as far spread out as possible over a given domain. This can be visualized
by applying a blur filter (like Gaussian blur) on a blue noise texture. Figure 2.4 shows
this in comparison to a white noise texture. Since the white noise values are not evenly
distributed across the texture, the blurred image contains clearly visible high frequency
noise. On the other hand, the blurred blue noise texture contains nearly no noise, except
for the edges. As previously mentioned, the use of low-discrepancy random values can
decrease the time the MC method requires to converge. This also means the resulting
data has less variance and in the case of ray/path-tracing the resulting image contains
less noise. This is especially beneficial when a denoiser is used, since the algorithm can
work with data that contains more valuable information (we will talk about the denoiser
in the next sections).

2.4 Illumination

Illumination produced by ray/path-tracing algorithms is based on the light transport
theory. This means, energy (light) is transferred by a ray between points in the scene/space.
The materials of the surfaces that a single ray hits during the traversal of the scene can be
described as an arrangement of letters as defined by Paul Heckbert [Hec90]. This is often
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2.4. Illumination

Figure 2.4: White noise vs blue noise texture when a blur is applied. The blue noise
has a uniform blur since its values are more uniformly distributed than the white noise
values.

called Heckbert’s notation. These letters describe a complete light path traveling through
the scene. In other words, it describes the order of surfaces the ray hits on its way from
the light to the eye. Heckbert’s notation uses the following letters to label a light path. L
= Light; D = Diffuse; S = Specular; E = Eye; In the direct and indirect light subsection
we will talk about some example light paths using this notation. It is important to
mention that theses notations start from the light, while most implementations start
from the eye. In the following we will also talk about aspects we have to consider in
order to calculate the illumination correctly with the MC method.

2.4.1 Direct Light

When a object is hit, the first bounce off its surface in the direction of the eye is called
direct light. This means the shading of a point is directly influenced by a light source.
These light paths have the notations of LE, LSE or LDE. This means the ray from the
light hits an object and after that the ray travels directly to the eye. The noise produced
by the direct light, when stochastically sampled, exhibits higher frequencies.

2.4.2 Indirect Light

The indirect lighting is described by the light that bounces of an object and shades all
its surrounding surfaces. This can be defined as LDDE in Heckbert’s notation, but there
are many more variations like for instance LDDDDDE (5 diffuse bounces). Since the
contribution of the light decreases with each bounce, it can, depending on the application,
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2. Background

be sufficient to have a small amount of bounces. Compared to direct light, the noise of
the indirect light is low frequent when stochastically sampled.

Since distributed ray tracing does not calculate the indirect illumination, we do not
utilize hemisphere sampling in our implementation, but we included it in this section for
completeness.

2.4.3 Hemisphere Sampling

Once a surface is hit from a ray coming from the eye or another surface, we have to
consider the incoming light from the whole hemisphere for that hit point. A visual
representation can be seen in Figure 2.5. In the rendering equation, this integral is
described as the integral over Ω. Ω is 2π which is the surface area of the hemisphere (2π

steradians or solid angels). Since we cannot consider all direction from the hemisphere,
we have to limit the amount we sample. This is important since we have to incorporate
the probability of selecting a single direction when we use the MC method. There are two
often used sampling strategies with each having a different PDF, which we will explain
in the next subsections.

Figure 2.5: The hemisphere defined by Ω that needs to the sampled for incoming light in
order to calculate the shading of point x.

Before we look at these sampling strategies, we have to explain a few things. In comparison
to Equation 2.1, the Rendering Equation is often written as seen in Equation 2.13 with
the cos(θ) explicitly stated. θ is the angle between the incoming light direction and the
normal at point x and can also be expressed as the dot product of said vectors. This
cos(θ) term is based on the Lambert’s cosine law and describes how the light intensity
decreases with a increasing θ. This property will be important when we talk about cosine
weighted hemisphere sampling.

Lo = Le +

∫

Ω
BRDF ∗ Li ∗ cos(θ) dx (2.13)

A simple form of the BRDF is called Lambertian BRDF and is defined as cdiff

π
with cdiff

being the diffuse color of the object (albedo). The 1
π

factor is needed as a normalization
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2.4. Illumination

factor since integrating cos(θ) over the hemisphere results in π. The Lambertian BRDF
does not incorporate the view vector, therefore it is view independent.

Uniform Hemisphere Sampling

Uniform sampling gives each direction along the hemisphere the same PDF of 1
2π

. Based
on Equation 2.13 the estimator for the integral can be constructed as shown in Equation
2.14.

E [Lo] = Le +
1

N

N
∑

i=0

cdiff

π
Li cos(θ)

1
2π

= Le +
1

N

N
∑

i=0

cdiff

π
Li cos(θ) 2π

= Le +
2cdiff

N

N
∑

i=0

Li cos(θ)

(2.14)

Cosine Weighted Hemisphere Sampling

Cosine weighted hemisphere sampling makes use of the fact that incoming rays from the
lower parts of the hemisphere, do not contribute as much light to the point as rays that
come from the top of the hemisphere. As mentioned earlier, this phenomena is described
by Lambert’s cosine law. We want to proportionally generating fewer rays at the bottom
of the hemisphere, compared to the top. This can be achieve by using cos(θ)

π
for the PDF.

The resulting estimator can be seen in Equation 2.15 .

E [Lo] = Le +
1

N

N
∑

i=0

cdiff

π
Li cos(θ)
cos(θ)

π

= Le +
1

N

N
∑

i=0

cdiff

π
Li cos(θ) π

cos(θ)

= Le +
cdiff

N

N
∑

i=0

Li

(2.15)

2.4.4 Next Event Estimation

Instead of choosing random direction within the hemisphere, we can also select directions
that go in the direction of a light source. This saves us the calculation of paths that will
not hit a light. When we shoot a ray to all lights (N is the number of lights) through
this approach, hitting a light has a probability of 1

N
. If we shoot a ray to only one light,

we must multiply this probability by N for MC to converge properly. This probability
only applies when the selection of a light is uniformly distributed. For more intelligent
light sampling strategies, a more sophisticated probability must be computed. Using
NEE can decrease the noise and make the MC method converge faster. It also improves
the performance when a denoiser is used.
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2.5 Denoiser

Since the results from ray/path-tracing algorithms can contain noticeable noise, filters are
used to reduce this noise. This implementation is called a denoiser and can be very useful
especially for real-time applications. One of the simpler solutions for such a denoiser
would be, for example a blur filter like the Gaussian filter. The drawback is, that we
lose a lot of details, since we just blur the input image. In case of a movie or video
game, one solution would be to reuse the information from the previous frames and
apply it to the current frame to reduce the noise. With the use of motion vectors, which
describe the change of pixels between the previous and the current frame, we can map
the information on a per pixel basis from the previous to the current frame. When using
a denoiser for the production of a ray-traced video clip, the denoiser already knows the
future movement of the camera and can incorporate this information. In case of a video
game where the future movement of the camera is unknown, it is especially complicated
to reuse previous information. Therefore, the denoiser needs to be flexible when it comes
to keeping or discarding information.

2.6 RTX

In order to utilize the RTX ray-tracing technology with Vulkan, we need to understand
a few aspects beforehand. This section will discuss acceleration structures (ASs) and
ray-tracing pipelines. Both are terms which will frequently appear throughout this thesis.

2.6.1 Acceleration Structures

All the geometry that we want to use for ray tracing, needs to be saved in a data
structure that is suitable and optimized for ray intersection testing. NVIDIA uses so
called acceleration structures, which are build and updated on the GPU with the help of
the Turing ray-tracing cores. This structure is divided into a two-level tree and splits into
top and bottom level ASs. The bottom level ASs contain all the geometrical information
and are therefore expensive to create and update, while the top level ASs contain just
references to the bottom level ASs. See Figure 2.6 for a graphical representation. This
structure can be seen like a scene graph where the leafs are objects in the scene with
their own corresponding model-matrix. Since it is not possible to get vertex data (like
positions, uvs, normals, etc) from each individual bottom ASs, we need to use a separate
buffer, which we can use to look up all the data via indices and instant IDs in shader.

2.6.2 Ray-Tracing Pipeline

In order to make use of the ASs, a ray-tracing pipeline needs to be constructed. The
pipeline shares some similarities with a rasterizer pipeline, like the use of descriptor
sets for binding data (textures, buffers, etc.) to the pipeline. One key difference is that
the ray-tracing pipeline uses a shading binding table to invoke different shaders during
the lifetime of a trace call. There are 5 different shader types in total but only 3 are
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2.6. RTX

Figure 2.6: Top and bottom level ASs and how they are related. [nv]

mandatory. A payload is used to communicate data between all these shader stages. In
the following enumeration we explain the different shader types.

Ray Generation Executed for each pixel and is used to shoot a ray through the top
level AS that contains the bottom ASs. This is the starting point of the ray-tracing
pipeline.

Miss Executed when no object is hit. Can be used to sample a sky map for example.

Closest Hit From all object hit along the ray, this shader is only called for the closest
surface.

Any Hit (optional) This shader is called for every intersection along the ray. One use
case is, that it can be used to ignore intersection, so they will not be considered for
the closest hit.

Intersection (optional) Executed before the any hit shader and can be used to imple-
ment intersection handling.

The shading binding table can contain multiple shaders for the same shader stage (e.g.
multiple closest hit shaders), which are then indexed based on a previously defined offset.
This means, we can use different shaders for different materials/objects. It is also possible
to give certain objects different flags, which can then be used to exclude them from the
trace.

Figure 2.7 shows the steps involved when shooting a ray. It starts with the ray generation
stage, which is used to shoot a ray at a top level AS. During the traversal of the AS,

19



2. Background

Figure 2.7: Graph showing the flow of a ray-tracing call. [nv]

the any hit and intersection shaders can be invoked for each object the ray intersects
with. Once the ray reaches its maximum distance, the closest hit shader gets called for
the closest object hit during the AS traversal. If no object was hit, during the traversal,
the miss shader gets called. A ray payload is used to transfer data between these stages.
There are flags which can be used to modify the behavior of the traversal, like terminating
the ray on first hit (useful for shadow rays) or ignoring all (non-)opaque objects. Once
we got the result, it needs to be saved to an image buffer, which then needs to be copied
to the swapchain for presentation.
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CHAPTER 3
Related Work

3.1 Ray Tracing and Path Tracing

In the previous chapter we mentioned some problems we need to overcome for ray/path-
tracing to function correctly and efficiently. This section will present some state-of-the-art
research that focuses on improving the current solutions for some of these problems.
Additionally one topic will be discussed which focuses on using ray-tracing for a different
rendering problem.

Figure 3.1: Denoising results from the approach presented by Moreau et al. (Left: before
/ Right: after) [MMBJ17]

We explained that one strategy to reduce noise is to increase the SPP. If the sample count
is too low, the result exhibits a lot of noise. For real time rendering the frame time is
important, therefore distributed ray-tracing or path-tracing is limited in its sample count.
A paper from 2017 introduced a method, which can denoise ray-traced global-illumination
with a low number of samples [MMBJ17]. The idea behind the algorithm is, to separate
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direct light from indirect light and apply temporal kernels, which grow in blurry or
under sampled regions. The results are later recombined to create the final image (see
Figure 3.1). Denoising results from ray-tracing algorithms with a low number of SPP
is an important topic to allow the use of ray-tracing algorithm in real time rendering
applications.

Another problem of interactive ray-tracing applications with a low number of SPP count
is, that they often suffer from objectionable temporal artifacts when a new frame is freshly
rendered. A method which solves this problem is called stable ray tracing [CSK+17].
Instead of using temporal post-processing filters like TAA, they use a combination of
sample re-projection and explicit hole filling. The idea is to cache shading location from
the previous frame and reuse all locations which are still visible for the current image.
Hole filling is then used in regions where the density of visible re-projected points is low.
The last step is to generate the final image from the shaded samples.

Adaptive Spatiotemporal Variance-Guided Filtering (A-SVGF) is another solution to
denoise images having a low sample count [SPD18]. The key aspect of this algorithm
is, that it analyzes the signal over time and derives an accumulation factor between the
previous and current frame for each pixel. This can reduce ghosting and improve stability.
A-SVGF was designed with real time applications in mind and runs at 1080p in around
2 ms on modern hardware.

Figure 3.2: Illumination results from the approach of Heitz et al in comparison to offline
results. [HHM18]

Speeding up the calculations of realistic illumination and shadows for a scene is always a
non-trivial task. The authors of following paper propose an approach where analytical
illumination is combined with stochastic raytraced shadows [HHM18]. The results are
comparable in terms of realism with an accurate offline approach. (see Figure 3.2). In
order to calculate the illumination part, a modified version of the rendering equation
is used, which does not utilize the visibility factor. For the shadow calculation part,
random samples are used to compute the visibility of the light source. The resulting
image is, because of the nature of random samples, noisy and needs to be denoised for
a smoother result. The last step is to combine both parts, which results in the final
shadowed illumination of the scene.
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Figure 3.3: First two images are 1 spp with uniform sampled lights and denoised with
SVGF [SSK+17] over 5 frames. Next two images are 1 spp with BVH sampled lights and
denoised with SVGF over 5 frames. The last image is the ground truth. [MPC19]

We have already mentioned that all objects of a scene need to be organized in order to
increase the speed of intersection testing with a ray. The same can be done with the
light sources as well. In order to keep the amount of shadow rays to trace low, not all
lights should be considered for every shading point. Therefor, lights need to be selected
stochastically. NVIDIA recently published a paper [MPC19], which tries to solve the
problem by giving more important lights a higher probability of being selected for a given
shading point. The idea is to build a BVH over the lights (a “light BVH”) and traverse
the tree to find the best lights. Every cluster has a given priority, with more important
cluster having a higher priority. At each branch of the BVH traversal a random decision
is made about which path to take. This approach is also suitable for dynamic lights,
because the authors also present a strategy to update the BVH every frame. The idea
is to keep the topology and just refit changes instead of recreating the entire hierarchy
every frame. See Figure 3.3 for the results.

Figure 3.4: ATAA in comparison to FXAA and TAA. [MSG+19]

There is also active research for using ray tracing to solve other problems of computer
graphics. A recent paper showcased a method to improve anti-aliasing for deferred
rendering, which should deliver results close to SSAA (Super Sampled Anti-Aliasing) (see
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Figure 3.4) [MSG+19]. The authors call it adaptive temporal anti-aliasing (ATAA) and
it uses temporal anti-aliasing (TAA) in combination with fast approximate anti-aliasing
(FXAA) and adaptive ray tracing. All this is done within a time frame of 16ms, which is
equal to 60 frames per second and is the target by most game engines. The overall idea
is to run TAA on most pixels and for every pixel where it fails, a more robust heuristic
based on sparse ray tracing is used. Therefore, ray tracing is only applied on a few
pixels, which saves some computational work. Since this technique heavily depends on
ray tracing, a GPU that accelerates ray tracing is mandatory.

In 2004, there was an attempt to implement ray tracing into Quake III. Performance
wise, they achieved 20 frames per second which is impressive considering this was in 2004.
There is no source code available, therefore the information we have about this project is
very limited. [quad]

3.2 RTX

There were past attempts for hardware accelerated ray tracing, with RTX being the most
recent attempt and the first product targeted for the masses. One of the first question
that arise is, how does it compare to software-based ray tracing. This topic is discussed
in a paper written by Zakharov et al. [SGFV19] The authors ray trace multiple scenes
with an RTX 2070 with hardware acceleration and an GTX 1070 with a software fall
back. The results are then compared. Since Vulkan and DirectX, both support RTX
ray tracing, both were used for testing. In Figure 3.5 the results are shown. The RTX
2070, with RTX activated, has a lead of twice or more million rays traced per second
compared to the tests where RTX was disabled or not available. For two tests they used
Hydra (marked with _hydra in Figure 3.5), which is an open source renderer, with the
source code available on GitHub. For the other two tests they implemented a ray tracer
themselves.

Figure 3.5: Million rays traced per second comparison of GTX1070 (left) and RTX2070
(right). [SGFV19]

There are also attempts about using RTX functionality outside the indented scope. Wald
et al. [WUM+19] use the ray tracing cores of the Turing architecture, not to solve
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classical ray-tracing problems, but for finding the tetrahedron from a given tetrahedral
mesh that contains a give point. In order to allow that, they describe and evaluate
three different approaches to reformulate this problem for RTX. The strategy is, to use
hardware accelerated BVH traversal and triangle intersection when tracing rays against
the tetrahedrons faces.

Another not intended use case for the ray-tracing cores is presented in this next paper.
Salmon et al. [SS19] used OpenMC, which is a community-developed Monte Carlo neutron
and photon transport simulation code (making use of MPI and OpenMP) and modified
it in order to use the ray-tracing cores from the Turing architecture for acceleration.
The model, which showed the biggest increase, was 20.1x faster with RTX enabled on
Turing compared to the test where RTX was disabled. They presented the results for
five different models, which were tested with 1.000.000 particles each. The performance
uplift for RTX-On compared to RTX-Off was 6.0x on average.

The Turing architecture does not only provide functionality to accelerate ray tracing, but
also has hardware for accelerated matrix multiplication. These cores are called tensor
cores and are useful for machine learning for example. Raihan et al. [RGA19] explain
the architecture of these cores and also modeled them in a GPU simulator which resulted
in a accuracy of 99,6% compared to the NVIDIA Titan V GPU.

There are open source projects on GitHub [git] which make use of hardware accelerated
ray tracing to some extend in an offline and online context. One notable use cases for
hardware accelerated ray tracing is the implementation of Global illumination (GI) for
Quake II by NVIDIA (see Figure [quaa]). In this implementation, Quake II Pro (which
is an improved version of Quake II) was extended with ray traced global illumination. In
Figure 3.6, a comparison of the original and the modified version of Quake II can be seen.
A-SVGF [SPD18] is used to denoise the noisy end result. The output of the path-tracer
is noisy, because they only use one shadow ray per pixel with the addition of one or two
bounces (each bounce shoots one shadow ray). Quake II RTX is based on q2vkpt [quab]
which was one of the inspirations for this thesis. Since such an implementation is not
trivial and there is no documentation available which explains the overall implementation
of Quake II RTX or q2vkpt, it is difficult to use them as a reference. Therefore, one of
the goals for this thesis is, to provide a documented implementation of a real time ray
tracer and show its potential using a more advanced game engine.
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Figure 3.6: NVIDIA RTX Tech Demo of Quake II (Left: with RTX / Right: original).
[quaa]
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CHAPTER 4
Architecture

4.1 Offline/Online Ray Tracing Differences

When we think about ray tracing, we mostly think about very computationally expensive
algorithms, which produce high-quality results that are closer to photo-realism than a
rasterized result and are still mostly used in professional software. Games or heavily time-
dependent applications were never considered for ray tracing except for a few exceptions,
like certain effects (e.g., screen-space reflections). Even though we now have the hardware
to fully integrate ray tracing in a real-time application, we still need to modify the typical
ray-tracing approach, since the original offline approach is not suited for real-time use.
The problem is that the amount of SPP we can calculate each frame is limited by the
FPS we want to achieve. In order to get a noise-free result, in theory we would require
an infinite amount of SPP (except for the most basic ray-tracing approach, which is
called Whitted ray tracing [Whi80], since it is deterministic). Even with more powerful
hardware than we have nowadays, this would still be a problem. Therefore, we need
to limit algorithms like distributed ray tracing or global illumination through setting a
maximum on sample and depth count, with the requirement to still produce a result in a
certain amount of time (depending on the FPS we want to achieve). Limiting sample and
depth count is a first step but is still not enough. It can be helpful to bias the calculations
in order to get results faster. For random decisions, it is important to stochastically use
decisions which provide the most information instead of trying a true random path and
having a high chance of ending up with a decision that does not contribute valuable
information to the result. This results in multiple different ray-tracing implementations
that try to handle these problems better. For the implementation of a real-time ray/path
tracer, the high-level architecture mostly looks the same. Therefore, we can provide a
general solution for the design of the overall structure and explicitly state differences
if there are any. In Table 4.1, the different techniques we will discuss, together with a
pro/cons list of their feature differences, are listed.
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Type Pros Cons

Whitted ray tracing [Whi80] noiseless no indirect lighting
deterministic hard shadows

reflection/refraction aliasing
Distributed ray tracing [CPC84] soft shadows no indirect lighting

anti aliasing noise
glossy reflections

motion blur
depth of field

glossy reflections
Path tracing (GI) [Kaj86] pros from Dist RT noise

indirect lighting

Table 4.1: Pros and cons of different ray/path-tracing techniques.

As mentioned before, the discussed ray-tracing algorithms share the same foundation,
therefore the following presented strategies can be applied to all of them. Merely for
global illumination, an extra stage is required. In order to create an online variant of
different ray-tracing techniques, we need to split the offline algorithms into multiple parts
and handle them separately. This comes with the advantage that each stage can be
individually denoised with seperate denoisers adjusted for each stage. For Whitted ray
tracing and distributed ray tracing, the individual stages are: first hit, secondary hit
and direct illumination, which we will discuss in detail in the next paragraph. In case of
global illumination (path tracing), an indirect illumination stage is added. When we look
at the algorithm for an offline ray/path-tracing approach, all these stages are hard to
differentiate from the code since they are somehow implicitly contained in the algorithm.

In order to understand the different parts of the pipeline, we will discuss each stage in
detail. The order of the listing is the same as the execution order in the code. It is
possible to implement all these stages in one shader and execute them in one trace call,
but for reasons like the use of individual denoisers per stage, it is recommend to use a
G-Buffer and split these stages into different shaders with individual trace calls.

Primary Ray Stage Trace one ray per pixel from the camera position until the first
object is hit. Save its color, position, material and other features to the G-Buffer.

Secondary Ray Stage This stage gets executed for materials that require additional
rays like glass, water, mirrors or objects that make use of the alpha channel for
see-through regions. If no according object was hit, this stage can be skipped.
Depending on the implementation, this stage can be executed multiple times in
order to reach a certain reflection/refraction depth, or just once when recursions
are used. Update G-Buffer with new data for affected pixels.

Direct Illumination Stage For each pixel, the direct illumination will be calculated
based on the information gathered from the primary and secondary ray stage. This
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stage shoots shadow rays to one or more lights to find out if a given point is visible
from a light source. A better way to do this is to have a list of lights that have
a higher probability to be visible from the given position and (depending on the
quality) shoot one or more shadow rays in the direction of these lights.

Indirect Illumination Stage This stage is only used for path-traced global illumina-
tion and should handle the bounces for the indirect light. Based on the hit position
we got from the previous stages, we reflect the incoming ray in a random direction
along the hemisphere of the surface and save the information of the object it hits.
This can be done multiple times depending on the required amount of bounces. For
each bounce, one or more shadow rays are calculated from the new hit position.
One or two bounces should be enough in most cases for a reasonable quality/time
trade off.

4.2 Distributed Ray Tracing

In order to implement distributed ray tracing, three stages are required (primary ray
stage, secondary ray stage and direct illumination stage). Distributed ray tracing has the
advantage that it is based on Whitted ray tracing, which is deterministic and therefore
can be implemented without the use of a denoiser. Even though the noise introduced
by the additional distributed ray-tracing effects is visible, its extent is low enough that
it does not distort the result in a way that is unpleasant to look at, and can easily be
removed with Temporal anti-aliasing (TAA), for example. For the random samples,
values from blue-noise textures are used. This has the advantage that the values are
evenly distributes in comparison to white-noise textures.

We use a G-Buffer for the implementation of this thesis to save all the data. The first
hit stage saves the position, normal, color, material and the cluster to the G-Buffer.
Additionally the blended colors from all the transparent objects (from the eye to the first
opaque object) that were hit along the ray are also saved to the G-Buffer. A good way
to decrease the time required to trace one frame is to only use one light source per pixel.
This introduces a lot of noise that needs to be handled by a denoiser. In order to reduce
the noise, we can also use all available lights for the scene. Since shooting shadow rays
to all lights can result in many lights contributing nothing to the result, we can exclude
some lights that are not visible for a given position and thus increase the performance.
This will be explained in more detail in the next section. In Chapter 7 we will take a
look at how this affects the performance of our implementation.

4.3 Lights Culling

In order to increase the frame rate of the ray tracer or reduce the noise of the result, it is
important to cull lights which are not visible from a given position. This is a nontrivial
task since culling important lights can result in inconsistent lighting across the scene.
There are different approaches to achieve this, but since we already have a PVS available,
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#
3 23 34 74 0 0 0 0 0 0
1 103 0 0 0 0 0 0 0 0

Table 4.2: Example for the light visibility texture. Each row represents a cluster. The
first column shows how many lights are visible, and the numbers after that are the indices
of the lights. In this example cluster 0 is visible from 3 lights with indices 23, 34, 74.
Cluster 1 is visible from 1 light with index 103.

it made sense to try to reuse it for light culling. Though, this implementation depends
on the PVS provided by Quake III, it should be possible to apply it on any PVS. The
PVS is basically a binary array with bits set at certain positions which define which
clusters are visible from a specific cluster. A cluster is an axis-aligned bounding box
(AABB), defining a volume in space, and everything inside of it is part of the cluster. In
order to get the information for a specific cluster, we need to read the correct portion of
the PVS array. This is done by offsetting the pointer from the start of the PVS array
by the stride for one cluster times the cluster index vis = PVS + clusterIdx *
clusterStride. With this information we can check all the other clusters if they are
visible from the current cluster. In the case of Quake III this is done through checking if
the following expression equals true (vis[cluster»3] & (1«(cluster&7))).

4.3.1 Cluster Merging

Quake III makes use of the clusters on a per-object basis, but we want to use it on a
per-pixel basis. So we want to check for each pixel which cluster contains the current
world-space position and what clusters are visible from it. Since we want to assign only
one cluster to each triangle, it can happen that this is not possible since each vertex of
the triangle is in a different cluster. In this case we need to merge the clusters into a
single new cluster with the combined visibility information of all three vertices.

4.3.2 Light Texture

We save all lights in an array and upload it to the GPU. Then we create a texture with
#cluster rows and maximum #lights columns, which contains all lights that are visible
from the cluster of the according row. The first column is the number of lights visible
from the cluster in the specific row. From column 1 till #lights, the indices for the
corresponding lights inside the light array are stored. See Table 4.2 for an example of
the content of this light visibility texture. When calculating the illumination for a given
pixel, we look up the according row, and iterate through all lights or, randomly select
one light.
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4.4 Denoiser

The denoiser we use is called Adaptive Spatiotemporal Variance-Guided Filtering (A-
SVGF) [SPD18] and consists of multiple parts, with some parts being executed before
the first ray-tracing stage and some after the last ray-tracing stage. The denoiser should
take an image that was rendered with only one random light source per pixel and produce
a noise-free result. In the first step, the denoiser tries to project information like vertex
position and object id from the previous frame to the current frame. Since we can
already use the projected information for the primary ray stage, it is important to do
this before any rays are traced. Once all the ray-tracing stages are executed, we calculate
the gradients for the luminosity changes between the current and previous frame. With
the help of the output from the ray tracer and the previous accumulated history, we can
calculate weights which define how much information from the previous frames should
be reused for the current frame. This helps in eliminating artifacts like ghosting. If the
history for a given pixel is no longer valid, we discard it completely. Since we sparsely
sample the gradient, we need to reconstruct it with a guided filter like À-Trous. The
reconstructed information is added to an accumulation buffer. It is important to not add
filtered data to the accumulation buffer since it can result in a growing blur effect. The
last step is to use TAA to get an even smoother result. For a more detailed explanation
of A-SVGF, refer to the paper [SPD18].

4.5 Temporal Anti-Aliasing

Uses the results from the previous frame to improve the quality of the current frame. For
this implementation TAA is not only helpful for removing aliasing on edges, but also to
remove left-over firefly noise after the denoiser step. It also helps with removing noise
produced by the distributed ray-tracing effects.
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CHAPTER 5
Quake III modifications

Quake III was released in 1999 and was therefore not developed with modern computers
or operating systems in mind. In order to make the code compile, outdated dependencies
needed to be replaced on top of other fixes. We also moved the code from 32-bit to 64-bit,
which resulted in memory-alignment problems and binary operations that needed further
attention. Since Quake III is a commercial game developed by id Software, the amount
and complexity of the code is considerably high. Luckily, there are resources online from
people who have analyzed the code to some extent. These documentations often lack low-
level details, but they are helpful to understand the overall structure of the code. Fabien
Sanglared’s website [quac] gives a good explanation about the different parts/modules of
the Quake III source code. From his research we found out that Quake III’s engine uses a
virtual machine (VM) to execute the game logic for the UI, Server and Client parts. The
VM supports three different execution modes. VMI_BYTECODE uses the precompiled
bytecode, which is saved in the assets of Quake III, and interprets it, while VMI_NATIVE
uses dynamically linked libraries for these parts. VMI_COMPILED is used to translate the
bytecode to native instructions, but was removed since we do not need it. We mostly use
VMI_NATIVE, which can be activated with the arguments "+set vm_game 0 +set

vm_cgame 0 +set vm_ui 0", since it is more comfortable to work with. Each of the
three processes (for server, client, ui) is executed in a VM and uses system calls to make
changes to the engine e.g. load models, add models to scene, render scene. The UI
process is used for setting up and maintaining the UI. For the single-player game mode,
Quake III creates a server on localhost and then creates a localhost client that connects
to the server. The server side keeps track of the current game states and distributes it
to the client, which then renders the current frame based on this state. The engine is
linked to two separate static libraries, one that is called bot.lib and one that is called
renderer.lib. In order to get human-like behavior for the enemies, bot.lib is used, and for
all the rendering operations, renderer.lib is used. The engine takes the system calls from
the virtual machines and passes them to these two implementations if required by the
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process. In Figure 5.1 a visualization of the Quake III architecture can be found.

Figure 5.1: The diagram shows all the different parts of Quake III and how they are
connected with each other. The server side uses one virtual machine while the client side
uses two virtual machines. The engine provides system calls to the artificial intelligence
module and the renderer module. [quac]

5.1 Refactoring the original Quake III Code

First of all, it was necessary to replace some dependencies that where outdated. The
code that was used to load images and decompress jpeg files did not work anymore,
therefore we used stb and TinyJPEG to replace it. Another problem was that binary
operations that are used on data types whose size depends on the OS (32 bit or 64
bit environment) can produce wrong results when moved from 32-bit to 64-bit. Table
5.1 shows the differences regarding the long integer type. On Windows, there is no
difference between 32 and 64-bit long types but since Quake III runs on Windows, Linux
and macOS, we had to consider it. One example for a binary problem caused by the
altered size of the type is the famous inverse square root hack used in Quake III. It is
an approximation of the ground truth that was four times faster than other methods at
that time. The code uses the magic number 0x5F3759DF and one iteration of Newton’s
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method for the calculation. Since bit operations are involved, we needed to change the
long type to int32_t for Linux/macOS. See Figure 5.2 for the code.

OS Architecture Size of "long" type
Windows IA-32 4 bytes

Intel R© 64 4 bytes
Linux IA-3 4 bytes

Intel R© 64 8 bytes
mac OS Intel R© 64 8 bytes

Table 5.1: Table that shows the different sizes between 64bit and 32bit environments of
long int in bytes. [int]

Figure 5.2: The quick inverse square root hack used in Quake III, with modifications for
x64.

Another fix was required for the VM, because the VM uses bit operations for the execution
of the bytecode. The problem was that the size of a pointer on x86 is 4 bytes and on x64
it is 8 bytes. Quake III was developed with 4-byte pointers in mind, which resulted in
wrong strides for instructions on x64. This could be solved with the use of intptr_t.
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There were other bugs that needed to be fixed but the above-mentioned ones where the
most notable ones.

5.2 Implementing Vulkan in addition to OpenGL

Quake III originally shipped with OpenGL 1, which means the developer had to use
a fixed-function pipeline without the use of buffers (at least when certain extensions
where not available). Since this was very limiting, they built a dual-core renderer with
material-based shading on top of OpenGL. RTX ray tracing does not work with OpenGL
at all, therefore we needed to implement a renderer using the Vulkan API. This is not
trivial since OpenGL 1 is very old and therefore completely different compared to modern
rendering APIs in terms of features but also structure. At that time, most tasks where
done on the CPU instead of the GPU, like the calculation of the next positions in case of
an animated mesh. Since the differences in structure between OpenGL 1 and Vulkan are
so big, it was not possible to implement Vulkan in the most optimal way. In order to do
so, it would most likely require a rewrite of a big part of the engine.

For each object, Quake III uses multiple render stages, which are rendered on top of each
other and blended accordingly. For example, a computer terminal model has one texture
for the base color, one texture for details on top of the base color and one animated
texture for the pulsing lights. On top of these ‘normal’ stages, so-called light maps are
added, which contain the baked lighting for the objects in the scene. Therefore, for
each object there can be multiple textures with different blend operations. Additionally,
each stage can have two different textures, which are combined via an add or multiply
operation (this is an OpenGL extension and must be supported and activated).

In order to implement Vulkan, we need to recreate the functionality for everything
that was mentioned in the previous paragraph. Since all vertex data is handled by
the CPU and each vertex is rendered with OpenGL immediate mode (which means,
with every frame all vertex data needs to be send to the GPU all over again; no
persistent memory on the GPU for an individual object), we need to use memory
allocated on the device (GPU) that is mapped to the host (CPU). Vulkan provides
the following flags for said behavior: VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT

| VK_MEMORY_PROPERTY_HOST_COHERENT_BIT (see Figure 5.3). This allows us to
write directly to the GPU memory and is useful because for each new frame, we need to
transfer all vertex data to the GPU again. Since we use multiple images in our swapchain,
one buffer for each swapchain image is necessary in order to avoid race conditions.

For the rasterizer we only need one vertex and one fragment shader. The textures are
accessible through a sampler2D array with dynamic size since we will need access to
all textures at once later for the ray-tracing implementation. This functionality is an
extension of Vulkan, therefore we need to enable GL_EXT_nonuniform_qualifier
in GLSL and VK_EXT_descriptor_indexing as a device extension. After that we
need to activate the following device features in the following struct:
struct VkPhysicalDeviceDescriptorIndexingFeaturesEXT
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Figure 5.3: Different memory configurations in Vulkan.

runtimeDescriptorArray,
descriptorBindingVariableDescriptorCount and
descriptorBindingPartiallyBound

Another way to use different textures with each object would be to bind different
descriptors when rendering different objects. For the ray tracer later on this will not work,
since we do not know beforehand which object we will hit, and we cannot change the
descriptor between ray hits. Therefore, it is necessary to have access to all the textures
through an array. Addition and multiplication of textures, in case of two textures per
stage, clipping of vertices outside of the clip planes and discarding of vertices based on
the alpha value was implemented with the use of conditions in the shader and can be
activated through push constants. Since Quake III was not designed with Vulkan in mind,
where state changes (pipeline, descriptor, etc) are very expensive, the draw commands
are not sorted in a way that the amount of state changes are reduced. Therefore, it was
beneficial to implement the whole functionality into a single shader, and bind all the
required data through a single descriptor, so the amount of pipeline and descriptor set
changes is reduced.

From a visual point of view, there is no noticeable difference between the OpenGL and
Vulkan renderer. In terms of performance, the OpenGL renderer is slightly faster. The
performance of Vulkan heavily depends on the number of state changes, how memory
is accessed and how fast commands are recorded. All of this is not optimal in our
implementation and would require a major rewrite of the original code to fix. OpenGL
and Vulkan can be switched through the game settings or changing the flag r_glDriver
to "vulkan-1" in the q3config.cfg file.

5.3 Other necessary Quake III modification

Before we can implement the ray tracer, we need to make some additional modifications
to Quake III. One of those changes was to remove all render stages that contained light
maps. Since we want to calculate our lighting entirely with ray tracing, we want to
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reduce the baked lighting as much as possible. For the specular highlights, this is most
of the time not possible since they are part of the general texture (see Figure 5.4).

Quake III also uses environment maps to simulate reflection on certain objects. Through
uv changes, which are in relation to the location of the player, it is possible to simulate a
view-dependent reflection (e.g., glass windows). It was important to remove those since
we want to add our own ray-traced reflections for those objects.

There were also some other textures and render stages that we needed to remove. One
example would be light flares for some of the light sources or tin effects for metal objects.
We also did some modifications and rearrangements for some render stages in order to
fix multiple problems that occurred (e.g., wrong surface flags for certain objects).

Figure 5.4: A cropped part of a texture from Quake III used for metal walls. In the
upper part of the image, you can see the baked specular highlights, which cannot be
easily removed. In the lower part, some baked shadows can be seen.

5.4 Distributed Ray-Tracing Integration

Since the architecture for the ray tracer is very different compared to the architecture of
the rasterizer, we needed to implement it separate to the code of the rasterizer. Therefore,
we could not modify existing code, and needed to write the ray-tracing backend from
scratch. For the rasterizer, all objects that are not visible from the current view position
are culled through frustum culling and the use of the PVS. The PVS contains data that
describes which clusters are visible from a given cluster and is useful to cull objects from
clusters currently not visible. A cluster is an AABB and can be used to describe all
objects that are within the defined bounds of the cluster. This results in only certain
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objects of the scene getting added to the render list, which saves performance in case of
the rasterizer but is a problem for the ray tracer since needed geometry can be missing.
For example, objects outside the visible area that cast a shadow inside a visible area
would be absent since they are culled. Therefore, we dismiss this method and instead
always use all geometry from a loaded map. This is implemented in tr_bsp.c, which
contains the code for loading the map of the current game level. Here we added code for
building the bottom acceleration structures (ASs) containing the current map. We use
multiple bottom ASs because we separate objects depending on the number of updates
they require during run-time (we will explain this later in more detail). For entities
(player, weapon or power-up models) we create one bottom AS each and instantiate it in
case of multiple instances.

Then the different ray-tracing pipelines (as explained in Section 4.1) are created together
with two descriptor sets. One for the texture array and one for all the other buffers
required by the ray tracer. There are three ray-tracing pipelines in use. The first pipeline
is for the first ray, the second one is for secondary rays like reflection/refraction rays, and
the last one is for the direct illumination. They are executed in this order.

Once all the bottom ASs have been built, the rendering loop is executed. At first all the
ASs that require updates will be updated or rebuilt and then added to a trace list (gets
cleared at the beginning of each frame), which is then used to build the top AS for the
current frame. After that, our global uniform buffer object, which contains, amongst
other things, the inverse view/projection matrix, gets updated and the pipelines are
executed in said order. The last step is to write the ray-tracing result to the swapchain
image.
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CHAPTER 6
Distributed Ray Tracing

Implementation

In this chapter we will discuss the low-level implementation details for the distributed
ray tracer. For the most parts, this will be a look on the general implementation with
as few references to Quake III as possible. Table 6.1 contains all the console commands
added to Quake III with this implementation.

rt_printPerfStats Print performance stats to console
rt_illumination Turn on/off ray traced illumination
rt_cullLights Cull unnecessary lights
rt_numRandomDL Number of random lights for direct illumination (0 = all)
rt_pause Pause the game
rt_accumulate Pause the game and accumulate all images
rt_antialiasing Turn on/off anti aliasing
rt_softshadows Turn on/off soft shadows
rt_dof Turn on/off depth of field
rt_aperture Set the aperture for dof
rt_focallength Set the focal length for dof
rt_denoiser Turn on/off the denoiser
rt_taa Turn on/off temporal anti aliasing

Table 6.1: Commands that can be used to adjust different settings/values of our imple-
mentation.
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6.1 Acceleration Structures

First, we take a look at how we can build the acceleration structures for our geometries
in the best possible way. In general, we can split the geometry into static types, which
will never change, and dynamic types, which deform during gameplay. Since updating
ASs is expensive, it should be done carefully. One strategy to do this is to separate
the geometry into multiple ASs to avoid updating geometries inside the AS that do not
require an update. We split our geometry into gameworld data and entity data. In case
of a completely static game world, the whole mesh could be put into a single AS, but
since the game world also contains deforming geometry, we need to split it further into a
static and a dynamic gameworld AS. For the entities, which are objects that appear and
disappear frequently depending on the gamestate, it is important to use multiple ASs
since we need the functionality of adding, updating and removing them independently.
Since the geometry of the entities can change often, it would be a waste of resources
to update also the static objects in the AS. It can also happen that an entity is used
multiple times in the scene, therefore it is advised to, instead of duplicating the object,
instantiating it multiple times in the top-level AS from a single bottom-level AS.

For our implementation we used 5 different bottom-level AS:

Static World AS with Static Data Contains the geometry of the gameworld where
the topology or its data (normals, uvs or textures) does not change.

Static World AS with Dynamic Data Contains the geometry of the gameworld
where the topology does not change but its data (normals, uvs or textures) does
change.

Dynamic World AS Contains the geometry of the gameworld where the topology does
change.

Static Entity AS Contains entity geometry where the topology does not change.

Dynamic Entity AS Contains entity geometry where the topology does change, and
AS updates are required.

Since a single static entity AS can be used in multiple instances in the top-level AS, we
always use a new separate data buffer (normals, uvs...) each frame for each instance,
to avoid problems when data changes for multiple instances differently (e.g., different
speeds for texture animations). This removes the necessity to differentiate between static
entities where the data changes or not. In all cases where the geometry of the AS or its
data changes, we need to use separate buffers for each swapchain image in order to avoid
race conditions.
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6.2 Ray-Tracing Pipeline

In order to use the ASs we just built, we need to create a ray-tracing pipeline. One
essential part of the pipeline is the shader binding table, which contains all the shaders
we want to use for the pipeline. It is possible to create a single shader binding table and
use it for multiple different pipelines with the use of offsets for indexing into the shader
binding table. In this implementation, we used multiple different shader binding tables
for each ray-tracing pipeline.

Attachments
Top Level AS Contains the scene we currently use for ray tracing.
Global UBO Contains configuration values and the inverse view and

inverse projection matrix, but also variables that toggle
certain features on and off.

G-Buffer Multiple buffers used to exchange data between differ-
ent stages of the ray tracer.

Index Buffers Multiple buffers which contain the index data for the
geometry used in the ASs.

Vertex Buffers Multiple buffers which contain the vertex data for the
geometry used in the ASs.

Cluster Buffers Multiple buffers which contain the clusters for all tri-
angles from the ASs.

Cluster Visibility Table Texture containing data with regard to cluster to clus-
ter visibility.

Light Visibility Table Texture containing data about which lights are visible
from which cluster.

Light List Contains an array of all the lights in the scene. For
each light, different attributes of the light are saved
(position, color, etc.).

Blue Noise Texture Texture array with blue noise textures.
Sky Map Cube map texture containing the sky texture used in

the miss shader.

Table 6.2: All the ray-tracing specific attachments we use.

Another important part are the descriptor sets that need to be bound in order to access
our buffers. We use two different sets. The first set contains a dynamically sized array
of image samplers. This means we have access to all currently loaded textures. This
descriptor is also used by the rasterizer pipelines. The second descriptor set is for ray
tracing only, and contains all the data we need for ray tracing. Since some attachments
have different buffers depending on the current image in the swapchain, we create one
descriptor set for each swapchain image. This allows us to bind a different set each frame,
instead of updating one set which is slow. The content of the descriptor set is listed in
Table 6.2.
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The ray payload we use for the communication between shaders is shown in Table 6.3:

Ray Payload
vec2 barycentric The barycentric coordinates of the triangle that

was hit.
uint instanceID Instance ID for the AS instance that was hit.
uint primitiveID Primitive ID which is the index of the triangle

that was hit inside the AS.
float hitDistance Distance to the triangle that was hit.
vec4 transparent Summed up transparency along the ray.
float maxTransDistance Current max distance for the transparent cal-

culation. This value is used to decide in which
order the textures from transparent objects need
to be blended.

Table 6.3: The ray payload we use to transfer data between the ray generation, any hit,
closest hit and miss shader.

Once an any hit, closest hit or miss shader is called, the information of the hit is written
to the payload and passed to the ray generation shader for further use.

6.3 Primary Ray Stage

The primary ray stage is the first ray-tracing stage that gets executed and is used to find
the closest opaque object. In order to do this correctly, we need two rays. The first ray is
used to find the distance to the closest opaque surface and the second one is basically the
same but with the maximum distance set to the distance we got from the first ray. This
is needed, since we want to use the any hit shader for completely transparent objects
that do not require shading, (particles like smoke or transparent flame textures) between
the eye and the first opaque surface (more details in the next section). If the maximum
length for the ray exceeded the first opaque surface, the any hit shader would get called
for transparent objects behind the first opaque object too. This can result in transparent
objects behind the opaque surface shining through the opaque surface. See Figure 6.1 for
an example of such a scenario. We use the flag gl_RayFlagsCullNoOpaqueNV for
the first of the two rays, which skips all surfaces that are not opaque and thus saves some
performance. A small offset needs to be added to the distance we get from the first ray in
order to compensate numerical errors and make sure the second ray reaches the opaque
surface again. Once the second ray is shot, we take the information from the surface we
hit and read the object data (pos, uv, normal etc.) from the according buffers. In a later
section we will talk about the details how these buffers are accessed. The data is then
written to the G-Buffer, which consists of the following buffers as described in Table 6.4:
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G-Buffer
albedo Color of the object at the pixel position.
position The position of the pixel in world space. The 4th

component contains the cluster id for the pixel.
normal The normal of the pixel in world space.
reflection/refraction Reflection and refraction color for areas that contain

such surfaces.
transparent Contains the color for transparent surfaces located

between the view position and the first opaque surface.
object Contains the barycentric coordinates, primitive ID and

instance ID of the object at the pixel position.
motion Contains the motion vectors from the previous frame

to the current frame.
view/material The ray direction with origin from the camera posi-

tion that was used for this pixel. The 4th component
contains the material ID of the object hit.

Table 6.4: The G-Buffer we use.

Algorithm 6.1: Pseudocode for blending transparent textures along a ray

1 Function alpha_blend(vec4 top, vec4 bottom):
2 return vec4(top.rgb + bottom.rgb * (1 - top.a), 1 - (1 - top.a) * (1 - bottom.a))
3 Function any_hit_main():
4 // premultiply alpha
5 texture.rgb *= texture.a
6 if ADD_BLEND then
7 payload.transparency.rgb += texture.rgb
8 else if ALPHA_BLEND then
9 if payload.max_transparent_distance < gl_HitTNV then

10 payload.transparency = alpha_blend (payload.transparent, texture)
11 else
12 payload.transparency = alpha_blend (texture, payload.transparent)
13 end

6.4 Transparency

Semi-opaque objects (which require shading) are handled in the second ray stage (more
details in the next section). For completely transparent objects (which require no shading),
we make use of the any hit shader. When we trace a ray, we collect all the completely
transparent surfaces along the ray with the any hit shader and store their color in a
separate variable. We use the any hit shader only for surfaces that do not require
shading, since we can not shoot shadow rays from an any hit shader, and collecting all
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Figure 6.1: The left image shows a scenario where the transparent surface (flame) behind
the metal parts leaks through since the order of the objects for which the any hit shader
gets executed is random, and therefore objects behind a opaque surface can also be
included. The right images shows the scenario where the maximum ray length is the
exact length from the camera to the metal ring and therefore only objects between the
camera and the metal ring are considered for the transparency calculation.

necessary positions, normals, etc. along the way, required for shading, is not practical.
In order to execute the any hit shader only for completely transparent objects, we used a
different instance offset, in comparison to the opaque objects, for indexing into the shader
binding table. For opaque objects, only the closest hit shader is called, for transparent
surfaces, only the any hit shader is called. We use two different operations for adding
up the transparency. One is ADD_BLEND, which adds the colors, and the other one is
ALPHA_BLEND, which tries to blend the colors by their alpha values. See Pseudocode
6.1 for the code used for these operations. Since the order of the objects for which the
any hit shader gets called is random, we have to differentiate if a surface is in front or
behind the previously hit transparent objects. We do this by saving the distance to the
furthest away already processed transparent surface and compare it with the distance
to the current transparent surface hit. In the case of the ALPHA_BLEND operation, we
have to swap the blend order if the distance to the current object is smaller/larger than
the maximum distance saved. This strategy can produce wrong results when the ray
intersects with three or more transparent objects and the any hit shader gets called for
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the objects in the middle last. For the use case of this thesis, quality and performance of
this method were good enough, but if a more accurate blending is required, this strategy
needs to be improved further.

Once we accumulated all the colors from the transparent surfaces along the ray, we save
the final value to the G-Buffer. In the composition stage, the transparent surface colors
are blended on top of it.

6.5 Secondary Ray Stage

In this stage we trace all the additional rays required by certain materials like glass,
mirrors or semi-opaque objects. This stage uses recursion inside the hit shader to trace
the ray until an opaque surface was hit, or the maximal depth count is reached. Once an
opaque surface is hit, its data is passed to the ray-generation shader, where the data gets
saved to the G-Buffer for the affected pixels.

Semi-opaque objects, compared to other transparent objects, require shading, which is
complicated to do with the any-hit shader approach discussed in section 6.3 and 6.4.
These surfaces are problematic, since they are basically opaque surfaces and thus require
shading, but have certain areas that are transparent (see Figure 7.5 for an example).
This is the result of older games trying to skip the detailed geometry of an object and
use textures instead to fake it (e.g., a fence with transparent holes as texture, on a
rectangular mesh). For these objects, we check the alpha channel and if it is below 0.5,
we continue the ray in the same direction. If it is above 0.5, we have hit an opaque part
of the surface and stop (0.5 was the value that worked best).

In case of a mirror, we reflect the ray with the help of the normal of the object and
continue the ray in the new direction.

For glass or water, the ray splits into one reflection and one refraction ray.

For these pixels, we overwrite the data from the first ray stage inside the G-Buffer with
the new hit data from this stage. In the next stage, this information is then used for
shading.

6.6 Direct Illumination Stage

This stage is used to calculate the shading for the surfaces hit in the primary ray and
secondary ray stage. For the calculation of the shading we need the albedo, position,
normal and the cluster for the pixel, which we can read from the G-Buffer. Then we iterate
over all the lights that are visible from the cluster of the pixel and shoot a shadow ray in
the light’s direction. Since we only want to check if there is anything between the point and
the light source, we can use the ray flags gl_RayFlagsTerminateOnFirstHitNV |

gl_RayFlagsSkipClosestHitShaderNV to terminate the ray as soon as any surface
is hit, resulting in a performance increase. The result is 0 if an object was hit (spot is
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in shadow), or 1 when no objects was hit (spot is illuminated). Basically the formula
cancels out the shading term if the light is not visible because it is multiplied with 0.
If the denoiser is activated, we can use just one random light source per pixel to get a
noise-free image. See Algorithm 6.2 for a simplified version of this procedure.

Algorithm 6.2: Pseudocode for calculating shading

1 Function calcShading():
2 vec3 shadeColor
3 for each light visible do
4 float lit = shootShadowRay()

5 lit *= numLights / numLightsUsed
6 shadeColor += lit * LdotN * lightIntensity
7 end
8 return (shadeColor * albedo / M_PI)

6.7 Accessing Object Data in Shader

Since we have multiple ASs, accessing the corresponding data is not trivial. The buffer
we describe in this chapter can contain more values than listed, but for clarity we only
list the necessary data. When a ray hits an object, we get the information shown in
Table 6.5.

Build In Variables
gl_InstanceID The index of the instance in the top level AS
gl_PrimitiveID The index of the triangle starting from the beginning

of the current instance
barycentric The barycentric coordinates of the hit point inside the

triangle

Table 6.5: The data provided by the any hit and closest hit shader which is used to
describe a intersection with a triangle.

With this information, we need to access our buffers containing the instance data and
the index, vertex and cluster data. With the instance id we can access the instance data
buffer which contains information for accessing the correct data from the index, vertex
and cluster buffers. In Table 6.6 the content of the instance buffer can be seen.

The type variable describes whether the data of the object is contained in the
world_static, world_dynamic_data, world_dynamic_as, entity_static or
entity_dynamic buffer. The index buffer contains an array of unsigned integers
that are used for indexing into the vertex buffer. With the formula offsetIDX +

(primitiveID * 3) + 0|1|2 we get the correct triangle indices from the index
buffer. With the indices from the index buffer we can read the correct data from the
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Instance Buffer
modelmat Model matrix used to transform the vertices to world

coordinates
type Describes which index, vertex and cluster buffers con-

tain our data (Static, Dynamic, etc.)
offsetIDX Offset for the index buffer
offsetXYZ Offset for the vertex buffer
cluster The cluster this instance is inside (only used for enti-

ties)

Table 6.6: This data is set for each individual instance in the top level AS.

vertex buffer. The following formula gives the correct offset from the beginning of the
buffer: offsetXYZ + idx_(0|1|2). The content of the vertex buffer can be seen in
Table 6.7.

Vertex Buffer
pos Vertex position
normal Normal of the vertex
color Color of the vertex
uv UV coordinate for the vertex
texture idx Texture of the object the vertex belongs to
material Material of the object the vertex belongs to

Table 6.7: The vertex buffer contains all the object data needed after a ray intersects a
triangle.

In order to get the hit position, UVs and other data of the hitpoint inside the hit triangle,
we need to interpolate the values we got from the vertex buffer with the help of the
barycentric coordinates. The following formula gives use the correct hit position: v0
* bary.x + v1 * bary.y + v2 * bary.z. We do this for all values that require
interpolation and save them in a struct for further use. The cluster index can be read
from the according cluster buffers with an index calculated with the following formula:
offsetIDX + primitiveID.

6.8 Combination of Multiple Textures

Since objects can have multiple textures in addition to the color values assigned to each
vertex, we had to implement a functionality to blend them accordingly. For each of the
textures of the object, we have information about the blending strategy we need to use.
This includes if the texture requires vertex colors and if it needs to be blended by alpha,
addition or multiplication. Each texture is defined by an index and can be accessed from
the texture array. To get the final color, we go through all the available textures of the
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object, read them with the according texture indices and UVs and sum them up based
on the contained blend information. Algorithm 6.3 shows a simple pseudo code for this
procedure.

Algorithm 6.3: Pseudocode for reading textures

1 Function getTexture():
2 vec4 result = vec4(0.0)
3 for each texture of object do
4 vec4 tex = texture(idx, uv)
5 if color then
6 tex *= color
7 if blend then
8 result = blend(result, tex)
9 else if add then

10 result += tex
11 else if multiply then
12 result *= tex
13 end

6.9 Lights

A big problem is that Quake III has no light sources. Therefore, we needed to define them
ourselves. We used the geometry of objects that we thought would make an acceptable
light source. We split each light source consisting of more than one triangle into multiple
triangle-shaped light sources. The data found in Table 6.8 defines one light source.

Light
vec3 pos Position of triangle vertex 0
uint offsetIDX Offset for the indexbuffer
uint offsetXYZ Offset for the vertexbuffer
int cluster Cluster of the light
vec4 color Color of the light
vec3 normal Normal of the light
float size Size of the light
vec3 AB Direction from vertex 0 to vertex 1
vec3 AC Direction from vertex 0 to vertex 2

Table 6.8: Data of one light source.

When we calculate the lighting for a given position, we take the cluster of this position,
and look up the number of lights visible from this cluster (first column of the light
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texture; see table 4.2). Then we iterate over all lights from 1 till the number of lights
and calculate the shading by shooting shadow rays in the direction of the lights.

6.10 Denoiser

The denoiser we use is called A-SVGF [SPD18]. The stages of the denoiser can be seen
in Table 6.9 (listed in order of execution).

A-SVGF Stages
RNG Calculate the random seed for the current frame.
Forward Projection Try to project the information from the previous frame

to the current frame.
Gradient Calculate the gradient based on the luminosity from the

previous and current frame.
Gradient À-Trous Filter the sparse gradient image with a guided filter to

produce a dense result.
Temporal Filter Calculate the weights for the accumulation factor between

the previous and current frames.
À-Trous Construct a dense lighting information from a sparse

lighting information.
TAA Clean up the image.

Table 6.9: A-SVGF stages listed in order of execution.

The buffers used by the denoiser can be seen in Table 6.10.

A-SVGF Buffers
RNG Contains the current seed for each pixel.
Gradient Sample Pos The position we used from each 3x3 area for forward

projection.
Position Forward Forward projection of the previous position.
Object Forward Forward projection of the previous object data (in-

stance id, primitive id and barycentric coordinates).
Moment Histlength Contains the change in luminosity and the history

length.
Color History Contains the accumulated illumination.
Grad Atrous A/B Two buffers are used for ping/bong filtering of the

sparse gradient image.
Atrous A/B Two buffers are used for ping/bong filtering of the

sparse and noisy reconstructed illumination.

Table 6.10: Buffers that are needed by the denoiser.
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Since the implementation is mostly identical to the reference, please take a look at the
paper for further details [SPD18].

6.11 Composition

This final stage is used to produce the final output image. It combines different images
based on the current configuration. This stage also blends the colors from the transparent
surfaces onto the final output image.

6.12 Temporal Anti-Aliasing

This optional stage is executed after the composition stage and uses the results from the
previous frame in combination with motion vectors to further clean up the current image.
At first, we look at the color distribution around the current pixels in a 3x3 window in
the current frame (we calculate mean and standard deviation). Then we use the motion
vector to get the correlating color from the previous image using bicubic filtering. We
clamp the color we get from the previous frame to the range of the distribution N (µ, 3σ)
we calculated in the beginning and add 0.1 of it to the current pixel color.
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CHAPTER 7
Evaluation

7.1 Hardware

Since RTX is still a new technology, the computational power for accelerated ray tracing is
quickly exhausted, especially on the lower end RTX GPUs like the RTX 2060. Therefore,
we used an RTX 2080 Ti, which is the fastest consumer-grade GPU currently available
that is based on the Turing architecture, and provides us with enough headroom for
our analysis. The complete list of the used hardware can be found in Table 7.1. This
implementation should also run on some older Nvidia GPUs since Nvidia offers a software
fallback for RTX Ray Tracing on non-Turing cards, but we have not tested this, so we
can no guarantee it.

In terms of extension and feature requirements for the GPU, there is not much to say
since only the Turing-generation GPUs support RTX Ray Tracing, and all those cards
also support the latest extensions and features of VulkanTM.

CPU Intel i7 9700k @ 4.90 GHz
GPU GeForce RTX 2080 Ti with 11 GB GDDR6
Memory 32 GB DDR4 @ 3200 MHz

Table 7.1: Hardware of the computer used for the evaluation

As mentioned, we use a very powerful GPU, but it is still very easy to reach the GPUs
limits with ray tracing. Even with a game like Quake III, which is from 1999 and should
easily run on modern hardware, these limits are clearly visible when no denoiser is used.
The models and other assets of Quake III have a low complexity since it is an older game
but it can still be challenging to achieve 60 frames per second at a resolution of 1920x1080
or 2560x1440 without a denoiser. A detailed analysis of the performance follows in the
next sections. This means that there is a lot of potential for research and development in
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terms of hardware but also algorithms in order to achieve good performance with even
more demanding content.

Some configurations of the ray tracer can impact the performance noticeably, like reflection
and refraction depth, bounce depth in case of path tracing or number of shadow rays.
Since these settings are also responsible for the quality of the rendering result, it is
important to find a good middle ground.

7.2 Visual Results

Figure 7.1: The left shows the original Quake III rasterizer. The right image is the result
produced by our ray-tracing implementation. The scene is taken from the map q3dm2.

In this section, we will look at the visual result of our implementation. The first big
question is how does our implementation compare to the original graphics of Quake III.
When we take a look at Figure 7.1 we can see a comparison of a scene rendered by the
original Quake III rasterizer and our ray-tracing implementation. The first difference we
see are the soft shadows added to the scene, like the shadows below the ammo boxes.
The second difference is that the shading produced by the ray tracer seems a bit different
in terms of color/lighting compared to the original renderer. The reason for this is that
Quake III does not have explicit lights defined that we can use. Quake III gets all its
shading from light maps, therefore we had to define our own lights. Since we do not
know how the lights were configured for the calculation of the original light maps, we
cannot reproduce the exact same lighting configuration. This results in a slightly different
shading of the scene and makes the comparison difficult. In order to mitigate this, we
would have to create a custom map where we know the exact lighting configuration, but
this would be beyond the scope of this thesis.

Figure 7.2 shows the difference between the output of the ray tracer with the denoiser
disabled (use of all 146 lights) and the case where TAA is additionally enabled, both in
comparison to the ground truth produced by accumulating 1500 frames from the paused
game. The left image contains noise from the soft-shadow effect. The noise is not very
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Figure 7.2: The left shows the ray-traced result without a denoiser and all 146 lights per
pixel. The middle image shows the same but with TAA activated. The right image is the
accumulation of 1500 frames with the same configuration as the left image. The scene is
taken from the map q3dm4.

noticeable and is even less noticeable when the images are in motion. We can also enable
TAA to achieve a result with no perceivable noise, which is close in terms of quality to
the accumulated image. The middle is the result with TAA activated, and the right
image is the accumulated result.

Figure 7.3 shows multiple shots of the same scene with different settings. The top left
image shows the scene with illumination disabled, which means removing all the light
maps. The other three images show the scene when we activate ray-traced illumination.
The top right shows the scene when we use no denoiser and all the lights for each pixel. In
the bottom left only one light source is used per pixel, which results in a lot of noise. This
configuration is the input for the denoiser, with the result being visible in the bottom
right image. When we compare the first image with no illumination with both images
on the right, it is clear to see that the quality improves when ray-traced illumination is
activated. Especially the shadows from the pillars, or the shading on the weapon, floor
and wall, make the scene more realistic. When we compare the results on the right with
each other we can see a bit of a difference when using a denoiser and when using no
denoiser. The result from the denoiser is a bit more washed out, which means it removes
some details of the shadows, and makes them look more subtle. For example, the shadow
from the left pillar is less pronounced and the penumbra seems a bit large compared
to the image where we used no denoiser. In Section 7.4 we will take a look at another
problem that is connected to this observation. Also, the difference in color between areas
which are in shadow and which are fully lit is much lower. This is probably the result
of the denoiser using edge-preserving filters to fill the gaps of the little data it has each
frame. This results in a lighting information closer to the mean of the surrounding pixels.

Randomly selecting one light from all the lights of the scene, or only from a smaller
subset can influence the amount of noise that is contained in the output image. This can
carry over to the denoiser and can influence the quality of its output. In Figure 7.4 we
can see the difference between light culling off/on. The top two images show the result
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Figure 7.3: The top left image shows Quake III without light maps, which is equal to no
illumination. Bottom left shows Quake III rendered with the ray tracer and one light
per pixel. Top right is the ray traced result when using all 106 lights per pixel and no
denoiser. The bottom right is the ray traced result with one light per pixel and a denoiser.
The scene is take from the map q3dm7.

when we do not use light culling and the bottom row shows the results when light culling
is enabled. All four images use one random light per pixel. We can see the top left image
contains more noise than the bottom left image, which makes the top image look darker
since more lights are selected that do not contribute to the lighting of the pixel. With
this information, the denoiser also produces a slightly darker and less detailed result.
The image from the denoiser on the bottom right is overall brighter. Another difference
that is present when light culling is deactivated but cannot be displayed by a screenshot
is the slight alteration of shading produced by the denoiser between each frame. It is
very noticeable during run-time, through randomly appearing dark spots. The reason
for this is that we have hit too many useless lights and thus, the denoiser does not have
enough data to correctly reconstruct the lighting in a given area. This is less pronounced
or not visible at all when light culling is on. If it is not explicitly mentioned, we always
have light culling enabled.

The last visual aspects we will talk about are transparent surfaces like glass and water.

56



7.3. Performance

Figure 7.4: The top left image shows Quake III with the denoiser deactivated, one light
per pixel and light culling off. Bottom left shows Quake III with the denoiser deactivated,
one light per pixel and light culling on. Both images on the right show the images from
the left processed by the denoiser. The scene is take from the map q3dm9.

Figure 7.5 shows a semi-opaque model inside a glass tube. This is a difficult situation to
handle since we need two refraction rays to reach the wall behind the glass tube, and
the first refraction ray can get reflected multiple times inside the tube. It is possible to
just use one of the two rays at each branch and try to remove the noise with a denoiser,
but for a better comparison with the ray-tracing configuration where we use no denoiser,
we traced all the rays recursively. Our maximum reflection/refraction depth is 5, which
means we can look through up to 5 glass surfaces positioned behind each other.

7.3 Performance

In this section we take a look at the performance and how different settings influence
it. One thing to keep in mind is that, since RTX Ray Tracing is still a new topic, our
implementation certainly has room for improvements. The optimizations that are part of
our implementation are light culling and a denoiser.
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Figure 7.5: Glass tube with a semi-opaque model in between (from map q3dm0). Left
image shows the scene with the secondary ray stage functionality for semi-opaque model
deactivated.

Figure 7.6: The scene we used for performance analysis with a mirror in the middle and
two glass tubes on the sides. Scene is from the map q3dm0.

The two main aspects the performance of our implementation depend on are, the number
of lights we use per pixel and the resolution we use for the calculation of our image. Since
distributed ray tracing has no indirect lighting stage, the path depth has no impact on
the performance in most cases. The only exceptions are glass and mirror surfaces, which
only heavily impact the performance if there are multiple such surfaces next to each
other. In the case of no denoiser, we have no other option then to use all lights to get a
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nearly noise free image. This highly affects the performance in a negative way. When we
use a denoiser, we can resort to only one light per pixel, which results in a performance
increase even with the denoiser using up to 2ms of the frame time. As reference, in
order to get 60 frames per second, a frametime of 16.6 ms is required. We tested the
performance of our implementation across all the commonly used display resolutions from
1280x720 pixels (720p) up to 2560x1440 pixels (1440p). The test scene we use is from the
Quake III map q3dm0 at the initial player position (see Figure 7.6). Our observations
can be seen in Figure 7.7. The grey bar describes the run where we used no denoiser and
shot shadow rays to all 135 light sources. The orange bar describes the case where one
shadow ray and no denoiser was used and the blue bar describes one shadow ray and an
active denoiser. Without a denoiser we reach the limit at 1440p where the frametime
goes above 16.6 ms. For all the resolutions where we used a denoiser, the results are
below 16.6 ms (above 60 FPS). Even tough in most cases, using no denoiser can achieve
more than 60 FPS, the framerate can drop way below that in areas where more lights are
used. When using a denoiser, we have the advantage of limiting the maximum number of
lights per pixel to one, which results in a stable frametime. On the other hand, in the
mentioned areas the variance can increase, since the probability of selecting a certain
light source decreases, which can result in a lower-quality denoising result. Figure 7.8
shows how much time the denoiser needs each frame.

Figure 7.7: Ray-traced Quake III performance across multiple common display resolutions
when using a denoiser compared to using no denoiser.

In order to analyze the impact of our light culling implementation in terms of performance,
we render our scene with the denoiser deactivated and shoot shadow rays to all 135 lights.
When we do not cull any lights, we have to test all lights in the scene for visibility. This
results in many shadow rays traced that do not contribute to a pixels shading. Figure 7.9
shows the comparison of light culling activated and deactivated. In the case where light
culling is activated, most of the lights that are not visible from the given triangle are not
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Figure 7.8: The time the denoiser needs every frame at multiple resolutions.

considered for the lighting calculation. This results in an increased performance of more
than double the fps. When we use a denoiser, light culling reduces the variance of the
random distribution for selecting a useful light and thus improves the visual quality and
stability.

Figure 7.9: The difference in performance when all 135 lights are used, in comparison to
when we cull the lights that do not contribute to a pixel’s shading.

7.3.1 Performance affected by SPP

By setting the amount of lights to consider per pixel to different values, we can change
the amount of noise in the image. This can improve the visual quality but comes with
a performance drawback. In Figure 7.10 this can be seen for different sample counts
(without a denoiser) and a single result with 1 SPP + denoiser. We compare these
results with the ground truth, which is a image accumulated from 1500 frames, with one
SPP and denoiser/TAA disabled. We only included one image for the situation when
the denoiser is on, since the difference between different sample counts is practically
not visible. This can be seen quantitatively in the left graph of Figure 7.11, where we
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calculated the Structural Similarity Index (SSIM) between the ground truth and different
sample counts. When a denoiser is used, the result is the same for all the different sample
counts. In case of no denoiser, the SSIM increases with more samples per pixel. The last
two data points show the case where we additionally activated TAA. When we use all
lights in combination with TAA, we can achieve a visual result which is very close or
even better when compared to the case when using a denoiser. This means it is possible
to achieve visual results close to the ground truth without using a denoiser. In the case
when a denoiser is used, TAA improves the quality even further, though there is no
difference between using all lights or just one light except for performance. In terms
of performance, there is a clear downwards trend with an increased sample count. The
graph in Figure 7.11 shows this for sample counts from 1 to 16. Since in this case, sample
count means the number of lights we consider per pixel, and not calculating the ray
for one pixel multiple times, the decrease is not as drastic as one would expect. For
instance, if we calculated each pixel four times for each frame in case of a traditional
4 SPP implementation, the FPS would drop by three fourths. This is not practical for
real-time usage since we divide our FPS by the SPP and this would result in a huge
performance loss. In our implementation, the performance loss from 1 SPP to 4 SPP
is around a third (around 150 FPS (18 ms/frame) from 450 FPS (4 ms/frame)). See
the left graph of Figure 7.11, which shows the drastic performance decrease in case of
tradition samples. The ratio of gained visual improvement compared to the accompanied
performance loss is better through this approach. The right graph of Figure 7.11 shows
that the visual quality is slightly better when traditional samples are used compared to
just light samples, but the performance loss with each additional sample is much more
drastic (left graph).

Figure 7.10: Top row from left to right 1 spp, 2 spp, 4 spp, 8 spp. Bottom row from
left to right 16 spp, all 151 lights, 1 spp with denoiser, 1500 images accumulated at a
resolution of 1024x768 pixels (ground truth). Light culling was always on. (from map
q3dm15)
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Figure 7.11: The left graph shows ms/frame for different sample counts. The right
graph compares the visual results for different sample counts using SSIM. Each image
is compared to the ground truth (accumulation of around 1500 images). Values are
captured from the scene shown in Figure 7.10.

7.4 Discussion of Noise Origins

During the analysis of our implementation we found certain sources of noise that needed
to be discussed in more detail. This was especially noticeable at a certain location within
the Quake III map q3dm7. Here we have a large light source which is slightly offset
into the back wall. If we limit the scene’s lights to just this single light and turn off all
effects except for soft shadows, we can notice noise within the penumbra but also outside
of it in the fully lit areas. This noise is produced because of two reasons. First, some
shadow rays get occluded by the protruding surfaces around the light source and second,
because of the distance and angle-based dampening of the light’s strength. When all this
is removed, we get a result without any noise outside the penumbra. See Figure 7.12 for
the visual comparison. This kind of problem is not present when using a denoiser or
TAA.

7.5 Problems and Limitations

When no denoiser is used and light culling is on, we need to consider all lights that
remain after light culling in order to get a noise-free result. The problem in this case is
that, when moving through the scene, the frame rate can vary a lot in situations where
the amount of lights changes a lot. Even if the FPS are above 60, these spikes can be
noticeable through stutter. Figure 7.13 visualizes these frame time spikes for the map
q3dm0 in the time span of around one minute. We could limit the maximum number of
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Figure 7.12: The first image shows our example scene. The second image shows the noise
with the large light source being partially occluded by the protruding surfaces around
it. The third image shows the noise with the light moved forward to remove all possible
occlusions. The fourth image shows the noise with the L dot I term additionally set to 1.
In all three images the penumbra can be seen on the right side, and the fully lit area on
the left side.

lights to a value greater than one, but this would result in an inconsistent noise level
between frames, scaling with the total number of lights an area has. Another solution
would be to evenly distribute the light sources in the scene so that we have about the
same amount of lights for each triangle. Another solution would be to disable light culling
and use all lights all the time, which results in a constant performance decrease. The
best solution would be to limit the lights per pixel count to 1 and use a denoiser.

Figure 7.13: Frametime while moving through the level q3dm0 at a resolution of 720p
with denoiser disabled and the use of all lights per pixel.

The same goes for reflections and refractions. If the camera is close to a reflective/refractive
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surface, resulting in a big part of the screen being covered by it, a lot of reflection and
refraction rays need to be calculated. This reduces the frame rate depending on how much
of the screen is covered with the surface. A solution would be to reduce the complexity
for reflection and refraction rays by limiting the maximum depth. For materials like glass
or water, when a solution is used that traces all reflection/refraction rays (in order to
produce no noise), each additional reflection/refraction ray can create another pair of
reflection/refraction rays, which results in a tree-like structure of dependency. For two
glass panes next to each other, this can result in more than 4 rays per pixel. A solution
would be to randomly decide at each hit if we want to spawn a reflection or refraction
ray and only follow one ray. This would be similar to the path-tracing approach. Since
we skip information with this method, the result will contain noise. Denoising such a
situation is not trivial and requires additional adjustments.

Another problem in our implementation is that it is difficult to adjust the strength of
the lights in a way that certain areas are not underexposed, while other areas are not
overexposed (this is also reinforced by Quake III not providing predefined lights, therefore
we have to define our own lights). In this case, the use of a tonemapper can help with
achieving a shading which does not produce such extreme values.

One problem produced by the denoiser can be seen in Figure 7.14. The denoiser blurs
and softens shadows when directly compared to the ground truth. This effect increases
the further away the object is from the camera. The reason for this is that objects that
are further away have less temporal history because of the fewer pixel they occupy on
the screen. Since the denoiser makes use of blur filters to produce dense results from
sparse inputs, fewer pixels produce a less detailed reconstruction of the shading as shown
in Figure 7.14. The left and middle image show the same object from a close and far
distance with the denoiser activated. We can see that the middle image loses a lot of
detail compared to the ground truth (right images), which we acquired through the
accumulation of multiple images without a denoiser. In Figure 7.3, this problem can also
be seen.

Figure 7.14: Left image shows the scene with the denoiser on, from a close distance. The
middle image shows the result when the denoiser is on and the camera is further away
from the object. The right image shows the accumulated image (no denoiser) from the
same distance as the middle image. The shadows in the middle image are much lighter
compared to the left and right image. The scene is taken from the map q3dm7.
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CHAPTER 8
Conclusion and Future Work

Overall, the results we achieved are promising for the future of completely ray-traced
games with the help of more capable hardware and improved implementation strategies.
Currently, the low complexity of older games is essential for the feasibility of a fully
ray-traced game. The outdated architecture of these old games, on the other hand, makes
it hard to implement ray tracing at its fullest potential.

Implementing ray tracing without a denoiser or light culling is not advised, since the
disadvantages are very prominent. The only scenario where an implementation without a
denoiser can be useful is when development time is short, a light-culling functionality that
is perfectly adjusted for each triangle is available and the lights are evenly distributed
across the scene to decrease the occurrence of frametime spikes. When no denoiser is
used, activating TAA for the final output can increase the visual quality a lot. Even
though using a denoiser is very helpful, no current denoiser is perfect, and using a
denoiser is always an exchange of quality for performance (only one light per pixel is
required to produce a noise-free image but quality compared to the ground truth is
lower). The quality of the light culling can have a big impact on the performance of
the denoiser. The more unnecessary lights are culled, the more effective the denoiser
can operate, and thus, can further close the gap between the denoiser’s output and the
ground truth. Our proposed light-culling strategy removed many discrepancies between
frames and improved the general quality of shading/shadows of the final output. Also,
the performance gains when using all lights after culling compared to all lights without
culling were significant. Still, the most exciting results were when we combined the
denoiser with light culling and subsampling of the lights. No other combination could
produce such a good quality/performance ratio and the analysis shows that this is a
feasible way to implement a completely ray-traced legacy game. Since the PVS of Quake
III was not originally designed for such a precise application, we could probably get even
better results with a more appropriately designed PVS.
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All in all, the implementation of a real-time ray tracer is a non-trivial task and has its
upsides and downsides compared to a rasterizer. The upside is that certain effects like
reflections are straightforward to implement. On the other hand, there are a lot of knobs
to adjust. For example, getting multiple transparent surfaces to blend correctly along a
ray can be trial and error depending on the complexity of the scene and the consistency
of the data. Considering ray tracing at the beginning of the engine design can help a lot
with avoiding such problems.

From a visual point of view, it is difficult to produce better results with a real-time ray
tracer without introducing too much of a performance hit in comparison to a modern
rasterizer, since rasterizers of modern engines set a very high bar in terms of visual
quality. In older games, where the geometry is very simple, it is possible for a ray
tracer to produce better results than the original renderer, tough in comparison with
a state-of-the-art game, it still cannot produce an equal quality. Once the hardware
and software has evolved further, we will see state-of-the-art games that produce better
results with a ray tracer than a rasterizer.

Possible future work and improvements are, on the one hand, to iron out some bugs that
are still present, and on the other, further improve the implementation (e.g., add indirect
illumination and other effects). Additionally, the code will be hosted on GitHub and will
be available for everyone to use and modify. In general, we hope this thesis can help
people with a similar goal in mind, and encourages the use of ray tracing in a real-time
renderer.
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1
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1
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