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Abstract

3D Mesh unfolding is a process of transforming a 3D mesh
into one or several 2D planar patches. The technique is
widely used to produce papercraft models, where 3D ob-
jects can be reconstructed from printed paper or paper-like
materials. Nonetheless, the reconstruction of such mod-
els can be arduous. In this paper, we aim to unfold a 3D
mesh into a single 2D patch and introduce Gluetabs as ad-
ditional indicators and in order to give users extra space
to apply glue for better reconstruction quality. To avoid
unnecessary Gluetabs, we reduce their number, while still
guaranteeing the stability of the constructed model. To
achieve this, a minimum spanning tree (MST) is used to
describe possible unfoldings, whereas simulated annealing
optimisation is used to find an optimal unfolding without
overlaps. We aim to unfold 3D triangular meshes into sin-
gle 2D patches without applying shape distortions, while
appropriately assigning a reasonable amount of Gluetabs.
Moreover, we incorporate a visual indicator scheme as a
post-process to guide users during the model reconstruc-
tion process. Our quantitative evaluation suggests that the
proposed approach produces fast results for meshes under
400 faces.

Keywords: Mesh unfolding, Simulated annealing,
Gluetabs

1 Introduction

Papercraft is a popular art, where people create 2D or 3D
objects from cardboard or paper, as shown in Figure 1. To
achieve this, a 3D mesh representing the object needs to
be unfolded into a single- or multiple 2D patches, which
can then be printed and used to reconstruct the model in
3D. Models, that can be created, range from simple ones,
such as paper aeroplanes, to complex models, for example
of buildings. Recently, it is also used in combination with
self-folding materials to form structures in an automatic
fashion [12]. As demonstrated by Takahashi et al. [23],
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Figure 1: An example of a papercraft model, which in-
cludes (a) a cow 3D model and its corresponding (b) single
unfolded patch.

unfolding a 3D triangular mesh into a single patch, in con-
trast to multiple patches, eases the reconstruction process
for users. However, finding such an unfolding, in which no
pair of faces overlaps with one another and without distort-
ing the original mesh is a difficult task. More specifically,
it has been proven as an NP-complete problem [11]. More-
over, the reconstruction of a model can also be hard, even
with indicators that show which cut-edges should be glued
together, as presented by Takahashi et al. [23].

In this paper, we propose to add a minimal number of
Gluetabs to ease the reconstruction of models by guiding
which cut-edges should be glued together as well as pro-
viding users sufficient space to apply glue. The addition of
Gluetabs increases the complexity of finding an overlap-
free unfolding, due to the combinatorial complexity of se-
lecting cut-edges to apply Gluetabs.

Gluetabs are essential as they allow users to build clean
3D models and guide users during reconstruction process.
This is achieved by calculating minimum spanning trees
of the dual graph of the 3D mesh which describes a possi-
ble unfolding. Simulated annealing optimisation is used to
find an overlap-free unfolding. Gluetabs are pre-calculated
and treated analogue to mesh-faces when unfolding the
model.

Our experiments suggest that models with less than 700
faces can be unfolded using the proposed approach ef-
fectively, whereas an increasing number of faces requires
more time to find appropriate unfoldings. For meshes with
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more 700 faces, no unfolding can be found within a rea-
sonable timeframe. Another key factor that influences the
unfolded results is the number and size of the Gluetabs,
as well as the integration with the unfolded patches. We
select a trapezoid shape as the design of a Gluetab. The
advantage of using the trapezoid shape is that a trape-
zoid consists of two triangles, so that we can consider
Gluetabs as additional faces of the 3D mesh and apply
similar overlap-detection when searching a feasible solu-
tion. Furthermore, this shape gives users more space than
a simple triangle. It is also preferable to a rectangle as it
takes less space, because as the Gluetabs size increases,
the difficulty of finding an overlap-free unfolding also in-
creases. Shortly speaking, our contribution in this paper
includes a new meta-heuristic approach of finding unfold-
ings of 3D meshes as well as introducing a minimum num-
ber of Gluetabs giving users space to apply glue to and
guide reconstruction.

The remainder of this paper is structured as follows.
Section 2 discusses previous explorations for mesh unfold-
ing and optimisation techniques. Section 3 describes the
concepts used in this paper. Section 4 gives an overview
of the processing pipeline, that computes an unfolding and
describes necessary steps in detail. Section 5 brings in-
sight into the implementation of the previously explained
approach and focuses on the simulated annealing process.
Section 6 shows the results of the implemented approach
and evaluates its performance and limitations. Finally,
Section 7 summarises the findings and provides an outlook
on future work.

2 Related Work

This section focuses on previous work done on the topic of
optimising the unfolding of 3D models and also explains
the differences in the approach proposed in this paper.

2.1 Optimised Unfolding of 3D Meshes

Mesh Unfolding has different applications, such as creat-
ing papercraft models [23, 20] and the creation of mod-
els from self-folding materials [8, 24]. Some techniques
allowing mesh deformation [2, 16], in order to relax the
problem. Mitani et al. [16] and Chang et al. [2] propose
methods that allow mesh deformations when unfolding.
Also, the theoretical perspectives [18] of the problem have
also been explored. Moreover, some other authors study
different types of target meshes, for example, orthogonal
polyhedra [25, 5, 4]. The most relevant work of this pa-
per is done by Takahashi et al. [23]. The authors pro-
posed a genetic-based algorithm to find a single connected
patch for printing purpose. They unfold 3D models us-
ing a heuristic approach and they do not distort or edit
the original 3D model. The key concept of unfoldabil-
ity is borrowed from topological surgery, in order to guar-
antee an unfolded patch can be stitch together from the

corresponding cut edges. Our paper, on the other hand,
explores a meta-heuristic simulated annealing approach to
find unfoldings, in contrary to the work done by Takahashi
et al. [23]. Simulated annealing has the advantage of its
easiness to implement compared to genetic algorithms and
it is more likely to find an optimal solution compared to a
greedy algorithm [20].

Another key conventional approach is investigated by
Straub et al. [20]. They explored the unfolding and
Gluetabs on each cut-edge of the unfolding. They also
explored the removal of overlaps by introducing new sub-
divisions to the mesh. They use a greedy algorithm to
optimise the unfolding and to resolve overlaps. Gluetabs
that have been added to an unfolding are optimised, i.e.
changed in size to avoid overlaps, after an initial unfolding
is found. To be able to print the unfolding is then separated
on multiple cut-out sheets if it does not fit on a single one.
In this paper, the proposed algorithm examines all possi-
ble Gluetabs in advance and selects a minimum number
of Gluetabs at each unfolding iteration. To the best of our
knowledge, the integration of unfolding and Gluetabs has
not been explored in the state-of-the-art literature. Readers
can consider this technique as an improvement of the ap-
proach studied by Takahashi et al. [23], where they found
that it helps users with reconstructing a 3D model if the
mesh is unfolded into a single patch.

2.2 Optimisation Techniques

Since the 3D mesh unfolding problem is considered an
NP-complete problem [11], optimisation techniques are
often used to find a solution. This is because trying
all combinations is not practical in most of the cases.
Many optimisation techniques are well explored, includ-
ing greedy algorithms [7] or heuristic optimisation tech-
niques [15]. This paper proposes using simulated anneal-
ing as the optimisation technique for mesh unfolding prob-
lem to find an optimal solution based on the cost function,
because it is easy to code and has advantages over greedy
algorithms. Simulated annealing is a well-known optimi-
sation technique [13] that is widely applicable to problems
found in computer science [9] [6] [1] and other scientific
fields [17] [22].

Algorithm 1 depicts the concept of a simulated anneal-
ing approach, where it optimises a configuration P by min-
imising the energy of P. At each iteration, a new config-
uration P′ is created, and the energy is compared to the
previous configuration using the function E(∗). At each
iteration, there is a chance to take a worse configuration,
to avoid getting stuck in local minima, as shown at line 6
in Algorithm 1. kB is a constant, which should be adjusted
and determined through the result of experiments.

Since we could encounter local minima when optimis-
ing 3D Mesh unfolding, simulated annealing has a distinct
advantage over greedy algorithms, as it is less likely to
get stuck in a local minimum. Compared to genetic al-
gorithms, simulated annealing is easier to code and works
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Data: Configuration P, Max Temperature Tmax
Result: Optimised Configuration P

1 Set T = Tmax;
2 while T > 0 do

/* Random step to generate P′

from P */
3 Create P′ from P;
4 if E(P′)≤ E(P) then
5 Set P = P′;
6 else if

rand(0,1)≤ exp(−(E(P′)−E(P))/(kBT ))
then

7 Set P = P′;
8 Decrease T ;
9 end
Algorithm 1: The pseudo-algorithm of simulated an-
nealing.

well on problems with continuous cost functions. There-
fore we chose simulated annealing as the optimisation ap-
proach.

3 Definition of Key Concepts

In this section the terminology used in this paper is de-
fined. Further key concepts are described.

(a) (b)

Figure 2: (a) A triangular mesh of a box (black) and its
dual graph (green). (b) A MST (green), of the dual graph,
representing an 2D unfolding.

Triangular Mesh M. The input for the algorithm is a
triangular mesh M = (VM,EM,FM). We restrict the meshes
for this approach to genus zero.

Dual Graph D. D = (VD,ED) is called the dual graph
of M and is obtained by calculating a dual vertex VD for
each face f ∈ FM and a dual-edge ED for every two faces
separated by an edge e∈ EM [10]. The dual graph can then
be used to find an unfolding, as a dual-edge connects each
neighbouring facets. These dual-edges can either repre-
sent an edge that is cut or an edge that is used for bending,
which means the dual graph contains all edges, whether
they are cut or bent, of the mesh model. A graph has only
one dual graph, and the computation of it can be done very
efficiently, which makes it a very compelling data structure
to use for 3D mesh unfolding.

Minimum Spanning Tree (MST) T . Given a cost-
function c(v,w) for each edge (v,w) ∈ ED, a minimum
spanning tree T = (V,E ′) can be calculated such that
∑{v,w}∈E ′ c(v,w) is minimal [3].

Therefore the MST in combination with the dual graph
is a good tool to calculate possible unfoldings. In order to
calculate a MST, we need to assign a weight to each edge
in the dual graph. To achieve this, we propose to assign a
random weight between (0,1), as assigning weight regard-
ing the model structure needs more sophisticated shape
analysis, which will be improved in future work.

2D Unfolding. A 2D unfolding is defined as the 2D
representation of the 3D Model, after being unfolded. It is
computed by unfolding faces one after another, referring
to the MST T . The exact order of which face is unfolded
first can be neglected as the MST defines exactly one un-
folding. In this paper, we define the quality of an unfolding
by the summed area of overlaps. A correct unfolding has,
therefore, an overlapping area of 0. A single 2D Unfolding
describes the unfolding of a 3D mesh into one connected
planar patch.
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Figure 3: (a) Cut-Edges (red) and Bend-Edges (black). (b)
Exemplary trapezoid Gluetab (green) attached to its source
face edge (blue) and the face it will be glued to (red).

Cut-Edge. Each edge that is a boundary edge in the
unfolding is referred to as a Cut-Edge. Each face has at
least one Cut-Edge. Gluetabs might be attached to a Cut-
Edge as shown in Figure 3(a).

Bend-Edge. Every edge in T is referred as a Bend-
Edge, as shown in Figure 2(b) and Figure 3(b), therefore
complementing the Cut-Edges, with each face having at
least one Bend-Edge.

Gluetab. A Gluetab refers to an additional space that
users use to apply glue for attaching Cut-Edges to each
other. It can have different forms, for example, the shape
of a trapezoid, as shown in Figure 3(b). For each Gluetab,
it contains one source and one destination edge. In this
paper, we propose trapezoid-shape Gluetabs as an experi-
mental shape. This is because trapezoid is a standard shape
for Gluetabs, and of course this can be extended to other
preferred structures.
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(a) Original Mesh (b) Dual graph (c) MST (d) Gluetabs Selected (e) Unfolding

Figure 4: Steps of the proposed unfolding process. (a) Shows the 3D Model. (b) Shows the dual graph. (b) Shows a MST.
(c) Shows a minimal number of selected Gluetabs. (d) Shows the unfolded patch with visual markers.

4 Unfolding Meshes with Gluetabs

Figure 4 gives a step-by-step overview of the present al-
gorithm. It shows in total five steps. This includes com-
puting the dual graph (S1), pre-computing Gluetabs (S2),
computing the MST (S3), selecting an appropriate number
of Gluetabs (S4) and then unfolding with additional visual
markers (S5).

After loading a mesh, as seen in Figure 4(a), the corre-
sponding dual graph is computed, as highlighted in green
in Figure 4(b). At this step, for each edge, Gluetabs are
pre-computed for each side of each edge. Once the dual
graph is calculated a MST is computed (highlighted in
green in Figure 4(c)), whereas the resulting cut-edges are
highlighted red. Based on the MST T , the Gluetabs are se-
lected, as explained in section 4.4 (Figure 4(d)). The next
step is to unfold the model and Gluetabs by referring to
the MST T (Figure 4(e)). If the unfolded faces are over-
lap, we change the weight of a random edge and return to
S2. Otherwise, if no overlaps occur, a post-processing is
conducted as described in Section 4.7, which results in an
unfolded patch, as seen in Figure 4(d).

4.1 Dualgraph Generation (S1)

The dual graph is calculated once at the beginning, as the
original mesh is not changed, as shown in Figure 4. The
neighbourhood relation of the faces can be derived from
edges connecting the two vertices the faces have in com-
mon. For this reason, we iterate through all faces of the
mesh in two nested loops and save a dual edge each time
we find a new face with common vertices with another
face. In order to compute a MST, each new dual edge is
assigned a random weight between (0,1).

4.2 Gluetabs Introduction (S2)

The second step is to calculate Gluetabs (see Figure 4(b)).
For each edge in the dual graph D, a Gluetab is calcu-
lated for both facets connected by this edge. The end-
points of an edge are the base of a Gluetab, as shown in
Figure 3(a). The algorithm that is applied to faces of the
mesh is also applied to the Gluetabs. The size of Gluetabs
are pre-computed, and the height of a Gluetab takes max-
imum 20% of the target face. The shape and size of the

Gluetabs are determined experimentally to provide users
with appropriate extra space. Gluetabs are calculated once
after the dual graph was calculated, since the dual graph
does not change.

4.3 Generation of MST (S3)

The algorithm then computes a MST from the dual graph.
This is done using Kruskal’s algorithm [14] to find the
shortest spanning subtree on the dual graph D. The re-
sulting aggregation E ′ contains all Bend-Edges and its
complement contains all Cut-Edges. Using E ′, the mesh
can be unfolded, whereas its complement is used to deter-
mine which Gluetabs are necessary to reconstruct a stable
model.

4.4 Gluetabs Selection (S4)

Based on the MST, the Gluetabs that are part of the un-
folding can be selected. By iterating through all possible
Gluetabs, a Gluetab is selected if at least one of the fol-
lowing conditions is fulfilled:

• No Gluetab for this face was selected.

• The number of successive Cut-Edges no Gluetab was
selected is higher than 1.

With these conditions on reconstruction, the built model
has no moving vertices. In other words, for each vertex,
there is maximum one adjacent edge is not fixed using a
Gluetab, which yields a stable 3D model. The stability
is tolerable here because adding more Gluetabs will not
yield a more stable reconstructed model while increasing
the reconstruction effort.

4.5 Unfolding the 3D Mesh using MST (S5)

Figure 4 shows how an unfolding of the mesh is calcu-
lated Followed by the calculation of the MST. By picking
an edge in E, we can then decide the two faces to unfold.
Faces can be unfolded by setting two vertices of the first
triangle and then calculating the unknown vertices for each
triangle, as shown in Figure 5 or using transformation ma-
trices. This step is computed iterative until all faces and
Gluetabs are unfolded.
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Figure 5: (a) A 3D model of a box, and (b) the unfolding
of the first two faces.

4.6 Detecting Overlaps

The last step of the simulated annealing loop, is to deter-
mine the quality of the unfolding by calculating its energy
function E(P′). The energy function E(P′) is computed
by collecting the total pixels of the overlapping region,
to guide the algorithm for finding an overlap-free single
patch with Gluetabs.

An overlap is defined if two faces are intersected with
each other partly (see Figure 6), or if a face is entirely lo-
cated inside another Face. For Gluetabs, the definition is
similar. In total, three different cases of overlaps can oc-
cur, including either face-face overlaps, Gluetab-Gluetab
overlaps, or face-Gluetab overlaps.

Figure 6: Overlaps of faces resulting in different overlap-
ping areas.

To improve the performance of finding overlap-free
unfoldings, face-face overlaps are checked before the
Gluetabs are checked. This is because if faces overlap
with each other, an overlap-free unfolding cannot be found
even if the Gluetabs are overlap-free. Moreover, the per-
formance can be improved by limiting the number of faces
that need to be checked. As the overlap detection does not
need to be done with its predecessor, because they share a
common edge an overlap is not possible.

If an overlap occurs, the Sutherland-Hodgman Clip-
ping algorithm [21] is used to calculate the overlapped
area. This algorithm finds the vertices of the inter-
section polygon created by the two faces. The over-
lap can be described as a polygon (see Figure 6). The
area is calculated with the shoelace formula Area =
1
2

∣∣∑P−1
i=0 xiyi+1 + xny1−∑

n−1
i=1 xi+1yi− x1yn

∣∣ [19], where xi
and yi are the coordinates of the i-th point in P.

4.7 Post-Processing

Two strategies have been introduced to improve the visual
quality of the unfolded results.

Colour Coding. To support reconstructing and edge-
Gluetab mapping, the Gluetab is coloured, and the Gluetab
is also mirrored on the targeted edge. Different colours are
chosen for each Gluetab to help identify where a Gluetab
needs to be glued to.

Bend-Edge Coding. To make it easier in which direc-
tion a Bend-Edge needs to be bent, each Bend-Edge is
coded to distinguish between a mountain-fold or a valley-
fold, as proposed by Takahashi et al. [23]. A mountain-
fold is represented by a solid line and the valley-fold is
displayed by a dotted line. To identify the fold-type, the
normal vector n1 of the first face is calculated, and a vec-
tor e2 of the common edge to the not-shared vertex of the
second face is calculated. Then the dot product of n1 and
e2 is negative if it is a valley-fold and positive if it is a
mountain-fold, which can easily be seen in the 3D and 2D
representation in Figure 4(d).

4.8 Parameters used in the Approach

The algorithm is adjustable by changing multiple parame-
ters without changing the approach itself. By configuring
the temperature Tmax can be adjusted to define the num-
ber of iterations the algorithm runs, the default value is
100.000. kB can be adjusted as well, its default value is
0.001.

5 Implementation Details

We define the configuration P as the list of weighted dual
graph edges, from which the MST can be derived. To gen-
erate a new configuration P′ from P, the weight of a ran-
dom edge is randomly changed. The quantitative evalu-
ation function E(P) is defined as the sum of overlapping
areas of an unfolding.

Our data structure holds information about the neigh-
bourhood relations between vertices and edges. It also
holds information about all faces. After loading in the
mesh into a data structure, preparations are necessary in
order to apply simulated annealing. The algorithm calcu-
lates a dual graph and Gluetabs, for each edge of the dual
graph, as each edge could be a possible cut edge. Further-
more, we set the maximum temperature to 100,000 and
the cooling rate 1.0 per iteration, as experimental values,
defining the run-time of the annealing process. The algo-
rithm assigns each edge of the dual graph a random weight
and then sorts the list. This is summarised as (1) in Fig-
ure 7.

Then it calculates an initial MST using the edge list.
Gluetabs are calculated for all edges that are cut, which are
the edges not present in the MST. The algorithm iterates
through all pre-computed Gluetabs and selects Gluetabs if
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(1) Init P and T (2) Unfold P

E(P) = 0

(3) Calculate E(P) (4) Generate P' from
P, Decrease T (7) Set P = P'

Finish E(P') = 0 or T = 0

rand(0,1) > 1 - e-(T+E(P'))/Tmax) or E(P') ≤ E(P)

E(P') > E(P)

(6) Calculate E(P') (5) Unfold P'

Simulated Annealing Loop

Figure 7: Overview of the simulated annealing process.

they fulfil the conditions from Section 4.4. After these
steps, the algorithm starts unfolding the faces and the
Gluetabs alike ((2) in Figure 7).

The algorithm then computes the area of face-face over-
laps, face-Gluetab overlaps, and Gluetab-Gluetab over-
laps, described as (3) in Figure 7. This approach pro-
poses to weigh face-face overlaps with a higher factor
than Gluetab-Gluetab overlaps. This prioritisation is ap-
plied since a configuration that does not have any Gluetab
overlaps, but still has face overlaps is less optimal than the
other way around. If no face-face overlaps occur in a con-
figuration and only Gluetabs overlap are left, these have
a chance to be resolved for example by changing which
Gluetabs are used or by post-processing the size of the
Gluetabs.

If E(P) is zero the algorithm terminates, otherwise we
generate a new configuration P′ from P by changing the
weight of a random edge to a random value and decrease
the temperature T , as seen in (4) in Figure 7.

P′ is then unfolded again ((5) in Figure 7). If the energy
of the new configuration P′, (6) in Figure 7, is smaller or
equal to the energy of the previous configuration P, P is
set to P′, (7) in Figure 7. If not the configuration is treated
probabilistically. If a uniformly distributed random num-
ber is smaller than P(∆E) = 1− e−(T+E)/(Tmax) the new
configuration will be accepted as the best configuration.
This condition decreases the likelihood of the algorithm
getting stuck in a local minimum.

At the end of every iteration, if P is set to P′, it is visu-
alised using OpenGL. The annealing process terminates if
E(P′) reaches 0 or if T reaches the minimum of 0, which
means that it ends without finding an unfolding.

6 Results and Evaluation

This paper proposes a spanning-tree based approach to
find a single unfolding of a mesh. A simulated anneal-
ing process is optimising the search for an overlap free un-
folding by finding an optimal global layout. The following
Figures show the results generated using our system. The
Gluetabs are highlighted in the original 3D mesh. Further-
more, the MST (green) and cut-edges (red) are visualised
in the 3D mesh. Note that the specification of testing data

Figure 8: A 3D sphere-like objects with 72 faces and three
of possible unfoldings.

is summarised in Table 1.

The system is implemented on a laptop with an Intel
Core i7 CPU (4 cores @ 3.3 GHz, 4MB L3 Cache) and
8GB RAM. The source code is written in C++17. The
OpenGL ver. 4.5 library is used for the visualisation of the
algorithms step as well as the results. The CGAL ver. 4.13
library is used to read in off files and to provide the under-
lying data structure. The Graphical User Interface is de-
veloped using the Qt Library ver. 5.13, CMake ver. 3.14 is
used to manage the build process, and sources were com-
piled with GCC 9.2 on Ubuntu 18.04.02 LTS. Temperature
T is set to 100,000 with a cooling rate of 1.0, resulting in
a maximum of 100,000 iterations.

Figure 8 is a sphere-like objects with a low count of
faces , which work best with the proposed algorithm, as a
solution is found fast. In Figure 8, three different unfold-
ings are presented. Each having a different shape and tak-
ing different amounts of time, 18, 77 and 49 seconds. This
is due to the non-deterministic property of the algorithm,
as well as the random walk when searching a feasible un-
folding.

Figures 9a, 9d, 9f, 9g and 9h show meshes that have
partly thin parts that lead to a further stretch of the unfold-
ing even after optimising the spatial use of the unfoldings.

Figures 9b, 9c and 9e are again more sphere-like which
in general leads to more compact unfoldings, but can also
produce stretched results due to the randomness of simu-
lated annealing.
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(a) Dragon with 144 faces. (b) Star with 216 faces. (c) Snail with 286 faces. (d) Horse with 302 faces.

(e) Bunny with 328 faces. (f) Hand with 336 faces. (g) Armadillo with 386 faces. (h) Cat with 392 faces.

Figure 9: Various 3D models (left) and their corresponding unfoldings (right).

6.1 Quantitative Evaluation

To evaluate the algorithm, we conduct an experiment
through running a variety of 3D models. The results
are summarised in Table 1 using the previously described
Gluetab properties. In the experiment, a maximum of
100,000 iterations is used limit the computational time.
The time in Table 1 is the average time needed for com-
putation for 2 runs, it does only include computation time,
rendering the results is excluded. The bruteforce approach
tries all permutations of MST to find a solution and returns
the first solution found.

Time (s)
Model Vertices Faces Edges Our Approach Bruteforce
Octa 6 8 12 <1 <1
Icosa 12 20 30 <1 <1
Star 14 24 36 8 19
Star-Sqrt3 (Fig. 8) 38 72 108 31 >6000
Star-4Split 50 96 144 435 -
Star-Butterfly 50 96 144 1047 -
Tiger 58 112 168 65 -
Kitten 64 122 184 48 -
Star-PNsplit (Fig. 9b) 110 216 324 625 -
Snail-286 (Fig. 9c) 145 286 429 1315 -
Horse (Fig. 9d) 152 302 452 946 -
Hand (Fig. 9f) 170 336 504 1377 -
Dragon (Fig. 9a) 172 344 514 1292 -
Bunny-348 176 348 522 976 -
Armadillo (Fig. 9g) 195 386 579 730 -
Pooh 198 392 588 957 -
Moneybox-392 (Fig. 9h) 196 392 586 2200 -
Meister 200 394 592 3900 -

Table 1: Table showing the unfolding performance for dif-
ferent models.

Note that the performance of the present approach is not
only influenced by the number of faces, but also by the size
of Gluetabs. The bigger the Gluetabs are, the more itera-
tions are needed to find a feasible unfolding. In the worse
case, an unfolding might no longer be possible. Table 1
shows that not only the number of faces influences the
computational time for finding a solution, but also shows
that the randomness of simulated annealing lays an im-
portant role. For models marked with a ”−” in Table 1,
no unfolding were found within 100,000 iterations. For
a single iteration of the Tiger with 112 faces, the algo-

rithm needs 1µs for the random move, 447µs to compute
the MST, 149µs to unfold the mesh triangles, 1161µs to
check for triangle-triangle overlaps, 287µs to select nec-
essary Gluetabs, 33µs to unfold Gluetabs and 1180µs to
check Gluetab-Gluetab and Gluetab-triangle overlaps re-
sulting in overall 5018µs. For the bunny model the re-
spective times are 1µs, 2638µs, 752µs, 10515µs, 1984µs,
124µs and 10016µs resulting in overall 39936µs.

A comparison with a brute-force approach is con-
ducted to investigate the feasibility of the solution space.
Nonetheless, only small models can be solved using the
brute-force approach. As the number of faces increases
the computation using brute-force approach becomes in-
feasible.

6.2 Limitations and Discussion

According to our evaluation, multiple factors would limit
the present approach. The present approach aims to
solve the problem through considering the global opti-
mum, while disregarding local overlaps. Thus, small lo-
cal overlaps are harder to solve as their changes to E(P) is
rather insignificant.

Furthermore, meshes above 400 faces cannot be solved
within 100,000 iterations. Another limitation is that the
Gluetabs that are necessary, cannot be calculated in ad-
vance. The number and the position of the Gluetabs de-
pend on the unfolding.

7 Conclusion and Future Work

We present a new approach to unfold 3D Meshes as well
as adding a minimal number of Gluetabs to aid users with
reconstruction. Even with the addition of Gluetabs find-
ing correct unfoldings is still possible using the suggested
approach.
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As for the future work, the quality of the unfolding can
be improved by considering the spatial use of the unfolded
patch to find compact space-efficient unfoldings.

Furthermore to help users with reconstruction the struc-
tures of the original mesh can be considered, such as the
ears of a bunny are kept together in the unfolded patch.
This should make the construction easier. To improve the
performance and lower the impact of Gluetabs on the per-
formance, the Gluetabs can be adjusted if the overlapping
area is rather small. This would increase the solution space
for the problem. To compute the necessary modifications
of the overlapping Gluetabs, the points of intersection can
be used as the new boundary vertices of the Gluetab.
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