
Improved Triangle Encoding for
Cached Adaptve Tessellation

Linus Horváth
Bernhard Kerbl
Michael Wimmer

(linus.horvath@gmail.com)
(kerbl@cg.tuwien.ac.at)
(wimmer@cg.tuwien.ac.at)

Introduction
Hardware tessellation is not without its limitations, which have driven developers and researchers to 
investigate alternative, software-based solutions.

WWe propose a modification to the adaptive GPU tessellation method presented by Khoury et al., in 
order to increase its efficiency on current hardware. Instead of generating detail geometry anew in 
every frame, the authors' original design produces tessellated primitives incrementally by recursively 
splitting triangles over multiple frames. Resulting tessellated triangles are written to a GPU buffer, 
hence they must be encoded to economize on-chip memory.

TheThe authors' triangle encoding method requires only two integers (one for the original primitive and 
one tessellation key) per stored triangle and is derived from the compact representation by 
Gargantini for linear quadtrees [1], which have recently been ported to the GPU for real-time 
rendering [2, 3].

Specifically, the authors propose a key layout wherein each bit represents a transformation of 
barycentric coordinates. The key is decoded by recursively applying transformations to obtain 
barycentric coordinates that uniquely identify each subtriangle.

Modifications
WWe can interpret each triangle as part of a quad in regular grids with different resolutions/states. 
From the position of the most significant bit (MSB), the state and quad grid resolution can be directly 
inferred. An even MSB position indicates 2-state, and an odd one indicates 4-state. Subtracting the 
proper number of region bits and dividing by 2 gives the quad grid resolution for this triangle in x and 
y. The quad coordinates are stored (x,y) in the corresponding lower bits. The region code 
interpretation is more involved and depends on both quad coordinates in order to support fully 
recursive subdivision.

WWe have evaluated the performance of our new encoding scheme in the original OpenGL framework 
by Khoury et al. by modifying their implementation of adaptive tessellation via compute shaders. We 
consider the total frame time using the original and our modified encoding scheme. The chart below 
compares the rendering performance with our encoding scheme to the unaltered version. Timings 
were obtained by measuring the total GPU time in each frame over an animated camera path with 
both methods separately. All timings were recorded at 1080p on an NVIDIA RTX 2070 GPU.

OurOur constant-time decoding procedure can reduce frame times by up to 40%, thus reaching real-time 
performance (<17ms per frame).

[1] Irene Gargantini. An effective way to represent quadtrees. Commun. ACM, 25(12):905–910, December 1982.
[2] Jonathan Dupuy, Jean-Claude Iehl, and Pierre Poulin. Quadtrees on the gpu. GPU Pro: Advanced Rendering Techniques, 5:211–222, 10 2018.
[3] Wade Brainerd, Tim Foley, Manuel Kraemer, Henry Moreton, and Matthias Nießner. Efficient gpu rendering of subdivision surfaces using adaptive quadtrees. ACM Trans. Graph., 35(4), July 2016.
[4] Jad Khoury, Jonathan Dupuy, and Christophe Riccio. Adaptive gpu tessellation with compute shaders. GPU Zen: Advanced Rendering Techniques, 2:3–17, 2019.

Triangle encoding using regular grids with progressive resolutions


