
Improved Triangle Encoding for Cached Adaptive Tessellation
Linus Horváth

linus.horvath@gmail.com
TU Wien

Bernhard Kerbl
kerbl@cg.tuwien.ac.at

TU Wien

Michael Wimmer
wimmer@cg.tuwien.ac.at

TU Wien

Figure 1: The terrain rendering setup by Khoury et al. which we use to evaluate our encoding. The input is a single quad
consisting of two triangles. Individual geometry subdivision levels are adaptively generated over multiple frames (left). Our
method preservers the visual results of the original method, but runs significantly faster on a simulated camera path (right).

CCS CONCEPTS
• Computing methodologies → Rasterization; Mesh geome-
try models; Concurrent algorithms; Mesh models.

KEYWORDS
real-time rendering, subdivision, adaptive tessellation, GPU

ACM Reference Format:
Linus Horváth, Bernhard Kerbl, and Michael Wimmer. 2020. Improved
Triangle Encoding for Cached Adaptive Tessellation. In Proceedings of High
Performance Graphics, Poster Abstracts (online) (HPG ’20 Posters). ACM, New
York, NY, USA, 2 pages.

1 INTRODUCTION
Hardware tessellation plays an important role in reducing CPU-
GPU memory transfer overhead by offloading the generation of
detailed geometry directly to the GPU. However, it is not without
its limitations. Performance drops at high tessellation factors and
inability to produce more than 64 splits per edge have driven de-
velopers and researchers to investigate alternative, software-based
solutions. In this work, we present a modification to the adaptive
GPU tessellation method presented by Khoury et al. [4], in order to
increase its efficiency on current hardware. The authors’ original
design aims to avoid the above shortcomings of hardware tessel-
lation. In fact, their approach enables a theoretical 231 triangles
to be generated from each input primitive. Instead of generating
detailed geometry anew in every frame, tessellated primitives are

HPG ’20 Posters, 2020, online
© 2020 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
High Performance Graphics, Poster Abstracts (online) (HPG ’20 Posters).

produced incrementally by recursively splitting triangles over mul-
tiple frames, until a target criterion (e.g., projected edge length) is
reached. Splits always occur at the midpoint of one triangle edge
in a rotating fashion. The resulting triangles are written directly to
a GPU buffer and can thereby remain cached over multiple frames.
In order for this technique to be viable, generated triangles must
be encoded in order to economize on-chip memory.

The authors’ triangle encoding method requires only two inte-
gers (one for the original primitive and one tessellation key) per
stored triangle and is derived from the compact representation by
Gargantini for linear quadtrees [3], which have recently been ported
to the GPU for real-time rendering [1, 2]. Specifically, the authors
propose a key layout wherein each bit represents a transformation
of barycentric coordinates. Each such transformation may apply
scaling, translating, rotation or flipping operations. The key is in
turn decoded by recursively applying these transformations to ob-
tain barycentric coordinates that uniquely identify each tessellated
subtriangle. For a detailed explanation of the original encoding and
its application to cached tessellation, please refer to the original
article [4]. However, such a recursive decoding method implies that
rendering tessellated subtriangles becomesmore compute-intensive
as subdivision increases: a triangle that results from 30 recursive
subdivisions requires 30 sequential matrix-vector multiplications
to decode it for rendering, which is a poor fit for GPU hardware.

2 MODIFICATIONS
We propose an alternative triangle encoding method to avoid the
recursive decoding procedure described above. Instead of exploiting
transformation matrices, we try to map each tessellated subtriangle
to a unique location in a grid overlaid with the original triangle
in barycentric space. In doing so, we naturally waste one bit of
the integer that we use as the key. However, we believe that the
resulting performance gain is a viable argument for this tradeoff.



HPG ’20 Posters, 2020, online Horváth et al.

In order to support the full recursive splitting method by the
authors, we must define two different states that each triangle can
be in. We distinguish 2-state and 4-state. This nomenclature is easily
explained: Consider an input triangle for tessellation. Assuming
that we perform uniform subdivision down to a particular level
by recursively splitting subtriangle edges in a rotating fashion, the
result can be seen as the bottom-left, triangular half of a regular
grid. Depending on the level, each grid cell then either contains 2
or 4 triangles (see Figure 3). Figure 2 outlines the full composition
of the subtriangle key codes in both states.

1 0 0100 0111

𝑥𝑞𝑢𝑎𝑑 𝑦𝑞𝑢𝑎𝑑

𝑟𝑒𝑔𝑖𝑜𝑛2

(a) 2-state triangle code

1 00 0010 0101

𝑥𝑞𝑢𝑎𝑑 𝑦𝑞𝑢𝑎𝑑

𝑟𝑒𝑔𝑖𝑜𝑛4

(b) 4-state triangle code

Figure 2: Illustration of the individual components of the
subtriangle codes in 2-state and 4-state. Notice that the cor-
rect state can be detected by the position of the MSB.

We can interpret each triangle as part of a quad in a regular grid.
From the position of the most significant bit (MSB), the state and
quad grid resolution can be directly inferred. An even MSB position
indicates 2-state, and an odd one indicates 4-state. Subtracting the
proper number of region bits and dividing by 2 gives the quad
grid resolution for this triangle in 𝑥 and 𝑦. The quad coordinates
are stored (𝑥,𝑦) in the corresponding lower bits. The region code
interpretation is slightly more involved, since it depends on both
quad coordinates in order to support fully recursive subdivision.
Figure 3 illustrates how the region codes change while subtriangle
encoding switches from 2-state to 4-state and back again.

Figure 3: Transition from an initial, single quad in 2-state
(A) to the same quad in 4-state (B). At the next subdivision
(C), the quad is split into four with rotated configurations of
the initial 2-state. Dotted lines mark triangles whose codes
are never used, since they lie outside the input 0 triangle.

We have implemented alternative versions of the original article
authors’ methods as a drop-in replacement for computing keys that
represent the next-lower/-higher level of subdivision and for decod-
ing keys in constant time. Our splitting/merging of triangles is more
complex, as in the original version, this requires only the concate-
nation/removal of a single bit. However, our results show that these
changes are easily amortized by avoiding recursive matrix-vector
multiplication and loop control logic for triangle decoding.

3 RESULTS
We have evaluated the performance of our new encoding scheme
in the original OpenGL framework by Khoury et al. by modifying
their implementation of adaptive tessellation via compute shaders.
To create a challenging scenario with a high degree of subdivision,
we have set the target triangle edge length to 1 pixel and the input
geometry to a single quad. In this setup, the subdivision procedure
routinely approaches the maximal possible level of 30 recursive
splits. Figure 4 compares the rendering performance with our en-
coding scheme to the unaltered version. Timings were obtained
by measuring the total GPU time in each frame over the animated
camera path shown in Figure 1 with both methods separately. All
timings were recorded at 1080p on an NVIDIA RTX 2070 GPU.

0

5

10

15

20

25

30

35

G
P

U
 f

ra
m

e 
ti

m
e 

(m
s)

Animation Frame

Runtime Comparison

Khoury et al. Ours

Figure 4: Measured total frame time for rendering the ter-
rain along the camera path in Figure 1. Our constant-time
decoding procedure can reduce frame times by up to 40%.

4 FUTUREWORK
The original work by Khoury et al. aimed to achieve fully adaptive
tessellation. However, while their solution is straight-forward to
implement, its simplicity limits its applicability. Since it includes
no concrete method for resolving T-junctions, triangle subdivision
must be governed by simple rules (e.g., distance to camera) to ensure
that neighboring triangles differ by no more than one subdivision
level. An additional pass that detects and resolves T-junctions (e.g.,
via hash maps) could provide a solution to this problem.

In the transition from a recursive to a grid-based encoding, one
bit is wasted, since half of the possible codes represent triangles
that lie outside the input triangle. Trivial solutions that reinterpret
the corresponding codes introduce additional control paths and
overhead. More reflection on the topic is required in order to find
an efficient way for reclaiming the lost bit.

REFERENCES
[1] Wade Brainerd, Tim Foley,Manuel Kraemer, HenryMoreton, andMatthias Nießner.

2016. Efficient GPU Rendering of Subdivision Surfaces Using Adaptive Quadtrees.
ACM Trans. Graph. 35, 4, Article 113 (July 2016), 12 pages.

[2] Jonathan Dupuy, Jean-Claude Iehl, and Pierre Poulin. 2018. Quadtrees on the GPU.
GPU Pro: Advanced Rendering Techniques 5 (10 2018), 211–222.

[3] Irene Gargantini. 1982. An Effective Way to Represent Quadtrees. Commun. ACM
25, 12 (1982), 905–910.

[4] Jad Khoury, Jonathan Dupuy, and Christophe Riccio. 2019. Adaptive GPU Tessel-
lation with Compute Shaders. GPU Zen: Advanced Rendering Techniques 2 (2019),
3–17.


	1 Introduction
	2 Modifications
	3 Results
	4 Future Work
	References

