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A B S T R A C T

In radiation therapy (RT) for prostate cancer, changes in patient anatomy during treat-
ment might lead to inadequate tumor coverage and higher irradiation of healthy tissues
in the nearby pelvic organs. Exploring and analyzing anatomical variability through-
out the course of RT can support the design of more robust treatment strategies, while
identifying patients that are prone to radiation-induced toxicity. We present VAPOR, a
novel application for the exploration of pelvic organ variability in a cohort of patients,
across the entire treatment process. Our application addresses: (i) the global explo-
ration and analysis of anatomical variability in an abstracted tabular view, (ii) the local
exploration and analysis thereof in anatomical 2D/3D views, where comparative and
ensemble visualizations are integrated, and (iii) the correlation of anatomical variability
with radiation doses and potential toxicity. The workflow is based on available retro-
spective cohort data, which include segmentations of the bladder, the prostate, and the
rectum through the entire treatment period. VAPOR is applied to four usage scenarios,
which were conducted with two medical physicists. Our application provides clinical
researchers with promising support in demonstrating the significance of treatment adap-
tation to anatomical changes.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Prostate cancer is one of the most frequent malignancies in2

the male population [1]. Radiation therapy (RT) is a common3

therapeutic approach for prostate cancer patients, requiring de-4

tailed treatment planning to identify where the tumor is located5

and how to treat the disease effectively [2, 3]. In RT, high ra-6

diation doses are administered to treat the tumor. Although7

current dose delivery techniques allow for precise treatment,8

the surrounding healthy tissues may still be affected by radi-9

ation [4, 5, 6]. This can potentially lead to severe side effects—10

commonly known as toxicity.11
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Recent clinical research suggests that the healthy bladder or 12

rectum tissues of certain patients might be receiving increased 13

radiation doses, due to high anatomical variability [4, 5, 6]. The 14

RT dose is not delivered all at once, but it is split into multiple 15

sessions over a period of weeks [3]. During this time, anatom- 16

ical variations of the organs occur naturally. As it is not prac- 17

tically feasible to recalculate the entire treatment plan before 18

each session, only alignment corrections are made before dose 19

administration [2]. During these corrections, the main goal is 20

to prioritize the irradiation of the tumor location. Thus, dis- 21

crepancies between planned and administered doses occur. In 22

adaptive RT, adapting the workflow to encompass changes in 23

organ shape is anticipated to enable higher precision with less 24

damage to healthy tissues [7], but this is not widely incorpo- 25

rated into clinical practice. 26
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The overall robustness of specific treatment options is cur-1

rently evaluated by means of retrospective cohort studies, while2

individual patient exploration accounts for particular cases.3

Clinical researchers and medical physicists working on the de-4

sign of robust treatment strategies require a better understand-5

ing of the anatomical, i.e., shape and positional, variability of6

all pelvic organs in a cohort of patients, and an indication of the7

correlations between anatomical variability and toxicity mani-8

festation [8, 9, 10, 11]. In the past, visual analytics approaches9

for treatment strategy evaluation have been proposed for the10

bladder [4, 12, 13], without considering other pelvic organs.11

Other previous work [14] does not support the correlation of12

anatomical variability to RT doses and toxicity. By incorporat-13

ing the relation between anatomical variability, dose variability,14

and toxicity effects in the pelvic region, we aim to support clin-15

ical researchers in demonstrating the significance of treatment16

plan adaptation to anatomical changes.17

Our contribution is the design and development of VAPOR.18

This is a novel visual analytics application for the exploration19

of pelvic organ variability during RT treatment. We focus on:20

• the global exploration and analysis of the positional and21

shape variability of all pelvic organs in a cohort of patients22

(T1)23

• the local exploration and analysis of all pelvic organs in24

individual patients or cohort partitions (T2), and25

• the correlation of anatomical variability to RT dose vari-26

ability and potential toxicity effects (T3).27

For VAPOR, we retrospectively employ pelvic organ data from28

a cohort of 24 prostate cancer patients, for whom detailed cone-29

beam computed tomography (CBCT) and dose plan data are30

available for 13 treatment sessions. The application allows ex-31

ploration of the entire pelvic anatomy of a cohort of patients in32

a quick and easy way, and also enables in-depth exploration of33

particular patients or cohort partitions, with regard to the ad-34

ministered dose and potentially induced toxicity.35

2. Clinical Background36

For patients diagnosed with prostate cancer, a common treat-37

ment method is external beam radiotherapy (EBRT) [3]. EBRT38

follows a complex workflow, which involves an interdisci-39

plinary team and incorporates several processes from imaging40

to pre-processing, and from treatment plan simulation to evalu-41

ation [2]. Radiation doses are delivered using multiple beams,42

aimed at the tumor location. When superimposed, these beams43

sum up to a high dose applied to the targeted tumor area and a44

lower dose to the surrounding tissue. The planned dose is not45

administered at once, but it is instead distributed over several46

weeks, to allow the recovery of healthy tissue, while minimiz-47

ing tumor growth [3]. This process is called fractionation, and48

its distinct sessions are called fractions. Recent techniques ef-49

fectively spare healthy tissue while delivering the desired high50

dose to the tumor volume [15]. However, parts of healthy or-51

gans of the pelvis are still unavoidably irradiated and this can52

lead to side-effects affecting the patient’s quality of life.53

The anatomy of the male pelvis is depicted in Figure 1. In 54

every human, unique variations occur naturally across individ- 55

uals, or are cased by pathological factors, or day-to-day changes 56

in the same person. The latter occurs because the pelvic organs 57

are soft deformable tissues, which are flexible and their shapes 58

are affected by filling changes [8, 9, 10, 11, 16]. Organs, such 59

as the bladder and the rectum are especially prone to this ef- 60

fect and their positions and shape vary significantly on a daily 61

basis [6]. Recent studies suggest a link between pelvic organ 62

motion/deformation and increased toxicity risks [4]. The in- 63

herent complexity of the RT workflow makes it impossible to 64

adapt the treatment plan before every fraction. Usually, tumor 65

irradiation is prioritized. 66

The standard treatment procedure is to generate one initial 67

treatment plan and to use it as a basis for all subsequent ses- 68

sions. To facilitate this, the setting of the initial planning is re- 69

produced during the treatment. For example, prostate treatment 70

commonly requires a full bladder regimen [3], while position- 71

ing inaccuracies are addressed with simple translational adap- 72

tations. There are many different factors that lead to shape de- 73

formations and position variations over the course of the treat- 74

ment. These cannot be entirely covered by small adaptations 75

to the initial plan [4]. Actual adjustment of the target volume 76

in prostate cancer therapy on a per-treatment basis needs to be 77

considered in the future [6, 8, 9, 10, 11]. Prostate cancer re- 78

search has started looking into adaptive treatment approaches— 79

similarly to lung cancer treatment, where breathing motion is 80

considered [17]. These adaptive approaches take into account 81

the shape variability and movement of all pelvic organs through 82

treatment [7]. 83

3. User Task Analysis 84

3.1. Intended Users 85

In the course of RT treatment, several clinical experts are 86

involved [2, 18]. The present work is targeting clinical re- 87

searchers and medical physicists, i.e., scientists who evaluate 88

the robustness of different treatment regimes. The aim is to ad- 89

vise on the best treatment strategy to follow, and research new, 90

more effective ways of treatment. 91

bladder

prostate

seminal vesicles

rectum

Fig. 1. Pelvis anatomy of the male body. We depict the main organs tar-
geted in this work.
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3.2. Current Workflow1

In clinical practice, the evaluation of a treatment plan is cur-2

rently done in two ways [2]. Both are shown in Figure 2. First,3

spatial 2D/3D views (Figure 2 (a)) allow the experts to see how4

the dose affects the tumor and its surrounding organs for a given5

point in the treatment period [19]. This approach does not sup-6

port an easy exploration of multiple patients or multiple frac-7

tions at the same time—an important aspect for judging the8

robustness of treatment strategies. Second, dose volume his-9

tograms (DVHs) (Figure 2 (b)) show how much radiation is re-10

ceived by the volume of each organ and allow the experts to11

quickly identify organs at risk of toxicity [3]. Although DVHs12

scale well for a large number of patients, they do not allow for13

an easy link to individual patient anatomy.14

Adequate tools for the inspection and analysis of pelvic organ15

variability within the context of RT do not exist—with the ex-16

ception of the Bladder Runner [12] and the Pelvis Runner [14].17

The former application has demonstrated its clinical usefulness18

in a retrospective clinical study with a single focus on bladder19

toxicity in cohorts of patients [13]. However, the Bladder Run-20

ner does not support the exploration of anatomical variability of21

all pelvic organs during the entire RT treatment period. It also22

does not support the exploration of motion of the pelvic organs.23

The Pelvis Runner supports the exploration of the anatomical24

variability of all pelvic organs, but it does not provide func-25

tionality for the correlation of the anatomical variability to dose26

administration and potential RT-induced toxicity. As we will27

demonstrate in the upcoming sections, VAPOR builds upon our28

previous work on the Bladder Runner [12] and the Pelvis Run-29

ner [14], to explore the entire pelvis anatomy of a large patient30

cohort in a quick and easy way, with regard to the administered31

dose and potentially induced toxicity.32

3.3. Available Dataset33

For this work, we had access to data from a cohort of 2434

patients undergoing RT for prostate cancer. The provided data35

includes 13 treatment sessions for each patient. The first five36

are from the five daily sessions of the first week, while the sub-37

sequent datasets were evenly sampled from the following treat-38

ment weeks [4]. The initial treatment plan was calculated for39

patients with an empty rectum and full bladder. At each treat-40

ment session, the patients were instructed to have roughly the41

same organ fillings. Before each treatment, a CBCT acquisition42

was done for patient alignment using rigid translations. For43

each of these sessions, pelvic organ delineations in the form44

of contour lines are available. For all patients, the bladder and45

rectum delineations are included. Additionally, delineations of46

either the prostate, or the prostate and seminal vesicles, or the47

prostate, seminal vesicles, and lymph nodes might also be in-48

cluded. In the context of this work, we use for simplicity the49

term “prostate” for the first category (prostate only) and “clin-50

ical target volume” (CTV) for the other two. The dataset is51

depicted schematically in Figure 3.52

3.4. Requirements and Tasks53

Clinical researchers and medical physicists working on the54

design of robust treatment strategies require functionality that55
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Fig. 2. (a) Spatial 2D view on the RT plan of one patient. The employed
rainbow colormap represents the dose distribution, and it is used com-
monly in the clinical practice of RT. (b) Dose Volume Histogram (DVH)
of two patients for two treatment regimes (empty and full bladder).

can provide them with a better understanding of the general 56

shape and positional variability of all pelvic organs within the 57

cohort, as well as the anatomical variability of subgroups of pa- 58

tients. Correlating anatomical variability with administered vs. 59

planned RT doses and the resulting toxicity is also a required 60

functionality. These functionalities, combined in one compre- 61

hensive tool, are not available in other applications, as we will 62

discuss in Section 4. Another requirement is to aim for a general 63

setup and interface that is easily understandable for a user from 64

the medical community, where representations are not unnec- 65

essarily complex [2]. Although the clinical experts, for whom 66

the application is designed, are visualization-literate, they still 67

prefer representations that are common practice in the domain. 68

Finally, interaction schemes, such as selection and filtering, as 69

well as zooming, panning, rotation, and F+C are welcome. To 70

ensure that all these requirements are met, one of our domain 71

experts has been involved in the early design phases of VAPOR. 72

With regard to the tasks, the clinical co-authors of this pa- 73

per have been initially interested in extracting the amount of 74

variability of the available pelvic organs among all patients and 75

across time (T1). Therefore, for each organ class, we need to 76

quantify organ similarity and estimate the variability of each 77

organ. Subsequently, we need to visualize the variability of the 78

organ classes within the whole cohort. This provides a quick 79

overview of the entire cohort, as well as capabilities to iden- 80

tify patients or organs with high variability, i.e., outliers. At 81
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Fig. 3. Schematic depiction of the cohort data used in this work. The delin-
eations of pelvic organs (bladder, prostate, and rectum) of 24 patients are
available. Each of them had 13 sessions throughout treatment.

this point, patient and time correspondences should not be lost.1

When interesting parts of the cohort are identified, a more de-2

tailed exploration needs to be conducted (T2). Drilling down3

to individual objects should be possible, i.e., exploring individ-4

ual patients and/or organs, to understand which regions of cer-5

tain organs are prone to variations and how large these differ-6

ences are. Changes in position and shape should be displayed.7

Finally, the anatomical variability needs to be explored in rela-8

tion to the administered RT dose, and its variability throughout9

the treatment period (T3). This exploration, steered by the do-10

main experts, is anticipated to provide useful insights about why11

and when potential toxicity may occur.12

4. Related Work13

Some studies [4, 19] facilitate the understanding of the daily14

occurring shape variations in pelvic organs and especially their15

correlation to toxicity. These are, however, limited to the explo-16

ration of spatial 2D/3D views or DVH analysis, as discussed in17

the previous section. These studies give insight into what kind18

of visualizations are commonly used in the domain of RT. They19

also show that looking at more than one patient or more than20

one time point of treatment simultaneously is a tedious process21

that does not scale well. Wentzel et al. [20] presented a vi-22

sual computing approach for the estimation of RT plans in head23

and neck cancer patients, where anatomical similarity based24

on topology and measures of image fidelity were considered.25

With this approach, it is still not possible to derive any informa-26

tion with regard to potential RT-induced toxicity. Solutions for27

the visualization of many pelvic organs in a cohort of patients28

through the entire treatment period can be provided by shape29

space and cohort analysis, and with comparative and ensemble30

visualization.31

VAPOR is building upon the previous work of the Bladder32

Runner [12] and the Pelvis Runner [14]. The Bladder Runner33

provides information about the amount of radiation delivered to34

the bladder across the treatment for a cohort of patients. The35

entire approach is based on a 14-D shape descriptor vector for36

the bladder cohort [21]. The 14-D shape descriptors undergo37

a t-Distributed Stochastic Neighbor Embedding (t-SNE) [22] 38

followed by clustering [23] to detect cohort partitions with sim- 39

ilar bladder shapes and evolutions through the treatment period. 40

Using multiple coordinated views, the users analyze the blad- 41

der cohort through the RT treatment sessions, while the dose 42

distributions and toxicity information are also incorporated in 43

the views. 44

Extending the Bladder Runner to include multiple organs re- 45

sulted into the Pelvis Runner. Different subsets of organs are 46

supported in the data (e.g., for one patient we have the delin- 47

eations of the bladder, rectum, and prostate and for another 48

one we have additionally the seminal vesicles). Changes in the 49

shape descriptor were made, as the 14-D vector of the Blad- 50

der Runner is not adequate for describing other than spheri- 51

cal shapes, e.g., it is not suitable for the rectum. However, the 52

Pelvis Runner still does not support the correlation to dose ad- 53

ministration, the analysis of its variability and the investigation 54

of potential RT-induced toxicity. This functionality is the main 55

addition, which resulted into VAPOR. 56

Other previously proposed frameworks include the work of 57

Reiter et al. [24] to explore and analyze the variability in mul- 58

tiple pelvic organs. Their approach is based on spherical har- 59

monics [25]. To distinguish clusters across organ classes, they 60

employ t-SNE [22]. To distinguish clusters within organ classes 61

(and more importantly, outliers) they use Principal Component 62

Analysis (PCA) [26]. Their data is derived from automatic seg- 63

mentation algorithms where a triangle-to-triangle correspon- 64

dence can be ensured across the individual structures. Yet, the 65

approach does not support multi-timestep analysis. Also, the 8- 66

D descriptor from the spherical harmonics frequencies that was 67

employed in this work is not sufficient to describe non-spherical 68

organs, such as the rectum. Generally, the use of descriptors, as 69

presented in the former works, supports the efficient differentia- 70

tion between diverse shapes, but it lacks the ability to synthesize 71

arbitrary elements in their shapes. 72

In shape space analysis, Hermann et al. [27, 28, 29] investi- 73

gate anatomic covariances in ensembles of data, providing also 74

a state of the art report with prospects on the visual analysis 75

of shapes [30]. Busking et al. [31] propose a 2D scatter plot 76

to represent the distribution of elements inside a cohort and to 77

synthesize additional arbitrary objects in the shape space. For 78

comparing objects, they later deal with visualizing intersecting 79

3D surface meshes [32]. Landesberger et al. [33] extend the 80

scatter-plot concept to parameter sensitivity analysis in segmen- 81

tation and the link to the segmentation outcomes. Considering 82

the high learning curve for many complex visualizations of high 83

dimensional data, such as cohort data, Blumenschein et al. [34] 84

propose concepts aimed at people who are not from the visual- 85

ization domain. 86

More specifically for cohort analysis, Klemm et al. [35] 87

focus on the extraction of spine-canal variability and the ex- 88

ploration of clusters of similarly shaped spines. This work 89

has been extended to incorporate additional patient informa- 90

tion [36], demonstrating how to effectively reduce and visual- 91

ize image cohort data and to facilitate their understanding on a 92

broader basis. Steenwijk et al. [37] also go beyond shape analy- 93

sis by proposing a framework for the interactive and structured 94
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Table 1. Schematic comparison of VAPOR and the most relevant previous
work, with regard to the task analysis of Section 3.

Multiple
Organs

Possibly
Different
Organs

Multiple
Patients

Multiple
Time Points

Relation
to Dose &
Toxicity

VAPOR 3 3 3 3 3
[12] 7 7 3 3 3
[14] 3 3 3 3 7
[20] 3 3 3 7 7
[24] 3 7 3 7 7

[27, 28, 30] 7 7 3 7 7
[31] 7 7 3 7 7
[33] 7 7 3 7 7
[34] 7 3 3 7 7

[35, 36] 7 7 3 7 7
[37] 7 7 3 7 7
[43] 7 7 3 7 7

[44, 45, 46] 7 7 3 3(in [46]) 7
[48] 7 7 3 3 7
[49] 7 7 7 3 7
[50] 7 7 3 7 7

visual analysis of cohort data. Cohort analysis has also been1

tackled by Preim et al. [38], Bernard et al. [39], and Alemzadeh2

et al. [40], for various purposes.3

Given the available data, which are contour delineations of4

the pelvic organs, we consider the previous work in ensem-5

ble visualization [41]. Our work relates to contour boxplots6

by Whitaker et al. [42], their extension for streamline ensem-7

ble data by Mirzargar et al. [43], and the recent techniques of8

Ferstl et al. [44, 45, 46]. The latter are applied on weather sim-9

ulation ensemble data, covering 2D lines, 3D volumes, and also10

the time evolution thereof. In comparative visualization [47],11

for the investigation of jaw movement, Keefe et al. [48] in-12

troduce small juxtaposed representations, where the movement13

is explicitly encoded giving a good overview of all the data,14

while parallel coordinates allow for an in-depth search. Tory et15

al. [49] investigate a superposition approach for tracking brain16

lesions extracted at different time points from MRI images. Ex-17

plicit encoding to highlight structural differences is used by18

Schmidt et al. [50], where they compare a large number of19

similar meshes and can quickly identify regions of differences20

in multiple linked views.21

Previous literature includes approaches that process a multi-22

tude of individual objects (in our case, either multiple patients23

or multiple organs). In some cases, different object sets, i.e.,24

sets missing some instances (in our case, organs), are also han-25

dled. Also, previous work visualizes the development of struc-26

tures through time (in our case, multiple timesteps). The most27

relevant works and their characteristics are summarized in Ta-28

ble 1. However, there is no approach with comprehensive func-29

tionality that covers all aspects of our problem. As described in30

Section 3, these span from the quantification and visualization31

of multiple organs in a patient cohort throughout the treatment32

time, to the correlation of anatomical variability and toxicity33

manifestation. We cover this literature gap with VAPOR.34

5. Methods in VAPOR35

VAPOR focuses on three main objectives: the global ex-36

ploration and analysis of pelvic anatomy variability across the37

treatment period and across a cohort of patients (T1), the local38

exploration and analysis of pelvic anatomy variability across 39

the treatment period for individual patients or cohort partitions 40

(T2), and the correlation of anatomical variability to delivered 41

radiation and toxicity (T3). 42

The general workflow of VAPOR is presented in Figure 4. 43

Our approach starts with data processing, and with quantify- 44

ing the similarity of the organ shapes in order to estimate their 45

anatomical variability. For visualizing the variability in the or- 46

gan shapes, an aggregation approach based on Ferstl et al. [44] 47

is employed. For (T1), a low dimensional embedding of each 48

organ is used to calculate the variability on a per-patient basis 49

and to visualize the whole cohort. After grouping, a tabular 50

plot is employed to explore the cohort partitioning in a flexible 51

and intuitive manner. For (T2), information on the anatom- 52

ical space is shown on demand. We enable the user to drill 53

down to selected patient groups from the cohort and to perform 54

a detailed inspection of the organ variations. This is achieved 55

by reconstructing the initial 3D objects from their low dimen- 56

sional embeddings. By sampling the embedding space for the 57

median and the standard deviation of the organs, we reconstruct 58

the shape variations and we show them in a representation sim- 59

ilar to contour boxplots [42]. For (T3), we compute and visu- 60

alize the distribution of the administered RT dose, i.e., the aver- 61

age and standard deviation, for selected groups of patients. The 62

clinical co-authors of this work are interested mainly in pelvic 63

organ regions with high anatomical variability and high radia- 64

tion dose. VAPOR provides the option to guide and restrict the 65

anatomical variability computation to regions with doses that 66

exceed a user-selected threshold. More details on each step of 67

our workflow are provided in the upcoming subsections. 68

5.1. Data Processing, Linearization, and Reduction 69

The first step in the organ shape analysis transforms the or- 70

gan data into a format that is easier to handle and to visualize. 71

The organs in the cohort are manually delineated by medical 72

experts, through contours at individual slices of CBCT scans 73

of each patient. We initially convert the contours to volumetric 74

coverage masks, i.e., volumes. The resolution of our volumes 75

is given by the resolution of the CBCT scans. In our data, this 76

is 2.5×2.5×2.5 mm per voxel. Each organ for each patient and 77

timestep is stored in a separate volume, which initially covers 78

the entire pelvic region, i.e., the entire volume captured in the 79

CT scans. This is done to preserve the original position with re- 80

spect to other organs. We store each organ in a separate volume 81

for convenience, as the shape analysis is later performed sepa- 82

rately for each organ class. Additionally, by storing all organs in 83

separate volumes, we avoid the risk of overlaps at neighboring 84

voxels of different organs. 85

In the second step, we register the volumes. For each patient, 86

the individual timesteps are already pre-aligned manually by 87

medical experts, using the prostate as the reference organ—still, 88

some per-patient positional variations of the prostate can be ob- 89

served. This is a common approach in prostate cancer treat- 90

ment, as the radiation dose is also centered around the prostate, 91

but it also has limitations. It only allows us to analyze the 92

average between-timestep (inter-fraction) organ motion of the 93

groups of patients with respect to the prostate, which is a mo- 94

bile organ itself. While for some treatment methods, such as 95
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Details-on-demand  Guidance

• Transformation

contours → volume → isosurface →                       →

• Registration

mean organ centroid per-patient

Data Processing

• For volumes: Hilbert curve

1 vector per organ, time, and patient

• For time: Scanline curve

1: t1…t13 →      2: t1…t13 → … →       24: t1…t13

Data Linearization

Principal Component Analysis (PCA)

Within organ class : preserves 99% of data → < 20 dimensions

Dimensionality Reduction

• Interactive tabular representation

• Grouping by:

Variability → Distance to mean Shape

Shape → t-SNE and hierarchical clustering

Metadata → Retrospective toxicity data

• Distribution and missingness

• Comparison of (groups of) patients

(T1) Global Cohort Exploration

• Shape/positional variability

Median, mean, standard deviation

• 2D/3D anatomical display

• Optional exploded views

(T2) Local Partition 
Exploration

• Insights about toxicity

• Relation of RT dose variability 
to anatomical variability

(T3) Dose Exploration and 
Analysis

Fig. 4. Schematic depiction of the workflow, the main components of VA-
POR and their in-between links.

photon-based RT, this is not an issue, for other, such as proton-1

based RT, the motion of prostate can become also an impor-2

tant factor in treatment planning. For a more robust analysis of3

positional changes, registration based on the position of pelvic4

bones or femoral heads would be necessary, as bones are the5

most rigid structures in the human body. This approach would6

preserve the positional variations of all pelvic organs. Unfor-7

tunately, this approach was not feasible for us. Segmentation8

of the bones would require additional contouring from medical 9

experts (or, at the very least, corrections if automatized segmen- 10

tation was used) which is a very time-consuming process. 11

Also, we want to preserve the persisting positional variations 12

between individual timesteps of a single patient, as they indi- 13

cate how the organs move during the treatment. However, we 14

still need to align different patients to each other. To do this, we 15

compute the mean centroids across all timesteps separately for 16

each organ and patient, i.e., for 24 patients and three organs, we 17

compute 72 mean centroids. We then align the organs so that the 18

mean centroid for a given organ and patient is translated to the 19

center of the coordinate system. Although this approach adds 20

small translational variations, it preserves the volume changes 21

and the main growth directions. After registration, the volumes 22

are cropped to a uniform size based on the bounding box con- 23

taining all of the volumes. We store the translation vectors for 24

all organs, in order to be able to retrieve their original posi- 25

tions and to compute new mean positions for subgroups of the 26

cohort. For the computation of shape and positional changes, 27

the organs are aligned individually. For rendering, we align the 28

groups based on the mean centroid of all organs. 29

In the third step, the 3D volumetric patient data are lin- 30

earized, before we can employ the dimensionality reduction 31

step. At the same time, we map the two dimensions of our co- 32

hort, i.e., patients and timesteps, into a single one without losing 33

correspondences within the data. For this, we employ lineariza- 34

tion strategies along two types of curves: Scanline Curve and 35

Hilbert Curve [51]. The volumes, which initially correspond to 36

binary coverage masks, are converted to signed distance maps 37

representing the distance to the organ’s surface. The distance 38

volumes are then linearized into 1D vectors using the 3D space- 39

filling Hilbert Curve that allows us to analyze how the shape 40

differentiation capabilities of our method changes if the sam- 41

pling density is reduced. This has also been employed by Weis- 42

senböck et al. [52] and by Demir et al. [53] for volume data 43

comparison. After volume linearization, there is a unique vec- 44

tor for each organ, patient, and timestep. The vectors represent- 45

ing organs from the same class are then organized following the 46

Scanline principle, as we are interested in preserving the tem- 47

poral order within the data. We create a data structure where 48

all timesteps of the first patient are followed by the timesteps 49

of the second patient, and so forth. This allows us to easily se- 50

lect patients and their timesteps, while we can also efficiently 51

add new patients in the analysis. Each organ class is stored and 52

processed separately. 53

In the fourth step, the vectors containing the volumetric data 54

(without losing patient and timestep correspondence within the 55

cohort) are reduced into a low dimensional vector representa- 56

tion that allows us to create a computationally efficient way to 57

store and process large cohorts of patient data. The dimension- 58

ality reduction step creates a low dimensional embedding of 59

the structure of the high dimensional space. Each cohort data 60

point, i.e., an individual patient’s organ at a specific timestep, is 61

represented by one position in space, where similar shapes are 62

placed nearby. As discussed in Section 4, the approaches used 63

in our previous works (e.g., 14-D space based on shape descrip- 64

tors from Bladder Runner [12]) are not easily generalizable to 65
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time

time

time

time

One organ

One organ, with time aggregation

Two organs

Two organs, with time aggregation

Fig. 5. Some of the possible configurations of the tabular view—with one or multiple organs, and with or without time aggregation.

other pelvic organs, e.g., rectum, seminal vesicles, or bowel1

loops, which can have vastly varying shapes. This led us to a2

different approach. We employ Principal Component Analysis3

(PCA) [26] to create a low dimensional embedding of the data4

and use only as many components as are needed to ensure the5

preservation of 99% of the original data. In our case, we need6

up to 20 dimensions, depending on the organ class. The low7

dimensional embedding allows us to efficiently store the data8

and to perform further calculations and analyses. The accurate9

representation of the patient anatomy is also a vital part of any10

medical visualization software. We can always reconstruct the11

volumetric data from the low dimensional space, but the visu-12

alization thereof is computationally very expensive. Thus, for13

the visualization components, we employ the triangular meshes14

that are generated on-demand from the reconstructed volumes,15

as iso-surfaces.16

5.2. (T1) Global Exploration of Anatomy within a Cohort17

For task (T1), we enable clinical researchers to compare the18

different pelvic organs from multiple patients throughout sev-19

eral timesteps. In some cases, the patient data also incorporate20

different sets of organs, as the delineations include either the21

prostate, or the prostate and seminal vesicles, or the prostate,22

vesicles, and lymph nodes.23

We first provide users with an overview of the whole cohort24

data. The main idea behind this is to generate a high-level rep-25

resentation that conveys the general patterns present in the data.26

Afterwards, the user starts a detailed investigation of individual27

interesting cases. This is based on the low dimensional outcome28

of the dimensionality reduction step and we offer two possi-29

bilities here. The first option is based on the distance of each30

organ to the mean per-patient organ shape in low dimensional31

space. The distance calculation between data points enables the32

explicit estimation of outliers on a per-patient basis. It also in-33

dicates the shape variation across the treatment time points for34

each patient. For this, we calculate the Euclidean distance, sim- 35

ilar to Klemm et al. [35]. In the second option, clustering can be 36

used for the extraction of the main shape groups within patients. 37

The drawback of clustering is that subtle differences between 38

shapes are obscured. Clustering only offers a binary variability 39

option—either the shape belongs to a cluster, or not. The analy- 40

sis and comparison of the clusters can offer an understanding of 41

what shape types are to be expected in patients and how promi- 42

nent they are. To get a better separation between the shapes, we 43

first perform a t-Distributed Stochastic Neighborhood Embed- 44

ding (t-SNE) [22] on the low dimensional data from the PCA 45

(Section 5.1). We, then, employ a hierachical clustering with 46

complete linkage [54]. This is done similarly to the work of 47

Klemm et al. [35], with which the clustering tasks are very sim- 48

ilar. We chose this method, as hierarchical clustering is more 49

flexible, gives more intuitive results, and has fewer assumptions 50

about the distribution of the underlying data than other cluster- 51

ing techniques, e.g., k-means, which are essential requirements 52

for a generally applicable system. Regarding the cluster prox- 53

imity measure, we selected complete linkage. Klemm et al. [35] 54

showed that complete linkage performs best for this type of 55

task. In their work, single and average linkage approaches led 56

to big clusters containing dissimilar shapes, due to the chain- 57

ing effect. Another advantage of hierarchical clustering is that 58

the generated number of clusters is easily adjustable. There- 59

fore, we give the users the option to set and adjust the number 60

of clusters, interactively. Alternatively, we offer the option of 61

automatic selection for the optimal number of clusters, which 62

can be different for each organ. For this, we employ the cluster 63

analysis method by Calińsky and Harabasz [55]. 64

From the previous calculations, we receive a single distance 65

metric and/or cluster value per combination of patient, timestep 66

and organ. To visualize this, we employ a tabular represen- 67

tation similar to the contingency matrix of the Bladder Run- 68

ner [12] or the representation in the work of Blumenschein 69

et al. [34]. This representation (Figure 5) shows the shape 70
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Fig. 6. Left: Encodings for the standard deviation from the mean shape (orange colormap) and for missing data (partially filled cells). Bladder (B),
Rectum (R), Prostate (P). Right: Alternative encodings considered for the standard deviation of each organ from the mean value (size, texture, color, and
blur).

change information, while at the same time preserving infor-1

mation about time and patient correspondences. We also aim at2

visualization readily understandable by users who do not em-3

ploy visual analytics tools on a regular basis. In the tabular4

view, patients are depicted on the vertical axis and timesteps on5

the horizontal one, to enable comparisons across both timesteps6

and patients. The encoded values represent the similarity dis-7

tance shown with a sequential white(low)-to-blue(high) col-8

ormap (Figure 5), or the cluster membership denoted with a9

qualitative colormap (Figure 10 (a)). Both of these maps have10

been taken from Colorbrewer [56]. To extend the approach11

to multiple organs, we split each cell of the tabular view into12

equally sized parts—one for each organ (Figure 5, right). With13

this encoding, the users can directly compare the values of mul-14

tiple organs and detect patterns and correlations. This is similar15

to a glyph-based representation, as also demonstrated by Blu-16

menschein et al. [34]. The users manually decide which organs17

are shown every time, as well as whether they want to depict18

the Euclidean distance or the clustering. Labels and legends19

complete the representation.20

The tabular representation can accommodate additional in-21

formation with regard to the underlying data distribution and22

to the amount of missing data, i.e., missing organ delineations,23

as both of these indicate trustworthiness. The former is visual-24

ized with additional distribution histograms accompanying the25

groups and positioned to the left-hand side of the tabular plots,26

as shown with the gray bars in Figure 5. The latter is repre-27

sented with a “partially filled glass” metaphor at each cell in the28

tabular plot. As shown in Figure 6 (left), the less filled a cell,29

the less data it contains and the partition is less trustworthy. For30

example, in Figure 6 (left), Groups 1 and 2 have less available31

data for the prostate than Group 3. The prostate data is visual-32

ized in the third part of the glyph, which is also indicated in the33

legend. Going one step further, the user might also be interested34

in finding out how different shape group types compare to each35

other. For this, several encodings, i.e., size, texture, color, and36

blur, have been investigated. An example is given in Figure 637

(right) for encoding the standard deviation of each observation38

from the mean value.39

The initial layout of the overview visualization provides the40

option to see the whole cohort, at once. The analysis process in41

this case requires the user to scan row-by-row the representation42

to detect similarities or outliers. This can be time-consuming43

even for a small cohort of patients. For improvement, we en-44

able Focus+Context (F+C) [57], sorting and grouping [58], and45

visual aggregations of patients and timesteps as shown in the46

bottom row of Figure 5. Patients can be split into groups based 47

on organ shape clustering, organ variability, or categorical pa- 48

tient metadata (e.g., available retrospective toxicity data). With 49

the clustering option, the patients are aggregated into groups 50

based on their prevalent organ shape type identified by the clus- 51

tering algorithm. For organ variability-based grouping, we esti- 52

mate the variability as the average Euclidean distance of organ 53

shapes over time to the patient’s mean organ shape (in the low 54

dimensional PCA embedding). The patients are then grouped 55

based on their average shape distance. Four different groups are 56

automatically generated, based on low < 25%, medium 25% – 57

75%, and high > 75% average distance in interquartile range, 58

as well as one group for patients with missing values in case no 59

data for the given organ are present. 60

5.3. (T2) Local Exploration of Anatomy in Cohort Partitions 61

During the exploration and analysis of the entire cohort, the 62

users identify specific interesting cases, i.e., individual patients 63

or partitions of the cohort, which require further investigation. 64

We enable the users to drill down to individual patients or parti- 65

tions, for local exploration. Up to this point, only abstract infor- 66

mation with regard to the cohort and its shape properties have 67

been displayed in the tabular view. We provide an additional 68

view of anatomical shapes for selected patients or partitions. 69

Multiple patients or subgroups within the cohort are selected 70

respectively by clicking on a cell or a row label in the cohort 71

visualization. Each selection is assigned a unique color from a 72

qualitative scheme from Colorbrewer [56]. 73

For the summarization of shape variations, we first extract 74

the geometric median in the low dimensional embedding of 75

the shape space as a general representative of the group. In 76

this way, we retrieve a representative shape that exists in our 77

cohort—as opposed to the mean shape. We then employ the ap- 78

proach proposed by Ferstl et al. [45] for the analytical transfor- 79

mation of confidence intervals from the low dimensional PCA 80

embedding to the spatial domain. This way we retrieve repre- 81

sentatives of the shape distribution. We are using this method 82

with the interval (µ−σ, µ+σ), where µ is the mean shape and σ 83

is the standard deviation. However, these confidence intervals 84

can be adjusted by the user, as we show in Figure 7, to show 85

instead the 90% confidence interval. 86

The analysis of the center-point variations is indicative of the 87

organ movement. For this, we also use the mean and standard 88

deviation of the center point of each organ to calculate the main 89

variation directions for groups of organs. This is also in ac- 90

cordance with our registration method, where we also took the 91
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(a) (b)

Fig. 7. Example of different settings for the confidence intervals (denoted
with the bands) around the organ medians (denoted with the red lines) in
the anatomical view. (a) Standard deviation. (b) 90% confidence interval.

average center point for each patient to align his organs be-1

fore the analysis. In advance, we have already performed a2

Kolmogorov-Smirnoff test to confirm that the distribution of3

the shapes within the cohort is indeed close to a normal dis-4

tribution. This combined approach has also been employed by5

Ferstl et al. [44, 45].6

To display the shape and positional variability, we employ7

the common combination of three anatomical 2D planes (sagit-8

tal, coronal and axial) with a 3D view, as given at the bottom9

of Figure 4. Standard interaction, e.g., zooming, panning, and10

slicing through the volume, is possible. For the comparative11

visualization of the pelvic organs of multiple patients within a12

2D view, two alternatives are possible [47]: (i) superposition of13

stacked contours, where each patient instance is denoted with a14

distinct color, (ii) superposition of contour boxplots [42], where15

each patient or cohort partition is denoted with a distinct color.16

The latter is shown in Figure 8 (a). A combination of the two17

is also possible, e.g., when comparing one patient instance to a18

specific partition. We additionally display the center-point vari-19

ation for each organ. This is explicitly encoded by drawing a20

cross, the bars of which extend to indicate the main directions21

of organ motion, as shown in Figure 8 (a).22

In the 3D views, we superimpose the median shapes of all23

selected groups (Figure 8 (b)). The lighting in the scene and24

the surface material aim at highlight the organ structure, while25

transparency is not employed. Instead, if a specific group is se-26

lected, it is brought forward with a F+C strategy in the 2D (Fig-27

ure 8 (c)) and the 3D views. On demand, the 3D view can show28

the explicit encoding of the surface variations (Figure 8 (f)). In29

this case, the surface color encodes the amount of surface vari-30

ation, using a sequential colormap based on the organs’ group31

color. With this view, we support users in finding regions with32

interesting shape changes. As the adjacency of the organs may33

cause overplotting and difficulties in judging the shape varia-34

tions, we provide also an optional exploded view [59], where35

the user can extrude the organs in the display (Figure 8 (d,e)).36

In the exploded view, the same organs of all groups are taken37

and placed in such a way that they do not overlap with any other38

shape, while at the same time being centered at a common point.39

To preserve parts of the initial context, a line connects the center40

of the extruded organ to its original position (Figure 8 (e)).41

5.4. (T3) Dose Exploration and Analysis42

In RT, it is important to administer a high enough dose to the43

target volume, i.e., the volume that covers the tumor area. At44

(a)

(d)

(b)

(f)

10Variability:

(e)

(c)

Fig. 8. Comparison of two cohort partitions (red and blue) in the anatom-
ical view. (a) Shape (contour boxplots) and positional (cross glyphs) vari-
ability are shown in 2D. (b) Superposed 3D view. (c) F+C for shape vari-
ability with focus on the red partition. Positional variability has been hid-
den. (d) Exploded view for the extrusion of bladders in 2D. (e) F+C for the
exploded bladder view with an indication of the extent of the extrusion to
see the red partition in focus. (f) Explicit encoding of variability in the 3D
view for the blue group.

the same time the dose to the healthy tissues should be min- 45

imized. Healthy tissue close to (or within) the target volume 46

are particularly affected by anatomical variations, which may 47

lead to higher dose delivered compared to the planned. Clinical 48

researchers need a functionality that supports dose exploration 49

and analysis. They need functionality for relating dose admin- 50

istration, anatomical variability, and toxicity effects, in a global 51

and a local way—complementing tasks (T1) and (T2). 52

Not all regions of the pelvic organs are equally important. 53

The most critical regions are those, where anatomical variabil- 54

ity and radiation dose are both high. For a constrained naviga- 55

tion, the domain experts can guide the global anatomical vari- 56

ability exploration and analysis of (T1) by restricting the RT 57

dose. A user-selected threshold can be employed, e.g., by de- 58

termining that the “maximum acceptable dose is 67 Gy”. The 59

constrains are linked to the methods used for (T1). The data, 60

as they result from the low dimensional embedding described in 61

Section 5.1, are reconstructed in the 3D space. A mask contain- 62

ing the thresholded RT dose, e.g., all voxels receiving a dose 63

above 67 Gy, removes the organ regions where the dose is be- 64

low the threshold. This is performed for each patient and each 65
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Dose: 0 81 Gy 
Deviation: 1 14 Gy(e)

(d)

(b)(a)

(c)

Fig. 9. Anatomical views incorporating the RT dose mapping (a) in the
sagittal plane, (b) in the coronal plane, and (c) in 3D. (d) F+C employed
to gray out the RT dose below a user-defined threshold. (e) Dose deviation
mapped on the area of the superimposed circular glyphs.

treatment session. The data are subsequently linearized using1

the Hilbert Curve and then processed in the same way as the2

low dimensional embedding described in Sections 5.2 and 5.3.3

The updated tabular representation depicts now the anatomical4

variability information, but only in regions where the RT dose5

exceeds the user-determined threshold. As the tabular represen-6

tation also incorporates retrospective toxicity information, it is7

possible to relate toxicity with the anatomical variability and8

the locations of high dose administration.9

In addition to knowing the locations of high radiation dose10

and high anatomical variability, it is necessary to have a more11

localized view on these regions of interest. In (T2), when a12

group of patients is selected, the anatomical views show the lo-13

cal organ variability thereof. To link this to the RT dose and14

its variability, we compute the distribution of the administered15

RT dose, i.e., the average and the standard deviation. We sub-16

sequently show the average dose as a background colormap17

in the 2D anatomical planes, as given in Figure 9 (a-b). This18

follows a sequential white (low dose)-to-red (high dose) color19

scale [56], but can be changed by the user to match domain con-20

ventions [2]. In the 3D view, we encode the average dose on the21

mean organ shape using the same color scheme (Figure 9 (c)).22

(b)

(c)

(a)

Fig. 10. Scenario for shape type identification, applied to a bladder anal-
ysis for the completion of (T1). Four clusters are identified and denoted
with four distinct colors, representing bladder groups with different shape
characteristics and different kinds of anatomical variability. (a) Tabular
view showing the patients grouped by their prevalent bladder shape type.
(b) Superimposed median shapes from each cluster in 3D view. (c) Shape
variations of each cluster shown in sagittal plane.

The standard deviation is mapped to the area of superimposed 23

circular glyphs [60], similarly to Raidou et al. [61] (Figure 9 24

(e)). As an alternative encoding, we considered the approach 25

of Ristovski et al. [62], but for two reasons we decided not to 26

adopt it. First, our clinical experts were already familiar with 27

the superimposed circular glyphs, and they are already working 28

with this encoding [63]. Second, the approach of Ristovski et 29

al. would require from the user to zoom into the treatment plan 30

to obtain details on the variability, which involves more inter- 31

action than our approach. In the future, it would be interesting 32

to investigate alternative encodings for the dose deviation. To 33

preserve anatomical context, F+C is employed [57]. Regions 34

that have been discarded by the dose thresholding are kept in 35

the view, but are grayed out, as shown in Figure 9 (d). 36

5.5. Implementation 37

VAPOR is designed as a server-client application. A web 38

server in conjunction with MATLAB performs the computa- 39

tionally expensive operations, including data processing, lin- 40

earization, and dimensionality reduction. A client-side browser 41

application written in JavaScript receives the shape information 42

and creates the visualizations using three.js [64] and D3.js [65]. 43

6. Results 44

In this section, we present four scenarios of increasing com- 45

plexity, as conducted together with two medical physicists to as- 46

sess how well tasks (T1), (T2), and (T3) are supported with 47

VAPOR. We further document the feedback from the domain 48
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Fig. 11. Scenario for retrospective toxicity analysis, to compare patients with toxicity (blue) against patients without (red). This scenario addresses all three
tasks. (a) A preliminary analysis indicates that the shape variability does not differ significantly between the two groups. (b) There are also no significant
anatomical differences. (c) However, the positional variability of the CTV looks vastly different between the two groups.

experts giving an initial indication of the strengths and weak-1

nesses of VAPOR, and directions for future improvements.2

6.1. Shape Type Identification in a Cohort3

Shape type identification in a cohort is depicted in Figure 10.4

It investigates possible organ shape types resulting from the5

clustering. Therefore, it focuses only on the first task (T1)6

for exploring the anatomical variability of organs within a co-7

hort. In the case of the bladder, four groups (Figure 10 (a):8

red, green, blue, and purple) are obtained. All groups are se-9

lected to inspect their median shapes, confidence bands, and10

positions, as shown in Figure 10 (c). The green and purple11

groups contain bladders with bigger sizes. Bladders from the12

green group are rather convex, while purple bladders protrude13

further in the direction of the prostate (bottom left side of the14

shapes in Figure 10 (c)). This is visible in the 2D views and15

also in the superimposed 3D view (Figure 10 (b)). The red and16

blue groups contain smaller bladders, which are again split into17

convex bladders (red) with a rather flat interface towards the18

prostate (bottom left side of the shapes in Figure 10 (c)) and19

bladders with concave shapes (blue). In general, all bladders in-20

dicate the largest variation at their upper side. There the bladder21

is the least constrained by other internal organs and can freely22

extend. Most of the bladders move predominantly along the23

vertical axis. The red group also exhibits large positional vari-24

ability along the sagittal axis, i.e., left-to-right in Figure 10 (c).25

This verifies findings of previous clinical work [4, 66].26

6.2. Retrospective Toxicity Analysis27

Retrospective toxicity analysis is depicted in Figure 11. It in-28

vestigates possible correlations of organ shapes to toxicity man-29

ifestation, i.e., addresses tasks (T1) and (T2) of Section 3. Fig- 30

ure 11 also showcases the comprehensive interface of VAPOR. 31

For the toxicity, retrospective data of all patients are available. 32

The patients are sorted based on toxicity, as seen in Figure 11 33

(a). The red group presents no toxicity and the blue group 34

presents toxicity (T1). In the toxicity group, there are patients 35

with high (2, 11, and 19) and low (1, 15) shape changes (T2). 36

Also, there are patients whose average shape in the first five 37

days is similar to the rest of the treatment (1, 2, and 15), and 38

those whose average shape is not (11 and 19), leading to higher 39

variations. Both of these findings do not indicate a connection 40

between shape variability and induced toxicity, but the number 41

of patients is too small for a conclusive statement. When look- 42

ing at the anatomical views, there are no large differences in 43

the shapes themselves, although the group with toxicity (blue) 44

seems to have slightly bigger bladder shapes (Figure 11 (b)) 45

(T1). However, the positional changes of the CTV look vastly 46

different for the two groups of patients. The sagittal view (Fig- 47

ure 11 (c)) indicates that the group with toxicity (blue) seems to 48

move more in the sagittal direction than the one without (red), 49

as shown by the cross glyphs. Increasing the number of pa- 50

tients might provide in the future more information about these 51

preliminary findings. 52

6.3. Single Organ Exploration in a Cohort 53

Single organ exploration in a cohort is depicted in Figures 12 54

and 13. It addresses all three tasks of Section 3. The explo- 55

ration starts with grouping patients based on their average blad- 56

der shape changes (T1). When comparing each shape to the 57

first treatment day (Figure 12 (a)), all bladders change signifi- 58

cantly through the treatment period. This is indicated by the dif- 59

ferent shades of blue for all groups in the tabular representation. 60
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(c)

(b)

(a)

Fig. 12. Scenario for single organ cohort exploration, showing the shape
and positional variability of bladders. This scenario addresses the first two
tasks. It indicates that performing the planning based on (b) the first five
timesteps instead of (a) only the first one may more precisely model the
bladder shape over time. (c) VAPOR may allow to early identify patients
with high organ shape variability in critical regions (Group 3, green), and
account for this information in treatment planning.

It is an important argument in favor of adaptive RT. The current1

clinical practice uses only the first timestep for treatment plan-2

ning, and our finding confirms that simple translational adapta-3

tions of the initial treatment plan will not suffice. When com-4

paring each shape to the mean of the first five treatment days5

(Figure 12 (b)), the variability is lower. This is an indication6

that performing the planning based on the first five timesteps in-7

stead of only the first one may more precisely model the bladder8

shape over time. The anatomy concerning the respective shape9

variations can also be seen in the contour boxplots of Figure 1210

(c). All groups have similar shapes, which can be due to the fact11

that patients with high average variability are found all over the12

shape space and have no individually distinctive shape. The13

group with low shape variability (Group 1, red) has also small14

local shape variations, i.e., smaller bands. The group with high15

shape variability (Group 3, green) has also large local shape16

variations, i.e., larger bands. With regard to positional varia-17

tions, higher shape variability correlates with larger positional18

variations, as denoted by the cross glyphs in Figure 12 (c). The 19

positions largely vary along the sagittal and vertical axes (red 20

square in the figure, horizontal and vertical direction respec- 21

tively), which corresponds to previous findings [4]. 22

The contour boxplots in the sagittal view of Figure 12 (in 23

(c), red square) indicate that Group 1 and 2 present the lowest 24

shape variability in the area of the prostate (lower left corner 25

of the sagittal view). In Group 3, this is not the case. Ex- 26

panding the tabular representation helps inspecting individual 27

patients (Figure 13 (a)) (T2). Patients from Group 3 are partic- 28

ularly interesting, as high shape variability can potentially lead 29

to complications. When looking at the individual patients from 30

this group, some patients, e.g., Patient 7 (Figure 13 (b)), exhibit 31

a similar local shape variability pattern to patients from Group 32

1 and 2, i.e., the shape changes mostly outside of the high dose 33

region. However, some patients, e.g., Patient 13 (Figure 13 (c)), 34

exhibit high shape variability also in the area of high dose. For 35

such cases, the dose-masking feature of our tool can be used 36

to recompute the shape variability only based on the regions, 37

where the RT dose exceeds the user-determined threshold (T3). 38

Figures 13 (d) and (e) show Patient 7 and 13, respectively, after 39

dose masking. After the recalculation, the tabular representa- 40

tion shows that the order and grouping of patients has changed 41

(Figure 13 (f)). Patient 7 has moved from Group 3 to Group 1, 42

as he exhibits low organ shape variability in the masked area. 43

Patient 13 stayed in Group 3. This indicates that our tool can 44

be used to separate patients with high organ variability in high 45

dose regions from patients with low overall shape variability 46

or low variability in high dose regions. Also, there is a clearer 47

separation between Group 1 and 2. This is visible already in the 48

first five timesteps of the treatment and is even more apparent 49

in the remaining timesteps. This supports the hypothesis that 50

a few initial plans obtained over the first few days of treatment 51

(e.g., five) may allow to early identify patients with high organ 52

shape variability in critical regions. This information can be 53

taken into the account in treatment planning. 54

6.4. Multi-Organ Exploration in a Cohort 55

Multi-organ exploration in a cohort is depicted in Figure 14, 56

and targets all three tasks of Section 3. The explorative tasks 57

of the scenario presented in Section 6.1 can be repeated for all 58

the available organs (T1). In Figure 14 (a), the tabular rep- 59

resentation encodes the average variability values of the three 60

organs side-by-side. In Figure 14 (b), it presents their devi- 61

ations. The prostate volumes (in the rightmost cells) do not 62

undergo large shape variations. These low values are encoded 63

with almost white color for the respective cells of all groups. 64

The anatomical view of Group 3 (Figure 14 (c)), which is the 65

one with the highest shape variability, shows all shape and po- 66

sitional changes of the organs (T2). While the prostate and 67

the bladder undergo positional changes mostly along the ver- 68

tical axis, as indicated by the cross glyphs, the motion of the 69

rectum is predominantly along the sagittal axis, i.e., the back- 70

to-front axis of a patient. Overlaps between the prostate shape 71

and other organs may happen as the CTV includes an additional 72

safety margin [2]. Regarding the shape changes, the bladder 73

extends mostly away from the prostate, similar to the results of 74
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Dose: 0 81 Gy Difference: 0 1

Fig. 13. Scenario for single organ cohort exploration along with the radiation, showing the variability before (left) and after dose masking (right). (a)
Tabular view for the cohort partitioning before dose masking. (b),(c) Anatomical view with dose overlay for Patients 7 and 13 before dose masking, and
(d),(e) after dose masking. (f) Tabular view for the cohort partitioning after dose masking. Patients from Group 3 are particularly interesting, as high
shape variability in combination with high RT dose administration can potentially lead to complications.

Section 6.1. For the rectum, there is no predominant direction1

of change, which might be due to its inherently high overall2

anatomical variability. The dose distribution in the same group3

(Figure 14 (d)) indicates that both bladder and rectum are ex-4

posed to high RT dose, as seen in the 3D view (T3). The circu-5

lar glyphs superimposed on the anatomical planes denote a high6

RT dose variability and higher doses outside of the prostate. A7

possible explanation is that some patients in this group received8

also lymph node irradiation to reduce recurrence, therefore the9

irradiation field was much larger.10

6.5. Initial Feedback11

We address here the strengths, weaknesses, limitations, and12

future improvements of our work. The domain experts com-13

mented that the application provides a flexible and systematic14

way to explore the data. It allows them to aggregate information15

in different ways and inspect the most interesting aspects of the16

data. The approach is “a promising and useful decision-making17

tool for radiation oncologists”. As they stated, “there are many18

possibilities, and many features” and this allows them to ap-19

proach their data in many different ways—depending on their20

specific hypotheses or exploratory tasks. It allows them to see21

individual organs, multiple organs, multiple patients, and also22

subgroups of the cohort, at the same time. Although this was23

not an intended functionality, they commented that “the tool of-24

fers a way of identifying the setup uncertainty of the entire treat-25

ment”. This follows from providing an overview of the motion,26

i.e., uncertainty, of the prostate. The exploded views have been27

created to allow the users to “drag apart” the different organs so28

that the overlaps would not interfere with their understanding29

of the variability at organ interfaces The reaction of experts to30

this functionality was rather neutral. It was seen as an additional31

(neutral) feature—neither absolutely necessary nor useless. The32

2D views seemed to be more useful than the 3D views, which33

is a common observation in radiation therapy treatment [2]. 3D34

views are, in general, not very common in clinical practice, and35

all representations are mainly 2D-based. We included the 3D36

view for completeness and context. The domain experts would37

like to explore further the data in the frame of their future clin-38

ical research. They expect that working more with the applica-39

tion will bring forward improvement suggestions, particularly 40

for treatment planning. For example, the application could give 41

“indications of patients that will fail or that may develop tox- 42

icity at the beginning of the treatment”, allowing the experts 43

to adapt the employed strategy. Potentially, it could help “cre- 44

ating thresholds [i.e., guidelines] for patient treatment”. For 45

future work, the domain experts proposed the addition of func- 46

tionality to easily add annotations and perform measurements 47

concerning, e.g., the confidence bands of the contour boxplots. 48

This would quantify the up-to-now qualitative inspection of the 49

variability and could be done, for example, by probing along 50

the median contour. The initial feedback is informal in nature. 51

In the future, we will conduct an extensive evaluation, also in 52

the scope of a retrospective clinical study with a larger cohort. 53

7. Conclusions and Future Work 54

We present VAPOR, a visual analysis application for the ex- 55

ploration of pelvic organs in multiple patients, across the whole 56

RT treatment procedure. VAPOR focuses on the global explo- 57

ration and analysis of pelvic organ variability in an abstracted 58

tabular view and on the local exploration and analysis of shape 59

and positional variability in a combined 2D/3D anatomical 60

view. The application integrates functionality for the analysis 61

of the irradiated dose with regard to the anatomical variability. 62

It includes the possibility to relate the analysis to retrospective 63

toxicity information within cohort studies. We showcased the 64

functionality of VAPOR with four usage scenarios conducted 65

with two domain experts. 66

Future work includes a thorough evaluation with the intended 67

users, as well as a quantitative evaluation to assess the robust- 68

ness of the current partitioning approach. For this, a larger co- 69

hort would also be needed. The registration part of the work- 70

flow could also be evaluated and improved to yield more robust 71

results. Also, for the exploration of dose deviations other en- 72

codings, such as those proposed by Ristovski et al. [62], could 73

be investigated. In its current state, VAPOR has been designed 74

for domain experts—namely, medical physicists. They are fa- 75

miliar with the implemented analysis and are also (up to a cer- 76

tain extent) visualization and machine learning literate. For 77
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(a)

(b)

Fig. 14. Scenario for multi-organ cohort exploration along with the radiation. (a) The average anatomical variability of the three involved organs and (b)
their deviation. Bladder (B), Rectum (R), Prostate (P). (c) The shape and positional variability of all pelvic organs. (d) The dose variability in the most
varying group. Group 3 manifests the highest shape and positional variability. Within this group, both bladders and rectums are exposed to high RT dose.

clinicians, who are more involved in the design and adminis-1

tration of treatment plans, the application is not yet suitable.2

This group might significantly benefit from a version that fo-3

cuses more on describing the organ shape variations of indi-4

vidual patients. While VAPOR supports different possibilities5

of grouping patients, organs or timesteps, each option is suit-6

able for different types of tasks. For each task, the exploration7

is straightforward—if the user has a specific hypothesis or ex-8

ploratory task in mind. Without a clear task in mind, the number9

of options could be overwhelming. In this case, guidance [67]10

and a higher degree of automatization should be considered.11

VAPOR is a first step towards the analysis of variability in12

multi-organ patient cohorts, the investigation of the effects of13

anatomical variability on dose administration and potential RT-14

induced toxicity, and inclusion of these effects in adaptive RT.15
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