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Abstract

In this paper, we propose a new approach for the com-
parison and analysis of Monte Carlo (MC) rendering al-
gorithms. It is based on a novel similarity measure called
render score (RS) that is speci�cally designed for MC ren-
dering, statistically motivated, and incorporates bias and
variance. Additionally, we propose a comparison scheme
that alleviates the need for practically converged reference
images (RIs). Our approach can be used to compare and
analyze di�erent rendering methods by revealing detailed
(per-pixel) di�erences and subsequently potential concep-
tual or implementation-related issues, thereby o�ering a
more informative and meaningful alternative to commonly
used metrics.

1 Introduction

The accurate simulation of light transport for the synthe-
sis of photorealistic images is of great importance for �lm
production, architectural visualization, product design, and
many other application areas. The prevalent approach to
this problem is to use a model that is described by the render-
ing equation [Kaj86] and to evaluate its numerous integrals
using Monte Carlo (MC) integration.
This type of integration approximates a function’s integral
by repeated random sampling. Due to the stochastic na-
ture of this approach, initially, the computed results su�er
from high variance, which manifests itself as noise in the
rendered images. The variance eventually vanishes as the
number of samples increases and the integral converges to
the correct solution.
A signi�cant amount of research has been dedicated to re-
duce variance and speed up convergence by using more
advanced integration and sampling schemes that try to
distribute samples in a more e�cient way. However, the
variance inherent to all MC-based methods makes the com-
parison of di�erent rendering techniques di�cult, as images
are only completely noiseless in the theoretical limit, which
often cannot be attained in practice.
A common approach to compare renderings is to select a set
of representative test scenes, render them using a �xed time
or sample budget, and compare the results to a di�erent ren-
dering technique or a quasi-converged reference image (RI).
Typically, to assess the di�erences, only qualitative visual
comparison or simple metrics, such as the mean squared
error (MSE) are used. A limitation of these approach is that
the inherent variance may distort the result for both visual
or metric-based comparisons. Furthermore, the variable

quality of RIs may additionally deteriorate the assessments,
as pointed out by Whittle et al. [WJM17]. In Figure 1, we
provide an intuitive example of these issues when using
common metrics, such as absolute deviation (AD) or MSE.
The shown normal distributions exemplify the radiance

Figure 1: The normal distributions on the left and right only
di�er in their variance, but have the same distance between
the means. Computing the absolute deviation of the means
|x̄A − x̄B | would yield the same di�erence for the left and
the right case because only the mean di�erence is taken
into account. Our proposed render score (RS) incorporates
not only the mean di�erence but also the variances of the
distributions and is therefore able to distinguish those two
di�erent cases.

distributions computed by two MC rendering techniques.
It is evident that considering only the di�erence between
their means is insu�cient, as the variances contain crucial
information concerning the similarity of two distributions.
In this paper, we propose a novel approach for the compari-
son of MC rendering techniques, and our goal is to address
the drawbacks of commonly used metrics and to establish a
methodology to improve the comparability across di�erent
publications, rendering techniques, and their implementa-
tions.
Our main contribution is the render score (RS), a novel dis-
tance measure for the statistically motivated quanti�cation
of the similarity of radiance estimates. It o�ers a more in-
formative and meaningful alternative to commonly used
metrics, e.g., AD or MSE, and can be used to analyze and
compare di�erent MC rendering algorithms. Instead of
working with less informative per-pixel sample means (i.e.,
the standard procedure in the state of the art), it additionally
incorporates the bias and variance of the radiance sample
distribution within a pixel. As discussed in Section 3 and
illustrated in Figure 4, we designed the RS speci�cally for
MC rendering cases where the bias and variance are subject
to minimization.
To obtain the necessary radiance sample distributions, we
compute multiple independent (and non-tonemapped) short
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renderings using a relatively low number of samples per
pixel (SPP). This enables our approach to work indepen-
dently of the underlying implementation, as all renderers
are capable of image output. It can be used as an abso-
lute measure, i.e., a measure that quanti�es an image on
its own—if high-quality RIs are available. Unfortunately,
those are not always feasible to compute and such abso-
lute comparisons against a RI can be problematic [WJM17].
Therefore, we propose to use our RS as a relative measure
to compare and rank multiple MC rendering techniques
against each other and potentially unveil inaccuracies in
their implementations that would otherwise be challenging
to �nd. Similarly to the approach proposed by Whittle et
al. [WJM17], our relative comparison scheme is based on
an ensemble of di�erent sample size combinations.

Our approach can be summarized as follows (Figure 2):

Figure 2: Overview of our proposed comparison scheme
based on our novel RS. First, we generate multiple short
renderings for each renderer which represent samples of
the mean radiance distribution. Based on these distribu-
tions, we compute the RS, which enables analysis through
the examination of average or per-pixel scores and sam-
ple distributions. This provides the users with additional
insights about the renderers that may go unnoticed with
traditional error metrics.

1. First, we compute a prescribed number of short (i.e.,
�xed low number of SPP) renderings.

2. Then, we select a reference algorithm, e.g., path tracing
(PT), and compute the RS of the techniques of interest
relative to it based on their sample distributions.

3. We further compute additional sample sets by aggre-
gating the samples of the original distributions. This
enables a more extensive analysis, especially with re-
spect to a relative comparison in the absence of RIs.

4. Ultimately, the results can be analyzed by examining
the average score for the whole image or the per-pixel
scores and sample distributions.

In order to facilitate the adoption of our approach, we plan
to publish our source code in the near future.
The remainder of the paper is structured as follows: in
the following section, we discuss related work in order to
put our proposed approach into context. Our motivations
and the theory behind the RS are explained in Section 3,
followed by Section 4, where we present several results to
demonstrate the usefulness of our approach. In closing, we
discuss the bene�ts and limitations of the RS in Section 5.

2 Related Work

Perceptual Quality Measures for Monte Carlo Ren-
dering. Surprisingly, there have been only a few attempts
to quantify the quality of Monte Carlo (MC) renderings.
Many researchers employed a perceptual model that can be
used to approximate perceived di�erences, which in turn
can be exploited for rendering. For instance, the visible
di�erences predictor [Dal93] has been employed to approx-
imate and monitor perceived rendering quality in order
to use it for a stopping condition [Mys98] or to alternate
between complementary rendering techniques [VMKK00].
Ramasubramanian et al. [RPG99] developed a perceptually
based error metric for image-space adaptive sampling. Far-
rugia et al. [FP04] used an existing vision model [PFFG98]
in order to achieve the same goal. However, all these works
do not aim to provide a solution for the robust comparison
of di�erent rendering techniques.

General Image Quality Metrics. When it comes to the
comparison of rendering techniques, general image quality
metrics, which are popular in the image-processing commu-
nity, are the predominant choice. Prominent examples are
the mean squared error (MSE), the root-mean-square error
(RMSE), the structural similarity (SSIM) index [WBSS04],
and variants of the high-dynamic-range visual di�erence
predictor (HDR-VDP) [MDMS05, MKRH11, NMDSLC15].
For instance, Meneghel and Netto [MN15] employed SSIM
and HDR-VDP2 for the comparison of six di�erent render-
ing techniques.
Whittle et al. [WJM17] provided a comprehensive overview
and analysis of a multitude of general image quality met-
rics. The problem with these general metrics is that they
are agnostic to the sample distributions in MC rendering,
which could potentially provide a breadth of additional in-
formation. We aim to alleviate this problem by deliberately
incorporating information about distributions.

Rendering Veri�cation. Several works [GTGB84,
MCTG00, SW04, McN06] compare renderings to real-
world measurements in order to assess rendering quality.
Ulbricht et al. [UWP06] investigated the state of the
art for the veri�cation of renderings and pointed out
that all approaches have their weaknesses and that the
development of robust and practical solutions is still an
open task. Nevertheless, the veri�cation of rendering
techniques using real-world measurements is orthogonal to
our objective of comparing di�erent rendering techniques.
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Statistical Testing. Subr and Arvo [SA07] employed sta-
tistical tests to compare rendering techniques. However,
they use test hypotheses which are not suited to test for
equality, but can only show signi�cant di�erences.

3 Our Approach

We have de�ned the following desired properties that acted
as guiding principles for the development of our approach:

Variance-aware: In contrast to other di�erence measures,
such as the mean squared error (MSE), which only
consider one single “snapshot” of the means, we aim
to also include the variance of the radiance estimates
into account.

Radiance-based: We are primarily interested in the quan-
titative comparison of linear high dynamic range
(HDR) radiance estimates and therefore do not con-
sider visual perception or tone mapping, as the latter
may non-linearly distort the mean radiance distribu-
tion.

Implementation-independent: Our approach should be
as implementation-independent as possible, without
the need for signi�cant changes to the rendering sys-
tem.

Reference-less: Since the synthesis of accurate reference
images (RIs) is not always practical or even feasible,
we are interested in a way to robustly compare uncon-
verged results.

Based on these principles, we developed our novel compar-
ison scheme and its basis—the render score (RS)—which we
describe in the following sections.

3.1 Render Score

The goal behind the RS is the assessment of the quantita-
tive di�erences between the radiance estimates of di�erent
rendering techniques. Each Monte Carlo (MC) rendering
technique produces a characteristic radiance sample dis-
tribution. The simplest and most prevalent solution is to
compare the sample means using metrics such as absolute
deviation (AD) or MSE. The sample mean, however, is highly
sensitive to the inherent variance of the MC sampling pro-
cess. Our key insight is to not only consider the sample
mean but to also consider the underlying distribution in the
comparisons. The central limit theorem (CLT) states that
the distribution of the sample mean tends towards a nor-
mal distribution as its sample size increases. In the context
of MC rendering, this size corresponds to the number of
samples per pixel (SPP): as the SPP are increased, the distri-
bution of the mean will converge to a normal distribution,
regardless of the used rendering technique. This way, we
can de�ne the di�erence between two renderers in terms
of their sample mean distributions that are assumed to be
approximately normal.
The motivation behind our score is that we would like to
assess the likelihood that two renderers compute the same

sample mean. Since the sample mean distribution approx-
imately encodes the probability of a renderer generating
certain mean values, we are interested in some notion of
similarity between distributions, which we can use to mea-
sure the di�erence between rendering techniques.
We have identi�ed the following properties that are desir-
able for our distribution-based score:

1. Given two radiance distributions, we are interested in
a measure that penalizes both bias and variance.

2. Therefore, we are not interested in the exact similarity
of the two distributions, as a distribution with a lower
variance (compared to the other distribution) should
be favored and accordingly rewarded with a higher
score.

3. At the same time, a distribution with a similar mean to
the other distribution—i.e., a lower bias—should mani-
fest itself in a higher score as well.

4. Since we can not expect the distributions to be ex-
actly normally-distributed, we require an additional
factor that represents the deviation from normality,
preferably a scalar in the interval [0, 1].

With these requirements in mind, we have identi�ed two
suitable building blocks, i.e., the product of Gaussians
(POGs) and the Kuiper statistic [Kui60], which can be com-
bined to obtain our proposed RS.

3.1.1 Product of Gaussians

The POG is given by fA(x)fB(x), where fA(x) and fB(x)
denote two normal probability density functions (PDFs), as
illustrated in Figure 3. By integrating the POG, we obtain

Figure 3: The POG (green) varies with the mean di�erence
and the variance of both PDFsA (blue) andB (orange). The
integral of the PG (see Equation 1 and Figure 4) increases
as the mean di�erence and variances decrease, which ful-
�lls the �rst three of our four main design criteria (see
Section 3.1).

PG, the �rst component, of our RS, which implements our
notion of similarity between two distributions:

PG =

∫
fA(x)fB(x) dx. (1)
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Note that this simple formula ful�lls the �rst three require-
ments we speci�ed before, as illustrated in Figure 4. It shows

Figure 4: This plot shows the magnitude of PG (Equation 1)
between a �xed N(0, 1) and a N(µ, σ) normal distribution
with varying mean µ and standard deviation σ. This shows
how the PG increases with decreasing mean di�erence and
variance.

that the score increases as the di�erence in means (the bias)
and the magnitude of the variance decreases. We refrain
from using classic distribution-based similarity measures,
because they would penalize a di�erence in variance, which
is not in line with our requirements.

In our case where we approximate fA and fB by Gaussians,
the analytical solution of PG is given by:

PG(µA, µB , σA, σB) =
exp

(
− (µA−µB)2

2(σ2
A+σ2

B)

)
σAσB

√
2π
√

1
σ2
A

+ 1
σ2
B

, (2)

where µA, µB and σA, σB denote the population means µ
and standard deviations σ of normal distributions A and B,
respectively. In practice, we estimate µ and σ by the sample
mean x̄ = 1

n

∑n
i=1 xi and sample standard deviation s and

approximate the sample distribution by a normal distribu-
tion, i.e., N(x̄, s). For the calculation of the standard devi-
ation s from the samples xi, we use the conventional for-
mula s =

√
1

n−1

∑n
i=1(xi − x̄)2. These singularity cases

of s = 0 are handled separately, as explained in Section 4.

3.1.2 Deviation from Normality

Unfortunately, the sample mean is only precisely normal
distributed in the limit, thereby violating our fourth rule.
To remedy this, we introduce an additional scaling func-
tion to “invalidate” the PG values that are computed from
samples that deviate from normality. There are multiple
statistical approaches to assess normality, however, only a
few are bounded between 0 and 1, e.g., the Kuiper statis-
tic [Kui60], an extension of the Kolmogorov-Smirnov (KS)

statistic [Kol33]. It describes the di�erence between two
cumulative distribution functions (CDFs) as follows:

Dn = D+ +D−, (3)
D+ = max

x
F (x)− FN (x), (4)

D− = max
x

FN (x)− F (x), (5)

i.e., it is the sum of the upper D+ and lower D− maximum
di�erence between the empirical CDF F of the samples to
the analytic CDF FN of the corresponding ideal normal
distribution N(x̄, s). Figure 5 further illustrates how we
use the Kuiper statistic to compute the deviation from nor-
mality. We also use 1−Dn as a weighting factor to scale

Figure 5: To assess the deviation from normality for a given
sample distribution we generate the empirical CDF and the
analytical CDF (based on the ideal distribution N(x̄, s)).
Then we compute the Kuiper statistic using the sum of the
upper D+ and lower D− maximum di�erence.

(or “invalidate”) the similarity value PG depending on the
agreement between the sample distribution and the corre-
sponding ideal normal distribution. The inclusion of this
scaling factor successfully ful�lls our fourth requirement.

3.1.3 Calculation of the Render Score

As mentioned before, PG is based on the assumption that
the mean sample distribution of both renderers is normal-
distributed. Any deviation from normality of just one of the
renderer’s distributions makes PG less reliable. To model
this fact, we multiply PG with the weighting factors 1−Dn.
Since 1−Dn is in the range [0, 1], the multiplication ensures
that PG decreases linearly proportionally to the deviation
from normality and that it keeps its original magnitude
when both distributions are normal-distributed. This mul-
tiplicative combination of PG and the normality factors
1−Dn forms our RS between the radiance samples of ren-
derer A and B. It is de�ned as:

RS(A,B) = PG(x̄A, x̄B , sA, sB)

(1−Dn(xA, x̄A, sA))(1−Dn(xB , x̄B , sB)), (6)

where x denotes the individual samples, x̄ the sample mean,
and s the sample standard deviation of the chosen renderer
in their subscripts.
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(l,m) (11,0) (10,1) (9,2) (8,3) (7,4) (6,5) (5,6)
(nl, nm) (2048,1) (1024,2) (512,4) (256,8) (128,16) (64,32) (32,64)

Table 1: An example of possible set counts and sizes rep-
resented as tuples (nl, nm) = (2l, 2m) that can be created
from n = 211 = 2048 initial samples. Please note that we
restrict the set count by l ≥ 5.

3.2 Sample Aggregation

In practice, we compute a �xed number n of short render-
ings for each rendering technique that we seek to compare.
The renderings are computed using a speci�ed number of
SPP and represent the statistical samples for the respective
rendering techniques. These mean samples have a partic-
ular variance that depends on the used number of SPP.
This variance can be reduced further by averaging multiple
mean samples. We can exploit this fact by performing the
following sample aggregation scheme.
First, we render n = 2i short renderings, which form our
initial samples. The total number of initial samples n can
be subdivided into nl = 2l sets with nm = 2m samples
each, where n = 2i = 2l+m. Averaging the samples in each
set yields additional samples, each aggregating nm mean
samples (which corresponds a radiance sample count of
nm times the number of SPP used for rendering). Since we
need a minimum number of samples to compute meaningful
statistics and an empirical CDF, we recommend keeping
the number of sets above nl = 25 (a common minimal
sample size used in statistics for the normal distribution of
the mean).
This sample aggregation scheme allows us to investigate
the mean sample distribution in di�erent states. As we
aggregate, the variance of the mean sample distribution
is reduced at the expense of the number of samples that
represent the distribution.

4 Evaluation

As a proof of concept, we tested our approach by comparing
several popular integrators available in Mitsuba [Jak10]. We
chose to compare a set of commonly used integrators, e.g.,
bidirectional path tracing (BDPT), energy redistribution
path tracing (ERPT), Metropolis light transport (MLT), while
using path tracing (PT) as the relative reference.
For random number generation we chose the independent
sampler in all cases. Furthermore, we slightly adapted Mit-
suba to expose the sampler seed to the command line and
added an option to successively save images with a cho-
sen number of samples per pixel (SPP) without the need
of reloading the scene. In general, our approach can be
used with any renderer that is able to output images that
were rendered with a speci�ed number of SPP and provides
control over the seed of the random number generator. All
image samples were computed and processed in linear high
dynamic range (HDR) as stored by Mitsuba and were de-
liberately rendered with a resolution of 64 × 64 to avoid
cluttering the visual analysis with too much image detail.
The rendered images and scores are based on n = 2048

rendered images that were computed using up to 64 SPP.
For the visualization of the rendered images, we chose the
global tonemapper by Reinhard et al. [RSSF02], while all
other di�erence and score images were converted to lumi-
nance and normalized linearly. Furthermore, in order to be
able to compare our render score (RS) to the mean squared
error (MSE)—the prevalent approach to compare renderings
in the state of the art—we computed the reference images
for the results shown in Figure ?? and 6, even though the
RS itself is a reference-less approach.

In the following, we discuss various bene�ts of our ap-
proach.

Scoring Renderings. Our approach makes it possible to
quantify the visual quality of renderings more faithfully
than simple distance-based metrics, such as MSE. This is
due to the fact that, additionally to the mean distance, we
consider the variance of the involved distributions, which
contains important information about similarity. We there-
fore argue that our approach facilitates more meaningful
comparisons between di�erent rendering techniques and
parametrizations. In Figure ?? and 6, we demonstrate this
advantage based on di�erent renderings with similar MSE.
Our RS is capable of characterizing the di�erences in visual
quality between the renderings, whereas the MSE fails in
this regard.

(a) Path Tracing
MSE: 0.0047, MRS: 0.5743

(b) Metropolis Light Transport
MSE: 0.0046, MRS: 0.7125

(c) Bidirectional Path Tracing
MSE: 0.0047, MRS: 0.7207

(d) Energy Redistribution Path
Tracing

MSE: 0.0047, MRS: 0.7610

Figure 6: This �gure demonstrates how di�erent renderings
with equal MSE are scored by the MRS (higher is better).
Please note that MLT b had di�culties to sample the glass
teapot, hence the lower MRS compared to BDPT c. The
MSE clearly fails in distinguishing the visual qualities of
these renderings, whereas our proposed MRS scores them
more faithfully.
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Low-Noise Per-Pixel Analysis. Since our approach
considers the variance of the distributions—additionally
to the distance—it is also less susceptible to noise at low sam-
ple counts. This facilitates detailed per-pixel analysis of
di�erences between rendering techniques in order to iden-
tify their strengths and weaknesses. Figure 7 demonstrates
this aspect by comparing our RS to the absolute deviation
(AD), i.e., the absolute di�erence to the reference image.

(a) PT AD (b) MLT AD (c) BDPT AD (d) ERPT AD

(e) PT RS (f) MLT RS (g) BDPT RS (h) ERPT RS

Figure 7: The noise levels in the per-pixel ADs (top row)
are much higher compared to the per-pixel RSs (bottom
row). This makes per-pixel analysis more reliable, especially
at low sample counts. These images correspond to the
renderings shown in Figure ??.

Debugging Renderers. The previous examples demon-
strated how the RS can reveal or emphasize subtle di�er-
ences between integrators. Furthermore, it can also be used
as a debugging tool to detect possible implementation is-
sues, as shown in Figure 8. In this �gure, there are multiple
pixels where at least one of the per-pixel distributions has
zero variance, which in turn causes the RS to exhibit a sin-
gularity. We chose to highlight such pixels in green for
cases where sA = sB = 0 and x̄A = x̄B , and red for
cases where either sA or sB is zero, thereby improving the
process of debugging and identifying di�erences in ren-
derer parametrization. In contrast, the AD cannot identify
such cases, as it is not aware of the underlying per-pixel
variances.

Variance and Bias Analysis. Increasing the mean
size nm of the sample distributions used to calculate our
RS linearly decreases the variance of the compared mean
sample distributions (Section 3.2). Intuitively, this means
that for a �xed distance between the distribution means (i.e.,
a �xed bias), the variance has more in�uence on the score
at lower mean sizes than at greater mean sizes. Therefore,
at higher mean sizes, the bias manifests itself more in the
score, whereas at lower mean sizes, the variance will appear
as the primary component in the score. This behavior of our
RS facilitates intricate analyses with regard to the variance
and bias behavior of a particular rendering technique. Fig-
ure 9 demonstrates this aspect by showing that an increase
in mean size signi�cantly increases the impact of bias in
the rendering score.

(a) PT Mean (b) PT AD (c) PT RS

(d) BDPT Mean (e) BDPT AD (f) BDPT RS

Figure 8: This �gure demonstrates RS singularities for BDPT
and PT. The singularities are visible in the windows of the
living room. Areas where both distributions have zero vari-
ance and equal mean are highlighted in green, whereas
areas where exactly one of the distributions has zero vari-
ance are highlighted in red. Since the AD does not take
variances into account, it fails to identify such cases.

(a) PT (4096, 1) (b) PT (256, 16) (c) PT (32, 128)

(d) BDPT (4096, 1) (e) BDPT (256, 16) (f) BDPT (32, 128)

Figure 9: This �gure illustrates the e�ect of reducing the
variance of the mean sample distribution by increasing the
mean size (3.2). The top row shows the per-pixel RSs for
di�erent sample set sizes (nl, nm) for an unbiased PT. The
bottom row shows the corresponding per-pixel RSs for a
biased PT that was restricted to a path depth of two. The
impact of the bias appears as lower RSs at higher mean sizes.
As explained in Figure 8, the pixels that are highlighted in
red signify that exactly one of the corresponding distribu-
tions exhibit a variance of zero: this is to be expected, as
with the biased parametrization, many paths are terminated
before they reach the light source.
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5 Discussion

We designed our approach according to the principles men-
tioned in the beginning of Section 3. In order to keep it as
independent as possible from the implementation of the
renderer, we chose to use short renderings as statistical
samples. This statistical approach further enables us to
compare the actual sample distributions and incorporate
their variances. In order to quantitatively compare di�erent
renderers without distracting in�uences arising from tone
mapping or perception-related aspects, we compute our
novel scheme on raw linear high dynamic range (HDR) im-
ages. To avoid the issue of obtaining high-quality reference
images, we use the render score (RS) as a relative measure
and compare ensembles consisting of di�erent sample size
con�gurations.

The RS was speci�cally designed for Monte Carlo (MC) ren-
dering and enables the comparison and analysis of relative
di�erences between rendering techniques. This method in-
corporates bias and variance in the �nal score, and improves
upon traditional single-value measures (e.g., absolute devia-
tion (AD) or mean squared error (MSE)) by taking per-pixel
radiance distributions into account. Thus, using it as a
relative distribution-based measure alleviates the need for
absolute comparisons against a reference image (RI), while
still being able to reveal di�erences between renderers.

Limitations. Due to our relative comparison scheme, the
choice of the reference renderer can have a signi�cant im-
pact on the scores. However, this is a problem that is also
inherent to absolute comparisons with other metrics. Al-
though our approach supports the comparison of results
from di�erent rendering systems in principle, it is required
that one remains vigilant about the di�erences in scene de-
scriptions, light and material models, and implementation.

Future Work. In this paper, we demonstrated the util-
ity of our RS in creating more informative and meaningful
comparisons between MC renderers by enriching the com-
parisons with bias and variance information. As a result,
di�erent rendering methods can now be compared with
more con�dence than with previous metrics, potentially
uncovering implementation-based di�erences that may oth-
erwise remain concealed. Furthermore, we hope that our
proposed approach will be developed further in combina-
tion with standardized test scenes to establish more reliable
and representative comparisons across publications in pho-
torealistic rendering. We plan to release the source code of
our approach in the hope of widespread adoption by the
scienti�c rendering community.
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