Problem Statement
We want to support neurobiologists who link complex behaviour to neural circuits in the brain of *drosophila melanogaster*, the common fruit fly. To discover these circuits, they require knowledge about the connectivity between neurons. Synapses are located at a neuron’s arborisation. Where two or more neurons’ arborisations overlap, they display a potential connectivity. Neurobiologists use the information on potential connectivity to formulate new hypotheses and experiments. Visualising and computing overlaps between more than two arborisations (higher order overlaps) is difficult.

Motivation
We needed a visualisation for higher order overlaps (intersections of more than two arborisations). The artists Judith Moosburner at the Zürcher Hochschule der Künste developed a beautiful novel design in cooperation with the neurobiologists at the IMP in Vienna.

Goals of the Thesis
- Realise the novel design
- Compute volumes of higher order overlaps on demand
- Provide interaction techniques to communicate the data

Computing Intersections
A major contribution of the thesis is the algorithm to compute mesh volumes and mesh intersection volumes on the GPU. We use A-Buffers on the GPU—which are typically used to achieve order-independent transparency—to compute volumes. A framebuffer typically stores a single colour value per screen pixel. The A-Buffer, however, can record multiple values in a single screen pixel by allocating linked lists.

The graph below illustrates a simplified version of our algorithm, three passes on the GPU are sufficient. The first pass renders meshes and stores depth values (pictured as red dots on the right).

The second A-Buffer contains depth values sorted by depth. In the third and final pass, a compute shader iterates the linked list in each pixel to find depth values relevant for a specific volume.

Conclusion
- Features described by the design successfully implemented
- Very fast on demand computation of intersection volumes on the GPU
- Visual and quantitative investigation of higher order overlaps of arbitrary order
- Integrated with the BrainGazer framework used by neurobiologists
- Interactive links with other tools in BrainGazer