
Pacific Graphics 2020
E. Eisemann, A. Jacobson, and F.-L Zhang
(Guest Editors)

Volume 39 (2020), Number 7

Fast Out-of-Core Octree Generation for Massive Point Clouds

Markus Schütz, Stefan Ohrhallinger, Michael Wimmer

TU Wien, Institute of Visual Computing

Figure 1: Processing pipeline: An out-of-core hierarchical counting sort quickly generates chunks of suitable size which can
then be indexed in parallel, and eventually merged into a single octree.

Abstract

We propose an efficient out-of-core octree generation method for arbitrarily large point clouds. It utilizes a hierar-
chical counting sort to quickly split the point cloud into small chunks, which are then processed in parallel. Levels
of detail are generated by subsampling the full data set bottom up using one of multiple exchangeable sampling
strategies. We introduce a fast hierarchical approximate blue-noise strategy and compare it to a uniform random
sampling strategy. The throughput, including out-of-core access to disk, generating the octree, and writing the final
result to disk, is about an order of magnitude faster than the state of the art, and reaches up to around 6 million
points per second for the blue-noise approach and up to around 9 million points per second for the uniform random
approach on modern SSDs.

1. Introduction

Terrestrial laser scanning, photogrammetry, and aerial LI-
DAR scanning operations yield hundreds of millions to tril-
lions of points nowadays. Due to the large storage and mem-
ory requirements, these kinds of data sets need to be pro-
cessed in an out-of-core fashion, where only a small part of
the data is loaded into RAM or GPU memory at any given
time. For processing tasks, the point cloud data is often
stored such that specific regions can be accessed quickly, e.g.,
in separate tiles or in hierarchical structures like kd-trees in
which all points are stored in leaf nodes [PMOK14; OP].
For real-time rendering, level-of-detail (LOD) structures are
required, where lower levels of detail contain representative

subsets that give users the impression that they are looking
at the full data set, even though only a fraction of it is be-
ing loaded and rendered. In this paper, we focus on the fast
generation of LOD structures that are suitable for real-time
rendering purposes.

The LOD structure that we target with our method is
a variation of a layered point cloud [GM04] that uses an
octree with an additive scheme, as used by Potree [POT]
and Entwine [ENT]. These octree structures populate each
node with a subset of the full data set, and the combina-
tion of all nodes yields the original data set without dupli-
cates. Additive scheme means that during rendering, higher
levels of detail contain additional points that are rendered

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

together with points in lower levels of detail. Alternatively,
one could use a replacement scheme where higher levels of
detail replace lower levels. The advantage of the replacement
approach is that it would allow us to compute representa-
tive subsets with baked-in anti-aliasing, similar to mip maps,
however we chose the additive approach at this time because
it is faster to generate and render, and requires less memory.
Figure 2 illustrates individual octree nodes and the subsets
of points that are stored inside.

1.1. Problem Statement

Unstructured point cloud data exists in various forms that
pose different problems and potential solutions to the gener-
ation of LOD structures. Large data sets are often a combi-
nation of individual scans, for example different flight lines
in aerial LIDAR, or scan positions in terrestrial laser scan-
ning. The former is often distributed in the form of non-
overlapping tiles that contain all flight lines. The latter is
regularly distributed as one file per scan position, which tend
to significantly overlap with each other.

In our experience, the following properties of the input
data have a significant impact on the LOD generation:

• Overlaps between input files: Non-overlapping files can
be converted in parallel, and the results can be merged
afterwards.

• Ordering of points: For out-of-core algorithms, a certain
locality between points is beneficial since it reduces the
need to swap data frequently from external storage. Ide-
ally, each region is only loaded, processed and unloaded
once.

• Density distribution: Relatively uniform point densities
make it easier to distribute points into sufficiently small
leaf nodes of a tree structure, which is advantageous for
bottom-up approaches such as ours. Highly uneven distri-
butions on the other hand (teapot in a stadium problem,
e.g., a sparsely scanned country-wide data set with a single
densely scanned building) may require recursive splitting
steps until the points are broken down into sufficiently
small chunks.

Our method works with all of the above-mentioned input
data, and it does comparatively well with strongly overlap-
ping input files such as individual scan positions of terrestrial
laser scanning, as it reorganizes them into chunks anyway.
Point clouds with non-uniform point densities benefit from
our hierarchical counting sort, which splits a set of points by
9 octree levels with only two iterations over the points, which
significantly reduces the amount of potentially required re-
cursions. In fact, none of our test data sets with up to 116
billion points requires more than a single out-of-core count-
ing sort pass.

Our contributions to the state of the art are:

• A hierarchical counting sort that is suitable to partition
a point cloud by up to 9 octree levels by looping through
all points twice. This counting sort is applied in an out-of-

core fashion during the chunking phase in order to gener-
ate small point cloud files (∼10M points), and is applied
again in an in-core fashion during the indexing phase to
create small leaf nodes (∼10k points) that can then be
subsampled bottom up.

• A simple and fast hierarchical approximate blue-noise sub-
sampling algorithm that keeps sampling artifacts across
borders of adjacent nodes subtle, even though distances
are not enforced across borders.

• An octree generation method that utilizes the bandwidth
of modern SSDs, rather than avoiding disk access at all
costs.

2. Related Work

This section describes three categories of work related to our
method: Counting sort, LOD structures for point clouds, and
blue-noise sampling.

2.1. Counting Sort

Counting sort is an integer sorting algorithm that runs in lin-
ear time [Knu98; CLRS01], as opposed to its comparison sort
based counterparts with a time complexity of O(n logn). It
is applicable to data sets that are sorted by integer keys
within a limited range. The range is limited because count-
ing sort, as the name suggests, counts the amount of each
occurring key and it uses an array of counters that is as
large as the range of potential keys to do so. Applications of
counting sort include point-in-cell simulations [Bow01], com-
puting fixed-radius nearest neighbours for particle simula-
tions [HCR2014], substeps of radix-sort routines, and in our
case the block-wise sorting of points. A survey of Arkhipov
et al. [AWLR17] discusses sorting algorithms on GPUs, in-
cluding counting sort as well as radix sort based on counting
sort.

We use counting sort to partition a point cloud into
smaller chunks by up to 9 octree levels at once, i.e., we
do a block-wise rather than a point-wise sorting. We also
extend counting sort by a hierarchical component to merge
small blocks into larger ones in order to avoid generating a
massive amount of tiny chunks.

2.2. Point Cloud LOD Structures

QSplat was the first method that uses a hierarchical struc-
ture to display large point clouds in real time [RL00]. Dachs-
bacher et al. introduced sequential point trees (SPT), a
similar but more GPU-friendly structure that sequentializes
the hierarchy into an array [DVS03]. Points are essentially
sorted by level of detail, and the amount of detail can be
adjusted by rendering a smaller prefix (subset starting at 0)
of the vertex buffer. Gobetti and Marton [GM04] proposed
a GPU-friendly as well as view-dependent LOD structure
called layered point clouds (LPC). This structure uses a
three-dimensional binary tree in which each tree node stores
selected samples of the full point cloud. Variations of layered

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and

John Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

point clouds with different tree structures and subsampling
methods have since become the de-facto standard in state-
of-the-art point cloud rendering engines. Further research
explores different tree structures (octree, kd-tree with alter-
nating axis, multi-way kd-tree), sampling methods (random,
closest to center, Poisson-disk) and octree generation algo-
rithms [WS06; WBB*08; GZPG10; SW11; EBN13; Sch16;
Sch14; MVvM*15; Fra17; KJWX19].

PotreeConverter [POT] creates an octree structure that
is largely identical to the modifiable nested octree struc-
ture [SW11; Sch14], but it uses a different sampling strat-
egy that selects points with a certain minimum distance in
each node. This ensures highly uniform subsamples within
nodes, but the minimum distance is not enforced between
neighboring nodes and parent or child nodes. Entwine cre-
ates a similar octree structure but features better parallel
processing capabilities “with parallelization in the cloud in
mind” [ENT; ENT2019]. Input files can be converted to an
octree individually and in parallel, and then merged into
a single complete Entwine Point Tile. Entwine uses a sam-
pling strategy that selects the point that is closest to the
center of a grid cell, which gives deterministic results and
ensures some level of uniform coverage. Kang et al. pro-
pose an in-core approach where one picks a random point
per cell within an inscribed sampling grid in order to effi-
ciently generate an octree structure with a certain level of
uniformity [KJWX19]. We use the same sampling strategy
as one of two options, but our method extends to arbitrar-
ily large point clouds and achieves a multiple times higher
throughput even in cases where the point cloud would be
small enough to be processed in-core.

We would like to mention the research of Martinez et
al. [MVvM*15] as particularly relevant. They create an oc-
tree for 638 billion points by splitting the data set into 16
x 16 tiles and then executing PotreeConverter for each tile
simultaneously on a server system with 2 x 8 cores and on
a distributed supercomputer. Afterwards, the individually
generated octrees are merged into a single one. The result-
ing runtime is 15 days, which corresponds to a through-
put of around 0.49 million points per second. Our approach
also splits the point cloud first and merges the results af-
terwards, but instead of splitting on a 2-dimensional 162

grid, which corresponds to 4 quadtree levels, we split on a
three-dimensional 5123 grid, which corresponds to 9 octree
levels. In addition to that, our evaluation runs on a single-
CPU system instead of a dual-CPU server system plus a
supercomputer. We were only able to evaluate our approach
for up to 100 billion points, however, due to lack of disk
space. Similar in spirit to tiling the data first, Leimer and
Scheiblauer [Lei13; Sch14] sort the data first in order to op-
timize the input for subsequent indexing operations.

Wand et al. [WBB*08], Scheiblauer [Sch14], and Kang
et al. [KJWX19] report in-core performances of 0.3,
1.21, and 2.5 million points per second, respectively.
Scheiblauer [Sch14], Richter and Döllner [RD10], Goswami
et al. [GZPG10], Dieckmann and Klein [DK18], Martinez et

al. [MVvM*15], and Discher et al. [DRD18] report out-of-
core performances of around 0.49, 0.1, 0.6, 0.2, 0.49 and
1.35 million points per second, respectively.

2.3. Blue-Noise Sampling

In the context of two or three-dimensional point samples,
blue-noise sampling is characterized by point sets with a cer-
tain minimum distance between adjacent points, but also
a lack of large gaps and regular sampling patterns. Point
sets with blue noise characteristics are considered to be of
high visual quality, and many papers explore strategies to
generate samples with various applications and different lev-
els of quality and performance. Cook proposes Poisson-disk
sampling or jittering on a regular grid as two methods to
generate such point sets [Coo86]. The majority of research
on blue-noise sampling deals with the generation of samples
at suitable locations, and we refer to Yan et al. [YGW*15]
for an extensive survey of sampling methods. The follow-
ing methods are closely related to our research because they
either subsample a given set of points or produce hierar-
chical representations of three-dimensional point clouds by
generating samples on a mesh. Yuksel describes sample elim-
ination, i.e., subsampling, as a way to reduce a large num-
ber of points to a smaller set with blue-noise characteristics
[Yuk15]. Dieckmann and Klein generate additive hierarchi-
cal Poisson-disk sets top-down by recursively trying to add
points into octree nodes, and if they do not meet the mini-
mum distance requirements, trying again in the next level of
the octree [DK18]. This results in an octree structure similar
to ours, but our approach differs in that it sorts the points
first, does distance checks to the last few previously accepted
samples, and also in a bottom-up approach, which allows us
to operate in parallel right from the start. Brandt et al. [BJ-
FadH19] compute a progressive point cloud with blue-noise
characteristics from meshes on the GPU. Progressive here
means that any prefix (subset from the beginning) still ex-
hibits blue-noise characteristics, and the size of the prefix
can be adjusted based on the distance to the object, similar
to sequential point trees [DVS03].

3. Data Structure

This section describes the generated data structure and its
representation on disk. We generate a layered point cloud in
an octree, largely identical to the modifiable nested octree
used by Scheiblauer [SW11] and Potree [Sch16]. Figure 2
illustrates the tree structure and the contents in its nodes.
The root node of the octree contains a coarse subsample that
represents the whole data set at a low level of detail. With
each level, nodes contain increasingly higher resolution sub-
samples of their respective regions. One of the main issues
of modifiable nested octrees is that previous work generates
one file per octree node, e.g., Martinez et al. [MVvM*15],
who use Potree for their work, end up with 38 million files for
a point cloud of 638 billion points. Each individual file adds
significant overhead to file system operations such as access-
ing, copying, deletion, uploading to a server, etc., thereby

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3 (e) Level 4

Figure 2: Each octree node holds a subsample of the full point cloud. The root node contains a coarse low density subsample
of the whole data set and with each level, the resolution is doubled. Points are colored by the node they belong to. Points in
lower levels of detail are rendered together with points in higher levels of detail, as seen in (b) through the mixture of red points
from the root and other colors from the respective nodes at level 1.

increasing times for the respective operations from seconds
and minutes to hours and days.

Our storage format differs in that we generate a single file
for all points (octree.bin), a second file for the whole octree
hierarchy (hierarchy.bin), and a third file with additional
metadata (metadata.json). The octree.bin file contains all
the points grouped by nodes in no particular order. Leaf
nodes tend to be stored at the beginning of the file because
we process the octree from the bottom up. Only the root
node is guaranteed to be the last node inside the file. The
hierarchy.bin file contains the full octree hierarchy, including
location and size of each node inside the octree.bin file. Since
the octree hierarchy itself can grow quite large, we group it
into 4 levels, which allows us to quickly load only the parts of
the hierarchy that are needed. Four levels amount to about
256 additional child nodes, assuming that an average of 4
direct child nodes exist for each node. When we load the
hierarchy of the root node, we only get the first 4 levels.
Once we reach nodes at the fourth level, we can load the
next 4 levels for each node as required. The third file, meta-
data.json, contains information such as bounding box and
point attributes that are required to load and decode the
point data that is stored in octree.bin.

4. Method

Within this paper, we differentiate between local and global
octrees. Local octrees are generated separately for each in-
dividual chunk of the point cloud, and the global octree is
the result of eventually merging all local octrees into a single
octree containing the entire point cloud.

Our method consists of the following steps (see Figure 1):

1. Chunking: Split point cloud into chunk files with up to
around 10 million points.

2. Indexing: Build local octrees out of each chunk in parallel.
3. Merging: Combine all local octrees into a single global

octree.

Figure 3: Chunking uses a hierarchical counting sort in or-
der to partition the points by multiple octree levels at once.
Counting: Count number of points that fall into cells of
a high-resolution grid. Merge Sparse Cells: Any 8 adja-
cent and octree-aligned cells with less than a certain number
of combined points are merged into larger cells. Distribute
Points: Now that we know the location, extent, and the
number of points in each chunk, we loop through all points
again and directly transfer each point to its respective chunk
/ file.

4.1. Chunking

The chunking phase splits the point cloud into cubic chunks
(e.g., files in out-of-core storage) that are small enough so
that multiple chunks can be processed in parallel, but large
enough to avoid a massive amount of tiny chunks. It is done
using a hierarchical variation of counting sort, as shown in
Figure 3. Counting sort is particularly useful for this task
because it requires only two streaming passes: the first pass
for counting points in a 29

3
= 5123 grid (for an outer octree

of 9 levels), and a second pass to distribute the points to the
respective chunks. In more detail, the approach consists of
the following steps:

Counting First, we divide the cubic bounding box of our
point cloud into a 3-dimensional grid with 2depth cells on
each axis. Each cell represents a counter for all points inside
it. A size to the power of two is required to align the count-
ing grid with an octree. Depth specifies the depth of the
octree. The depth and therefore the resolution of this grid

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and

John Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

(a) Candi Banyunibo (b) Colored by chunks (c) Top View

Figure 4: (b+c) Each generated chunk (=file) rendered with a random color. The top view shows how more densely scanned
regions are partitioned into smaller chunks, while sparsely sampled regions are merged into larger chunks before writing them
to a file.

defines the smallest possible extent of the chunks we are
about to generate. The generated chunks should be small
enough so that multiple chunks can fit in memory and be
processed simultaneously by the indexing phase following
later on. Larger point clouds will require a higher grid reso-
lution so that the resulting chunks are sufficiently small. In
our implementation, we use grid sizes of 128, 256 and 512 on
each axis. A counter grid using 32 bit integers with a size of
128 requires 4 ∗ 1283 = 8 MB memory, which constitutes a
low memory footprint, is quickly allocated, and also quickly
processed by the merging phase. A size of 512 requires 536
MB and already adds significant processing overhead. We
suggest 128 for point clouds with less than about 100 mil-
lion points, 512 for point clouds with more than 500 million
points, and 256 in between. A grid size of 512 can accom-
modate point clouds with relatively uniform scan densities
with hundreds of billions of points (e.g., aerial LIDAR, 116
billion points, see Figure 10) but also scans with strongly
varying point densities (e.g., terrestrial laser scans) with a
few billion points. The latter may lead to “teapot in a sta-
dium" scenarios that result in chunks that are larger than
desired because the counting grid cells are not small enough
to split up the small "high-resolution teapot". In these cases,
we suggest to recursively run the chunking process again
on all chunks that are too large, e.g., larger than 500MB.
Chunks should be small enough so that a total of at least
2 ∗ numThreads ∗ chunkSize RAM is available. However,
we did not need to recursively split chunks for any of our
test data sets benchmarked in Section 7.

Merging Sparse Cells After we have counted the num-
ber of points in each cell, we recursively merge smaller cells
that are sparse enough into bigger ones. Merging is imple-
mented in a fashion similar to creating image pyramids or
mip maps. We iterate over groups of 2x2x2 cells inside the
counting grid (=highest level of the pyramid, where highest
means most detailed), and if the sum is less than a thresh-
old (e.g., 10 million points), we store the sum inside the
next lower (less detailed) level of the pyramid. If the sum
is higher than the threshold, we add the position and the
level of all entries that are larger than zero to the list of

chunks, and store −1 inside the next lower level of the pyra-
mid, indicating that this region already contains finalized
chunks and thereby marking it as unmergeable. Any 2x2x2
group of cells with at least one cell marked as unmergeable
is treated as if the sum was larger than the threshold, i.e.,
all entries larger than zero are added to the list of chunks.
This process is repeated recursively all the way up to level
0 of the pyramid.

Create Chunk Lookup Table After computing the list
of chunks, we create a lookup table (LUT) with the same
size as the counting grid and with pointers from the grid cells
to the respective chunks. During the distribution phase, this
LUT allows us to identify the target chunk for each point
with a single lookup. It is populated by iterating through
each chunk and then setting the pointer values of all covered
cells to the respective chunk.

Distributing In the final step of the chunking phase, we
iterate over all points again and project them to a cell as we
did during the counting phase, but this time we access the
cell of the LUT to retrieve a pointer to the target chunk and
subsequently the file that this point will be written to.

The result of the chunking phase is a collection of files
containing cubic chunks of points that do not overlap each
other, align with a node in the global octree, and which can
therefore be indexed simultaneously and trivially merged af-
terwards. The level and coordinate of each chunk inside the
global octree is encoded in the filename. Each chunk starts
with "r", followed by one number between 0 to 7 per level
that indicates the index of the child node that we are travers-
ing into. The index is a bit mask that represents the x,y and z
coordinate of the child. The leftmost of the three bits stands
for the x coordinate, the middle one for the y coordinate,
and the rightmost one for the z coordinate. For example, in-
dex 5 = the sixth child = bitmask 0b101 = child coordinate
x: 1, y: 0, z: 1. File "r063" represents a chunk at level 3 of
the octree and we reach its location by first traversing from
the root through child nodes 0, then 6, and then 3.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

(a) Chunking (b) Bottom-Up Subsampling

Figure 5: Indexing: Create a multi-resolution octree for
each generated chunk. (a) First, points in a chunk are par-
titioned into leaf nodes with a specified maximum number of
points, using the same hierarchical counting sort procedure
that was used to generate the chunk files. (b) Coarser levels
of detail are then populated by recursively subsampling child
nodes from the bottom up.

4.2. Indexing

In this step, the previously generated chunks are loaded from
disk and converted into local octrees in parallel using one
thread per chunk. Points are first partitioned into leaf nodes
and coarser levels of detail are populated by recursively ex-
tracting subsamples of higher levels of detail from the bot-
tom up. The subsampling strategy is exchangeable and we
describe two example implementations in further detail in
section 5.

Building an octree out of a chunk is done in a bottom-up
fashion, as shown in Figure 5. The points are first partitioned
into leaf nodes with a certain maximum size using largely
the same hierarchical counting sort approach as during the
chunking step, but this time it is applied in-core. We sug-
gest a maximum size of 10k points per leaf node to obtain
a sufficiently fine grained LOD representation for real-time
rendering purposes. Since there are multiple threads work-
ing on different chunks simultaneously, and because each
thread reuses and resets the counting grid from one chunk
to the next, we have to use lower resolution counting grids
compared to sizes of up to 512 during chunking. In our im-
plementation, we use counting grid sizes of 32 during the in-
dexing phase, which corresponds to partitioning the points
by 5 octree levels. This is often not enough to obtain leaf
nodes with a maximum size of 10k points, so we recursively
split all nodes that are still too large by another 5 octree lev-
els until they are sufficiently small. Massive amounts of tiny
nodes are also avoided the same way as during the chunking
phase by merging leaf node candidates that have less than
10k points, combined. The hierarchical counting sort proce-
dure produces a list of leaf nodes containing arrays of points.
We then create the missing inner nodes between the local
octree root and the computed leaf nodes to obtain an octree
where only leaf nodes are populated, as shown in Figure 5a.

Coarser levels of detail are populated by recursively ex-
tracting samples out of finer levels of detail from the bot-
tom up, as shown in Figure 5b. Bottom-up traversal is im-

plemented as a post-order depth-first octree traversal. If a
visited node is a leaf node, we ignore it. Otherwise, we ap-
ply one of the subsampling strategies described in section 5
with the points of all direct child nodes as the input. The
accepted subsample is stored in the current node and the
remaining points are transferred back to the child nodes.
At this point, the child nodes are complete and no longer
needed for further processing, so we flush them to a single
output file (octree.bin). The only information we keep in
memory is the octree hierarchy, including the location and
size of a flushed node inside the output file, which is neces-
sary because multiple simultaneously processed chunks flush
nodes to a single output file in no particular order. During
rendering, we will need the location and size of each node
to load the right range of data from the file.

4.3. Merging

Each processed chunk represents a local octree at its respec-
tive location. Whenever a chunk has been fully processed,
its root node is linked to the global octree. Once all chunks
have been finished, the global octree consisting of all the
chunk root nodes is subsampled bottom-up in the same way
as the individual chunks during the indexing phase. After all
nodes up to the root node have been written to octree.bin,
we generate the hierarchy.bin and metadata.json files. The
hierarchy is grouped into batches of 4 levels so that we can
load parts of the hierarchy as needed. The first batch con-
tains the first 4 levels of hierarchy for the root node. The
next sets of batches contain additional 4 levels of hierarchy
for all the nodes at the fourth level of the octree, nodes at the
eigth level of the octree, etc. During rendering, this reduces
the amount of hierarchy data that has to be loaded – from
potentially hundreds of megabytes to a few hundred kilo-
bytes initially and a few megabytes during ongoing traversal
through the scene.

5. Subsampling

The subsampling strategy used during the indexing step
in section 4.2 is, with some limitations, exchangeable. We
implemented and evaluated two approaches, a fast random
sampling strategy with a certain level of uniformity as de-
scribed by Kang et al. [KJWX19], and an approximate
Poisson-disk sampling strategy [Coo86; YGW*15] that en-
forces a minimum distance between points except between
adjacent octree nodes. For each node, the input to the sam-
pling method consists of points in its direct child nodes.
The result is a subset of points that will be stored in-
side the current node, and the remaining points are trans-
ferred back to the respective child nodes. This process is
repeated from the bottom up until all nodes up to the root
node are populated with points. A limitation of this ap-
proach is that subsampling strategies do not have access to
points in adjacent nodes, which can lead to noticeable sam-
pling patterns along borders of two nodes. An advantage
of bottom-up approaches is that the number of points to
be subsampled quickly diminishes with each level. Martinez

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and

John Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

et al. [MVvM*15] found that a comparatively flat country-
wide LIDAR scan of the Netherlands has a reduction factor
of about 4, meaning that each coarser level of detail has
only a fourth of the points left. Once we have subsampled
the bottom-most level, we only need to do a quarter of the
work for the next level, unlike top-down approaches where
the majority of the points need to apply subsampling pro-
cedures at all levels of the hierarchy until they reach the
bottom.

The random sampling approach suggested by Kang et
al. [KJWX19] uses a uniform grid of 1283 cells, which leads
to node sizes of the order of 10k points. These are not too
small to cause a severe overhead of managing numerous tiny
batches, but also not too large, so that frustum culling is
able to discard a sufficient amount of points. Points are pro-
jected into the cells of the sampling grid, and for each cell,
one random point is selected as a subsample for the current
node. This approach is simple and fast, and the selection
on a grid also ensures that the subsample adequately covers
the full model with neither excessive clustering nor holes. We
pick one random point per cell by first shuffling the input
(using the standard C++ std::shuffle), and then accepting
the first point in each cell of the sampling grid.

The Poisson-disk approach attempts to generate subsam-
ples with visually pleasing blue-noise properties. It accepts
points with a certain minimum distance to previously ac-
cepted points, and rejects them otherwise. This method is
usually relatively slow due to the required distance checks,
but the results are generally considered to be of higher qual-
ity. A naive approach to Poisson-disk sampling would iter-
ate over a list of points and accept a new point if it is far
enough away from all previously accepted points. Since most
of the generated nodes contain around 10k to 50k points,
this naive approach would lead to tens of thousands of dis-
tance checks per point on average. We reduce the computa-
tion time by sorting the points from inside out first, which
implicitly gives us a spatial acceleration structure that re-
stricts the search radius to a spherical shell with a thickness
equal to the minimum distance. Sorting also packs the sam-
ples close together and eliminates the possibility of ridges
that appear in Potree and Arena4D, as shown in Figure 7.
These ridges appear when candidates are evaluated in an
unfavourable order, e.g., lines of points with line 1 then
4, but it turns out line 3 was also far enough away from
line 1 but it cannot be accepted anymore because we al-
ready accepted line 4, which is too close to line 3. Fig-
ure 6 illustrates the steps of our Poisson-Disk approach:
First, the input samples are sorted inside-out by their dis-
tance to the center of the node. Then, for each input point
we check the distances to previously accepted points in an
outside-in order by looping through the list of accepted
points, which is implicitly ordered inside-out, from the end.
If the difference between distance(center, candidate) and
distance(center, acceptedPoint) is larger than the minimum
distance, we can safely accept the current candidate because
all the other previously accepted points are even closer to
the center and cannot be closer than minimum distance. Fig-

ure 6c shows that this corresponds to evaluating distance
checks to previously accepted points within a ring (spher-
ical shell in 3D). This approach works well in practice for
two reasons: First, because the amount of input data – the
points from all direct child nodes – is in the order of only
10k to 50k points. And second, because most point cloud
data sets represent surfaces rather than volume data, so the
amount of hit tests against previously accepted points inside
the ring (spherical shell) is considerably lower than it would
be with volume data sets. In case of volume data, we expect
that our approach would need to be extended with an ad-
ditional spatial acceleration structure that further restricts
the search area.

Figure 7 shows the sampling patterns and artifacts of
Potree, Entwine, Arena4D and our two strategies. Potree
uses a form of Poisson-disk sampling within nodes, but the
combination of nodes do not honor the minimum distance
requirements. Furthermore, Potree evaluates points in the
order in which they are stored on disk, and if the order is
not favorable (previously accepted points block more suit-
able candidates that appear later in the list, e.g., data set
CA13), sampling artifacts that manifest as ridges can ap-
pear ([POT], p. 21). Arena4D produces similar sampling
patterns and ridges, which leads us to believe that it is also
affected by the order of the input. Entwine selects the points
that are closest to the center of the sampling grid cells, which
increases the average spacing between points and leads to a
single deterministic subsampling result, independent of the
order of the input. However, the resulting patterns have a
noticeable regularity. The samples between cells appear far-
ther apart than samples within a cell, which also produces
noticeable but predictable and arguably less visually dis-
turbing ridges. Our random sampling approach (after Kang
et al.) shows results that are relatively similar to that of
Potree in many cases. It does not suffer from ridges, but
it can produce artifacts along slopes and smooth surfaces
that manifest as denser lines that look similar to staircasing
artifacts or contour lines. Our Poisson-disk approach pro-
duces high-quality results that honor the required minimum
distances between overlapping nodes of different levels of
detail. Although it does not enforce minimum distances be-
tween adjacent nodes, the distances end up sufficiently large
in most cases due to Poisson-disk sampling from the inside
out. By the time we evaluate candidates at the border, we
already accepted points further inside, which reduces the
chance that points closer to the border get accepted. It does
not eliminate the possibility, however, so noticeable gaps or
clusters at the border are possible, but less common and
more subtle. Figure 11 illustrates the differences between
random and uniform random selection, and it shows the im-
pact of the sampling order on our Poisson-disk sampling
approach.

6. Implementation Details

In this section, we describe implementation-specific details
that are essential for our method and performance results

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

(a) Input (b) Sorting (c) Checks (d) Subsample

Figure 6: Our Poisson-disk sampling approach. (b) Sort
points from inside out. (c) Loop through candidates from
inside-out, run distance checks between candidate (red) to
potential conflicts (blue) within ring as thick as the desired
minimum distance.

but do not fit into the more abstract description of our
method in section 4. Our method was implemented and
tested using C++.

Parallel Counting Sort: Counting is done in parallel
using a grid of 32 bit atomic integers. During the chunking
phase, multiple threads read and process different parts of
the point cloud and increment the counters concurrently.
Likewise during the distribution phase, we load points and
write them to the chunk files in parallel.

Sorting: We use the parallel versions of standard C++
std::sort in our poisson-disk sampling method. Due to this,
part of the indexing process is handled by multiple threads
even though we only spawn one thread per chunk ourselves.

Writing nodes: Section 4.2 describes that all chunks are
loaded and processed in parallel by multiple threads. Each
thread first loads a chunk and eventually writes the results
to disk, node by node. However, individually writing a large
number of small nodes to disk is not efficient. Instead, we
use a custom buffered writer object that collects and stores
data from finished nodes in buffers of 16MB. If a newly fin-
ished node does not fit into the current buffer, the writer will
flush the current buffer to disk in a dedicated thread, and
simultaneously start building the next buffer. We also stop
loading new chunks when the total backlog of the buffered
writer exceeds 1GB, because sometimes loading and pro-
cessing multiple chunks is faster than writing the results to
a single file on disk.

7. Performance

We compare the performance of our octree generation
method (random and Poisson-disk sampling) to the state-
of-the-art software packages PotreeConverter, Entwine, and
Arena4D. All methods generate some form of layered point
cloud where each node is populated with subsamples of the
original point cloud. At the start of each individual bench-
mark, we first empty the operating system cache of Microsoft
Windows 10 using RamMap’s "Empty Standby List" option.
Otherwise, Windows would automatically keep previously
accessed files in RAM for faster access, thereby distorting
the results.

Rendering benchmarks are omitted because no change in

rendering performance is expected. The generated level of
detail structures are the same as the modifiable nested oc-
tree [Sch14] and Potree, with the only differences being the
way they are stored on disk and the point sampling patterns
due to different sampling strategies. The amount of points
per octree node varies depending on the sampling strategy,
but the variance is minor because all sampling strategies
target the same point density.

Our test system consists of Windows 10, an AMD Ryzen
2700X (8 cores), 32GB RAM, a 1TB Samsung 970 PRO SSD
and an 8TB WD8004FRYZ (7200RPM) HDD.

Table 2 lists benchmark results of our method for vari-
ous data sets, evaluated on both, HDD and SSD. The final
merging step is not listed because the majority of the time is
spent on creating the chunks and then indexing the chunks
in parallel but it is included in the total. Table 3 and Fig-
ure 9 compare the LOD generation times of our method to
Potree, Entwine and Arena4D. The results show that on
SSDs, our method is about an order of magnitude faster
than these three packages. The difference is less extreme on
HDDs, which indicates that our method is the only one that
efficiently utilizes the higher bandwidth of SSDs. A notable
observation are the results for the Eclepens data set, which
show a significantly lower throughput on Potree and En-
twine. This is because the points in this data set exhibit poor
locality and as a result, the top-down approach of Potree
frequently flushes but then reloads data because processing
points at any stage requires distance checks to points from
any previous stage. Our method does not suffer from this
issue because it first groups points into chunks and once a
chunk is processed, its points are not needed anymore at
later stages. However, if the point cloud is sorted by morton
order, Potree and Entwine become faster by a factor of 3
to 4, as opposed to Arena4D and our approach that do not
benefit from sorted input.

7.1. Case Study: AHN3

Our largest test data set, AHN3, contains 116 billion points.
It is a subset of an even larger scan of the whole netherlands
1,2 but we clipped it due to lack of disk space on our test sys-
tem. Figure 8 shows different viewpoints of the data set. The
input consists of 216 LAZ compressed point cloud files with
a total of 531 GB. The outputs comprises a 3.2 TB file with
uncompressed point data and 962 MB for the hierarchy data.
The latter substantiates the importance of splitting the hier-
archy into chunks that can be loaded on demand. A total of
22 778 chunks were created during the chunking phase. Fig-
ure 10 shows a histogram of the storage sizes of the chunks
– all of them small enough to load and process 16 at a time
in system memory, but only 24 or 0.1% of them are what we
would consider too small with potentially negative impact
due to overhead. Although the largest chunk (307MB) con-
tains 10.9 million points (900k above the specified threshold)

1 https://downloads.pdok.nl/ahn3-downloadpage/
2 https://www.ahn.nl/

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and

John Wiley & Sons Ltd.

https://downloads.pdok.nl/ahn3-downloadpage/
https://www.ahn.nl/

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

(a) Potree (b) Arena4D (c) Entwine (d) ours(random) (e) ours(poisson)

Figure 7: Comparison of sampling patterns and artifacts. Top row: Sampling patterns at the border of two different levels
of detail. These are often visible with low levels of detail settings or while waiting for higher levels of detail to be loaded.
Bottom row: Most commonly encountered sampling artifacts. (a) Potree has noticeable clustering along borders of nodes, as
well as ridges if the input is ordered unfavourably like in data set CA13. (b) Arena4D also shows ridges with some data sets.
A detailed study and more faithful close-up screenshot was not possible because the software is closed and offers no option to
render at very low levels of detail. (c) Entwine exhibits regular grid patterns. Staircasing artifacts are common along slopes or
curved surfaces. (d) Our random approach looks similar to the results of Potree. It does not suffer from ridges or clustering at
borders, but it shows a similar kind of staircasing artifacts on slopes and curved surfaces as Entwine. (e) Our Poisson-Disk
approach shows uniform distances between points with no regularity. Points at borders of adjacent nodes can be too close or
too far apart, but both cases are relatively rare and subtle due to the inside-out subsampling order.

(a) (b) (c)

Figure 8: AHN3 subset with 116 billion points (531GB compressed). (a) View of Amsterdam, Utrecht and Apeldoorn. (b)
Downtown Amsterdam. (c) Closeup of Amsterdam.

we refrain from recursively splitting it further because it is
still small enough to be processed alongside other chunks.

It took a total of 35 hours to build the octree on an 8TB
HDD drive – a throughput of 0.92 million points per sec-
ond. Counting took 1h24m, chunking 8 hours, and indexing
25h32m. This was below our expectations, especially the in-
dexing phase that started out with a rate of 4 million points
per second during the first 10%, but ultimately dropped to 1
million points per second during the last 10%. From a purely
algorithmic viewpoint this should not happen because all
chunks are processed in parallel fully independently of each
other, so we suspect either an implementation or hardware
issue that will be investigated in the future. Compared to
the state of the art, Martinez et al. [MVvM*15] in particu-
lar, our system still manages to achieve roughly double the

throughput on a single CPU desktop system using a single
HDD, instead of a combination of a dual-CPU server and
a supercomputer cluster with roughly 200 dual-quad-core
CPUs, of which an unspecified amount was used.

8. Problematic / Failure Cases

We identified following potential failure cases after our users
evaluated the converter with their data sets.

One of our users used the converter to build an octree
out of a synthetic data set of a cube made of 3003 points,
which effectively represents a voxel data set stored as a point
cloud. The Poisson-disk sampling strategy is currently not

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

Data Set #Points File Size #Files
Eclepens 68.7 M 1.8 GB 1
Matterhorn 274.9 M 2 GB 1
Affandi 2.7 B 20 GB 147
CA13 17.7 B 84 GB 2336
AHN3 116 B 531 GB 216

Table 1: List of test data sets. Eclepens is stored in an un-
compressed LAS file, all other data sets are in an compressed
LAZ format. CA13 and AHN3 comprise of non-overlapping
tiles, while Affandi consists of strongly overlapping single
scan positions.

Figure 9: Throughput of various approaches on an SSD in
million points per second (higher is better).

Figure 10: Histogram showing the amount of generated
chunks with certain storage sizes for the 116 billion points
AHN3 data set and with a counting grid size of 5123.

able to deal with such data sets, only the uniform random
sampling strategy was able to successfully generate the LOD
structure. Even so, the structure itself is not suitable for
volumetric data sets. The resulting nodes contain about 2
million points and all of them store the point coordinates.
Voxel structures would be more suitable because they do not
need to explicitly store the coordinates for volumetric data
sets, and because the efficient rendering of volume data sets
using voxels is a well researched topic.

Another unexpectedly common failure case are data sets
with a large amount of duplicates. The indexing step uses
counting sort to partition points into leaf nodes that contain
no more than X points. However, if there are more than X
points at the exact same position, then our implementation
kept recursing with no progress until the converter crashes.
Different users had data sets with tens of thousands and
up to 40 million duplicate points, but neither we nor our
users could explain where they came from and if they served
a purpose. We plan to address this issue by automatically
removing duplicates if their number exceeds the maximum
number of points per leaf node - something that only needs
to be explicitly checked if the counting sort step inserted all
points into a single node.

A third failure case was a point cloud with a bounding
box that was a thousand times larger than it should have
been. Nearly all of the points were within a region of about
400 meters, but the bounding box had an extent of 780 kilo-
meters due to 6 outliers. This is problematic for two reasons:
First, the initial chunking step will create just 2 chunks, one
with the 6 outliers and another chunk with all the remain-
ing points. It would therefore need to run again to split up
the large chunk. The second issue is that the octree spans
the whole bounding box. If the bounding box is 1024 times
larger than the data it represents, then the octree will have
log21024 = 10 additional octree levels that serve no pur-
pose but negatively affect rendering performance - Espe-
cially with features such as an addaptive point size shader
that does an octree traversal for each point inside the vertex
shader.

9. Conclusion and Future Work

We have shown that it is possible to generate LOD struc-
tures for large point clouds at rates of up to eleven million
points per second in an out-of-core fashion with a random
sampling method, or up to six million points per second with
a high-quality approximate Poisson disk sampling method.
This is achieved by splitting the data set into small chunks,
generating octrees out of each chunk in parallel, and then
merging the result into a single overarching octree.

In the future, we would like to attempt a massively paral-
lel approach that generates the LOD structure on the GPU.
An in-core version of a GPGPU LOD generation algorithm
may be especially useful as a webbrowser-based application
that allows users to drag & drop a point cloud into the
browser window, which is then organized into an LOD struc-
ture as fast as the browser can load the data from disk. For

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and

John Wiley & Sons Ltd.

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

SSD HDD
Data Set count distribute index total Points / s count distribute index total Points / s
Eclepens 0.6s 1.6s 9.2s 11.6s 5.9M 18.7s 1.8s 10.7s 31.2s 2.2M
Eclepens (morton) 0.6s 1.3s 9.4s 11.5s 5.9M 15.7s 2.2s 9.5s 27.4s 2.5M
Matterhorn 12.7s 16.8s 30.1s 59.8s 4.6M 24.4s 35.0s 36.7s 96.2s 2.9M
Museum Affandi 2m 49s 3m 57s 11m 38s 18m 25s 2.4M 2m 57s 17m 14s 18m 2s 38m 18s 1.2M
CA13 14m 37s 19m 20s 42m 53s 1h 17m 3.8M 14m 17s 1h 30m 1h 38m 3h 24m 1.4M

P
oi
ss
on

-D
is
k

AHN3 - - - - - 1h 24m 7h 59m 25h 32m 34h 58m 0.92M
Eclepens 0.9s 1.8s 4.0s 6.7s 10.2M 19.4s 2.1s 5.6s 27.1s 2.5M
Eclepens (morton) 0.8s 1.5s 3.9s 6.2s 11.2M 16.3s 2.0s 5.6s 24.0s 2.9M
Matterhorn 13.8s 18.2s 19.1s 51.1s 5.4M 23.6s 36.8s 36.8s 96.2s 2.9M
Museum Affandi 3m 21s 4m 1s 3m 19s 10m 54s 4.1M 3m 3s 15m 59s 17m 15s 36m 22s 1.2M

R
an

do
m

CA13 15m 20m 05s 37m 52s 1h 13m 4.0M 16m 24s 1h 30m 1h 40m 3h 27m 1.4M

Table 2: Time to generate an octree with our method and sampling strategies.

SSD HDD
Data Set Potree Entwine Arena4D Poisson Random Potree Entwine Arena4D Poisson Random
Eclepens 390.4 s 444 s 69.6 s 11.6 s 7 s 515.3 s 446 s 89.2 s 31.2 s 27 s
Eclepens (morton) 143.2 s 108 s 69.3 s 11.6 s 6.9 s 145.6 s 109 s 81.3 s 27.4 s 23.9 s
Matterhorn 640.1 s 655 s 284.8 s 59.8 s 57.7 s 653.3 s 709 s 475 s 96.2 s 96.2 s
Museum Affandi nomem nomem 1h 19m 18m 25s 10m 54s nomem nomem 4h 11m 38m 18s 36m 22s
CA13 23h 28m 9h 40m 8h 27m 1h 16m 1h 13m 2d 2h 9h 11m - - 3h 27m

Table 3: Comparing LOD creation times of Potree, Entwine and Arena4D to our method using Poisson-Disk or Random
subsampling strategies. nomem indicates that the application ran out of memory (32GB).

out-of-core approaches, an initial chunking step may still be
necessary, but the indexing step could benefit greatly from
GPGPU-based processing. In addition to faster LOD gener-
ation, we would also like to explore high-quality LOD gen-
eration, e.g., by computing and storing averaged attribute
data in lower levels of detail. Most state-of-the-art methods,
Wand et al. being a notable exception, pick a sample and
promote it to lower levels of detail, which corresponds to
downsizing images with nearest-neighbor interpolation. On
the other hand, computing averages for lower levels of detail
would correspond to mip mapping, which greatly reduces
aliasing artifacts.

The full source code and windows binaries are avail-
able at https://github.com/potree/PotreeConverter/
releases/tag/2.0. Videos are available at https:
//www.cg.tuwien.ac.at/research/publications/2020/
SCHUETZ-2020-MPC/

10. Acknowledgements

The authors with to thank Open Topography and PG&E for
providing the CA13 data set [CA13], TU Wien, Institute of
History of Art, Building Archaeology and Restoration for the
Museum Affandi and Candi Banyunibo data sets, Pix4D for
the Eclepens and Matterhorn data sets, the Netherlands for
the AHN3 data set, and the Stanford University Computer
Graphics Laboratory for the Stanford Bunny model.

This research has been funded by the FWF projekt no.
P32418, and by SITN, République et canton de Neuchâtel.

References

[AWLR17] Arkhipov, Dmitri I., Wu, Di, Li, Keqin, and Re-
gan, Amelia C. Sorting with GPUs: A Survey. 2017. arXiv:
1709.02520 [cs.DC] 2.

[BJFadH19] Brandt, Sascha, Jähn, Claudius, Fischer,
Matthias, and auf der Heide, Friedhelm Meyer. “Visibility-
Aware Progressive Farthest Point Sampling on the GPU”. Com-
puter Graphics Forum 38.7 (2019), 413–424. doi: 10.1111/
cgf.13848 3.

[Bow01] Bowers, Kevin. “Accelerating a Particle-in-Cell Sim-
ulation Using a Hybrid Counting Sort”. Journal of Computa-
tional Physics - J COMPUT PHYS 173 (Nov. 2001), 393–411.
doi: 10.1006/jcph.2001.6851 2.

[CA13] Pacific Gas & Electric Company. PG&E Diablo
Canyon Power Plant (DCPP): San Simeon and Cambria
Faults, CA, Airborne Lidar survey. Distributed by OpenTo-
pography. 2013. doi: https://doi.org/10.5069/G9CN71V5 11.

[CLRS01] Cormen, Thomas H., Leiserson, Charles E.,
Rivest, Ronald L., and Stein, Clifford. Introduction to
Algorithms, Second Edition. Section 8.2. The MIT Press, 2001.
isbn: 0-262-03293-7 2.

[Coo86] Cook, Robert L. “Stochastic Sampling in Computer
Graphics”. ACM Trans. Graph. 5.1 (Jan. 1986), 51–72. issn:
0730-0301. doi: 10.1145/7529.8927 3, 6.

[DK18] Dieckmann, Alexander and Klein, Reinhard. “Hi-
erarchical Additive Poisson Disk Sampling”. Vision, Modeling
and Visualization. The Eurographics Association, 2018. isbn:
978-3-03868-072-7. doi: 10.2312/vmv.20181256 3.

[DRD18] Discher, Sören, Richter, Rico, and Döllner, Jür-
gen. “A Scalable WebGL-based Approach for Visualizing Mas-
sive 3D Point Clouds using Semantics-Dependent Rendering
Techniques”. June 2018. doi: 10.1145/3208806.3208816 3.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd.

https://github.com/potree/PotreeConverter/releases/tag/2.0
https://github.com/potree/PotreeConverter/releases/tag/2.0
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://www.cg.tuwien.ac.at/research/publications/2020/SCHUETZ-2020-MPC/
https://arxiv.org/abs/1709.02520
https://doi.org/10.1111/cgf.13848
https://doi.org/10.1111/cgf.13848
https://doi.org/10.1006/jcph.2001.6851
https://doi.org/https://doi.org/10.5069/G9CN71V5
https://doi.org/10.1145/7529.8927
https://doi.org/10.2312/vmv.20181256
https://doi.org/10.1145/3208806.3208816

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

[DVS03] Dachsbacher, Carsten, Vogelgsang, Christian,
and Stamminger, Marc. “Sequential Point Trees”. ACM
Trans. Graph. 22.3 (July 2003), 657–662. issn: 0730-0301. doi:
10.1145/882262.882321 2, 3.

[EBN13] Elseberg, Jan, Borrmann, Dorit, and Nüchter,
Andreas. “One billion points in the cloud – an octree for ef-
ficient processing of 3D laser scans”. ISPRS Journal of Pho-
togrammetry and Remote Sensing 76 (2013). Terrestrial 3D
modelling, 76–88. issn: 0924-2716. doi: https://doi.org/10.
1016/j.isprsjprs.2012.10.004 3.

[ENT] Entwine. Accessed 2020.06.29. url: https://entwine.
io/ 1, 3.

[ENT2019] Continental Scale Point Cloud Data Management
and Exploitation with Entwine. Accessed 2020.06.05. url:
https://media.ccc.de/v/bucharest- 129- continental-
scale- point- cloud- data- management- and- exploitation-
with-entwine 3.

[Fra17] Fraiss, Simon Maximilian. Rendering Large Point
Clouds in Unity. Bachelor Thesis. Favoritenstrasse 9-11/E193-
02, A-1040 Vienna, Austria, Sept. 2017. url: https://www.cg.
tuwien.ac.at/research/publications/2017/FRAISS-2017-
PCU/ 3.

[GM04] Gobbetti, Enrico and Marton, Fabio. “Layered point
clouds: a simple and efficient multiresolution structure for dis-
tributing and rendering gigantic point-sampled models”. Com-
puters & Graphics 28.6 (2004), 815–826. issn: 0097-8493. doi:
https://doi.org/10.1016/j.cag.2004.08.010 1, 2.

[GZPG10] Goswami, P., Zhang, Y., Pajarola, R., and Gob-
betti, E. “High Quality Interactive Rendering of Massive Point
Models Using Multi-way kd-Trees”. 2010 18th Pacific Confer-
ence on Computer Graphics and Applications. 2010, 93–100 3.

[HCR2014] Hoetzlein, Rama C. FAST FIXED-RADIUS
NEAREST NEIGHBORS: INTERACTIVE MILLION-
PARTICLE FLUIDS. GPU Technology Conference (GTC)
2014, Santa Clara, CA. 2014 2.

[KJWX19] Kang, L., Jiang, J., Wei, Y., and Xie, Y. “Efficient
Randomized Hierarchy Construction for Interactive Visualiza-
tion of Large Scale Point Clouds”. 2019 IEEE Fourth Inter-
national Conference on Data Science in Cyberspace (DSC).
2019, 593–597 3, 6, 7.

[Knu98] Knuth, Donald E. The Art of Computer Program-
ming. Vol. 3. Section 5.2, Algorithm D. Addison-Wesley, 1998.
isbn: 0-201-89685-0 2.

[Lei13] Leimer, Kurt. External Sorting of Point Clouds. Bach-
elor Thesis. Favoritenstrasse 9-11/E193-02, A-1040 Vienna,
Austria, Sept. 2013. url: https://www.cg.tuwien.ac.at/
research/publications/2013/leimer-2013-esopc/ 3.

[MVvM*15] Martinez-Rubi, Oscar, Verhoeven, Stefan, van
Meersbergen, M., et al. “Taming the beast: Free and open-
source massive point cloud web visualization”. Capturing Re-
ality Forum 2015, Salzburg, Austria. 2015 3, 7, 9.

[OP] OPALS - Orientation and Processing of Airborne Laser
Scanning data. Accessed 2020.06.29. url: https://opals.geo.
tuwien.ac.at/html/stable/index.html 1.

[PMOK14] Pfeifer, N., Mandlburger, G., Otepka, J., and
Karel, W. “OPALS - A framework for Airborne Laser Scan-
ning data analysis”. Computers, Environment and Urban Sys-
tems 45 (2014), 125–136. issn: 0198-9715. doi: https://doi.
org/10.1016/j.compenvurbsys.2013.11.002 1.

[POT] Potree. Accessed 2020.05.27. url: http://potree.org/ 1,
3, 7.

[RD10] Richter, Rico and Döllner, Jürgen. “Out-of-core
real-time visualization of massive 3D point clouds”. AFRI-
GRAPH 2010, South Africa. Jan. 2010, 121–128. doi: 10.1145/
1811158.1811178 3.

[RL00] Rusinkiewicz, Szymon and Levoy, Marc. “QSplat: A
Multiresolution Point Rendering System for Large Meshes”.
Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’00. USA:
ACM Press/Addison-Wesley Publishing Co., 2000, 343–352.
isbn: 1581132085. doi: 10.1145/344779.344940 2.

[Sch14] Scheiblauer, Claus. “Interactions with Gigantic Point
Clouds”. PhD thesis. Favoritenstrasse 9-11/E193-02, A-1040
Vienna, Austria: Institute of Computer Graphics and Algo-
rithms, Vienna University of Technology, 2014. url: https:
/ / www . cg . tuwien . ac . at / research / publications / 2014 /
scheiblauer-thesis/ 3, 8.

[Sch16] Schütz, Markus. “Potree: Rendering Large Point
Clouds in Web Browsers”. MA thesis. Favoritenstrasse 9-
11/E193-02, A-1040 Vienna, Austria: Institute of Computer
Graphics and Algorithms, Vienna University of Technology,
Sept. 2016. url: https://www.cg.tuwien.ac.at/research/
publications/2016/SCHUETZ-2016-POT/ 3.

[SW11] Scheiblauer, Claus and Wimmer, Michael. “Out-of-
Core Selection and Editing of Huge Point Clouds”. Computers
& Graphics 35.2 (Apr. 2011), 342–351. issn: 0097-8493. url:
https://www.cg.tuwien.ac.at/research/publications/
2011/scheiblauer-2011-cag/ 3.

[WBB*08] Wand, Michael, Berner, Alexander, Bokeloh,
Martin, et al. “Processing and interactive editing of huge
point clouds from 3D scanners”. Computers & Graphics 32.2
(2008), 204–220. issn: 0097-8493. doi: https://doi.org/10.
1016/j.cag.2008.01.010 3.

[WS06] Wimmer, Michael and Scheiblauer, Claus. “Instant
Points: Fast Rendering of Unprocessed Point Clouds”. Sympo-
sium on Point-Based Graphics. The Eurographics Association,
2006. isbn: 3-905673-32-0. doi: 10.2312/SPBG/SPBG06/129-
136 3.

[YGW*15] Yan, Dong-Ming, Guo, Jianwei, Wang, Bin, et al.
“A Survey of Blue-Noise Sampling and Its Applications”. Jour-
nal of Computer Science and Technology 30 (May 2015), 439–
452. doi: 10.1007/s11390-015-1535-0 3, 6.

[Yuk15] Yuksel, Cem. “Sample Elimination for Generating Pois-
son Disk Sample Sets”. Comput. Graph. Forum 34.2 (May
2015), 25–32. issn: 0167-7055. doi: 10.1111/cgf.12538 3.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and

John Wiley & Sons Ltd.

https://doi.org/10.1145/882262.882321
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2012.10.004
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2012.10.004
https://entwine.io/
https://entwine.io/
https://media.ccc.de/v/bucharest-129-continental-scale-point-cloud-data-management-and-exploitation-with-entwine
https://media.ccc.de/v/bucharest-129-continental-scale-point-cloud-data-management-and-exploitation-with-entwine
https://media.ccc.de/v/bucharest-129-continental-scale-point-cloud-data-management-and-exploitation-with-entwine
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
https://www.cg.tuwien.ac.at/research/publications/2017/FRAISS-2017-PCU/
https://doi.org/https://doi.org/10.1016/j.cag.2004.08.010
https://www.cg.tuwien.ac.at/research/publications/2013/leimer-2013-esopc/
https://www.cg.tuwien.ac.at/research/publications/2013/leimer-2013-esopc/
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2013.11.002
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2013.11.002
http://potree.org/
https://doi.org/10.1145/1811158.1811178
https://doi.org/10.1145/1811158.1811178
https://doi.org/10.1145/344779.344940
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-cag/
https://www.cg.tuwien.ac.at/research/publications/2011/scheiblauer-2011-cag/
https://doi.org/https://doi.org/10.1016/j.cag.2008.01.010
https://doi.org/https://doi.org/10.1016/j.cag.2008.01.010
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.2312/SPBG/SPBG06/129-136
https://doi.org/10.1007/s11390-015-1535-0
https://doi.org/10.1111/cgf.12538

Markus Schütz & Stefan Ohrhallinger & Michael Wimmer / Fast Out-of-Core Octree Generation for Massive Point Clouds

(a) inside-out (b) outside-in (c) unsorted (d) random (e) uniform random

Figure 11: Comparison of hierarchical bottom-up subsampling strategies. Subsamples in the bottom row are organized in 8x8
tiles / nodes, which corresponds to a quadtree with a depth of 3 levels. They are all subsampled from the same high-density
input point cloud. The rows above it are made up of 4x4, 2x2, and 1 tile at the top. Each row is a subsample of the one
directly below of it. (a) and (e) are the strategies we implemented in our octree generator. (a,b,c) Our hierarchical Poisson-
disk sampling strategy only enforces minimum distances within a node, but evaluating points from the inside out reduces the
chance of clustering artifacts near borders, while outside-in evaluation performs even worse than unsorted. (d, e) Simple
random subsampling leads to poor coverage with clusters in some regions and holes in others. A uniform random subsampling
strategy that selects one point per grid cell improves the point distribution.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd.

