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Kurzfassung

Die Erzeugung von visuell ansprechenden U-Bahn Netzplänen benötigen normalerweise
einen Designer und eine Menge Aufwand. Und obwohl die automatische Erzeugung
von regulären U-Bahn Netzplänen mittels diverser Methoden bereits mehrfach gemacht
wurde, haben keine den Fokus auf den artistischen Aspekt gelegt. Um den Prozess für
den Designer einfacher zu machen stellt diese Arbeit eine Methode vor die automatisch
Netzpläne erstellt, welche dann entweder gleich so verwendet werden können, oder als
Basis für den weiteren Designprozess dienen. Das Ziel dieser Arbeit ist es eine Methode
zu finden und darauf aufbauend einen Prototypen zu erzeugen, der U-Bahn Netzpläne
in beliebigen Formen generiert und dazu nur einen Plan und eine Kontur als Eingabe
benötigt. Zusätzliche Parameter sollen, falls erwünscht, Anpassungen ermöglichen. Das
prinzipielle Konzept ist zuerst den Plan und die Kontur für die weiteren kleinsten
Quadrate Berechnungen vorzubereiten, welche dann den Plan in die gewünschte Form
bringen und ihm das typische Aussehen eines U-Bahn Netzplans geben. Der Algorithmus
wurde auf zwei verschiedene Pläne und sieben unterschiedliche Formen angewandt, um
dessen Resultate darzustellen. Diese zeigen, dass die vorgestellte Methode in der Lage ist
derartige artistische Netzpläne in beliebigen Formen zu erzeugen, weitere Anpassungen
eines Designers um den Netzplan zu finalisieren sind allerdings notwendig.
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Abstract

The creation of visually pleasing artistic metro maps usually requires a designer and a
lot of effort, and while the automatic generation of regular metro maps has been done
via several methods, none focus on the artistic aspect. To make the process easier for
designers this thesis introduces a method that automatically creates maps that can
either be used as they are, or used as baseline for the future design process. The goal
of this thesis is to find a method and based on that create a prototype that generates
metro maps in arbitrary shapes that simply requires the map and contour as input.
Additional parameters are supposed to allow a user to make adjustments if so desired.
The general approach is to first prepare the map as well as the contour for the following
least squares calculations that reshape the map in a way to fit the contour and then
create the look of a typical metro map. To test the algorithm and showcase its results it
is applied to two different maps and seven different shapes. These results indicate that
the introduced approach is capable of creating metro maps in arbitrary shapes, but need
further adjustments by a designer to finalize the map.
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CHAPTER 1
Introduction

Metro maps are a useful tool to navigate through and visualize metro networks. Usually
such maps are drawn inside a rectangular shape, whether that be on public information
displays or inside tourist leaflets. However, that kind of shape is not always beneficial.
It would for example be a lot nicer to find such maps in a representative shape for the
city, possibly inside a tourist leaflet or as a souvenir to take home. Furthermore it would
make it easier to direct a reader’s attention towards a map, whether that be inside a
magazine, a newspaper, on a website or on a public information display. Lastly it would
be a lot easier to fit a map inside any given context, if the shape were adjustable. To
create such a map a person would usually have to create it from scratch, planning out
the general positions of the metro’s lines, carefully placing every station and thinking
about how the edges would connect, so the map ends up planar.

It would therefore be desirable to have an algorithm that converts any metro map into
one that fits any given shape at least to the extend of providing meaningful help to
whoever is creating it. Since it is important to not only fit the shape, but also keep
the general look of a metro map, this property would also have to be considered for the
algorithm. And while such metro map generating algorithms exist, none do, that also
allow the creation of arbitrary shapes.

This does however introduce one of the main challenges of this thesis. The part of the
algorithm that creates the metro map layout needs to not destroy the generated shape,
while the part that generates the shape needs to allow enough space for the map to
deform into a metro map like layout. Since those two properties are contradicting to a
certain extend, it is important to find a way for both of them to be fulfilled, without
having to introduce computationally intensive repetitions or checks.

The objective of this thesis is to create an algorithm that assists designers in creating
artistic maps in arbitrary shapes. This should not only make the task easier and faster,
but also possibly improve the results or at the very least show a different possible solution
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1. Introduction

which might introduce new ideas. This means that the algorithm should be able to take
any metro map as input as well as a contour and produce a result in real-time. Besides
a number of parameters to adjust the result the algorithm is supposed to work fully
automated, meaning that no further influence after providing the initial input shall be
required. In case of a schematic map the result is supposed to keep its metro map look,
while in case of a non-schematic map that look is supposed to be created. The resulting
map is then also supposed to fit the given contour without any drastic errors, so only
small adjustments need to be made by the designer.

To achieve the desired results the algorithm is split into several parts, first adjusting the
scaling of the map and the contour to allow for a better process and the using constraints
calculated in a least squares sense to reshape the map and create the correct look.

The result of the thesis is then a prototype tool that converts the map given as an
xml-file and the contour, given as a list of nodes, into a visualized map that fits the above
mentioned criteria. Furthermore the important step of adjusting the shape is visualized
to give the user a better idea of what is happening. This is supposed to help the user with
changes to the parameters, which for example describe to what extent certain properties
of the map should be taken into consideration.

In summary the contribution to this problem includes:

• Finding a way to fit a node-link diagram (the metro map) into a given contour

• Finding a way to create a metro map like look by replicating typical characteristics,
that works well in collaboration with the previous point

• Creating a prototype, which allows the testing and adjustment of the approach (as
a plug-in of OpenMetroMaps [OMM])

1.1 Structure of the thesis
The thesis is separated into several chapters, each focusing on different topics. While
this chapter provides some general information about the thesis, the next one “Chapter
2 – Related Work” introduces different approaches for various steps of the algorithm.
“Chapter 3 – Methodology” gives a brief introduction into the used methods throughout
the process whereas “Chapter 4 – Implementation” explains the actual implementation
of the algorithm via small code snippets, text and an accompanying visual example.
“Chapter 5 – Results” then demonstrates several results, both visually and statistically
regarding their computational time. Lastly "Chapter 6 - Conclusion & Future Work"
provides a short conclusion and information concerning possible improvements and
methods to do so.
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CHAPTER 2
Related Work

The following chapter introduces some of the related work and describes why certain
characteristics were used in this thesis.

First it should be stated that the two main steps, the Deformer phase, which is supposed
to create the metro map look and the Reshaper phase, which is supposed to reshape
the map into the desired contour are treated separately. Deformer phase throughout
this paper is referencing the least squares equations necessary to express the different
criteria to create a metro map look in combination with the cg-method which combines
and solves these equations. The Reshaper phase, similar to the Deformer phase, stands
for the least squares approach and the cg-method that result in a map layout that fits a
given contour.

Since the Reshaper phase takes place first during the algorithm it will also be handled
first here. The basic idea is to change the appearance of the map without destroying
the topology. There are various different approaches to achieve this, some of which are
briefly listed in the work of Gibson and Mirtich [GM97] where they are split into several
categories. The idea is to either rely on physical models that for example use the principle
of springs or magnetic fields to find an optimal position while non-physical methods use
geometric properties.

The work by Gibson et al. [GFV13] compares a variety of force-directed layout algorithms,
which are physical models, and compares them regarding the number of nodes they can
handle, the time it takes to compute the result and several other criteria. Since for
the Reshape phase the most important aspects are the handling of a certain number
of nodes usually present in metro maps, interactivity when it comes to the time the
algorithm takes and the prevention of intersection several of the listed algorithm are
already not suitable. And even after finding one that satisfies the mentioned criteria, the
most important one, the predefined form of the end result is not taken into consideration.
Usually these kind of algorithms produce clusters, which is not desired here meaning that
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2. Related Work

further adjustments have to be made. And while such adjustments are certainly possible
the process would potentially be rather unintuitive or complex to formulate for arbitrary
shapes.

A different approach is using the similarity between the problem of shaping a 2D graph
and manipulating a 2D image, since it is possible to simply view the graph as a 2D image
rather than a data structure.

Several approaches exist to manipulate the form of images. One of them is the Free-form
deformation (FFD) [T.D14] which overlays overlays the image with a coordinate grid.
Whenever a grid cell is then manipulated all other cells move accordingly. The approach
by Setaluri et al. [SWM+14] also uses a grid overlay to create deformations in combination
with non-linear constraints to express the desired result. Non-linear constraints have,
as mentioned in the paper itself, the advantage of being able to express more advanced
properties, however they do so by trading away computation speed. While this approach
would probably work and be fast enough for interactivity, the creation of the grid is a
step that can be avoided by using different approaches more suitable to the manipulation
of a graph.

On the other hand several approaches exist that use skeletons [LCF00] to more accurately
represent deformations of for instance human legs. Since the image to shape is however
just a graph, and the result of the Reshaping phase is going to be altered in the step
afterwards anyway such specific physical attributes are not necessary and would be
destroyed afterwards regardless.

Similarly to the method used in this thesis Weng et al. [WXW+06] also use a least
squares optimization. A number of points is inserted into the 2D shape to construct an
inner graph which the least squares terms are working with. However, the equations
are non-linear, which would usually result in higher computation times. However, an
approach to circumvent this problem is introduced to remain interactive. Very similarly
to this the approach by T. Igarashi et al. (ARAP) [IMH05] first creates a triangulation
inside the 2D shape and then uses least squares to adjust it. It does so however, by
formulating the minimization problem via several linear equations to gain speed. The
advantage of this approach compared to the one by Weng et al. does not lie in the least
squares optimization, but in the fact, that the nodes of the metro map can be used as
nodes for the triangulation, meaning that no new points have to be introduced. Finally
T. Igarashi and Y. Igarashi show a method [II09] that uses the same approach as ARAP,
but apply the constraints on the edges instead of the faces of the generated triangles.
This approach will serve as a guideline for the Reshaper phase of this thesis’ algorithm.

Regarding the generation of metro maps several methods have been created over time.
These vary from physically based ones like a spring algorithm to least squares opti-
mizations. Hong et al. [HMdN04] introduce different approaches based on the GEM
algorithm, the PrEd algorithm and a magnetic spring algorithm. They mostly work
on a preprocessed graph, that has nodes with a degree of 2 removed to allow for easier
movement.
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Stott et al. [SRMOW11] on the other hand use a hill climbing algorithm to combine
the typical criteria suited for metro maps. In addition to that clustering methods are
introduced to not only move each node separately in an attempt to avoid local minima.

Since there is quite a large variation in attempts and implementations of such there are
also a couple of studies showcasing the advantages and disadvantages of these variations.
One such study by Nöllenburg [Nöl14] first introduces a set of ten design rules and several
approaches made over the past years to achieve those. It also includes label positioning
techniques, which some of the previously mentioned methods also do.

Another study by Wu et al. [WN19] focuses more on the choice of approach used for a
specific purpose. The metric used is therefore a combination of computation time and
local vs. global optima of the result. Two of the fastest methods mentioned in the study
are the ones from the papers “Focus+Context Metro Maps” [WC11] and “Interactive
Metro Map Editing” [WP16]. Both of them have the disadvantage of falling onto the
local optima side of the spectrum, which is to be expected from fast algorithms, they do
however still produce good results. Additionally both of them use the same principle,
which is the least squares optimization, which coincidentally is also the approach chosen
for the Reshaper phase for this thesis. These papers will therefore serve as a guideline
for the Deformer part of this thesis.

Another approach that uses least squares is introduced by Lutz [Wür14], which uses a
linear approach with a single iteration to gain speed, rather than using an iterative solver
like the one used in this thesis, that allows a visualized step by step transformation of
the map.
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CHAPTER 3
Methodology

This chapter introduces some of the most important techniques, as well as a short
explanation of the notation. In general the structure of this chapter is the following:

• Least Squares
This section serves as an introduction to the basic concept, that is used to solve the
later introduced constraints. Furthermore it provides an explanation of the basic
notation.

• Method of Conjugate Gradients
In this section the actual method of solving of the constraints is introduced

• Delaunay Triangulations
This method plays an important part in one of the main steps of this paper’s
algorithm, the Reshaper, and is therefore shortly introduced here.

• Polygon Calculations
Since over the course of the algorithm several smaller calculations are necessary, this
section serves as an overview of what they might be and where they are explained
in more detail.

• Combining the Map and the Hull
Since the map and the contour have to be brought into some kind of relation to
influence each other this section explains how and why that happens.

• Fitting the Contour – Reshaper
This section introduces one of the main parts of the algorithm, by conveying the
main idea, its prerequisites and the formulas that make up the process.
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3. Methodology

• Creating the Metro Map – Deformer
This is the second and also last main part of the algorithm. Since it consists of
several smaller parts each of them is given a designated mini-section to explain the
idea and the formulas that are used to realize those ideas.

3.1 Least Squares
One method to solve linear equations is using least squares [Sel13]. It is used to find an
approximate solution for overdetermined systems, which means a number of equations
that has less unknown variables than equations. In matrix form this would be a “tall”
matrix, meaning more rows than columns. Such a system is written as

Ax = b (3.1)

where A represents a matrix and x and b represent vectors. Throughout this paper
matrices will be denoted in bold upper-case letters, while vectors will be denoted in bold
lower-case letters. Such “tall” matrices will be used throughout this paper, since there is
going to be a row for each edge/node in the graph, which is therefore going to be more
than the number of unknown variables. These matrices will be part of linear equation
systems that represent certain constraints of the map, which need to be solved.

Since it is necessary to add weights to these systems in the here introduced algorithm it
is necessary to include those here as well. The slightly changed term now becomes

W Ax = W b (3.2)

where W represents the weight matrix, which is a diagonal matrix that sets the weight
for every equation. This weight can be chosen freely meaning it does not have to be for
example between 0 and 1 or add up to anything. It is however still important to test
out which weight suits a certain criteria the best, since as will be shown later, multiple
of these terms will be used together. It is therefore important to find a good balance
between the weights, since the outcome can drastically change depending on what was
chosen.

3.2 Method of Conjugate Gradients
The method of conjugate gradients (cg-method) [HS52] is used to solve a system of linear
equations, such as the ones introduced in the previous section. It is an iterative method,
that is applicable to sparse systems, such as the ones that will be created during the
Reshaper and Deformer phase of the algorithm. What this means is that the matrix will
have a lot more entries that are 0 than anything else. The basic steps are as follows:

1. Initial step
During this step the first estimate x0 is chosen and the corresponding residual r0,
as well as the direction p0 are calculated.
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3.3. Delaunay Triangulation

2. Iterative step

Based on the initial values, or if there has already been an iteration, based on
the previous values, the next values for the estimate, residual and direction are
calculated. If during any iteration the error falls below a set threshold the iteration
stops and the current estimate becomes the result. The same applies if the number
of iterations reaches a set maximum.

To make the following equations work, matrix A needs to be symmetric and positive
definite. Since the systems that will later on be solved via this method are neither of
those it is necessary to prepare them as follows:

Anew = ATA (3.3)
bnew = ATb (3.4)

The initial step to calculate the error and residual is rather simple. Matrix A is multiplied
with the initial estimate and the difference to the expected result b is taken. The iterative
step follows the equations shown in 3.5 [HS52] where x stands for an estimate, r for a
residual and p for a direction.

αi = |ri|2

(pi, Api)
xi+1 = xi + aipi

ri+1 = ri − aiApi

βi = |ri+1|2

|ri|2

pi+1 = ri+1 + bipi

(3.5)

3.3 Delaunay Triangulation

The Delaunay triangulation [CDS12] is a commonly used method of creating meshes
out of a set of finite points. While working with 2D points the Delaunay triangulations
offers a big advantage, in that it maximizes the minimum angle of the generated mesh.
Since the paper by T. Igarashi et al. [IMH05], on which the idea of the Reshaper is
based on, mentions that the best results are achieved with near-equiliteral triangles this
property of the Delaunay triangulation comes in handy. Especially so, since the points
that will be used to create the mesh depend on the metro map that is used as input,
meaning the distribution of points is not equal by any means and any way to generate
semi-equal triangles is valuable. The created mesh will later on be necessary as input for
the Reshaper phase.

9



3. Methodology

3.4 Polygon Calculations

During the introduced algorithm, several calculations regarding polygons will be per-
formed. The reason for that is that during some steps the graph’s nodes will be treated
as points of a polygon to find for example the convex hull, points on the graph’s contour
with a certain distance separating them, etc. Since there is no one method of doing
so, each of these calculations will be explained when they come up while describing the
algorithm’s implementation.

3.5 Combining the Map and the Hull

To move the map in accordance to the contour they have to be put into some kind
of relationship. Since the contour is the end goal of the Reshaper it is necessary to
create something that later on reflects the contour, which in this case is the hull of the
graph. The hull is created slightly larger than the minimal one to avoid problems during
movements of the map’s nodes. After the hull’s creation the number of nodes that form
its shape is adjusted to be equal to the contour’s number of nodes. This will later on
allow the movement of each node to its according position on the contour. Since at this
point the map and the hull are still not connected in any relevant way both of them are
combined into a single graph. This graph, after the Delaunay triangulation has been
applied to it, will serve as input of the Reshaper, which will then actually move the hull
alongside the map into the shape of the contour.

3.6 Fitting the Contour - Reshaper

This is the first big step of the algorithm. The goal for this step is to adjust the form of
the metro map into the desired shape. The basic idea is to move certain nodes of the
graph and move the rest accordingly to them. Since it is unknown where any stations
are supposed to go and only the outer contour is known, the moving nodes will be the
hull that is encapsulating all of the metro nodes. To move all nodes accordingly to the
movement of a few, the prerequisite for the graph is that it needs to be turned into a
triangle mesh, which is what the previously mentioned Delaunay triangulation is used
for. The basic idea is to move certain nodes, so called handles (the nodes that build the
hull), and then obtain the new coordinates of every other non-handle node by trying to
minimize the distortion of the mesh’s triangles. Since there is no way to describe that
distortion as a linear function, a non-linear one has to be approximated by several linear
ones. For this algorithm the distortion is not focused on the triangle’s faces, but on the
edges connecting them, which does not have significant impact on the result, but simply

10



3.7. Creating the Metro Map - Deformer

changes the form of the functions.

Ωr = Ωr1 + w ∗ Ωr2 (3.6)
Ωr1 =

∑
{i,j}εE

|(v′
i − v′

j)− (vi − vj)|2 (3.7)

Ωr2 =
∑
{i}εE

|v′
i −Ci|2 (3.8)

Ωr combines the two constraints into a single function, while Ωr1 minimizes the edge
deformation by trying to keep them similar to their previous state and Ωr2 minimizes the
distance of the handle nodes to their designated positions Ci. The attached weight w to
Ωr2 is necessary to adjust how serious the handle positions should be considered. While
the weight will start out low during the course of the algorithm it will gradually increase
until the desired positions are reached. Lastly vi and vj represent the nodes connected
by an edge while v′

i and v′
j represent the same nodes after they have been moved. [II09].

3.7 Creating the Metro Map - Deformer

After the metro map has been reshaped into the desired contour, the typical layout
for such a map has been destroyed. To restore the metro map feeling several of the
layout’s properties have to be changed. First of all, metro maps usually have edges of
similar lengths. Secondly the angle of neighboring edges is usually quite high, if not the
maximum, which in case of 2 edges would we 180 degree or a straight line, in case of 4
edges 90 degrees and so on. Thirdly the layout is usually octilinear, meaning that there
are at most 8 neighboring edges and angles in an interval of 45 degrees. To achieve each
of these properties they will be expressed as a constraint in the form of an energy term
and later on solved in a least squares sense. The Deformer largely consists of 2 steps, each
including the constraints just mentioned. First of all, it should probably be explained
why there are two different steps involved, rather than just one. The reason is, that using
octilinear constraints is very expensive since they are highly non-linear, so separating
the two steps actually nets a better performance overall. That is calculating the smooth
deformation first and then moving the edges to the closest position that results in an
octilinear layout [WP16]. To provide an overview of the necessary individual constraints
each of them is listed here with a short description of what they do. More detail about

11



3. Methodology

each of them is then provided in the following sections.

Ωl =
∑
{i,j}εE

|(v′
i − v′

j)− sijRij(vi − vj)|2 (3.9)

Ωa =
∑

v′
iεV

′

∑
{i,j}{i,k}εN(i)

|(v′
i − (v′

j + u′
jk +Mjku

′
jk))|2 (3.10)

Ωp =
∑

v′
iεV

′
|(v′

i − vi)|2 (3.11)

Ωo =
∑
{i,j}εE

|(ṽi − ṽj)−O(v′
i − v′

j)|2 (3.12)

(3.13)

Ωl is the constraint necessary to achieve the regular edge length, Ωa for the maximal
angles, Ωp is a positional constraint that restricts movement of nodes, as to not have
them move too far and Ωo creates the octilinearity

3.7.1 Smooth Deformation

The first step of this deformation is called “smooth deformation”. It consists of two of
the previously mentioned constraints, the regular edge length and maximal angles, in
addition to a third one, a positional constraint. The reason for it is rather simple. Since
a map already exists and the goal is to adjust that map, a general sense of similarity
should be retained. That is keeping the edges in a topological sense the way that they
are, which should not be altered anyways, but also the general positions of the nodes.
While it is impossible to keep the exact positions, it is certainly desirable to keep them
close to their origin. All of these constraints have different importance. Straight lines or
four different edges going all in different directions is for example something that is very
much desired, to make the map look more metro-map-like. Similarly a uniform length
for the edges is something that is also rather important. Since the graph has already
been reshaped, the geographical accuracy is already lost, and while the shape should stay
roughly the same keeping the nodes close to their previous positions is in comparison
much less important. These ideas should then be reflected when choosing the weights.
All three of these constraints combined will then create new coordinates for each node,
that will then be passed on to the next step, where the only remaining constraint, the
octilinear layout, will be calculated.

Regular Edge Length

The edges of a typical metro map are usually about the same length. During the reshape
phase it is very likely to have not only the nodes re-positioned, but also the edges rotated
and changed in length. It is therefore important to recreate the property of same length
edges. Compared to the other constraints it is however of relatively low importance,
which is why the associated weight will be set relatively low. The general formula, or
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3.7. Creating the Metro Map - Deformer

energy term, for this constraint looks like this [WC11]:

Ωl =
∑
{i,j}εE

|(v′
i − v′

j)− sijRij(vi − vj)|2 (3.14)

sij = D

|vi − vj |
(3.15)

Rij =
[
cos θij − sin θij
sin θij cos θij

]
(3.16)

D represents the expected length, meaning the average edge length of the whole map. sij
is therefore the scaling factor that individually needs to be applied to each edge, to get to
that value. Rij is the rotation matrix that is necessary since the angles of the edges are
going to change during each iteration of the deformation. Therefore the calculations have
to be updated to reflect the newly created angles. Since Rij is unknown while setting
the matrix it will be computed in each iteration during the conjugate gradient step and
updated accordingly. Therefore as an initial value Rij will be set to an identity matrix.
Figure 3.1 shows how the constraint works without the rotation matrix.

Figure 3.1: Visual representation of the regular edge length constraint.

Maximal Angles

Angles between incident edges of a metro map are usually maximized, or at least close to
it, meaning that the edges are as far apart from each other as possible. Exceptions usually
only occur based on the geographical layout or the underlying form of the map. This
is especially true when a node has only 2 neighbors. Without good reason a metro line
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3. Methodology

would not be drawn in a zigzag shape. It is therefore very important to find an energy
term that straightens lines and also maximizes the angle for more than 2 neighbors per
node. The energy term

Ωa =
∑

v′
iεV

′

∑
{i,j}{i,k}εN(i)

|(v′
i − (v′

j + u′
jk +Mjku

′
jk))|2 (3.17)

u′jk = 1
2(v′k − v′j) (3.18)

Mjk = R(π2 ) tan(π − θ2 ) (3.19)

does exactly that [Wu16]. In contrast to the energy term that concerns regular edge
length, this one iterates over every node first and then for each iterates over every
neighbor of that node, denoted by N(i). θ represents the desired maximized angle, which
has to be calculated for each node individually via the formula

θ = 2 ∗ π
f

(3.20)

where f represents the number of the current node’s neighbors. R(π2 ) on the other hand
is just a simple 90 degree rotation in counter-clockwise direction. Figure 3.2 shows how
the constraint works. Note that u′

jk is represented via the blue dotted line while Mjku
′
jk

is represented via the red dotted line.

Figure 3.2: Visual representation of the maximal angle constraint.

Positional Constraint

Lastly the positional constraint is expressed by the distance between the node before and
after repositioning and is therefore rather simple. The energy term [WC11] is given as

Ωp =
∑

v′
iεV

′
|(v′

i − vi)|2 (3.21)

Since this constraint requires the least amount of calculations and the representation of
the calculation in matrix form can be done rather easily the following equation illustrates
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an example for a graph with three nodes, where w represents the weight associated to
the constraint. Without it, matrix A would be an identity matrix.



w 0 0 0 0 0
0 w 0 0 0 0
0 0 w 0 0 0
0 0 0 w 0 0
0 0 0 0 w 0
0 0 0 0 0 w





x′0
y′0
x′1
y′1
x′2
y′2


=



x0
y0
x1
y1
x2
y2


Solving the Constraints

Now that all three constraints are defined they need to be combined into a single matrix to
compute the new node positions. The idea is to minimize the total of all these constraints
so the formula looks like this

Ω1 = wl ∗ Ωl + wa ∗ Ωa + wp ∗ Ωp (3.22)

To allow the importance of each of these constraints to be adjusted a weight is added to
each of the them. The positional constraint for example has a rather low importance
compared to the others. To create the results shown in the paper the positional constraint’s
weight was set to 0.01, enough not to be ignored and able to prevent potential collapse
of the nodes, but barely changing the result of the other constraints. Meanwhile the
edge length weight was set to 10000 and the max angle weight to 15000. The values do
however not have to be that extreme to achieve results. To calculate the result in matrix
form the constraints are simply concatenated below each other. To solve this system in
an iterative way the already introduces conjugate gradient method is applied.

Figure 3.3 shows the difference between the geographically correct Vienna metro map
before and after smooth deformation.

Figure 3.3: Vienna’s geometrically correct metro map before (left) and after (right)
smooth deformation
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3.7.2 Octilinear Deformation

The second big step after obtaining the result from the smooth deformation is to adjust
the edges. To do so, not only the constraint to move edges to the closest octilinear position
is needed, but also the positional constraint, that was already introduced during the
smooth deformation. The reason for that will be explained after the octilinear constraint
is introduced.

Octilinear Edges

Ωo =
∑
{i,j}εE

|(ṽi − ṽj)−O(v′
i − v′

j)|2 (3.23)

O represents a function that rotates the edge to its closest octilinear position. This
calculation needs to be pre-computed, meaning that for each edge it has to be decided in
which direction to move and by how much before getting to the matrix form. [Wu16]
Figure 3.4 shows how that the constraint first decides between which octilinear angle to
take and then move accordingly.

Figure 3.4: Visual representation of the octilinear constraint.

Positional Constraint

Since the energy term Ωo tries to minimize the difference between every edge before and
after rotation, but does not set any restrictions on the actual positions of the nodes the
term would always solve correctly if the positions for vi and vj would simply be the same.
The easiest way to see that is to just insert 0 for every node’s x and y value. The energy
term would always accept that, but the map would certainly not look like a metro map
anymore. To stop this from happening the positional constraint Ωp is introduced once
again. This way the map will not collapse into a single point, but keep its general shape.

Solving the Constraints

Ω2 = wo ∗ Ωo + wp ∗ Ωp (3.24)
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3.7. Creating the Metro Map - Deformer

Just like with the smooth deformation a simple concatenation of both energy terms
combined with their own weights is sufficient. Since the positional constraint is again,
not the main focus of this calculation the weight can be set rather small in comparison
to the octilinear one. To achieve the same results as the given examples in this paper the
weight for the octilinear deformation was set to 1000 while the positional constraint was
set to 0.015, again just enough to not ignore the constraint, but very small so it would
not have a huge role in determining the result.

Figure 3.5 shows the difference between the smooth geometrically correct Vienna metro
map before and after octilinear deformation.

Figure 3.5: Smooth version of Vienna’s geometrically correct metro map before (left) and
after (right) octilinear deformation

3.7.3 Preventing Edge Intersections

Preventing edge intersections is not only important to keep the topology of the metro
map in order, but also to prevent the map from breaking out of its convex hull and
therefore the desired shape in which it is meant to be reshaped into. Since this constraint
is used in the Reshaper-Phase as well as in the Deformation-Phase it is going to be
described here in a separate paragraph. The basic idea is to stop any node from crossing
any edge by setting a minimal distance between each node and edge and enforcing that,
whenever this distance is overstepped. The energy term looks as follows [WC11]:

Ωi(v′
i→jk) = |(v′

i − p′
jk)− δi→jk(vi − pjk)|2 (3.25)

pjk = r ∗ vj + (1− r) ∗ vk (3.26)

δi→jk = ε

|vi − pjk|
(3.27)

ε represents the minimal distance chosen, which may need to be adjusted depending
on the scale of the map. If for example the map is rather dense the parameter for the
distance needs to be set to a small value since otherwise every node-edge pair may be
effected, which will not only move the map in unexpected ways, but also take a lot of
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3. Methodology

computation time. The problem with a small distance ε is however, that it may be
crossed in a single iteration which will most likely lead to unwanted crossings. pjk is the
point closest to a node on an edge, represented by its distance to the edge’s start- and
endpoint. Since this point is not defined anywhere and potentially changes during each
iteration of movement it needs to be pre-computed every time for each existing node-edge
pair in the graph. If the distance from node v′

i to pjk falls under ε the constraint Ωi

needs to be enforced and added to the sum of other constraints, which depending on the
current phase of the algorithm is either the Reshaper or Deformer. Otherwise nothing is
added for the particular node-edge pair.
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CHAPTER 4
Implementation

The following chapter describes the order of operations used during the algorithm as well
as details about each step. Additionally the used libraries are briefly explained and an
example is given that changes with each step as well as a pipeline for a general overview.

To implement the algorithm the following external parts were used:

• A general framework [OMM] which serves as a tool to visualize the metro
maps and which provides an easy way to add new algorithms to manipulate those
maps.

• A Delaunay Triangulator [DEL] that is used to create a mesh from the metro
station nodes, which is needed for the Reshaper phase.

• A library for matrix calculations [EJM] which are needed for both the Re-
shaper and the Deformer phase, since the equations used for these steps are all in
matrix form.

4.1 General Concept
Before describing each step in more detail this part is about giving the reader a short
overview of what is happening. This is to make it clear why each step is happening at
what point and how that relates to the ones before and after. The goal of the algorithm
is to take a metro map graph as input and output the same one reshaped into a given
contour while keeping the appearance of a metro map. This means that the first main
step is to reshape the map and then to recreate the right look in a second step. The
idea to reshape the map is to set a number of handle positions along the convex hull
of the metro map and then to move those handles in such a way that they form the
desired contour. During this process any intersections that did not previously exist are
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4. Implementation

not allowed, meaning that the nodes inside keep the metro maps topology and do not
escape the contour.

4.2 Visualized Pipeline

Now that the basic concept has been explained this section focuses on a visual introduction
to the algorithm. Before the algorithm is explained in detail Fig. 4.1 gives a visual overview
by providing the interim results after each step. The map used for this visualization is
Vienna’s geographically correct metro map and the shape is a rough contour of the St.
Stephen’s Cathedral approximated by nine points.

4.3 Input Data

4.3.1 The Metro Map

The input used is an xml-file that describes each station, line and the view. Each station
consists of the real world longitude and latitude as well as the station’s name. Each line
has parameters indicating whether or not it is circular, what color it is and its name. Of
course each stop is also listed, referred to by its name in order. Lastly the view describes
the representation of the metro map. Just like each line the view also has parameters like
a name, its dimensions and coordinates. Inside the view each line is represented as an
edge at the start, referred to by its name followed by every station below that. Here the
stations get their coordinates, that are used during visual representation. The xml-file
shown in 4.1 is an example for how such a file would look like. Fig. 4.2 shows how the
representation of the xml-file in the program looks like.

4.3.2 The Contour

The contour is given by a number of points that form the desired hull. For a simple
rectangle 4 points, each with an x and a y coordinate in the correct order would be
sufficient. Since these points will later on correspond to the hull around the metro map
it is important to also start with the node corresponding to the first node of the metro
map’s hull.

4.3.3 Other Parameters

These parameters are the weights for each of the already mentioned constraints, as well as
the minimum distance between a node an any edge that should not be crossed, the number
of iterations for the cg-method, and the desired number of points that will approximate
the hulls. Changing any of these parameters can drastically change the result, as well as
the time it takes to calculate a result. An example for a very time sensitive parameter
would be the minimum distance between a node and any edge. Setting this parameter to
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4.3. Input Data

(a) Step 1: Input map (b) Step 1: Input shape

(c) Step 2: Calculated convex hull

(d) Step 3: Calculated points on Poly-
gon (convex hull)

(e) Step 3: Calculated points on Poly-
gon (shape)
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4. Implementation

(f) Step 4: Combined graph (map and
convex hull)

(g) Step 5: Triangulated combined
graph

(h) Step 6: Reshaped combined graph
(view of points)

(i) Step 6: Reshaped combined graph
(view of map)
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4.3. Input Data

(j) Step 7: Smooth deformed graph
(view of points)

(k) Step 7: Smooth deformed graph
(view of map)

(l) Step 8: Octilinear deformed graph
(view of points)

(m) Step 8: Octilinear deformed graph
(view of map)

Figure 4.1: Algorithm’s pipeline in images
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Listing 4.1: Example xml input
<?xml version=" 1 .0 " encoding="UTF−8" standalone="no " ?>
<omm− f i l e version=" 1 . 0 . 0 ">

<stations>
<station l a t=" 48.263424 " lon=" 16.451707 " name="A" />
<station l a t=" 78.153707 " lon=" 16.382446 " name="B" />
<station l a t=" 69.216756 " lon=" 16.341840 " name="C" />
<station l a t=" 12.238260 " lon=" 16.424787 " name="D" />
<station l a t=" 124.263424 " lon=" 16.451707 " name="E" />

</ stations>
<l ines>

<l ine c i r c u l a r=" f a l s e " c o l o r="#E20613 " name="U1">
<stop station="B" />
<stop station="A" />
<stop station="C" />

</ l ine>
<l ine c i r c u l a r=" f a l s e " c o l o r="#029540 " name="U2">

<stop station="D" />
<stop station="A" />
<stop station="E" />

</ l ine>
</ l ines>
<view name="Wien" scene−he ight=" 902.146012 " scene−width="

↪→ 1000.000000 " s ta r t−x=" 460.290214 " s ta r t−y=" 442.606657 ">
<edges l ine="U1" />
<edges l ine="U2" />
<station name="A" x=" 500.000000 " y=" 500.000000 " />
<station name="B" x=" 300.000000 " y=" 500.000000 " />
<station name="C" x=" 700.000000 " y=" 550.000000 " />
<station name="D" x=" 550.000000 " y=" 300.000000 " />
<station name="E" x=" 500.000000 " y=" 700.000000 " />

</view>
</omm− f i l e>
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Figure 4.2: Visual representation of the example xml-file

a very low value will most likely reduce the time the computation takes, but it will also
have an effect on possible intersections. As already mentioned previously, whenever this
minimum distance is overstepped an additional row is added to the constraint matrix.
Since every node has to be checked with every edge this can go out of hand very fast
when having a bigger value for the minimum distance. However, while having a bigger
value may take longer, it is also a lot harder to overstep it in a single iteration before the
check takes place and a node potentially flips to the other side of an edge and creates
an intersection. It is therefore important to choose the right value for each map. The
same applies to different degrees to the other parameters. While their sensitivity varies,
a drastic change will lead to drastic changes regarding the result and/or the time it takes
to reach that result.

4.4 The Algorithm

4.4.1 Converting the Input Data

The framework responsible for the graph’s visualization is also the one reading the xml-file
and converting the data [OMM]. Other parameters are handled in the algorithm’s class
itself. The fist thing happening during the algorithm is the conversion of data, that
was created from the xml-file to a self made CustomGraph class. It consists of a list of
CustomNodes which represent the stations, CustomEdges which represent the connections
between stations, an adjacency matrix and three maps to access nodes and Ids. Each
CustomNode consists of a name, the coordinates used during representation, the original
Node that was created via the framework, a list of lines it belongs to and an id. The
CustomEdge on the other hand is just a pair of CustomNodes. At this point the graph
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can already be displayed the way it was given to the program, as shown in Fig. 4.3.

Figure 4.3: Visualization of the initial graph

4.4.2 Creating the map’s hull - Graham Scan

After obtaining information about the metro map and the desired shape, the first step
is to create the convex hull for the metro map by using the Graham Scan [GRS]. The
nodes from the metro map will be used as input for this part, and points will refer to the
coordinates of each of those nodes. The first step is to find the bottom-most point and
in case several points share that same y coordinate, the one with the lowest x coordinate
is used. This point is the starting point of the convex hull. The second step is to sort all
the remaining nodes by their angle in counter-clockwise direction. In case several points
share the same angle the nearest one is put first. After that is done, a loop goes through
all the points except the bottom-most one and removes any that have the same angle,
except the one furthest away. Since this can lead to a list of nodes containing only 1 or 2
nodes, which would not make it possible to create a convex hull, it is necessary to check
for that and only continue from here if there are indeed 3 or more nodes in that list. At
this point the preparations for the main part of algorithm are done. The next step is to
combine the correct nodes to the convex hull. To do so an empty stack is created and
the bottom-most node, as well as the first and second node in the sorted list are added.
From here on out the 3 top nodes of the stack (px, py, pz) will be used to check whether
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or not their orientation is counter-clockwise. In case it is py will be added to the convex
hull and if not it will be removed from the stack and not added. After that the next
node in the sorted list is pushed onto the stack.

• In case py was added to the hull the node px is now irrelevant, py becomes px, pz
becomes py and the newly added node becomes pz.

• In case py was not added px remains px, py is removed, pz becomes py and the
newly added node becomes pz

To make the concept clearer Fig. 4.4 shows an example of the process. Note that red
stands for currently checked, green for confirmed, gray for discarded and black for not
yet processed.

Figure 4.4: Visualization of the graham algorithm (top left to bottom right). red edges:
currently checked, green edges: confirmed, gray edges: discarded, black edges: not yet
processed

To ensure that all nodes fit inside the contour later on, instead of landing on the line the
calculated convex hull is slightly scaled up. To do so adding a single coordinate point
between a node and the contour would suffice so the scaling factor can be chosen rather
small. In this case the x and y coordinates are multiplied with 1.0001. Since that also
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means moving the coordinates to the bottom-right, the now scaled up hull needs to be
moved back slightly. To do so the centroids of both the calculated convex hull and the
scaled up version are calculated. Afterwards the scaled up one is moved back by the
difference between the centroids’ x and y coordinates. That is to ensure that all nodes
are now still inside the hull and the scaling basically just happens around the center of
the hull. The formulas to calculate the centroid of a polygon look as follows:

Cx = 1
6A

n−1∑
i=0

(xi + xi+1)(xi ∗ yi+1 − xi+1 ∗ y1) (4.1)

Cy = 1
6A

n−1∑
i=0

(yi + yi+1)(xi ∗ yi+1 − xi+1 ∗ y1) (4.2)

A = 1
2

n−1∑
i=0

(xi ∗ yi+1 − xi+1 ∗ yi) (4.3)

The only criteria for these formulas to work is to have the points be in order of their
appearance around the polygon’s perimeter, which is already the case. Applying those
formulas is then a matter of running a for loop for the sums and then calculating Cx and
Cy by simply dividing the interim results by 6A as in 4.1 and 4.2.

4.4.3 Adjusting the contour

After the convex hull for the metro map is obtained it is necessary to adjust the desired
shape in a way to make all points of the metro map fit easily as to reduce possible
complications, which mostly occur when movements in narrow areas happen. To do so
the area of the contour is adjusted to be the same as the one of the convex hull. Since
the coordinates of the convex hull are known for every node the calculation of its area is
a matter of a single formula

A =
∣∣∣∣(x1 ∗ y2 − y1 ∗ x2) + (x2 ∗ y3 − y2 ∗ x3) + ...+ (xn ∗ y1 − yn ∗ x1)

2

∣∣∣∣
The important things to consider here are that the coordinates have to be in order and
that the last coordinates have to be paired with the first ones at the end to complete the
polygon. Since the coordinates given for the contour are required to be input in order,
and the convex hull is also created and saved in order, the application of the formula is
straightforward.

After the areas for both the contour and the convex hull are acquired the square root
of the result of their division is enough to find find the scaling factor, that then needs
to be applied to every point of the contour. The reason to use the square root is that
as already mentioned, the scaling factor needs to be used in combination with every
node’s coordinates to change their position and since the area scales quadratically while
the coordinates (or the sides) do not, the square root is required. After that is done,
both polygons (the convex hull and the contour) now have the same area. This does
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not guarantee, that no complications occur, but it at least reduces the risk compared to
having a large hull area and a small contour area. Furthermore it provides a baseline
that allows scaling according to the area of the contour (now also the area of the hull)
with a single additional scaling factor, in case that further increasing the area is able to
solve problems. This of course all heavily depends on the shape of the contour and is
most likely only useful when more complex contours are used.

4.4.4 Calculating Points on both Polygons

During the Reshape-Phase every node on the convex hull needs to be moved to a
corresponding position on the contour, which means both of them need to be described
by the same number of coordinates to allow a one-to-one translation. Since the number
of coordinates for the contour depends on the input and can be as low as 3 and basically
have no upper limit it is important to know how many points to use to approximate the
shape. This value is given via a parameter.

The first step is to calculate the length of the polygon’s perimeter. To do so the formula
for the length of a line between two points is used for every side of the polygon and
results are then added up. The only important thing to remember here, is again to close
the polygon or in other words not forgetting the line connecting the last and the first
node.

Now that the length for the polygon has been calculated and the number of nodes is
given via a parameter, dividing the length by the number of points results in the distance
between two points on the polygon. This calculation is necessary, since the next step
will be following each line of the polygon’s perimeter for the calculated distance before
creating a point there and then doing the same thing until closing the polygon by reaching
the starting point again. Notable things to consider here are to also add the corner points
of both polygons, no matter whether or not a point lands on a corner point’s position.
The reason for that depends on whether the algorithm runs for the convex hull or the
contour. In case of the convex hull it is so that the actual nodes do not land outside the
contour instead of on or inside of it, which would be possible, since the result would just
be an approximate shape whose accuracy depends on the number of hull nodes given per
the parameter.

The problem here is that in case everything works as intended the metro map’s nodes
outside would not be able to cross the convex hull to move to the inside during the
Reshape-Phase. This would lead to a result with stations outside the contour.

In case of the contour it would lead to a possible inaccurate result because as with the
convex hull the result is just an estimate, which means the resulting polygon given by the
calculated points could be missing some small details or in the worst case even important
feature. This would be easily possible if the contour contains sharp angles, meaning that
even a relatively small distance between points could easily cut off a corner. Figure 4.5
shows an example of cut corner points.
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Figure 4.5: Points missing from the hull (missing points marked)

Given the convex hull / contour points and the calculated distance algorithm 4.1 describes
how to uniformly distribute any number of points along the convex hull and the contour
respectively.

4.4.5 Combining the Graph and the Convex Hull

To move the metro map according to the contour the map needs handle positions. These
handle positions are the positions of the convex hull’s points. Since these are already
calculated at this point, the next step is to combine the map positions and the convex
hull positions into a single graph. This process does not require any complex calculations
and is rather straightforward, because the edges of the graphs do not overlap, which in
turn makes the combination of their respective adjacency matrices a matter of changing
ids. Since only 2 graphs are to be combined the ids of the first graph can stay the same,
while the ones of the second one have to be offset by the size of the first graph. These
changes then have to be put into the newly created adjacency matrix.

4.4.6 Triangulating the combined Graph

For this step an external library is used [DEL]. It requires a list of 2D vectors which
represent each node’s x and y positions and after calculation returns a list of 2D triangles.
To do so the library utilizes the Delaunay triangulation algorithm, already briefly explained
in the methodology section.

4.4.7 Calculating and aligning the centroids

The positions given for the metro map and the ones for the contour could not only differ
by the area they enclose, but also by their general positions. The problem of the differing
areas has already been solved, but moving nodes by possibly extremely large distances is
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Algorithm 4.1: Points on Polygon
Input: A list of nodes representing the hull or the contour, The desired distance

between 2 points on the polygon
Output: A list of points on the polygon with the given distance between them

plus the corner points of the original polygon
1 add first node of nodes also to the end of nodes;
2 for each node except last one in nodes do
3 set startPosition to current node’s position;
4 set endPosition to next node’s position;
5 set tmpPosition to current node’s position;
6 if slope of startPosition and endPosition is infinite then
7 if distance overflow 6= 0 then
8 add overflow to currentPosition in y direction;
9 if tmpPosition is not between startPosition and endPosition then

10 calculate distance overflow from endPosition;
11 tmpPosition = endPosition;
12 end
13 else
14 add tmpPosition to result;
15 end
16 end
17 while tmpPosition is between startPosition and endPosition do
18 add distance to tmpPosition; add tmpPosition to result
19 end

// the last point does not lie on the polygon
20 remove last point from result;
21 calculate distance overflow from endPosition;
22 tmpPosition = endPosition;
23 end
24 else if slope of startPosition and endPosition is 0 then

// same as above, but add overflow to currentPosition
in x direction

25 end
26 else

// same as above, but calculate in which direction to
add distance overflow

27 set dx to distanceOverflow/
√

1 + (slope ∗ slope);
28 set dy to slope ∗ dx;
29 add dx to tmpPosition’s x coordinate;
30 add dy to tmpPosition’s y coordinate;
31 end
32 end
33 return result;
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a source for errors and inaccuracies. To solve this problem the contour is moved over the
metro map before reshaping the metro map. This is done by aligning the centroids of
the metro map’s convex hull and the contour similar to when convex hull was scaled up
around its center.

4.4.8 Reshaper

Now that everything related to the hulls and the triangulation is done the next step is
the actual reshaping of the metro map. This segment is split into three parts. The first
one describes preparation steps, the second one how the Reshaper is implemented, while
the third part addresses the context in which it is used. The important parameters for
the Reshaper are the combined graph, the calculated list of triangles and the weight that
determines how much the process should do during a single call.

Preparations

The first step is to create a neighbor list from the triangles returned via the Delaunay
triangulation. This neighbor list differs from the regular metro map not only in that the
convex hull is included, but the edges connecting nodes are not the ones from the metro
map, but the ones generated during triangulation. This means that the connecting edges
have no similarity with the metro map and need to be created completely from scratch.
This is done by creating a map (neighbormap) that contains the id for every node of the
combined graph as key and a list of ids of its neighbors. While the keys can be created
by simply iterating over the combined graph, the list of neighbors is filled by accessing all
3 of the triangle’s corner points from the triangle list and cross referencing their positions
with the ones from the graph. The reason it has to be done this way is that every other
information, besides the position, is lost when converting to the triangles due to using a
library. After that is done the edges are created according to the newly created neighbor
map. After that is done the Reshaper is given a map that consists of ids as keys and
positions as values. The ids refer to the points of the combined graph that are supposed
to move while the positions are the goals for those nodes, or in other words the points on
the contour that were previously calculated. Obviously the ids in that map only address
the hull nodes of the combined graph.

Implementation

Since it is rather confusing to follow the implementation without an explanation or
formulas as context, both of those will be given before the actual implementation for this
section.

The basic idea is to use an unknown rotation matrix T on the original edge vector vj−vj

and move nearby vertices accordingly to new locations. To derive the rotation matrix 4
nodes around the edge are used as samples. The following formulas describe this process
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4.4. The Algorithm

where
Tk =

[
ck sk
−sk ck

]
describes the rotation matrix,

Tk =
∑

vεN(ek)
|Tkv − v′|2

is the least squares form to calculate Tk based on the neighboring nodes,

{ck, sk} =
∑

vεN(ek)
|
[
ck sk
−sk ck

] [
vx
vy

]
−
[
v′x
v′y

]
|2

shows how to calculate ck and sk and,

{ck, sk} = |



vix viy
viy −vix
vjx vjy
vjy −vjx
vlx vly
vlx −vlx
vmx vmy
vmy −vmx



[
ck
sk

]
−



v′ix
v′iy
v′jx
v′jy
v′lx
v′ly
v′mx
v′my


|2

rearranges the previous formula to separate ck and sk to make their calculation possible
and

{ck, sk} = |Gk

[
ck
sk

]
−


v′ix
v′iy
...

 |2
shortens the formula for convenience by replacing the matrix consisting of all the neighbors
with the variable Gk.

N(ek) represents the neighbors of the current edge as shown in Fig. 4.6.

Via x = (ATA)−1ATb it is then possible to calculate ck and sk. All this is done to then
be able to create the first part of the constraint, which minimizes the edge deformation
and looks now, including Tk, like this:

Ωr1 =
∑
{i,j}εE

|(v′
i − v′

j)− Tij(vi − vj)|2

After some rearrangement the final formula that needs to be replicated in the algorithm
looks like:

Ωr1 =
∑
{i,j}εE

|(v′
i − v′

j)−
[
ekx eky
eky −ekx

]
(Gk

TGk)−1Gk
T


v′ix
v′iy
...

 |2
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Figure 4.6: edge neighbors used for matrix Tk

And now that the goal and the steps to reach that goal are explained the actual description
of the implementation starts:

To create the edge deformation constraint one main loop is required that iterates over all
edges, given by the triangulation (not the edges of the metro map). The first step is to
create Gk and the formula from it that results in ck and sk. To do so the upper part of
Gk is created by addressing the nodes that are connected by the edge. After that is done
the next lines are added via a loop, since there could only be one neighbor in case the
edge is on the boundary of the triangulation. Most of the time however, two neighbors
will be added, which results in four more lines for Gk. After that is done the calculation
of ck and sk begins by simply transposing and inverting Gk to recreate the formula.

Next the matrix
[
ekx eky
eky −ekx

]
is created by once again addressing the nodes that are

connected by the current edge and creating the matrix out of them. Next the matrix that

represents A is created. This matrix will always look like
[
−1 0 1 0
0 −1 0 1

]
no matter

the actual indices of the nodes in x or in other words


v′ix
v′iy
...

 because the actual indices

are not important right now and the intermediate results given via this calculation so far
will be shifted to the correct positions in a later step. Now that all parts of the formula

are created the calculation of (v′
i − v′

j) −
[
ekx eky
eky −ekx

]
(Gk

TGk)−1Gk
T is done. This

intermediate result will be called H.

In the next step the contents of H will be shifted to the correct positions to create
the matrix Au (u stands for upper, since this is only the upper half of matrix A). Au

reflects the results from all H matrices that were created for each edge and now correctly
align with the vector x to create the least squares form necessary to calculate the new
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positions. The shift is done by simply accessing the nodes’ ids and moving the results of
H to the corresponding column. The row is determined by the order the individual H
matrices were created in.

Since the vector bu for this part of the constraint only contains 0, a zero vector in the
same size as the matrix Au is created. With that the upper half of the Reshaper matrix
that represents the edge deformation is done.

Next up is the lower part that represents the movement of handle nodes. Since the ids
and the new positions are given via a map, this map is now iterated over with a loop. The
ids again represent the columns that need to be filled, while the row is again determined
by the order in the map (although the order of rows ultimately does not matter, it just
has to align with bl). The values of Al are all zero, besides the filled in values which are
all equal to the weight of the constraint, which is also given as a parameter. bl on the
other hand contains the desired x and y coordinates multiplied with the same weight.
After both are filled, the lower part of the constraint is now also done and all that is left
is to concatenate Au with Al and bu with bl.

Usage

Algorithm 4.2 illustrates how the conjugate gradient method is used in conjunction with
the Reshaper to slowly move every node to its designated position.

The reason why the weight is slowly increased over the course of the cg-method is to
avoid extreme movement in a single step and therefore minimize the risk of creating new
intersections.

4.4.9 Deformer - Smooth Deformation

The Deformer, in contrast to the Reshaper, works on the original, if reshaped, graph
instead of on the combined graph. The first part is the smooth deformation, which as
already mentioned earlier consists of three constraints. The general structure of the
algorithm is to calculate each of these three constraints separately, then combine them
into a single matrix and afterwards solve them with the conjugate gradient method.

Regular Edge Length

While this constraint contains a multiplier to scale, and a rotation matrix to adjust each
edge individually, during this step only the scaling is set. The reason for that is that
the rotation needs to be updated after each movement, or in other words during each
iteration of the conjugate gradient method, which will happen later on. The general idea
is to produce the form Ax = b that is mentioned under 3.1 Least Squares. Algorithm
4.3 gives an overview of what happens during this part, and can also serve as a reference
for other constraints.
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Algorithm 4.2: Reshape iterations
1 initialize errorThreshold;
2 initialize step with 1;
3 initialize number of iterations with 0;
4 initialize constraintWeight with a small value below 1;
5 initialize maxConstraintWeight with a larger value;
6 calculate positions for current Reshaper values;
7 while true do
8 if step == 1 then
9 if cg-method is initialized then

10 run initialized cg-method iteration;
11 end
12 else
13 run uninitialized cg-method iteration;
14 set cg-method to initialized;
15 end
16 increase number of iterations;
17 set position of graph to cg-method’s result;
18 if error from cg-method < errorThreshold OR number of iterations ≥

number of max-iterations then
19 if constraintWeight < maxConstraintWeight then
20 reset cg-method to uninitialized;
21 reset number of iterations to 0;
22 increase constraintWeight;
23 calculate positions for current Reshaper values including new

constraintWeight;
24 end
25 else
26 increase step by 1;
27 skip the rest of the current iteration;
28 end
29 end
30 end
31 if step == 2 then
32 run Deformer’s smooth deformation;
33 run Deformer’s octilinear deformation;
34 revert any changes to node positions used for better results;
35 break;
36 end
37 end
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Algorithm 4.3: Regular Edge Length
1 calculate averageEdgeLength;
2 create matrix A with correct size;
3 create vector b with correct size;
4 for edge in graph do
5 point1 = startpoint of edge;
6 point2 = endpoint of edge;
7 set next row of b to point1.xCoordinate - p2.xCoordinate;
8 set next row of b to point1.yCoordinate - p2.yCoordinate;
9 end

10 for edge in graph do
11 point1 = startpoint of edge;
12 point2 = endpoint of edge;
13 calculate edgeLength;
14 calculate edgeMultiplier via averageEdgeLength/edgeLength;
15 set point1’s x cell of A to 1/edgeMultiplier;
16 set point2’s x cell of A to −1/edgeMultiplier;
17 go to next row;
18 set point1’s y cell of A to 1/edgeMultiplier;
19 set point2’s y cell of A to −1/edgeMultiplier;
20 go to next row;
21 end
22 create weightMatrix;
23 multiplay weightMatrix with A;
24 multiplay weightMatrix with b;

Maximal Angles

This constraint requires rows in the matrix for each neighbor of the current node, unless
there is only one, which is rarely the case. It is possible to either add rows in every
iteration or to create the zero matrix with the correct size first and then address it
correctly in each step. Here the second method of creating the matrix first is used, which
means that a loop goes over every node and adds the number of neighbors, in case it is
more than 1, to a counter. After that a matrix with the counter’s value as the number of
rows and two times the number of nodes (since the vector x consists of every node’s x
and y coordinates) as the number of rows is created. The next step is to fill every row
of that newly created matrix A with correct values. To do so a loop iterates over every
node where first the angle Θ and the value of the tangent are calculated. Then the value
for node v′

i or in other words the current node is set, which in this case is 1. Then all of
the node’s neighbours are sorted by their angle.

Next a second inner loop is created which iterates the sorted neighbors. In that loop the
values for the nodes v′

j and v′
k are set. For v′

j these values are (−1+0.5+R(tanV al∗0.5))
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while for v′
k they are (−0.5−R(tanV al ∗ 0.5)). These values can be directly taken from

the constraint’s formula by simple extracting the values that come alongside either v′
j or

v′
k. The 90 degree counter-clockwise rotation can be achieved by translating the x and

y coordinates x/y to -y/x. Now all that needs to be done is to set these values at the
correct column position and not to forget the last pair of neighbors that connects the
last and the first neighbor.

For the vector b a simple zero vector with the same number of rows as A is sufficient,
since the goal of the constraint is for the subtraction to reach 0. After that the weight
is added, which means creating a diagonal matrix with the desired weight as value and
multiplying it with A and b (which since it is 0 here is not necessary) respectively.

Positional Constraint

The positional constraint is rather simple, since a single loop and no prior calculations
are enough. To set matrix A the creation of an identity matrix is sufficient, since the

layout used for the coordinates of a single node is
[
x 0
0 y

]
. To create vector b a loop is

created that iterates every node and adds the x or y coordinate depending on the current
row resulting in a vector with two times the number of nodes as size. Afterwards, just
like with the other constraints the weight matrix is created and multiplied with A and b.

Solving the Constraints

Solving all three constraints requires combining them into a single matrix A and a single
vector b. Since the conjugate gradient method requires a symmetric and positive definite
matrix, A and b need to be prepared accordingly as mentioned earlier when explaining
the cg-method.

After that the initial residual is calculated by multiplying A with the estimate, which is
just the current positions of the nodes, and then subtracting the result from b. If the
residual’s calculated value is below a given threshold the cg-method stops here, but in
case it is not the iterative part starts.

A for loop is started that stops after either being below the threshold or after a given
number of iterations. Since at this point the edge rotation has still not been updated, but
an estimate which has been calculated in the previous step has already changed positions
it is necessary to calculate that rotation matrix for each edge now, before doing anything
else involving the constraint. To do so a loop iterates over every edge and calculates
the difference between the current and previous angle and saves those values in a list.
Afterwards one big rotation matrix consisting of all the single rotations is created and
filled according to the created list and multiplied with the old edge constraint matrix.
After that is done the edge intersection constraint is calculated, which will be explained
in more detail in a separate section.
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After all that is done matrix A and vector b are updated with the just created matrices.
Next the formulas of the cg-method are used to calculate the new residual value which is
checked against the threshold. In case the error is not small enough the loop starts over
with the newly calculated values.

4.4.10 Deformer - Octilinear Deformation

Now that the layout has been deformed "smoothly" the next step is to create the correct
angles of 45 degree intervals. This step consists of the octilinear constraint and the
positional constraint, that was already explained earlier. For that reasons the explanation
of the positional constraint will be skipped here.

Octilinear Edges

The first step is to calculate the current angle α of every edge. Next the result of α
mod 45 is calculated to decide whether the angle is closer to the next or the previous 45
interval. Depending on the result that value β is calculated by 45 ∗ bangle45 c or 45 ∗ dangle45 e.
Next the difference between α and β is calculated to know by how much the edge has to
be rotated.

Next the matrix A and the vector b are created. To express the edges in A 1 and -1 are
set at the corresponding positions in each row while the expected result of the rotation is
set in b. As always with these constraints the weight matrix is created as a last step and
multiplied with A and b.

Solving the Constraints

This step is basically the same as the one for the smooth deformation, with some steps
missing. Since there is no rotation matrix to update that part is unnecessary. The
intersection check is also skipped and while it is possible to break out of the contour
or create intersections in the map, the results so far have not looked significantly worse
because of it. It also allows for a clearer octilinear layout, since there are no constraints
to reduce its influence. In the Result & Discussion section this will be addressed further,
but for now it is only necessary to know that this part is also omitted.

That means that for the octilinear deformation only the combination of the constraints
and the implementation of the cg-method are necessary. As input this step takes the
positions given by the smooth deformation.

4.4.11 Preventing Edge Intersections

Calculating the Edge intersection prevention consists of two main steps. The first one
is the preparation of distances and the check to see if any of those are lower than the
defined threshold. The second one is then the creation of the matrix and the vertices
based on those results.
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Since every node has to be checked with every edge it is necessary to have two loops, one
for each. Inside the second loop the distance between the current node and the current
edge is then calculated. Important to note here is that the edge is finite, meaning that
the formulas used have to reflect that. Not only the distance but also the point that is
closest on the edge to the current node are then returned. Only if the returned distance
falls below the threshold the loop continues with the current node and edge and the
creation of A and b begins.

Two new rows for the x and y coordinates are added to b, each containing δ∗(nodeCoordinate−
closestPointCoordinate) where δ = threshold

calcDistance . For A first the position of the current
node is set to 1 for both x and y. Since x does not contain the closest point to the node
it needs to be expressed via other existing nodes. In case the start- ps and endpoint pe
of the edge lie on the same x coordinate the values for ps and pe are set to 0.5 each. The
same applies to the y coordinate. Otherwise it is necessary to calculate the percentage
distance of point p from ps and pe and use those values inside A at the correct node
indices representing ps and pe.

After all that is done the same calculations repeat for the distances to the contour edges.
It is important to consider that neither ps nor pe can be the current node and that nodes
on the contour have to be skipped altogether, since it is not desirable to move the contour,
but only the graph nodes.
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CHAPTER 5
Results

To test the algorithm, several maps have been used in combination with different contours.
The maps used were the schematic Berlin metro map, the schematic and the geographic
Vienna metro map as well as the schematic Stuttgart S-Bahn map. The contours used
are shown in the graphics, represented by their points, that were created during the
algorithm.

Not only are there differences when it comes to the quality of the visual results, but
also when it comes to computation time. Table 5.1 shows the times for all maps when
combined with the St. Stephen’s Cathedral contour.

Note that the number of different weights the Reshaper has to go through is fixed. This
means that the intermediate results may not vary much from the end result, they do
however all run through all weight increases. However it is possible that some maps
terminate faster inside a weight iteration than others, since they reach the error threshold
for that specific weight faster. That said it is pretty clear from those results that more
complex maps, that consist of more nodes and edges are a lot slower than easier maps.
While the number of nodes and edges roughly triples the time for each step is multiple
times slower than that. Two more things that are worth mentioning here are that the
map was redrawn during each test, like it would be when used regularly, meaning that
the results are probably slightly slower than they would be without animation. And

map #nodes #edges reshape smooth octi. total
Vienna geometric 98 104 37416 1267 20 38703
Vienna schematic 98 104 33825 1080 20 34925
Berlin 311 357 467454 18445 641 486540
Stuttgart 83 84 24191 809 13 25013

Table 5.1: Calculation times for different parts of the algorithm in milliseconds
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lastly, for each of those tests the constraint to prevent intersections has not been used
during the Reshaper phase. This effects the Berlin map the most, in the sense that
since it consists of more nodes and edges, more checks would have to be made here in
comparison to the other maps. Obviously the parameters could be adjusted individually
for each of these maps to potentially better the results, but since that would defeat the
purpose of the comparison, all maps used the exact same.

Next up are the visual results. For this only the geographic Vienna metro map and the
schematic Stuttgart S-Bahn map (Fig. 5.2) were tested. The reason for that is that
the difference between those two is the greatest, while also having acceptable results.
As shown in Fig. 5.1 the result for the Berlin map is rather unpleasant, since a lot of
intersections were introduced. However, the general shape of the map, as well as the
properties of the map in general are similar to the other results and relatively good
considering the size. The tested shapes are shown in Fig. 5.3. The results (Fig. 5.4 - 5.10)
show that for both maps (Vienna and Stuttgart), the general shape has been properly
adjusted. However some unexpected intersections were introduced during computation,
which based on these results seem to stem from either indentations or narrow contours.
These intersections either happen on the map itself where they would cause confusion as
to whether or not there is a station (since intersection usually indicate those), or they
happen between the map and the contour where they break out of the given shape.
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(a) Overview

(b) Zoomed-in view

Figure 5.1: Berlin’s schematic metro map after reshaping into St. Stephen’s Cathedral
shape
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(a) Vienna’s geographically correct metro map

(b) Stuttgart’s schematic S-Bahn map

Figure 5.2: Initial maps used as input
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Figure 5.3: Shapes used as input
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.4: Results for St. Stephen’s Cathedral shape
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.5: Results for square shape
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.6: Results for triangle shape
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.7: Results for heart shape
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.8: Results for hexagon shape
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.9: Results for H-letter shape
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(a) Stuttgart nodes (b) Stuttgart nodes with hull

(c) Stuttgart map (d) Vienna nodes

(e) Vienna nodes with hull (f) Vienna map

Figure 5.10: Results for narrow rectangle shape
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CHAPTER 6
Conclusion & Future Work

This chapter acts as a conclusion of the thesis and furthermore addresses areas that could
be improved and methods to potentially do so.

6.1 Conclusion

The goal of the thesis was to find an automated method that uses a map and a contour
as input and that generates a metro map confined within the given contour. The idea
was to create a result that can be used as it is or as a basis for smaller adjustments by a
designer. In general the introduced method does just that, however there certainly are
some limitations. For one, as mentioned in the previous chapter, larger graphs can lead
to unsatisfactory results. Beyond that the limitation of only having a contour without
holes can certainly be a drawback for some use cases. However as already mentioned and
as shown in the figures of the previous chapter, the introduced method for maps of a size
similar to the one of Vienna’s metro system creates satisfying solutions to the initially
proposed problem.

6.2 Future Work

6.2.1 Selecting a Starting Point

In the current version of the algorithm the hull’s starting point is always the bottom-most
point and in case there are several on the same level, the left-most one is chosen. This
means that the contour has to start with the point that corresponds to the calculated
one, which leads to the problem that different maps that are supposed to be reshaped
into the same contour possibly each need a separate deceleration of that contour. While
this is not a huge problem it is inconvenient and should probably be addressed in case
further iterations of this algorithm are created.
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6.2.2 A different Hull

The convex hull is a good way to create a hull for a map that is rather dense, since
in that case not much empty space would be included. However, since that may not
always be the case it would be advantageous to use a hull that removes as much empty
space as possible, so the contour later on is filled more completely and therefore more
recognizable by the map alone. One such method is the alpha hull. Figure 6.1 shows the
potential problem of using the convex hull, by highlighting the difference between the
empty spaces.

Figure 6.1: Difference between convex hull (middle) and an alpha shape (right) [GBB18]

6.2.3 Splitting the process

The previously mentioned improvements are pretty sure to accomplish better results or
are simply more convenient. This idea is more theoretical. Since the algorithm can be
applied on the result of itself it is possible to create a complex contour in a couple of
steps, rather than doing it in one iteration. Since narrow areas and indentations seem
to cause problems when looking at the results the approach for such shapes could be to
first create a basic shape and try in further steps to slowly adapt to the desired shape by
only expanding, if possible. Whether or not this approach would accomplishes better
results remains to be seen.

6.2.4 Avoiding Intersections

As can be seen from the results, the algorithm does sometimes create new intersections,
especially when working with a more complex and larger graph. The current way in
which these intersections are checked is to look at the distance between a node and every
other edge that it itself is not part of and see if the minimum distance that was given still
remains after each iteration of movement. The movement is however only restricted by
the weights and not set to a specific maximum value. That means that it is still possible
to cross an edge in a single iteration by simply moving further than expected. Therefore
a possible way to better the intersection problem is to restrict the movement of a node
per iteration to a custom value, depending on the usual distances prevalent within the
graph. While this may not solve all intersections it would most likely improve the result.
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6.2.5 Improving Edge Lengths

The edge length of metro maps is usually roughly the same across the whole graph. The
results of the algorithm however show that there are plenty of edges with highly varying
edge lengths. This is the case, even after including an edge length constraint in the
Deformer. A possible improvement would be to add that constraint to the Reshaper
as well. However, the Reshaper already takes up a lot of computation time, especially
with larger maps, meaning that adding more calculations there may not be the best
solution. It would therefore be necessary to either weigh the benefits with the potential
consequences or find a different solution altogether.
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