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ABSTRACT:

Nowadays, point clouds are the standard product when capturing reality independent of scale and measurement technique. Es-
pecially, Dense Image Matching (DIM) and Laser Scanning (LS) are state of the art capturing methods for a great variety of
applications producing detailed point clouds up to billions of points. In-depth analysis of such huge point clouds typically requires
sophisticated spatial indexing structures to support potentially long-lasting automated non-interactive processing tasks like feature
extraction, semantic labelling, surface generation, and the like. Nevertheless, a visual inspection of the point data is often necessary
to obtain an impression of the scene, roughly check for completeness, quality, and outlier rates of the captured data in advance.
Also intermediate processing results, containing additional per-point computed attributes, may require visual analyses to draw con-
clusions or to parameterize further processing. Over the last decades a variety of commercial, free, and open source viewers have
been developed that can visualise huge point clouds and colorize them based on available attributes. However, they have either a
poor loading and navigation performance, visualize only a subset of the points, or require the creation of spatial indexing struc-
tures in advance. In this paper, we evaluate a progressive method that is capable of rendering any point cloud that fits in GPU
memory in real time without the need of time consuming hierarchical acceleration structure generation. In combination with our
multi-threaded LAS and LAZ loaders, we achieve load performance of up to 20 million points per second, display points already
while loading, support flexible switching between different attributes, and rendering up to one billion points with visually appealing
navigation behaviour. Furthermore, loading times of different data sets for different open source and commercial software packages
are analysed.

1. INTRODUCTION

Modern surveying sensors capture the real world with high de-
tails producing an enormous amount of data in case of large
projects. The newest generation of airborne laser scanning sys-
tems (e.g. RIEGL VQ-1560 II, Leica TerrainMapper) feature an
effective pulse repetition rates of 2 MHz or more. Hence, such
systems can measure more than 2 million points per second
not even considering multi-target returns. In addition to con-
ventional linear-mode LiDAR (Light Detection And Ranging),
single photon sensitive laser scanners increase the measure-
ment rate by utilizing highly sensitive sensor arrays, potentially
achieving high areal capturing performance by flying from high
altitude (Degnan, 2016), (Stoker et al., 2016) at the price of
a higher measurement noise (Ullrich, Pfennigbauer, 2016). In
addition to LiDAR, 3D point clouds obtained from multi-view
stereo via dense image matching (Hirschmüller, 2008), (Haala,
Rothermel, 2012) are widely used today, with the clear bene-
fit of inherently providing color information for each matched
point. The quality of photogrammetrically derived point clouds
is constantly improving considering the ongoing progress in
camera technology w.r.t. geometric and radiometric resolution.
Multi-head cameras with nadir and oblique viewing directions
mounted into a single camera frame are becoming state-of-the-
art. With such sensors, city regions are typically captured with
a Ground Sampling Distance (GSD) in the order of 10 cm and
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below (Toschi et al., 2017). The latest trend in airborne sens-
ing is combining active laser scanners and passive cameras in a
comprehensive hybrid sensor (Toschi et al., 2018), (Mandlbur-
ger et al., 2017). Therefore, resulting point clouds do have
100+ points/m2. For large cities like Vienna, which has an
area of approx. 415 km2, this would mean a final point cloud
of 50+ billion points.For many applications like city modelling,
administrative planning, flood simulations, natural hazard and
landslide monitoring, vegetation and forestry studies, the cap-
tured point clouds constitute the data basis rather than the final
product. Usually in-depth analysis based on specific processing
pipelines containing feature extraction, semantic labelling, and
surface modelling steps lead to the final products, which are
often geometric models like 3D-meshes or raster models.

Since there is no single optimal spatial index for all situations,
processing software often use different spatial acceleration
structures than point cloud viewers do. Rendering requires data
structures that provide quick access to varying levels of detail
of the model based on the position and direction of the viewer.
Processing tasks, on the other hand, usually need fast access
to all points and their attributes within a certain neighbourhood
without levels of detail information (Weinmann et al., 2015).
E.g., the point cloud processing framework OPALS (Pfeifer et
al., 2013) uses a coarse persistent tiling structure and a 2D or
3D in-core kd-tree structure of each tile depending on the task
to perform. While OPALS can quickly modify, filter, and aug-
ment all the data in a region, it cannot quickly display the res-
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ults. With state-of-the-art methods, rendering of massive points
clouds would require a time consuming hierarchical structure
generation whenever new features are computed or point co-
ordinates have changed (e.g. during strip adjustment or coordin-
ate transformation).

Many processing tasks rely on per-point attributes. As de-
scribed by (Otepka et al., 2013) attributes can be categorized
into, i) directly measured features such as RGB, near Infrared,
signal amplitude, echo width, scan angle, number of echos, and
echo number, ii) features extracted from the point cloud itself
like range corrected amplitude values, local normal vector, sur-
face roughness, curvature, and point distribution features, and
iii) features computed by combination with other data sources,
like normalized height based on existing DTM, Normalized
Difference Vegetation Index (NDVI) values for Laser Scanning
(LS) point clouds extracted from multi-spectral images.
These features are used in a variety of basic processing steps
like classification, but they are also used in very specific ways
for certain applications. For comprehensive surveying projects
it is usually necessary to establish, check and/or improve the
georeferencing of the data. Depending on the measuring plat-
form (static or kinematic, terrestrial or airborne) different al-
gorithms, like ICP, strip adjustment or hybrid adjustments, are
utilized to co-register different data subsets (Glira et al., 2019).
In general, planar non-penetrable surface are selected to per-
form the co-registration. To find such regions appropriate fea-
tures are extracted and attached to the point clouds.

Segmentation and classification tasks often use point features
to analyse points independently. E.g. (Mallet et al., 2011) used
Support Vector Machines (SVM) and attributes of different cat-
egories to point-wise classifying full-waveform LiDAR data
of urban areas. (Vosselman et al., 2017), on the other hand,
used segments and Conditional Random Fields (CRF) to clas-
sify points in large chunks rather than separately. Nevertheless,
attributes of different categories were also used in the overall
process again. (Kumar et al., 2019), who apply neural networks
for semantic segmentation, also rely on features computed in
neighborhoods of different size. No hand-crafted features are
required in deep learning (Liu et al., 2019), but it may be of
interest to study the learned features, e.g. by visualizing them.

Also modelling strategies often utilize point-wise attributes.
When deriving Digital Terrain Models (DTM), the full-
waveform echo width attribute can help to discriminate between
ground and low vegetation points (Wagner et al., 2008). For
separating leafs from woody elements in point clouds of single
or multiple trees, (Wang et al., 2017) used features from normal
vector computation. (Nebiker et al., 2010) stressed the import-
ance of ‘rich’ point clouds for city modeling, which are dense
point clouds carrying semantic information, i.e. additional at-
tributes.

Nowadays, an abundant list of commercial, free, and open-
source point cloud viewer exists. However, when demanding
the capability of displaying arbitrary attributes, the list nar-
rows down. Such mature viewers usually build hierarchical
structures to provide responsive navigation facility. Whereas
some viewer do this in memory only (e.g. CloudCompare and
FugroViewer) others rely on persistent structures (e.g. Potree,
RiProcess, Euclideon) which removes memory limitation and
therefore allows rendering even larger point clouds (>billion
points). Nevertheless, creating hierarchical structures costs per-
formance and consumes resources. In contrast, progressive ren-
dering does not require such structures and therefore can be ex-

pected to provide unmatched loading performance while still
providing high quality real-time rendering capabilities. As the
analysis will show that up to 20 million points per second can
be loaded and rendered when using the LAS file format.

Therefore, this method is ideal for a set of situation, at different
stages within the processing pipeline: The initial point cloud
will be viewed to obtain an overview, and roughly check qual-
ity and completeness, but also to check for outliers. An in-
termediate point cloud will be viewed for parameterize further
processing, e.g. by selecting thresholds or to judge the success
of previous operations. At any stage the points and features can
be viewed and distributed to colleagues or customers.

This work extends the approach of (Schütz et al., 2020) in sev-
eral ways at which the main contributions are

• implementing an efficient multi-threaded LAZ file reader

• emphasizing the importance of fast visualization of arbit-
rary attributes in the context of topographic point cloud
processing pipelines

• performance comparison of loading times with a variety of
open source and commercial point cloud viewer and pro-
cessing software

2. STATE OF THE ART AND RELATED SOFTWARE

The LAS file format is established as quasi-standard exchange
format for point cloud data, especially in the context of air-
borne sensing (ASPRS, 2019). Although it was originally de-
veloped by the American Society for Photogrammetry and Re-
mote Sensing (ASPRS) for handling LiDAR points clouds, it
is nowadays regularly used for image matching point clouds as
well. Virtually all current viewer software can read LAS files
and many of them support colorization based on the standard
point attributes. Depending on the format version and the used
point type, different standard attributes1 are supported, such as
intensity (2 bytes), GPS time (8 bytes), return number, num-
ber of returns, classification (varying sizes), point source id
(1 byte), etc. Some Point Data Record Formats (PDRF) also
support 16 bit RGB values, which are usually used for point
clouds from image matching or hybrid sensor systems (2, 3, 5,
7). The standard PDRFs 8 and 10 additionally provide an 16 bit
nIR attribute. Furthermore, from the initial version of the stand-
ard on, LAS has allowed for appending arbitrary amounts of
bytes to each point. The so called extra bytes allow storing ar-
bitrary user-defined attributes for each point within LAS. Prac-
tical relevance of this smart concept came with the release of
LAS version 1.4, which introduced a new Variable Length Re-
cord (VLR) for describing the stored features in detail (name,
description, data type, scale, offset, and valid sample range).
Although the standard was release in November 2011, there
is still only a handful of software packages that can properly
handle attributes using extra bytes records. Especially for large
point clouds, each additional attribute noticeably increases stor-
age consumption, which is why such features are often imme-
diately dropped after processing or only stored as intermediate
results in internal structures. On the other hand, extracted fea-
tures often describe the local neighborhood of a point which are
useful for subsequent processing steps. Therefore, it is justifi-
able to store attributes in an exchangeable way. Since hardly

1 https://opals.geo.tuwien.ac.at/html/stable/ref_fmt_

las.html
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any point cloud processing software exports computed attrib-
utes into LAS files, it comes as no surprise that only a few point
cloud viewer directly support extra byte attributes.
As an addition to LAS, Martin Isenburg developed a com-
pressed counterpart called LAZ (Isenburg, 2013). It is available
under the liberal LGPL (GNU Lesser General Public License),
which allows integrating the code in open and closed source
applications free of charge. Although LAZ is (currently) not
included in the LAS standard, it has actually increased the sig-
nificance and the spread of the format.

Table 1 lists a range of open source and (free) commercial point
cloud software packages based on software products described
by (Rooms, 2020). Whereas some packages are viewers only,
others provide mature editing functionality. Most commercial
products provide a free standalone viewer. In those cases, the
free viewer rather than the full featured point cloud software is
listed. Although the presented table is not complete, it covers
the most commonly used software packages to the best of our
knowledge. As can be seen, nearly all products support colorz-
ing points based on RGB, intensity, or classification. However,
only CloudCompare, opalsView and Potree (currently under de-
velopment) support colorization based on arbitrary point attrib-
utes. Hence, users often have to misuse standard LAS fields for
transferring non standard attributes between software packages.
This constitutes an unsatisfactory and error-prone solution that
also limits the number of transferable attributes. This is why the
evaluated rendering strategy also focuses on arbitrary attribute
handling and fully supports extra byte attributes stored within
LAS files.

Most software packages use some sort of spatial index struc-
tures allow rendering large points clouds. The only exception is
lasview from LAStools, which thins out the data to a degree that
all remaining points can be directly rendered without any accel-
eration structure in order to get a quick but rough overview of
the data requiring very little memory. However, details get lost
in case of larger point clouds. A few software packages rely
on explicitly created acceleration structures, like e.g. Potree,
Bentley Pointools View, Leica Cyclone TruView or Euclideon.
Such concepts are necessary for rendering multi billion points
or streaming them through the internet. Therefore, they are
typically needed when publishing final results. Some viewers
(CloudCompare, Scene LT, 3DReshaper Free Viewer, etc.) use
a reduced point set while navigating through the data to provide
fluid and smooth motions. After the motion has stopped, miss-
ing points are added. This rendering concept is related to our
method.

In the fields of computer graphics, most work has focused on
rendering large point clouds by creating and rendering hier-
archical level-of-detail structures. Grouping points into a multi-
resolution tree structures, where each node stores a subset or a
representative model of the original model, is the key break-
through for efficient rendering arbitrarily large point clouds on
the GPU. (Rusinkiewicz, Levoy, 2001) was the first using point-
based hierarchical structures to render large meshes. (Dachs-
bacher et al., 2003) and (Gobbetti, Marton, 2004) improved
this concept and offered GPU-friendly structures. (Tredinnick
et al., 2016) and (Ponto et al., 2017) proposed a progressive
rending technique that re-projects the previous frame into the
current one and fills holes by rending additional points. The
full amount of data is visible after a few frames meaning that
the final images is visible. In computer graphics this is often
referred to as convergence is achieved. Their work differs in

that it focuses on hierarchical structures, which is not required
by the evaluated progressive method.

Due to advances of technical devices, computational power and
algorithmic concepts (Stotko et al., 2018) Virtual and Augmen-
ted Reality applications have experienced an signified boost
within the last years. For completeness it is mentioned that the
evaluated progressive rendering method is also suitable for such
applications (Schütz et al., 2020) but a thorough analysis is bey-
ond the scope of this paper.

3. PROGRESSIVE RENDERING

The concept of the evaluated progressive rendering method was
introduced by (Schütz et al., 2020). For convenience to the
reader, a summary with reduced technical details is presented
in the following. The central idea of the evaluated method is
reprojecting visible points of previous frame into the current
frame and filling holes by progressively rendering all points
over multiple frames until convergence. Maintaining real-time
frame rates and keeping the application responsive at all times,
is the sought-after target behaviour. Due to the spatial coher-
ence of consecutive frames, most of the points visible in the
previous frame will also be visible in the final image of the sub-
sequent frame. Furthermore, filling randomly selected rather
than sequentially loaded points, helps to achieve a pleasant and
uniform image convergence.

Next, the necessary data structures, the shuffling algorithm, and
the actual render pipeline is described. The concept especially
considers the possibility of rending arbitrary point attributes and
how they can be switched as fast as possible during rendering.

3.1 Data Structure

Our rendering concept makes use of two main data structures,
on the CPU side for loading and reorganizing the attributes and
one GPU side for shuffling and rendering the points. Since
we require all points loaded into the GPU memory, we aim at
keeping the GPU point size as small as possible, while the en-
tire point set including all attributes is kept in CPU memory.
The latter usually provides more memory and swapping attrib-
ute buffers to disk won’t effect the rendering speed.

To stream attributes with minimal memory bandwidth con-
sumption and, therefore, maximum speed from CPU to GPU,
it is necessary to organize the attributes in a Structure of Arrays
(SoA) fashion. Since point cloud file formats are typically writ-
ten as Array of Structures (AoS), it is necessary to reorganize
the data during loading. On the GPU side, we use a shuffled
vertex buffer with 16 bytes per point: 12 bytes for three reduced
float coordinates and 4 bytes for the displayed attribute. For
single attributes, a 4 byte float value is available, whereas for
RGB each value of the 3 channels is limited to a single un-
signed byte. It is up to the vertex shader to interpret the attribute
data correctly. The actual point data are not directly uploaded
into the vertex buffer. Instead, we use a Distribute buffer with
16 bytes per point during the initial upload and 4 bytes per point
when switching attributes. Finally, a Reproject buffer is used to
store all visible points (coordinates, attribute, and point index
within the VBO) at the end of a frame.

3.2 Incremental Parallel Shuffling

Rendering randomly selected points clearly improves the per-
ceived visual quality during convergence to the final image,
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Software Package License Viewer LAS LAZ extra bytes Attribute based App. type
(Company name) only Attributes Colorization
CloudCompare open source – x x x full standalone
MeshLab open source – – – – RGB, I standalone
ParaView open source – – – – full standalone
Potree/Entwine open source x x x in dev. full in dev. client/server
3DReshaper Free Viewer free commercial x x x – RGB, I, class standalone
Arena4D (Veesus) commercial – x x – RGB, class standalone
Bentley Pointools View free commercial x – – – RGB, I standalone
Capturing Reality commercial – – – – RGB, I, class standalone
EdgeWise (ClearEdge3D) commercial x x – – RGB, I, class standalone
Euclideon commercial x x x – RGB, I, class client/server
FugroViewer (Fugro) free commercial x x x – LAS attributes standalone
VisionLidar LTD (GeoPlus) free commercial x x x – RGB, I, class standalone
lasview (LAStools) mixed – x x – LAS attributes standalone
Leica Cyclone TruView free commercial x – – – RGB, I, class client/server
MARS (Merrick) free commercial x x – – RGB, I, class standalone
opalsView (TU Wien) mixed – x x x full standalone
PointCab commercial – x x – RGB, I, class standalone
Quick Terrain Reader free commercial x x x – RGB, I standalone
(AppliedImagery)
RiProcess (RIEGL) commercial – x x write only LAS attributes standalone
Scene LT (FARO) free commercial – x x – RGB, I, class standalone
TerraScan (Terrasolid) commercial x x x – LAS attributes CAD plugin

Table 1. List of open source and commercial point cloud software products.

compared to rendering points in their original and potentially
sorted order. When points are shuffled while loading, render-
ing N random points is identical to render any N consecutive
points of the (shuffled) vertex buffer. Since we aim to display
points while loading, a shuffling algorithm is required that can
incrementally shuffle points as they become available. We use
an algorithm described by (Preshing, 2012) to compute a per-
mutation of a sequence of numbers [0, ..., P − 1], where P is
a prime that is congruent to 3 (mod 4). This approach maps
each number in the sequence to another number of the same set
without collisions or duplicates. In our case, we use the point
index within the loaded array of points and compute the final
index position within shuffled vertex buffer:

permute(i) =


i2 modP, if i ≤ P

2

P − i2 modP, if i < P

i, otherwise
(1)

Since the formula only depends on the current index and the
prime number, efficient compute shaders can be utilised to copy
points to their final position inside the shuffled vertex buffer
without synchronization between threads. The only precondi-
tion is that the total number of points needs to be known in
advance. This is, however, of minor concern since most file
formats store this information in the header or, else, a conser-
vative estimate is still sufficient. The points above the selected
prime P stay simply unshuffled. There number is so low, that
they won’t affect the visual render appearance.

The disadvantage of the presented prime based permutation al-
gorithm is its relatively low randomness resulting in clearly vis-
ible patterns. Since Equation 1 is bijective, it can be applied
recursively still resulting an unique target index. It turnes out
that a single recursion (i.e. applying the formula twice) result
in a sufficient randomness for our rendering method so that no
patterns can be visually observed any more.

3.3 Loading Strategies

Our rendering method is capable of displaying points while the
remaining data are still being loaded. Therefore, files are loaded

and transformed into GPU friendly buffers, which can then be
efficiently sent to the GPU’s Distribute buffer within the render
loop. We have tested different loading strategies using our own
LAS reader class and LASlib (from LAStools by Martin isen-
burg) for reading LAS and compressed LAZ (Isenburg, 2013)
files. It turns out that the parsing of the LAS byte stream into
GPU friendly buffers is the limiting factor when reading such
files from SSD. Performing the parsing with multiple threads
can clearly speed up the overall loading process. This fact is
even more evident, when reading LAZ file since the decompres-
sion requires much more CPU resources. Since LAZ files are
organised in chunks (50,000 points per default), it is possible to
directly seek to the beginning of such point patches without any
decompression operation. By creating multiple LASlib reader
objects and seeking to different chunks, we were able to read
LAZ files in parallel which increased the reading performance
by a factor of 6 on an Intel hexa-core CPU.

3.4 Rendering Pipeline

The evaluated rendering pipeline reprojects points from the pre-
vious frame into the current and adds missing data by rendering
a certain number of random points. Over the course of multiple
frames, the result will converge to the same image as rendering
all points at once, neglecting render order and z-fighting issues.
The method consists of three steps:

1. Reproject: Render all the points that were visible in the
previous frame, reprojected to the current frame.

2. Fill: Render a batch of random points to fill holes from the
shuffled vertex buffer.

3. Prepare: Create a new vertex buffer from all points that
are visible in the rendered image. This vertex buffer will
be used in the reprojecting step of the next frame.

Reprojecting the visible points from the previous frame is an ef-
ficient method for rendering only a minimal subset of points and
achieving an image that is already close to convergence. Never-
theless, previously occluded parts or parts outside the previous
frustum may become visible. The Fill step tackles those un-
completed regions by adding random points. We chose to fill
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Figure 1. The adaptive fill budget renders a fixed amount of
points first, and then an estimated additional amount that can be

rendered in the remaining time of the frame.

points in a randomly shuffled order which results in a relatively
uniform and visually appealing convergence. Using unshuffled
points which are spatially sorted or structured in some way, will
result in unpleasant flickering artifacts during motion because in
each frame, parts of the image will fully converge, while other
parts will see no progress at all until later frames.
The central challenge of the Fill step is to select the appropri-
ate number points to be render within each frame. If too many
points are added, the frame rate drops and real-time navigation
capability gets lost. On other hand, too few points will increase
the number of frames that are necessary to achieve convergence.
It is impossible to pre-select an appropriate value since render
performance strongly depends on viewpoint, zoom level, data
complexity, and hardware performance of the GPU. Since the
first two parameters change every frame, an adaptive fill budget
strategy was developed that estimates the number of points to
be filled for each frame.

3.5 Handling Point Attributes

As described in Section 1, point-wise attributes are important
features for many different processing tasks. Hence, we see
it as a necessity that the viewer can visualize arbitrary attrib-
utes based on user-defined color maps. Our data sets contain
up to 40 different attributes using up to 100 bytes per point
(bpp). Assuming a graphics card with 8 GB memory, a max-
imum of 8∗10243

100
≈ 85 points can be stored on the GPU. Since

we generally only need up to 4 attributes at once on the GPU,
the remaining attributes unnecessarily consume GPU memory.
Furthermore, our rendering pipeline is also strongly affected by
memory bandwidth, because the Reproject vertex buffer is re-
computed each frame. More bytes per vertex results in slower
buffer generation and reduces the adaptive fill budget. Con-
sequently, we limit the GPU points size to 16 bytes, comprising
of 3 · 4 = 12 bytes for the XYZ coordinates and another 4 bytes
encoding 1-4 attributes. Hence, we can store many more points
on the GPU, namely 8∗10243

16
= 536M points (assuming again

8 GB GPU memory). In reality, the entire GPU memory will not
be available, since other parts of the viewer and other applica-
tions including the operating system also require some GPU
memory.

In order to be able to instantly visualize any attributes, we keep
them in main memory and stream them to the GPU based on
user requests. At the start of each frame, the main thread
sends multiple patches of attributes to the GPU. A compute
shader distributes the vertex attribute data to the respective
vertices with the same shuffle algorithm as during the initial
loading step, thereby overriding the previous vertex attribute
data. Streaming a new attribute from CPU to GPU happens at
rates of 125-800 million points per second depending on GPU
memory speed and attribute size. For the Vienna data set with
124M points, switching attributes takes 0.155-0.356 ms on a
RTX 2080 TI, whereas on the GTX 1650 and the GTX 1050
TI switching times are approx. twice as long.

4. EVALUATION

In the following section our viewer concept is tested and evalu-
ated with the data sets shown in Figure 2. We provide a compar-
ison by listing the loading times of selected software packages
(cf. Table 1). The list of investigated software mainly focuses
on freely available packages. Although a comparison of frame
rates, render performance and quality is also of interest2, the
rendering and navigation strategies vary strongly among differ-
ent products, which complicates the definition of appropriate
measures. Therefore, we limit the comparisons to loading times
.

When it comes to visualising arbitrary attributes directly from
LAS files, the software list reduces to the following packages:
CloudCompare, opalsView, and Potree/Entwine. Although Po-
tree and Entwine are fully capable of storing arbitrary attributes
in their hierarchical structures, the actual viewing part currently
cannot utilize the additional attributes for visualization.3 Never-
theless, we still put them into the category of ’arbitrary attribute
viewers’ . All tests were performed on a standard desktop com-
puter equipped with the following hardware: Intel Core i7-4771
3.5 GHz CPU (4 cores/8 threads), NVIDIA GeForce GTX 1650
GPU with 4 GB GPU memory, 120 GB Intel + 1 TB Samsung
860 EVO SSD, and 16 GB RAM.

4.1 Data Sets

The performance analyses were carried out using four different
data sets: Three Airborne Laser Scanning (ALS) point clouds
with 19M, 124M, and 407M points, respectively, and one Ter-
restrial Laser Scanning (TLS) point cloud with 208M points as
described in Table 2. The two smaller data sets (Forest and Vi-
enna) existed in two different variants: With standard LAS at-
tributes (point record format 1 and 2, respectively) and with an
extended attribute set (31 and 40 attributes in total). The latter
is used for testing the attribute capabilities of different software
packages.

4.2 Performance Analyses

The performance analyses were carried out in two groups, (i)
software packages that only support standard attributes and (ii)
point cloud software supporting the full set of attributes stored
in LAS extra bytes. In the first group, all four data sets were
tested and for the Forest and Vienna data set only the standard
LAS attributes were used. Table 3 shows considerable differ-
ences between LAS and LAZ reading performance. Whereas
some packages read the same content from compressed LAZ
nearly as fast as from uncompressed LAS, others are up to 3
times slower. In cases were no obvious log file or log window
existed, loading times were measured by hand. The timer was
started when the actual import began and stopped when a point
cloud was displayed or a finished import dialog was presented
(i.e. some user interaction was required).

The last two columns of Table 3 show the points per second
loading performance averaged over all four data sets. It clearly
shows the outstanding performance of our concept. Whereas
LAS files are read more than 5 times faster in average compared
to other software packages, LAZ files are read even faster: our
multi-threaded LAZ reader is in average more than 10 times

2 Details on our method are given in (Schütz et al., 2020).
3 This is feature is currently being developed.
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Data Set File Size [GB] #points #attributes bpp Density Area Acquisition Sensor
LAS LAZ [Mio] pt / m2 km2 RIEGL

Forest (standard) 0.52 0.18 19.2 11 28 136 0.14 ALS RIEGL LMS-Q1560
Forest (extended) 1.8 1.0 19.2 31 100
Vienna (standard) 3.1 1.2 124.5 15 36 56.43 2.58 ALS RIEGL LMS-Q1560
Vienna (extended) 10.6 5.3 124.5 40 88
St. Elisabeth 5.7 1.7 208.6 12 28 34 T 0.01 TLS RIEGL VZ-2000i
Morro Bay 13.5 1.8 407.0 13 34 22.06 18.45 ALS Leica ALS70 + Optech Orion

Table 2. Key parameters of used data sets. For data set Forest and Vienna standard and extended attribute sets are available. ALS:
Airborne Laser Scanning. TLS: Terrestrial Laser Scanning.

(a) Forest (b) Vienna (c) St. Elisabeth Church (d) Morro Bay

Figure 2. Data sets used in this paper

faster. The only tested software that comes close to the pro-
gressive rendering method is the Merrick Advanced Remote
Sensing Software (MARS) package. For the Morro Bay data
set, MARS displays a strongly reduced point cloud after 54 s
already. However, it takes at another 39 s with heavy SSD ac-
cess before one can navigate within the point cloud. So the real
import duration is rather above 90 s. We acknowledge that some
of the tested software use accelerations structures for support-
ing sophisticated feature analysis, which slows down loading
times. Since we do not generate any spatial index, such fea-
tures may not be provided if not implemented directly on the
GPU.

From a practical point of view, displaying points while load-
ing and still providing a responsive 3d windows is a valuable
feature that can clearly speed up certain operations. An incor-
rect specified file can be usually identified after a few seconds
of loading. In other viewers one has to wait til the file is fully
loaded before realizing ones error. In some situations the object
or area of interest is maybe fully loaded at the begin. Due to the
responsive navigation, the user can instantly inspect the object
and could be finished even before the file is fully loaded.

From the authors point of view, however, one of the most
valuable feature of the presented viewer is the capability of
efficiently visualizing arbitrary point attributes of large point
clouds, as shown in Figure 3. To the best of our knowledge,
there are only three other viewers that can directly visualize ar-
bitrary extra bytes attributes from LAS and LAZ files. Hence,
the full set of attribute evaluation test was limited to four soft-
ware packages. Besides the loading times of the extended
LAS/LAZ files, also the duration of switching attributes was
investigated. Comparing the last two columns of Table 3 and
Table 4, it is clearly visible that the overall performance meas-
ured as points-per-second has dropped. This is not surpris-
ing since the extended files are 3-5 times larger. The actual
throughput performance in bytes stays roughly the same. Our
method also outperforms the other packages in switching attrib-
utes. However, from a practical point of view this is of minor
concern, as even the slowest measured switching duration of
4.4 s is still acceptable.

For completeness it is mentioned that a standard desktop com-
puter with medium performance was deliberately selected for
testing. 4 GB GPU memory is actually not enough to fully up-
load the Morro Bay data set, since 407M points with 16 bytes
per point results in a memory consumption of 6.1 GB. Graph-
ics card drivers usually implement a shared memory concept by
occupying CPU Ram when needed. Due to this inherent mech-
anism, it was possible to load the Morro Bay point cloud where
3.4 GB GPU and 4.5 GB shared memory were used. When
the computer started to use shared memory, the loading pro-
cess perceivable slowed down and responsive navigation got
lost for about 20 s. Once the file was fully loaded, the navig-
ation became smooth again. Using a better graphics card (e.g.
NVidia RTX 2080 Ti with 11 GB), the file was loaded in about
14 s and the viewer was responsive at any time (see https:

//www.youtube.com/watch?v=YFAThGdXL8s and (Schütz et
al., 2020)). The limited GPU and CPU memory has presum-
ably affected the performance of other tested software as well,
specially for the larger data sets. Hence, a more powerful sys-
tem would have decreased the import duration, but the overall
trend and ratios between the different products should roughly
stay the same. This will be verified in future tests. It should
be noted that all tests were made on SSDs only. Import res-
ults and ratios between different software and formats may be
significant differently on hard disks, but definitely slower.

5. DISCUSSION AND CONCLUSION

In this investigation, we make use of a progressive rendering
method that can render any point cloud that fits in GPU memory
in real time without the need to generate acceleration structures
in advance (Schütz et al., 2020). The central idea is to distrib-
ute the actual rendering over multiple frames til convergence is
achieved. The method reprojects visible points from the previ-
ous into the current frame and randomly adds points to generate
visually appealing results. Points are displayed already while
loading but in a way, that the applications stays responsive at
any time.

Point-wise attributes are important features throughout the en-
tire processing pipeline. Tasks like outlier detection, georefer-
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Forest / 28 bpp Vienna / 36 bpp St. Elisabeth / 28 bpp Morro Bay / 34 bpp avg. Mio pts / s
LAS LAZ LAS LAZ LAS LAZ LAS LAZ LAS LAZ

Evaluated Method 00:01 00:02 00:07 00:20 00:18 00:32 01:07 01:01 13.6 7.2
CloudCompare 00:19 00:32 01:54 03:43 03:26 06:08 08:12 10:45 1.0 0.6
Entwine4 00:36 00:48 04:48 06:23 08:03 10:30 15:50 18:54 0.5 0.4

FugroViewer 00:08 00:22 –1 –1 –1 –1 –1 –1 2.4 0.9
QT Reader 00:05 00:19 00:39 02:12 01:07 03:43 03:58 –2 2.9 1.0
SCENE LT 00:16 00:29 01:40 03:17 02:59 04:58 06:29 06:59 1.2 0.7
VisionLidar 00:17 00:53 01:40 06:09 03:03 09:20 08:31 17:07 1.1 0.4
3DReshaper 00:11 00:23 00:55 02:14 01:40 03:41 5:36 07:25 1.8 0.9
MARS3 00:02 – 00:24 – 00:25 – 00:54 – 7.6 –
ReCap 01:43 01:53 10:57 12:21 11:32 13:36 36:15 38:00 0.2 0.2
Arena4D VPC Creator4 00:40 00:51 04:23 05:46 03:57 06:08 15:38 19:16 0.6 0.4

Table 3. Import/Loading duration [mm:ss] for LAS/LAZ files with standard attributes. 1Crash while loading. 2Loading aborted
without message. 3Loading without indexing/No LAZ support. 4Hierarchical Structure Generator only.

Forest / 100 bpp Vienna / 88 bpp avg. Mio pts / s
Loading Switching Attr. Loading Switching Attr. Loading

LAS LAZ min [s] max [s] LAS LAZ min [s] max [s] LAS LAZ

Evaluated Method 00:04 00:15 0.08 0.09 00:19 01:07 0.6 0.7 5.64 1.56
CloudCompare 00:47 02:06 0.41 0.51 07:04 11:23 2.21 4.41 0.35 0.17
opalsView 01:20 02:23 2.11 2.21 –2 –2 –2 –2 0.24 0.13
Entwine3 01:07 02:34 15:22 19:47 0,19 0,08

Table 4. Loading [mm:ss] and Switching Attribute [s] duration for LAS/LAZ files with extended attributes. 1Hand stopped. 2Out of
memory. 3Hierarchical Structure Generator only.

(a) Planarity: For identifying planar regions (b) NormalizedZ: Height above terrain

(c) EchoRatio: Vertical penetration measure (d) NormalSigma0: For detecting smooth or rough areas

Figure 3. Visualisation of Different Attributes

encing, segmentation, semantic classification, and change de-
tection all make use of various attributes during computation.
Although such computational intensive steps are often carried
out offline, a visual inspection of the point data including their
attributes is usually needed at various stages of the processing
pipeline. Since such pipelines often utilize application specific
spatial indices different from the hierarchical acceleration struc-
tures generally used for rendering, productivity is improved if
the generation of such structures can be omitted for viewing
the data. On moderate GPU hardware with 4 GB memory, our
method can rapidly render up to 250M points. In general, visu-

alizing larger point clouds is still be possible, but partly reduced
loading performance and navigation speed have to be accep-
ted due to the limited bandwidth of shared CPU memory. On
high-end graphics cards with a lot of GPU memory, the number
of renderable points linear increases with the size of the GPU
memory. Our method has been successfully tested on a RTX
Titan with 24 GB memory rendering 1 billion points.

Currently our method has a large CPU memory footprint since
the full point clouds including all attributes are kept in memory.
Due to its organisation as structure of arrays (see 3.1), it is
straight forward to write back attributes into separate binary
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files after they have been loaded. Once attribute files have been
created and relevant data uploaded to GPU, its CPU memory
can be released. When switching attributes, the corresponding
attribute file can be loaded and directly uploaded to the GPU.
If those temporary attribute files are placed on an SSD, the fi-
nal attribute switching duration is hardly affected due to the
fast reading speed of today’s SSDs on large files (typically >
500 MB/s).

Our tests have shown that the reading speed of LAZ files can
be dramatically improved if the file is read/parsed with mul-
tiple threads. LAZ files are organized in chunks (50K points per
default), which can be directly accessed and parsed in parallel.
Based on the LASlib, our implementation was able to read LAZ
files up to 6 times faster than in standard single thread mode.
Finally, we want to encourage other developer to fully support
extra byte attributes in their software. The LAS file format al-
lows exchanging arbitrary point-wise attributes in a flexible and
efficient manner.
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