
Hierarchical Multi-resolution Data
Structure for Molecular

Visualization

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Visual Computing

by

Milena Nowak, BSc
Registration Number 0927584

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dipl.-Ing. Dr. techn. Stefan Bruckner

Vienna, 27th July, 2020
Milena Nowak Stefan Bruckner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Milena Nowak, BSc
Speckbachergasse 13, 1160 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. Juli 2020
Milena Nowak

iii

Acknowledgements

There is a reason the first person who receives thanks is generally the person who
supervised the thesis. In Norwegian, the role is described as "leading the way" towards
finishing a degree. That job, it turns out, involves a lot of work. Therefore, I would first
and foremost like to thank Stefan Bruckner for his patience and clarity.

But academic support is not the only kind needed, so my thanks also go to Marte, who’s
company made long working hours during short autumn days a lot more pleasant, and
Rebecca, for her invaluable moral support and feedback.

I would also like to thank everyone who made it possible for me to spend most of my
degree in Bergen, as well as my family for making it clear that I have their support - and
a home - no matter where I am.

v

Kurzfassung

Biomolekulare Datensätze sind nicht nur komplex, sie wachsen auch mit der Entwicklung
des Forschungsgebietes. Um ihre Eigenschaften zu erforschen, verwenden Experten un-
ter anderem dreidimensionale Modelle der Datensätze, die aus Millionen individueller
Moleküle bestehen. Bei der visuellen Analyse der Modelle kann es außerdem hilfreich
sein, durch verschiedene Darstellungsformen strukturelle Eigenschaften zur Geltung zu
bringen. Daher gibt es einen Bedarf an flexiblen Datenstrukturen, die es ermöglichten,
effizient mit solche Datensätze zu arbeiten.

Vorhandene Lösungsansätze im Bereich großer, auf Punktwolken aufbauender Datensätze
verwenden in den meisten Fällen rasterbasierte Strukturen in verschiedenen Auflösungen.
Andere Publikation konzentrieren sich dagegen auf die Verbesserung der Oberflächendar-
stellung, oder auf sich wiederholende Strukturen innerhalb großer Datensätze.

Wir schlagen eine Octree Datenstruktur vor, die die Daten räumlich so aufteilt, dass
jeder Datenblock eine ähnliche Menge Datenpunkte beinhaltet, und mehrere, interpo-
lierbaren Auflösungsstufen zur Verfügung . Der Aufbau der Datenstruktur erfolgt in
einem Vorverarbeitungsschritt, dessen Resultat gespeichert wird, und daher nur ein
Mal nötig ist. Zusätzlich effektivieren wir die Darstellung durch die Verwendung eines
Least Recently Used Cache, der das Laden sichtbarer Datenblöcke verwaltet, und durch
perspektivenabhängige Detaildarstellung.

In unserer Auswertung zeigen wir, dass insbesondere das Anpassen des dargestellten
Detailgrades die Frameraten signifikant erhöht. Die Kombination einer höheren Auflösung
im Vordergrund, bei gleichzeitiger Reduktion der Daten im Hintergrund, erhöht die
Geschwindigkeit deutlich, ohne, dass die visuelle Qualität beeinträchtig wird. Durch
die Optionen, Details zu reduzieren und nur Datenblöcke zu laden, die im Blickfeld
der Kamera sind, wird es möglich, Datensätze anzuzeigen, die ansonsten die Kapazität
der uns zur Verfügung stehenden Ressourcen überlasten würden. Der Vorteil der auf
der Dichte des Datensatzes basierenden räumlichen Aufteilung im Gegensatz zu einer
regelmäßigen Aufteilung zeigt sich besonders bei der Verwendung von Algorithmen, die
bei der Berechnung Nachbarschaften in Betracht ziehen. Das könnte insbesondere bei
der Implementierung eines Solvent Excluded Surface (SES) Oberflächenmodelles, einer
der wichtigsten, aber rechnerisch aufwändigen, Darstellungsformen solcher Datensätze,
von großem Vorteil sein. Die von uns vorgeschlagene Datenstruktur ist für Datensätze
optimiert, die mehrere Millionen Punkte in einem einzigen Zeitschritt beinhalten.

vii

Abstract

The complexity of biomolecular data sets is both high, and still rising. Three-dimensional
models of molecules are used in research to test and investigate their properties. Such
models can consist of several millions of atoms. Additionally, visual enhancement methods
and molecular surface models are helpful when visualizing molecules. There is therefore a
demand for efficient and flexible data structures to accommodate such large point-based
data sets.

Existing solutions in the field of molecular visualization for large data sets include the
use of, in most cases, regular grid-based data structures, as well as levels of detail. Other
papers focus on repeating structures or improving the efficiency of surface models.

We propose an octree-based data structure that divides space into areas of similar density,
and provides several levels of detail. Our approach is optimized for a single time-step,
moving much of the computational overhead into a pre-processing step. This allows us to
speed up frame rates for interactive visualizations using visibility culling, least recently
used caching based on the pre-built octree data structure, and level of detail solutions
such as depth-based level of detail rendering.

In our evaluation, we show that level of detail rendering significantly improves frame rates,
especially in the case of distance-based level of detail selection while keeping the amount
of details in the foreground high. Both the possibility to reduce the resolution and the
caching strategy that allows us to only upload visible parts of the data set make it possible
to render data sets that previously exhausted the capacities of our test set-up. We found
the main advantage of a density based octree, instead of a regular division of space, to be
in neighbourhood-based calculations, such as the clustering algorithm required to build
levels of detail. This could prove particularly useful for the implementation of a Solvent
Excluded Surface (SES) representation model, which would be an important feature to
include when developing the framework further.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Background . 2
1.2 Motivation . 4
1.3 Contribution . 5
1.4 Structure . 5

2 State of the Art 7
2.1 Frameworks and Systems for the Visualization of Biomolecular Data . . . 7
2.2 Rendering of Point-based Data . 11
2.3 Methods for Handling Large Point-based Data Sets 14
2.4 Biomolecular Representation Models and Enhancement Methods 21
2.5 Summary and Conclusion . 23

3 Data Structure 25
3.1 Overview of the Components for CPU Data Handling 26
3.2 The Octree Data Structure . 27
3.3 Summary and Conclusion . 37

4 Rendering 39
4.1 Managing and Rendering the Octree Data Structure 39
4.2 Smoothly Blending Between LODs . 47
4.3 Molecular Surface Rendering . 50
4.4 Visual Enhancement for Molecular Rendering 54
4.5 Summary and Conclusion . 59

5 Implementation 61
5.1 Libraries . 62
5.2 Implementation Choices . 63

xi

6 Results 67
6.1 Test Data . 67
6.2 Configuring and Pre-processing the Data Structure 67
6.3 Rendering . 70
6.4 Enhancement Methods . 80
6.5 Conclusion and Comparison to Similar Solutions 83

7 Discussion 91

8 Conclusion 95

List of Figures 97

List of Tables 99

Bibliography 101

CHAPTER 1
Introduction

The art and science of visualization itself long predates the field of visual computing.
Within literature, several varying definitions of the term visualization exist. Broadly
speaking, visualization could be described as the meaningful transformation of data
or information into graphical representations. More specifically, according to Senay
and Ignatius [SI94], "The primary objective in data visualization is to gain insight
into an information space by mapping data onto graphical primitives." The necessary
ingredients are therefore data that you want to explore or explain, suitable tools to
achieve the desired illustration or rendering, and of course certain skills and knowledge
to do it successfully. Traditional visualization techniques generally rely on hand-drawn
2D illustrations. Possibly the most well-known historical example of 2D visualization is
an 1869 graphic by Charles Joseph Minard shown in Figure 1.1a. It depicts the march of
Napoleon’s army into Russia in 1812 and 1813, and according to Tufte [Tuf83], "It may
well be the best statistical graphic ever produced.”

The same frameworks and techniques that are used to communicate patterns or interesting
features in a data set, can often also be used to explore data. The term scientific
visualization often refers to a specific type of data visualization, created in order to
communicate or explore data obtained in a scientific field. Senay and Ignatius [SI94] focus
their definition on the aspect of exploration, stating that "Scientific data visualization
supports scientists and relations, to prove or disprove hypotheses, and discover new
phenomena using graphical techniques." Another similarly famous historical visualization,
the map of the cholera outbreak in London in 1854 by Dr. John Snow, is an example of
data visualization being used to investigate a hypothesis. Using the statistical visualization
shown in Figure 1.1b, Dr. Snow was able to support his hypothesis that the epidemic
was caused by water from a contaminated well, and convince the authorities to remove
the handle of the well. While Tufte [Tuf97] points out that it is problematic to use
density based visualization techniques without factoring in population density, the graphic

1

1. Introduction

remains famous as it was used to successfully explore and convincingly communicate a
hypothesis that was later proven to be correct.

Our work is concerned with molecular visualization, which can be considered a specific
branch of scientific data visualization. The definition given by Senay and Ignatius is
particularly relevant to our work, which focuses on facilitating interactive exploration of
molecular data. As we will see in Section 1.1, there are several widely used conventions on
how to visualize molecules using computer graphics. An example of non-digital 3D data
visualization from the field of molecular graphics is the original so-called ball-and-stick
model, developed by August Wilhelm Hofmann. He built the models for explaining
structural formulae out of croquet balls and presented them while lecturing in London in
1865 (see Travis [Tra92]). Versions of the ball-and-stick model are still used in current
molecular visualizations in the field of computer graphics.

1.1 Background
Before moving on to the question of how we use scientific visualization in the field of
biomolecules, a look at the basics of the matter to be visualized provides some useful
context. In the introductory remarks of his book on molecular cell biology, Lodish [Lod00]
explains the convoluted structures biological matter consists of. Within an organism,
there are organs, which consist of tissue, those in turn consist of cells, and cells are
composed of atoms. All biological systems are made up of the same types of atoms and are
organized based on similar principles at the cellular level. Biomolecules are divided into
macromolecules, such as proteins, lipids, and nucleic acids, and small molecules. Molecules
are the material from which cells are built, but they also have other functions, such as
carrying messages from cell to cell. Albeit a very short summary of the complex topic of
molecular biology, this should provide some idea of why improving the understanding of
what he calls "the molecules of life" is important. Lodish suggests that in order to learn
about biological systems, we have to regard them one segment at a time. In order to do
that, it is helpful to have suitable visualizations at one’s disposal.

To make molecular structures intelligible, including their properties and interactions, is
the primary purpose of molecular visualization according to Kozlíková et al. [KKF+17].
They also provide an overview over the history of molecular illustrations prior to the
digital age. Before (interactive) visualizations could be created by computer graphics,
depictions were drawn by hand. Atoms were already illustrated as spheres in the 17th
century. In 1873, van der Waals [VdW73] approximated the volume occupied by individual
atoms and molecules using experiments. The resulting approximate radii for chemical
elements have been used to visualize atoms and molecules ever since. More elaborate
atomic models described in the early 20th century lead to suggestions of more detailed
illustrations. However, the majority of recent papers on molecular visualizations we
reviewed in the context of this work still use van der Waals spheres as the basis of their
visualizations.

According to Francoeur [Fra02], the earliest efforts to use computer graphics to create

2

1.1. Background

(a) The visualization refered to as "Napoleon’s March" designed by Minard in 1869 is a much
cited example of data or information visualization. (From Tufte [Tuf83], who considers this to be
an excellent statistical graphic)

(b) Dr. Snow used a map-based visualization of
a part of London that was hit particularily hard
by the cholera epidemic in 1854 to convince
authorities of his hypothesis that th origin of
the epidemic was a contaminated well. (From
Tufte [Tuf97])

(c) Illustrations of the so-called ball-and-stick
molecular model made from croquet balls that
were introduced by Hofmann in 1865. (From
Travis [Tra92])

Figure 1.1: Historical examples of data visualizations

3

1. Introduction

interactive representations of molecular structures were made by a team around Cyrus
Levinthal at the Massachusetts Institute of Technology in the mid-1960s. Techniques
in the subfield of the interactive visualization of biomolecular structures have mostly
been developed during the last two decades (see Kozlíková et al. [KKF+17]). Marschner
and Shirley [MS15], define computer graphics as "any use of computers to create and
manipulate images", which includes technical illustrations and animations. When the
aim is an interactive application, as is the case in our work, the particular challenge
is to create the images within the required time frame, that is generally in real-time.
Martin [Mar65] points out that different authorities define the term real-time differently.
So rather than specifying any particular frame-rate, he defines a real-time system as one
which receives and processes data, and returns the results "sufficiently quickly to affect
the functioning of the environment at that time.", which is a rather system-oriented
definition. Laplante and Ovaska [LO11] introduce the term with the claim that most
people would understand real-time to mean something along the lines of "at once" or
"instantaneously". As an intuitive definition, they call a system interactive when, in order
to avoid system failure, it needs to process information within a specified interval, which
is similar to the definition given by Martin [Mar65]. The literature we reviewed, generally
uses the term real-time without giving a precise threshold in terms of frames per second
(fps), but rather provides the reader with the achieved frame-rates. As an approximate
guideline, we can point to the speed at which the human eye can process images, which
is 10-12 images per second, or the speeds used in film making history, 16 or 24 frames
per second (see Read and Meyer [RM00]).

1.2 Motivation
The basic question of why biomolecules are worth investigating should, among other
possible answers, be answerable by the simple fact that they are the building blocks
the human body is made of. When it comes to why we need visualizations, Jones
et al. [JJS05] point out that there are chemical phenomena that require visualization
tools to investigate and describe them, as they are not obvious without visualization.
They also note that such tools can be used to visually communicate complex molecular
interactions and dynamics that are difficult to describe using only words. In particular,
the interactive visualization of complex molecular data is highly valued by domain experts.
Craig et al. [CMB13] emphasize that interactive animations can communicate structural
information much more effectively than static images.

An important computational aspect of the complexity of molecular data is the amount
of data to be processed at interactive rates. Molecular structures can contain millions
of atoms, creating very large data sets. For example, the largest single molecule we
use in our tests, contains 2,440,800 atoms, while our largest artificially created test set
contains 122,040,000 atoms. As we will see in Chapter 2 and Chapter 3, there are certain
limitations to the amount of data that can be processed at the same time. While the
exact constraints depend on the system, the fact that there is a limit remains true across
hardware and software capabilities.

4

1.3. Contribution

According to our research, atoms in most molecular data sets are represented as point-
based data (see Chapter 2). It is therefore possible to take inspiration from existing
solutions for large point-based data sets. However, molecular data sets pose some specific
challenges that are not necessarily relevant for other point-based data sets. In particular,
several different surface models for molecular representations have been proposed and
are requested by domain experts. Notable surface models include the Solvent Accessible
Surface (Lee and Richards [LR71]), Solvent Excluded Surface (Richards [Ric77]), Ligand
Excluded Surface (Lindow et al. [LBH14]), and the Gaussian Surface (Blinn [Bli82]).
These are, in various degrees, computationally expensive and partially dependent on
neighborhood queries (for more detail see Chapter 2 and Chapter 4 or refer to Kozlíková
et al. [KKF+17]). Our aim is to implement a data structure for point-based molecular
data that is efficient for neighborhood queries, and flexible in rendering the data.

1.3 Contribution
We propose a hierarchical multi-resolution structure based on an octree, and levels of
detail. The data structure, including levels of detail, is built in a pre-processing step
once, and then stored for later use. All levels are therefore available at runtime, allowing
smooth interpolation between resolutions. Many of the octree-based solutions we came
across in our research divide the data set in a regular way and use the internal nodes of
the octrees to store different levels of detail. In contrast to this approach, we divide the
data set spatially on the original level of detail. The spatial extent of an individual block
or node in the tree is determined by the number of data points within it. A block in a
sparse region can thus have a larger spatial extent or bounding box than one in a dense
region. We store the data for all levels of detail in the leaf nodes. This approach combines
many of the advantages of regular grids, such as the possibility to "pick and mix" different
resolutions for individual blocks, with advantages of hierarchical spatial division, for
example greater control over the amount of data stored in each leaf. We demonstrate
the use of our modular structure for optimization strategies including coarse visibility
culling, mixed levels of detail, depth-dependent level of detail, and data management
via a least recently used (LRU) cache. As our basic surface rendering model, we provide
an implementation of the Gaussian Surface Model as proposed by Bruckner [Bru19]. In
addition, we include enhancement options such as depth of field and ambient occlusion.
The project is implemented in C++ and OpenGL.

1.4 Structure
After analyzing the current state of the art in Chapter 2, we first introduce our data
structure (Chapter 3), and then go on to rendering aspects of our implementation
(Chapter 4). In the chapter concerning the data structure, we focus mainly on the
CPU side of the implementation, explaining the division of data into an octree, and the
clustering-based level of detail calculation. The chapter on rendering includes both GPU
and CPU components, including the LRU cache, level of detail blending, and screen-space

5

1. Introduction

enhancement and surface methods. In a separate implementation chapter (Chapter 5),
we provide additional information about libraries, choice of important data types, and
other factors that concern the concrete implementation in C++/OpenGL, rather than
algorithms and concepts. Finally, we provide numerical and visual results (Chapter 6),
and discuss applications and limitations (Chapter 7)

6

CHAPTER 2
State of the Art

In our work, we aim to render large sets of biomolecular data at interactive rates, and
build a framework that allows the efficient calculation of neighborhood-based algorithms.
Rendering biomolecular data has a long history in visualization and computer graphics.
Individual atoms are usually defined by their position and rendered as spheres, so they
can be considered point-based data. Similar data sets based on points are also used
for other visualization tasks, for example fluid simulations. The individual data points
are commonly called particles, especially when they are the result of a simulation. We
start this chapter by giving an overview over previous work in the field of biomolecular
visualization. In the following section, we take a closer look at point-based rendering
methods. As our goal is to enable real-time rendering of large data sets, we look into
previous work specifically targeting large point-based data. Here, we pay particular
attention to the proposed data structures and level of detail methods. In the final part
of this chapter, we cover research on the representation of biomolecular data, as well as
enhancement methods for point-based data.

2.1 Frameworks and Systems for the Visualization of
Biomolecular Data

The data we visualize is biomolecular data consisting of up to a couple of millions of
atoms. Our aim is interaction in real-time, and in our current implementation, we focus
on a single time-step. In this section, we look at implementations that propose solutions
to very similar challenges. In a recent state of the art report, Kozlíková et al. [KKF+17]
give an extensive overview over developments and results in the field of visualization of
biomolecular structures.

Many researchers publish the results of their work in the form of toolkits. It is outside
the scope of this thesis to compile a comprehensive list, so we only mention some of the

7

2. State of the Art

most well-known and relevant available tools. The following papers give a more detailed
overview over toolkits: Chavent et al. [CLK+11] focus on tools and implementations that
use the GPU to accelerate the visualization of large molecular data sets. Johnson and
Hertig [JH14] provide a well-structured overview over tools and methods for the visual
analysis and communication of biomolecular data from a user’s point of view. Dubbeldam
et al. [DVVC19] present a survey of existing (bio-)chemical tools and visualization
software.

An early example of a toolkit for molecular visualization is RASMOL, a molecular
visualization tool presented by Sayle and Milner-White. [SMW95]. One of the most
frequently cited tools is VMD by Humphrey et al. [HDS96]. It is mainly used for molecular
dynamics simulations. Both Chimera by Pettersen et al. [PGH+04] and PyMOL by
Schrödinger et al. [Sch15] are popular extendable frameworks for molecular data mostly
written in Python. Herraez [Her06] proposes JMol as a tool to investigate biomolecular
data, but also emphasizes possibilities to integrate it into educational web pages. Paraview
by Ahrens et al. [AGL05] is frequently used for large molecular data sets, though it is a
visualization tool made to handle large point-based volume data sets generally. Megamol
by Grottel et al. [GKM+14] is another framework with the capability to render different
kinds of point-based data, though its focus is on molecular data. They use a combination
of GPU rasterization, ray-casting of glyphs, and image-space filtering to interactively
render millions of atoms.

Though we focus on a single time-step in our implementation, molecular dynamics
simulation implementations often apply similar optimization strategies to ours, as they
usually have to handle very large data sets. The main difference is that the trade-off for
computationally expensive pre-processing is more problematic when rendering animations.
Hao et al. [HVS04] for example choose to use a simpler data structure, as they aim to
render multiple time steps without a significant amount of pre-processing. Instead, they
focus their efforts on occlusion culling schemes and levels of detail. Max [Max04] renders
large molecular data sets at interactive rates. He also focuses on a single time step,
and achieves interactivity by using a hierarchical level of detail data structure. He uses
individual atoms as leaves in their tree. In contrast, we use leaf nodes to group the data
into neighborhood clusters. Sigg et al. [SWBG06] use GPU splatting of molecular data.
Their implementation is somewhat similar to ours, as they use the same kind of data
and visualize it based on vdW surfaces. However, they do not use any advanced data
structure and only render data sets up to several thousands of atoms in real-time.

Sharma et al. [SKNV04] present an approach to interactively visualize large atomistic
data sets. They use a hierarchical view frustum-culling algorithm based on an octree
data structure to remove atoms outside the field-of-view. Then, they select atoms which
have a high probability of being visible. The selected atoms are rendered as spheres at
various LODs, with a resolution derived from an exponential function of the distance
from the viewer. They do not include any advanced surface visualization techniques
in their viewer. Their octree consists of three levels. Each octree node contains the
coordinate bounds of its subspace. A node at level 2 contains a pointer to a structure

8

2.1. Frameworks and Systems for the Visualization of Biomolecular Data

Figure 2.1: Octree data structure by Sharma et al. [SKNV04] that divides the data set
into three levels of detail, as illustrated in their publication

that stores the atom data within its bounds, as illustrated in Figure 2.1. This is a similar
approach to ours, though we do not use a fixed number of levels. Instead, we subdivide
each region until no node contains no more than the given maximum amount of atoms.

Grottel et al. [GRDE10] present a visualization framework for molecular dynamics
simulations. They choose a simple data structure and rather focus on optimization
strategies. They employ several different methods: data quantization, data caching in
video memory, and a two-level occlusion culling strategy involving hardware occlusion
queries and maximum depth mipmaps. As molecular dynamics usually implies time-
dependent data sets, a particular aim is to alleviate the data transfer bottleneck. Lindow
et al. [LBH12] render large molecular data sets by making use of repetitive components
found in molecular data. According to the authors, their work is closely related to that of
Sharma et al. [SKNV04], and Grottel et al. [GRDE10]. They store atoms of individual
components in a grid. The grid is then stored in a three-dimensional texture. This
texture is then rendered using ray-casting in an approach similar to methods proposed
for volume rendering. Materials are rendered at atomic scale, bridging five orders of
magnitude in scale from the smallest details to the overall structure of the data sets.
They exploit the fact that biological structures consist of many recurring molecular
substructures. Each recurring component is represented by a single grid. All instances
of a component are rendered by applying different transformations to that grid. The

9

2. State of the Art

authors use a ray-casting algorithm similar to classical voxel rendering methods which
utilizes the bounding box of the data. Ray-casting is implemented in the fragment
shader. Occlusion culling is accomplished implicitly on the atomic level, based on the
underlying grid. Additionally, they use deferred shading to emphasize the global shape of
biological structures. Falk et al. [FKE13], who extend the algorithm proposed by Lindow
et al. [LBH12], use the same kind of data sets, which consist of many instances of only a
couple of different molecules. The biggest change they propose is hierarchical ray-casting.
When a traversed grid cell only covers one pixel, the algorithm does not render the data,
but only determines whether the cell is empty or not by making a texture lookup. The
same principle is used on entire molecules in the scene when their bounding box only
covers one pixel. Le Muzic et al. [LMPSV14] optimize this approach by using a LOD
scheme and by building visualization elements on the fly rather than using a grid, which
allows them to alter atom positions dynamically. They store atom positions in a texture
buffer, and use tessellation and geometry shaders to emit atoms, trying to maximize the
amount of atoms emitted per vertex call. In addition, they also make use of repetitive
structures. Parulek et al. [PJR+14] focus on supporting computationally expensive
surface abstractions in real-time for large individual molecules. They achieve that by
building a hierarchy based on spatial clustering in a bottom up approach. Clusters are
formed based on their location, and each cluster is represented by a sphere with a radius
that bounds all particles inside the cluster. For the next level, the error threshold is
raised, and the new spheres are used as input for the clustering algorithm. The process
is stopped, when only a single cluster remains. Then, they combine that hierarchy with
surface abstractions at different levels of computational complexity to build a seamless
model. Guo et al. [GNL+15] implement a view-dependent macro-molecule rendering
framework, which includes levels of detail. They build their hierarchical model using a
spatial clustering method similar to the one by Parulek et al. [PJR+14] and cluster atoms
until only a single one is left. In order to find the most suitable distance metric, they
compare their object space error as shown in Figure 2.2. LOD selection and view frustum
culling are performed on the CPU. Like Lindow et al. [LBH12] and Falk et al. [FKE13],
they use repetitive structures found in macro-molecules to optimize performance. For
their GPU ray-casting, they use the method proposed by Grottel et al. [GKM+14].

The grid-based approach by Matthews et al. [MEK+17] is optimized for visual enhance-
ment effects such as shadows and ambient occlusion. As their data structure needs to be
recomputed every time the scene changes in order to ensure the quality of visual effects,
they build it on the GPU. They present the results of their method with molecules of up
to about 300.000 atoms. It is important to note that quantitative results of frameworks
aimed at optimizing computationally expensive visual effects cannot be directly com-
pared to implementations that focus on utilizing repetitive structures or on rendering a
maximum amount of simple spheres at interactive rates. Similarly, the difference between
rendering individual molecules and repetitive molecular structures should be noted.

10

2.2. Rendering of Point-based Data

Figure 2.2: Comparisons of the object space error of different distance metrics by Guo et
al. [GNL+15]

2.2 Rendering of Point-based Data

Classical representations of molecular data are based on spheres. Early examples that are
still in use include van der Waals representations, as proposed by van der Waals [VdW73],
and the ball-and-stick representations, first used by Hoffmann [Hof65] in lectures at the
Royal Institution of Great Britain. Though proposed approaches vary, they usually fall
into one of three categories. The data is either polygonized using algorithms like Marching
Cubes (Lorensen and Cline [LC87]), sampled into a density volume representation, or
spheres are rendered directly using splatting. A splat or glyph is a two-dimensional
graphical element that is projected onto the 2D viewing plane for each voxel or point.
According to Ibrahim et al. [IWR+17], ray-casting using per-fragment rays based on
splats for each particle, has been accepted as the state of the art, at least in molecular
dynamics visualization. However, different rendering techniques, acceleration strategies,
and data structures have always been developed in parallel. In a recent report, Reina et
al. [RGE19] cover the development of point-based visualization in the last decade.

Polygonal meshes generally yield satisfying visual results, but the approach creates a
large number of triangles, and does not scale well beyond a couple of thousand particles.
Müller et al. [MCG03] implement both point splatting, and Marching Cubes-based
surface reconstruction for SPH simulations. They find the results achieved by iso-surface
triangulation via marching cubes more visually convincing. It does, however, slow
down rendering, which is not desirable in real-time rendering of large data sets. Hao et

11

2. State of the Art

al. [HVS04] use occlusion culling to optimize rendering of time-varying molecules. They
build per-frame occlusion maps on-the-fly. Atoms from the sorted list of potential atoms
for each frame are projected onto the image plane in a front-to-back order. Instead of
checking for overlap of the circles representing atoms, they use two nested squares, one
that completely fits within the circle, which is used to build the occlusion map, and one
that covers the entire circle to check if the atom has been blocked by previously rendered
atoms. They also include a method that chooses an appropriate tessellation resolution
according to the amount of space the atom takes up in the final rendering. Keiser et
al. [KAD+06] propose an alternative meshing strategy using 3D Delaunay triangulation
of particles. Both methods improve performance, but even the reduced mesh is still
computationally expensive to render, compared with other representations. Research in
recent years has mainly focused on very large and dynamic data sets, so tessellation has
mostly been replaced by other methods.

Sampling particles into a volume allows the use of GPU-accelerated volume rendering,
using optimizations such as early ray termination and empty space skipping as proposed
by Krüger and Westermann [KW03]. Most methods sample point-based data on some
type of regular grid. Quiao et al. [QEE+05] visualize point-based atomic simulation data
by sampling to a Cartesian grid, taking advantage of graphics texture memory. Navrátil et
al. [NJB07] use a regular grid, extracting iso-surfaces using Marching Cubes, which they
then render using the toolkit ParaView (Ahrens et al. [AGL05]). Their method allows
them to visualize several hundred time-steps containing two million particles. Fraedrich
et al. [FAW10] sample particle data inside the view volume into a perspective grid. They
compare order-dependent splatting to volume ray-casting, as well as a hybrid approach.
In their hybrid method, they add iso-surfaces for fine details which, according to their
research, cannot be rendered accurately using splatting. Lindow et al. [LBH12] render
large molecular data sets by making use of repetitive components found in molecular
data. They store atoms of individual components in a grid, which is then stored in a
three-dimensional texture. The grid is rendered using a ray-casting method based on
the work of Hadwiger et al. [HSS+05]. Falk et al. [FKE13] extend this algorithm by
hierarchical ray-casting, which omits grid cells that cover only part of a pixel. Reichl et
al. [RTW13] visualize large SPH simulations using a compressed octree grid, streaming
data asynchronously to the GPU. They perform decompression on the GPU, which
allows them to integrate it into GPU-based out-of-core volume ray-casting. Knoll et
al. [KWN+14] propose a multi-core CPU method for direct volume rendering of particle
data using radial basis function kernels. They apply it to both astrophysical and molecular
data sets. Schatz et al. [SMK+16] propose a hybrid multi-scale rendering architecture
for very large data sets. Large parts of the data set are rendered as a hierarchical density
volume, while fine details are visualized using direct particle rendering.

Splatting was one of the first methods used for point-based data, and is still relevant
today. Most of the earliest works, for example Csuri et al. [CHP+79] and Reeves [Ree83],
use a form of particle splatting to implement special effects, such as smoke. Westover
[Wes89] introduces an interactive volume rendering method based on splatting. Laur

12

2.2. Rendering of Point-based Data

and Hanrahan [LH91] propose hierarchical splatting, also for volumetric data sets. They
combine the splatting method with a progressive refinement algorithm, based on a
pyramidical volume representation. Rusinkiewicz and Levoy [RL00] use hierarchical
splatting as a point rendering method for meshes. They construct a hierarchy of
bounding spheres based on a k-d tree to represent the surface. Extending this approach,
Max [Max04] proposes a method for molecular data. Instead of an arbitrary hierarchy,
the natural structure of molecular data is used. In order to better approximate the
shapes of objects, the paper proposes the use of ellipsoids instead of spheres. Hopf and
Ertl [HE03] extend the method to Smoothed Particle Hydrodynamics (SPH) simulations.
They build a hierarchical data structure using PCA clustering.

Reina and Ertl [RE05] build a molecular dynamics visualization framework based on the
work of Hopf and Ertl [HE03]. They generate implicit surfaces to render splats directly on
the GPU, thus reducing the bottleneck between CPU and GPU. Toledo and Levy [TL04]
propose ray-tracing based GPU implementations of new graphics primitives like spheres,
cylinders, and ellipsoids. Intersection and lighting are computed in a fragment shader
based on an analytic representation of the primitives. Bajaj et al. [BDST04] also render
primitives directly on the GPU. For spheres, they use the texture-based method described
in one of NVIDIA’s Cg Tutorials by Fernando and Kilgard [FK03]. Sigg et al. [SWBG06]
propose an algorithm for GPU-accelerated rendering of quadratic surfaces and apply
it to molecular data. Each quadratic primitive is represented and rendered as a single
vertex. That allows them to compute a screen-space bounding box in a vertex shader
with perspective correctness. In our work, we use the same basic approach, rendering
one vertex per atom. In order to draw the quad representing the atom correctly, we use
the bounding box of the atom defined by its radius and the position of its center and
compute the ray-sphere intersection analytically.

Later approaches focus on optimizing splatting methods for even larger data sets. Grib-
ble et al. [GIK+07] propose interactive ray tracing for glyph-based representations on
multilevel grids to visualize large time-varying data sets. Their approach is based on
the coherent grid traversal algorithm proposed by Wald et al. [WIK+06]. Fraedrich et
al. [FSW09] sort SPH data into a page-tree and render it out-of-core. Pages are blocks
of data, usually grouped by spatial proximity. To render them, Fraedrich et al. rasterize
particle splats, creating a proxy geometry based on equilateral triangles. They work
with data sets containing more than 10 billion particles. Falk et al. [FGE10] propose a
combination of splatting, texture slicing and ray-casting to render large dynamic particle
simulations. Grottel et al. [GRDE10] also base their visualization on glyphs. They
propose to use splats and a deferred shading pass that estimates their normal vectors
in image space instead of ray-casting individual glyphs. Another paper by Grottel et
al. [GKSE12] proposes an ambient occlusion algorithm for molecular dynamics based on
density information collected in real-time. They build a density volume by splatting a
sphere for each particle into the corresponding volume cell. The density volume is then
used to create the ambient occlusion effect in object-space. In their framework MegaMol,
Grottel et al. [GKM+14] render spherical glyphs using point-based GPU ray-casting in

13

2. State of the Art

their basic rendering mode.

Le Muzic et al. [LMPSV14] save all the required atom positions in a texture buffer. Each
atom is represented by a single vertex, the center of the atom. They are rendered as
spheres using splatting in the fragment shader. In order to test their framework, they
created a scene containing 30 billion atoms, which they are able to render at 10 fps using
levels of detail. Wald et al. [WKJ+15] implement a balanced k-d tree data structure
for large point-based data sets. They use CPU ray-tracing to render the primitives
encoded in the tree. Zirr and Dachsbacher [ZD17] propose a GPU based voxelization
technique for particle sets such as SPH data. They render splats on a perspective
grid and then compress the obtained information by only storing the entry and exit
surface depths for each ray. In order to accelerate ray-casting, they use a screen-aligned
implicit quadtree with different levels corresponding to perspective grids with decreasing
resolution. They note that the approach can be distributed across multiple GPUs. Xiao
et al. [XZY17] combine particle splatting, ray-casting and surface normal estimation
techniques. Splatting is used to accelerate ray-casting while surface normals are estimated
using using Principal Component Analysis. They also employ GPU-based ray-casting.

2.3 Methods for Handling Large Point-based Data Sets
Most publications that focus on very large particle data sets contain time-steps, such as
molecular dynamics visualizations and SPH simulations. Cosmological data sets, such as
those used by Schatz et al. [SMK+16] contain up to trillions of particles. Our current
framework is aimed at molecular data sets containing millions of atoms.

An important question in handling large data sets is when to process data. Whether it
should be pre-processed, streamed, or processed on demand, depends both on the type
of data, and on the requirements of the framework. Our implementation relies on pre-
processing to build the data structure. Pre-processing has to be done once for each new
data structure. As we save the calculated structure to a binary file, it can subsequently
be loaded instead of calculating it again. Contrary to this approach, on-demand methods
only process the data the visualization requires whenever it is needed. This can slow
down the application, but may also decrease the total amount of computations, and space
necessary. Data requests can be visibility-driven or query-driven. Streaming is similar
to on-demand visualization, except that the data is not demanded, but sent when it
becomes available i.e., when calculations are finished. Already available parts of the data
set can be rendered on-the-fly, without the delay of having to wait for the entire data
set to be processed. This can speed up the creation of visualizations considerably. The
disadvantage is that the user has less control over available data than in an on-demand
based system.

Large data sets are commonly divided into smaller sub-sets. Several terms are used,
but in the context of this work, we will refer to these sets as pages. Paging makes the
amount of data easier to handle, both in the pre-processing and the rendering stage. It
is especially important for extreme-scale data sets that are too large to fit into memory.

14

2.3. Methods for Handling Large Point-based Data Sets

Data structures that divide large data sets into smaller sub-sets can be used to implement
visibility culling. Blocks of data that are entirely invisible can be discarded early, saving
computational cost. Sharma et al. [SKNV04] visualize data sets consisting of up to a
billion atoms. They build an octree data structure, which they use for hierarchical view
frustum culling. Zhu et al. [ZCW+04] propose a method for distributed rendering of
large molecular data sets. Their approach uses a grid and focuses on partitioning the
data set and distributing computations in order to handle large data sets. Gribble et
al. [GIK+07] propose interactive ray-tracing of multilevel grids. They achieve interactive
frame rates for data of up to 35 million particles. Freaedrich et al. [FSW09] traverse
their hierarchical data structure every frame in order to determine the nodes that have
to be rendered. Their test data set contains 10 billion particles, and they manage to
achieve interactive frame rates. Grottel et al. [GRDE10] use a two-level occlusion culling
strategy for large molecular dynamics visualization. They first perform per-cell culling to
reduce the upload to the GPU. After that, a maximum depth mipmap is used to cull
individual glyphs in the geometry processing stage. We sort our data into an octree data
structure, and employ a page-based culling strategy where we discard pages, when their
bounding box is entirely outside the view frustum.

2.3.1 Common Data Structures

Despite the continuous growth of hardware capacities, data sets can become too large to
fit into GPU memory, and for extreme-scale data even CPU memory. In that case, the
data needs to be broken up into smaller parts. When using paging strategies to render
data sets that are too large to fit into memory, parts of the data are resident out-of-core,
and have to be fetched before rendering. Usually, the currently required data is requested.
A working set that fits into memory is then composed and uploaded or updated as needed.
Many processing methods require information from the neighbors of individual points.
Going through all data points in a set is computationally expensive, especially for very
large data sets. Reducing the number of points that have to be considered in each step
can speed up rendering considerably. Samet [Sam90] gives a comprehensive overview
over different data structures for point-based data.

Which data structure is used depends on the type of data, as well as the priorities of the
researchers. The most common types of data structures for point-based data are regular
grids, and different variations of trees. Some researchers build structures tailored to a
specific data type. Bajaj et al. [BDST04] for example do not use a conventional data
structure, but sort their data into a structure they call Flexible Chain Complex, which
is based on the hierarchy in Protein Data Bank (PDB) files. In this section, we focus
on the two most common types, i.e., grid and tree data structures. We start with some
examples of grid-based data structures, but focus in particular on implementations based
on octrees, as we use such a data structure in our own work.

Harada et al. [HKK07] dynamically construct a sliced data structure for particle-based
fluid simulations. They divide the voxel grid into slices perpendicular to one axis, and
define bounding boxes for each slice. Memory for the grid is dynamically allocated,

15

2. State of the Art

Figure 2.3: Data slices shown in Harada et al. [HKK07]. They compare a fixed grid data
structure (left) with the dynamic grid they propose (right)

.

achieving improved cache efficiency, as it culls most of the empty voxels. Figure 2.3 shows
a comparison between a fixed and a dynamically allocated grid. In addition to presenting
the conceptual data structure, they implement and test it both on the CPU and GPU.

Gribble et al. [GIK+07] use hierarchical multilevel regular grids for particle based volu-
metric data. As they want to optimise their method for time-varying data sets, grids
are constructed on-the-fly. Grottl et al. [GRDE10] use ray-casting on a regular grid,
which has the same extent as the bounding box of the data set. They employ GPU
ray-casting and deferred shading with smooth normal vector generation. They argue that
the simplicity of the data structure allows a higher number of occlusion queries. Fraedrich
et al. [FAW10] sample particles onto a uniform 3D grid. Instead of the simulation domain,
the grid is fixed to the view volume. Therefore, only the view frustum is discretized.
Spacing between grid vertices along the view ray increases logarithmically, resulting in a
decreasing sampling rate along the viewing direction. Another implementation that uses
a regular grid is presented by Matthews et al. [MEK+17]. They investigate both a fixed
grid and a compact grid for visualization of molecular trajectories. Due to more efficient
memory access, they conclude that the compact grid outperforms the fixed grid for large
proteins.

Rusinkiewicz and Levoy [RL00] implement a hierarchy of bounding spheres based on a
k-d tree to represent the surface of a solid object. They use it for view frustum culling,
back-face culling, a level of detail scheme, and rendering. Pfister et al. [PZVBG00]
sample geometric models into point primitives called Layered Depth Cubes (LDC). These
primitives are then stored in an octree data structure. The lowest level of the octree

16

2.3. Methods for Handling Large Point-based Data Sets

contains the resolution acquired during sampling. Blocks on higher levels are constructed
by sub-sampling by a factor of two. During rendering, the octree is traversed from
lowest to highest resolution blocks. View-frustum culling is performed using the block’s
bounding box. Hopf and Ertl [HE03] argue that hierarchical data structures impose
higher memory requirements, so they decouple the cluster hierarchy from the actual
point data. They store the information about points in a continuous array, while the
hierarchical data structure only stores pointers. In order to reduce memory requirements,
they store point coordinates relative to cluster coordinates. Figure 2.4 conceptually shows
the hierarchy levels. The finest level, shown on the right side, contains the actual point
information.

Losasso et al. [LGF04] propose an unrestricted octree grid to refine and coarsen particle
data sets to simulate water and smoke. Max [Max04] builds a tree hierarchy with
individual atoms as leaves. Coarser levels of detail are represented as ellipsoidal objects,
and are stored at the internal nodes of the tree. Sharma et al. [SKNV04] visualize
data sets containing up to a billion atoms. Their octree consists of three levels. Nodes
at level 2 contain pointers to the atoms stored in the corresponding subspace. Lee et
al. [LPK06] use a bounding tree to achieve view dependent mesh simplification as well as
view frustum culling. Raschdorf and Kolonko [RK09] compare different data structures
for large particle simulation data sets. They present a hybrid data structure consisting
of a loose octree combined with local neighborhood lists. Reichl et al. [RTW13] visualize
large SPH simulations using a compressed octree grid from which they stream data
asynchronously to the GPU. Wald et al. [WKJ+15] adapt the balanced k-d tree proposed
by Bentley [Ben75], and use CPU ray-tracing to render it. Rather than using the tree
to store different levels of detail, they use it to reorder the original data set.

We implement an octree data structure in in our framework. The resolution of the tree
is determined by a specified maximum number of points per page. Contrary to many
implementations, data, including level of detail resolutions, is only stored in leaf nodes.

2.3.2 Levels of Detail

Visualizing several million atoms individually can become quite computationally expensive,
even when rendering simple surface models. However, display resolutions limit the amount
of information that can be shown at once, so optimization is possible. If the view is
"zoomed in", which means that atoms are visible in detail, large parts of the data set are
outside the view frustum, and can be culled. In a "zoomed out" view, less or no data
may be culled, but many individual atoms are clustered in a space that is rendered as
less than a single pixel. That means that the data structure can be shown at a lower
resolution, without great impact on the visual result. In such cases or when the only
goal is to visualize the general shape of a molecule without need for details level of detail
strategies can be used. Keiser et al. [KAD+06] argue that the resolution of the chosen
level of detail should be high enough to show fine-scale surface detail, while reducing the
number of particles as much as possible in order to minimize the computational overhead.

17

2. State of the Art

Figure 2.4: The hierarchy levels as implemented and illustrated by Hopf and Ertl [HE03].
The illustrated hierarchy is decoupled from the storage of the underlying point data.
Points are stored in a continuous array, while the hierarchical data structure illustrated
in the figure only stores pointers.

18

2.3. Methods for Handling Large Point-based Data Sets

Figure 2.5: Level of detail construction as implemented by Fraedrich et al. [FAW10]. The
data structure is constructed bottom-up. Particles are copied to the next level as long
as their diameter is larger than the grid sampling resolution, those that are smaller are
merged.

They implement a multi-resolution particle-based fluid simulation. Levels of detail are
created by splitting and merging individual particles.

For general point-based data, levels of detail are usually created by clustering data
points, based on the positions and in some cases radii of the points. Most level of detail
structures are built bottom-up. Pfister et al. [PZVBG00] store the resolution acquired
during sampling at the lowest level of the octree. Blocks on higher levels are constructed
by sub-sampling by a factor of two. During rendering, the levels are traversed from lowest
to highest resolution. Hopf and Ertl [HE03] create their LOD hierarchy using principal
component analysis splits. The multilevel grid proposed by Gribble et al. [GIK+07] also
constitutes a level of detail scheme. The original particles are stored at the finest level.
The resolution of the grid is determined such that the number of cells is a multiple of the
total number of particles. Coarser levels are imposed over the previous level, where each
block corresponds to M × M × M blocks of the underlying level. In the implementation
discussed in the publication, they use a two-level hierarchy. Fraedrich et al. [FAW10]
also build their data structure bottom-up. As long as the diameter of a particle is larger

19

2. State of the Art

Figure 2.6: At increasing distance from the camera, Le Muzic et al. [LMPSV14] skip
atoms, adapting the radius accordingly

than the grid sampling resolution, it is copied to the next level, as shown in Figure 2.5
on the left. Particles that have diameters smaller than that are merged and enlarged to
the grid spacing. Reichl et al. [RTW13] build their level of detail hierarchy bottom up in
a similar way. However, they store it in an adaptive octree data structure, rather than a
hierarchical grid. Le Muzic et al. [LMPSV14] use tessellation shaders to lower the number
of rendered atoms according to increasing camera distance. Figure 2.6 shows the same
molecule rendered at different levels of detail. One of the goals is to implement smooth
transitions between neighboring LODs. They sort the atoms by increasing distance from
the center of the molecule’s bounding box. Based on that distance, they decide how
many atoms are skipped and increase the radius linearly.

For molecular visualization, it is possible to use the natural hierarchy of biomolecular
data to implement levels of detail. This approach is proposed by several papers, such
as the Flexible Chain Complex by Bajaj et al. [BDST04]. In their method, each level is
associated with a geometric representation. Atoms are rendered as single spheres, and
residues represented by a bounding sphere. Secondary structures are represented by
sets of cylinders and helices. Van der Zwan et al. [VDZLBI11] implement continuous
transitions between three separate visual abstraction models: the vdW surface, the
so-called ball-and-stick model, and a cartoon rendering. Waltemate et al. [WSB14] also
base their visualization on the natural characteristics of biomolecular data. They present
an interactive tool, which makes it possible to combine the mesoscopic and molecular
level in cell visualization. The result is a visualization of whole cells, with an interactive
magnifier that allows the user to investigate the structure and behavior on a molecular
level. The method they propose is based on instantly computed local parameterizations
that are used to map patches of membrane structures onto regions selected by the user.
They render the mesoscopic level based on triangle meshes, and the atomic level using
a splatting technique based on local ray-casting of spheres. Parulek et al. [PJR+14]
propose a level of detail concept that combines three different surface models in one

20

2.4. Biomolecular Representation Models and Enhancement Methods

visualization. They blend SES, Gaussian kernels and van der Waals surfaces, based
on linear interpolation, and implement a shading scheme that allows them to create
seamless transitions between the representations. Guo et al. [GNL+15] use a volume
based distance metric to select appropriate levels of detail depending on the viewpoint.

2.4 Biomolecular Representation Models and
Enhancement Methods

Atoms in molecular data sets can be treated like any other type of point-based data.
Depending on the complexity of the scene and capability of the hardware, simple point-
or sphere-based representations may be the most suitable, or indeed only possible
visualization model. In many cases, however, a lot of additional insight can be gained by
using more complex models.

2.4.1 Representation Models

The van der Waals (vdW) surface is defined by the union of spheres proportional to the
covalent radius of the individual atoms. It is simple and efficient, and therefore the most
commonly used representation for atomic data. Additionally, it serves as a basis for many
other surface models. Lee and Richards [LR71] propose Solvent Accessible Surfaces (SAS)
as an extension of vdW surfaces. They illustrate which regions of a molecule can be
accessed by a solvent. Conceptually, the surface is created at the position of the probe’s
center, while rolling over the surface, which is the same as extending the vdW radius of
each atom by the radius of the probe. The disadvantage of the SAS is that it inflates
the surface of the molecule. Richards [Ric77] addresses this issue with the introduction
of Solvent Excluded Surfaces (SES). Instead of using the center of the solvent sphere,
its boundary is used. This means that the volume of the resulting molecular surface is
closer to the vdW surface, while still illustrating accessibility. Solvent Excluded Surfaces
show the boundary of the volume with respect to a specific solvent. They are very useful
in the exploration and development of substances, e.g., when developing and testing
pharmaceuticals. Therefore, they are included in most molecular visualization toolkits.
However, the calculation of an SES tends to be computationally expensive. It can either
be computed by discretizing space, or by determining the implicit surface equations
of its surface patches. Lindow et al. [LBPH10] implement a parallelized version of the
contour-buildup algorithm originally proposed by Totrov and Abagyan [TA96]. Krone
et al. [KGE11] also propose a parallelized optimization of the contour-buildup algorithm
on the GPU. They subdivide calculation tasks in order to optimize them for parallel
processing. Parulek and Viola [PV12] present a method that calculates the SES while
allowing the user to change parameters interactively. They use local neighborhoods to
compute implicit functions representing the surface. Hermosilla et al. [HKG+17] develop
a grid-based GPU implementation using ray-marching, which allows smooth transitions
between different levels of detail. As one of their main goals is to ensure real-time

21

2. State of the Art

interaction, they compute an SES using a low-resolution grid in real-time, and refine the
surface progressively in the background.

Another surface representation is the Molecular Skin Surface (MSS), which applies the
skin surface algorithm proposed by Edelsbrunner [Ede99] to vdW spheres. The MSS
has the advantage of being C1-continuous (so the derivative does not change where two
curved surfaces cross). The disadvantage on the other hand is that it has no biophysical
background. While an SES approximates a solvent molecule with a sphere, Lindow et
al. [LBH14] propose to use the ligand’s actual vdW surface instead, showing the surface
that a particular ligand can access in more detail. This so-called Ligand Excluded Surface
is even more computationally expensive than the SES, so it is usually only applied when
pre-computation is feasible. In interactive contexts, the SES or even simpler models are
still preferred by most researchers.

Blinn [Bli82] proposes an approximation of molecular surfaces using a Gaussian convo-
lution kernel, commonly known as Metaballs. Parulek and Brambilla [PB13] present a
model that closely resembles the SES, while approaching the rendering performance of
the Gaussian model. It is based on iterative blending of implicit functions, and is visual-
ized using GPU-based ray-casting. Krone et al. [KSES12] compute interactive surface
representations of large dynamic particle data sets. They build a volumetric density
map based on Gaussian kernels, using a GPU-accelerated marching cubes algorithm.
Structural details can be adjusted interactively. In our framework, we use the method
presented by Bruckner [Bru19]. It is an image-space approach to the computation of
Gaussian molecular surfaces. As the molecular surface only needs to be computed for
visible parts of the molecule, unnecessary computations can be skipped. An on-the-fly
list-based data structure is constructed for every frame. To create the list, the atoms in
the molecule are rendered as spheres in two separate rendering passes. The first pass
is used to identify all intersecting van der Waals spheres for every viewing ray. In the
second pass, the sphere of influence for each atom is rendered in the same way. For each
pixel, a linked list of the intersections of the spheres of influence is stored. Those are
the only spheres that potentially contribute to the visible surface. In order to minimize
computations in occluded regions further, visibility-based ray traversal is used.

2.4.2 Enhancement Methods for Point-based Data

Different shading methods can be used to enhance complex molecular visualizations.
Color can be mapped either to individual chemical elements, or other properties, such
as which amino acid chain it belongs to. In addition, effects such as depth of field,
ambient occlusion and, edge-cueing can guide the viewer’s eye to important areas of the
visualization and combat visual clutter.

Ambient occlusion describes the amount of ambient light that reaches each point in a
scene. Objects on the inside of structures, or that are occluded by direct neighbors are
darker, so ambient occlusion helps the viewer to correctly judge the depth of structures.
Tarini et al. [TCM06] propose a set of techniques to enhance the user’s understanding

22

2.5. Summary and Conclusion

of rendered molecules. In order to compute ambient occlusion, they use several render
passes, creating shadow-maps from the z-buffer. They achieve a contour line effect by
drawing a line around each rendered primitive. The thickness of the lines can be rendered
dependent on the difference in depth between the primitives it separates. Additionally,
they propose to draw halos around atoms. The bigger the distance between a point in the
halo and its background, the more opaque the algorithm draws it. Grottel et al. [GKSE12]
implement an object-space ambient occlusion algorithm based on local neighborhood
information. Their approach is based on the aggregation of particle data into a coarse
resolution density volume, which is then used to calculate the ambient occlusion factor.
Staib et al. [SGG15] propose an illumination model that supports transparency, ambient
occlusion, surface reflection, and ambient illumination based on the emission-absorption
model of volume rendering. It runs in real-time for millions of particles and is based on
analytic solutions to the volume rendering integral. McGuire et al. [MOBH11] present
a screen space ambient occlusion method. Rather than approximating the equations
governing indirect illumination in an efficient but error-prone way, they use the full
radiometric model until the screen-space sampling step. Simplification is still possible
by using the fall-off function to cancel expensive operations. Skåneberg et al. [SVGR15]
aim to communicate their spatial arrangement, but also to visualize pairwise atom
interaction strengths. In order to achieve that, they propose an analytic approach for
capturing ambient occlusion and interreflections of molecular structures in real-time. The
neighborhood search required to calculate the influence of atoms, is based on a grid data
structure. The cell size can be set and defines a cut-off distance for the interreflections.
Matthews et al. [MEK+17] also use ambient occlusion to enhance depth, and shadows to
help the user perceive relative motions of parts of the protein. Their algorithm is similar
to that of Skåneberg et al. [SVGR15]. They use a regular grid to accelerate shadow
casting, but find neighbors per atom rather than per fragment.

Another enhancement method widely used to draw attention to a certain region or feature,
is depth of field. Depth of field is an optical effect known from photography, where
objects on and around a focus plane are sharp, while the rest is blurred. The blurring
factor is called circle of confusion. It can be calculated based on focal length, distance,
and aperture. The closer the focused object is to the camera, the narrower the field of
focus. Examples of this method can be found in several publications. One example is the
method proposed by Falk et al. [FKE13]. They use an image space method to create the
effect. They calculate the size of the circle of confusion, which is then used to sample a
mipmap chain of the color and depth buffer. In our framework, we implement a depth of
field effect based on the work presented by Bukowski et al. [BHOM13].

2.5 Summary and Conclusion
Both the field of biomolecular visualization and large point-based data sets have been
researched widely and successfully. However, biomolecular visualization methods generally
either focus on smaller data sets, or rely heavily on a priori structural knowledge about
the data. Methods aimed at point-based data sets on the other hand can usually handle

23

2. State of the Art

extreme scale data efficiently, but do not provide any of the surface methods that are
often expected in biomolecular research. We therefore conclude that there is a need for a
framework that can handle large data sets without any particular knowledge about the
structure of the data that nonetheless allows the use of surface models and enhancement
methods. The most common data structures for handling large data sets appear to be
regular grids and to a lesser extent various forms of trees, in particular octrees. Levels
of detail for point-based data are most often implemented using a bottom up approach
to spatial clustering. As a main surface model, biomolecular visualization methods
generally use vdW surfaces and often additionally include the possibility of computing
the SES. Popular enhancement methods for point-based data include in particular ambient
occlusion and depth of field.

24

CHAPTER 3
Data Structure

The goal of our implementation is to render large sets of molecular data at interactive
rates, in order to help users to better understand the data. As discussed in the previous
chapter, there are several different approaches to similar problems. Our solution is a
novel combination of several established approaches. We divide the description and
discussion of our methodology into two parts. In this chapter, we focus on the underlying
data structure, while rendering aspects of our implementation are covered in a separate
chapter.

Large data sets require structure management, especially when the system is expected to
perform at interactive rates. The goal is to reduce the size of the working set, i.e., the
data that needs to be processed at a specific time, while keeping as much information
available as necessary or possible. As it is unlikely that all details of a large data set need
to be visible at the same time, it is possible to manage the data in such a way that only
the parts that are currently required, are fetched and processed. Similarly, some parts
of large data sets are usually in the far distance, which means that they only occupy a
very small portion of any given screen, or they are at least partially covered. Therefore,
rendering data at different resolutions can also be part of a solution.

Implementations that target extreme-scale data sets, such as Fraedrich et al. [FSW09],
need to solve the problem that the data does not fit into the memory of current work-
stations. In order to make visualizations of the entire data sets feasible, they have to
be divided in a suitable way. Many implementations provide level of detail schemes,
which reduce the amount of data that needs to be processed for a given frame, without
necessarily reducing the visual quality. We aim to optimize rendering for data sets of up
to several millions of atoms, without requiring additional information about the data
set. As we will see in Chapter 6, achievable frame rates are highly dependent on the
amount of points or atoms that are actually within the view frustum for the current
frame. Therefore, camera position and level of detail, on which the number of visible
data points depends, have a greater influence on the performance than the number of

25

3. Data Structure

atoms in the original data set. This makes it somewhat difficult to directly compare
numbers. Implementations that rely on repeating instances of molecules, such as for
example Le Muzic et al. [LMPSV14], can render up to billions of atoms. Those that focus
on graphical aspects, such as enhancement or surface models, like for example Matthews
et al. [MEK+17] or Parulek et al. [PJR+14], do not go beyond a few hundred thousand
atoms in their test sets. What we are investigating, is how to close this gap, and develop
a data structure and rendering setup that makes it possible to render several tens of
millions of atoms without prior structural information, using different molecular surface
models, and applying enhancement effects.

As we want our data structure to be able to handle large data sets, we need to divide the
data into manageable blocks. There are two main bottlenecks where very large data sets
can become problematic. Processing or pre-processing steps that depend on neighborhood
queries can easily get out of hand if the algorithm needs to visit each individual point for
a large data set. Also, the amount of data that can be processed in the rendering step
itself, is limited by hardware capacities. Very often, however, not the entire data set is
visible at once. Therefore, the answer to both of these issues can be a spatial division of
the data. As the density within molecular data sets varies spatially, we want our data
structure to provide the option to control the maximum amount of data in each page
(spatial block). We also want pages to contain approximately the same, or at least a
similar amount of data. Our final choice of data structure is a density based octree with
pre-calculated levels of detail.

3.1 Overview of the Components for CPU Data Handling
The main contribution of our work is a data structure that divides large data sets
into manageable blocks, which facilitate efficient calculations of neighborhood-based
algorithms. Our design is based on a core CPU-based data structure, as well as a set
of other components that manage data and rendering. Figure 3.1 illustrates the main
components that are involved in handling the data and constructing the structure.

The black arrows illustrate how components are related. Gray components above the
dashed line are mainly concerned with rendering and front-end operations, which are
covered in Chapter 4. In this chapter, we focus on components responsible for data
management on the CPU, which are illustrated below the dashed line in Figure 3.1.The
protein is part of the scene component, which is in turn part of the viewer component.
At any given time, there is only one instance of each of these components. The viewer
contains renderers. The renderer responsible for drawing the data points that represent
atoms or clusters, is called sphere renderer. There can be several different types of
renderers. Their display methods are called consecutively. We use a separate renderer to
render bounding boxes.

Data from the .pdb file (Protein Data Bank, Berman et al. [BWF+00]) is read into our
framework in the protein component. As we expect our implementation to be able to
handle large data sets, we divide them spatially. The page component represents the

26

3.2. The Octree Data Structure

Protein

CachePage

dr
aw

Rendering

pdb data
Data management

Scene

Viewer SphereRenderer

Figure 3.1: The main components involved in handling the data structure. Blue indicates
where the actual (per point) data is located. The black arrows show which components
contain each other.

building blocks of the resulting data structure. We store a single page, the root of the
octree, in the protein component. As we want to control the maximum number of atoms
on a single page, the depth of the octree depends on the density of the data structure.
Each page that has more than a specified amount of atoms within its bounds is subdivided
and stores pointers to its eight child nodes. The actual data points are stored in the
pages that are leaf nodes. This allows us to mix pages of different spatial extent, but
with a similar amount of data, which we take advantage of in our cache implementation.

The cache component manages which data is uploaded to the GPU. It implements a least
recently used cache which is responsible for a list of visible pages and for replacing the
ones that are no longer needed.

3.2 The Octree Data Structure
Our main requirements for a data structure are that it has to divide the data in a way that
makes it possible to handle data efficiently, i.e., by reducing bottlenecks, as well as make
computationally expensive neighborhood-based calculations feasible. We propose an
octree-based data structure. It divides the data set spatially into hierarchically organized
units, the pages. Within these pages, we save the data at different resolutions, or levels
of detail. The data structure is built in a pre-processing step. In this section, we explain
the design and implementation at the core of the data structure, the pages and the octree

27

3. Data Structure

they form, as well as the construction of the levels of detail.

Structuring available data into blocks that are manageable, both in terms of memory, and
the computation of computationally expensive neighborhood queries, can be achieved in
several ways. For a comprehensive overview of data structures for point-based data, we
refer to Samet [Sam90]. The most common choices are regular grids, and hierarchical
tree-based data structures. Several variations of both have been tested and proposed. A
grid data structure is a simple and fast way to divide space. Regular and perspective
grid solutions are very common in implementations that render their data by sampling
it into a volume (for example Qiao et al. [QEE+05], Navratil et al. [NJB07], Knoll et
al. [KWN+14], etc.). They are also used in some related implementations that render
atoms as spheres directly on the GPU (Grottel et al. [GRDE10], Lindow et al. [LBH12],
Falk et al. [FKE13],Matthews et al. [MEK+17]). The disadvantage of regular grids is that
they allow little control over the amount of data in each block. It is of course possible to
define the size of the cells by specifying a maximum number of points in each cell instead
of spatial units. The drawback of adapting the cell size to the densest areas in the data
set is that it results in an unnecessarily fine division of space in sparse regions, especially
if data points are distributed unevenly. In our framework, we opt for a hierarchical data
structure, as it provides greater control over the division of space.

Tree-based data structures are another common choice, especially for implementations
that include level of detail schemes. Several variations of trees have been proposed
in the context of point-based rendering. Though octrees are most common, k-d trees
(Rusinkiewicz and Levoy [RL00], Wald et al. [WKJ+15]) are also used. The child nodes
of an octree node divide the space into eight smaller cubes (four squares in the two-
dimensional case). In regions with sparse data, lower subdivisions can be used, providing
the ability to control resolution. K-d trees are also based on hierarchical space partitioning.
While octrees are always partitioned cubically, the splitting planes in k-d trees can be
placed arbitrarily in space. Space is divided by one axis-aligned split plane per level of
depth, recursively subdividing space into a binary tree. Each node is split into two halves,
alternating between axes. In order to achieve a balanced k-d tree, points in the data set
are used to partition space. Geometric primitives are usually stored in leaf nodes. In
k-d trees, it is not possible to control the number of neighboring cells that have to be
examined when using nearest neighbor queries, as split planes can be placed anywhere in
the node. Octrees, on the other hand, divide space in a regular manner. Each node is
either a leaf, or is equally divided into eight sub-nodes. This makes the divisions more
predictable, which makes the data structure easier to handle. It also makes octrees a
good choice when a more even division of the data set in terms of the amount of points
per page is a priority.

Most solutions that use octree data structures in combination with a level of detail
scheme that we have come across in our research, use the nodes throughout the octree
to store level of detail data. Often, the original data is stored in the leaves, and coarser
levels of detail in internal nodes. This approach creates a structure which is very similar
to regular grids with several different resolutions linked together. While this can be

28

3.2. The Octree Data Structure

pdb input reads
from

gives
to

creates

Protein

...

Page

LODs

Figure 3.2: Flow of data while creating the data structure. Blue indicates where actual
point data is saved. The protein component manages the data structure which consists
of nested page components.

very efficient in many situations, the disadvantage is that pages or grid cells at different
levels have different spatial extents, which makes mixing levels of detail more difficult. It
also makes it harder to achieve a similar amount of data points per node. We use the
hierarchical division of space somewhat differently. Instead of storing coarser levels of
detail in the internal nodes, we store all levels of detail in the leaves. Space is divided
depending on atom density in the original data. Internal nodes simply contain pointers
to their children.

3.2.1 Dividing the Data Set into Pages

In a pre-processing step, the set of data points is processed, divided, and stored, building
the data structure that is then used throughout interactive rendering. Figure 3.2 illustrates
the flow of data through the components. The protein component reads in the original
data. At this stage, the data for each point consists of a spatial position and a radius.
The protein stores a single page, which serves as the basis for the octree, and which
is filled with data and sub-pages in the pre-processing step. The page component is
responsible for both subdividing data, and calculating clusters to build levels of detail.

We read atom positions, and information about molecules in the Protein Data Bank
(PDB) file format. For each atom, we get the spatial position, and the element name from
the file, which we then look up in a table in order to get the radius. This information is
stored in a four-component vector.

When being read from the .pdb file, the atoms of such a single time-step are stored in
one vector. This vector is then handed over to the basic page, the root of the octree,
where the data is divided into sub-octrees, according to the specified maximum number
of atoms per page.

The maximum number of atoms possible in our current setup is 32,768 (215). This is due
to numerical limits which are explained in Section 3.2.3. We did not find the limit of
215 atoms problematic, as the clustering algorithm we use to build our levels of detail is
dependent on neighborhood comparisons and becomes very inefficient for larger pages.

29

3. Data Structure

Algorithm 3.1: Spatial data division. If the number of points in a page exceeds
the maximum number of allowed points, it gets eight sub-pages and the data
points are divided according to their spatial position. This is done until all pages
fulfill the size limit.

Input: Maximum number of atoms per page max, current page p containing
vector of atoms, lowerBound and pageSize

1 if size of atoms > max then
2 Create array of 8 subPages in p

foreach a ∈ atoms do
3 pos = (a.xyz−lowerBound)

pageSize
2

insert a into vector of atoms in page at position pos in subPages
4 end
5 foreach page ∈ subPages do
6 run spatial data division algorithm
7 end
8 end
9 else

10 return atoms
11 end

The pseudo-code shown in Algorithm 3.1 sums up the division of space into pages.
Starting with the basic page saved in the protein component, we check if the length of
the vector of atoms assigned to it exceeds the maximum allowed number of atoms per
page. If it does not, the algorithm ends. If it does, we create a sub-octree, i.e., a two by
two by two array of sub-pages that have half the page size of the parent-page in each
direction. Then, we iterate over all atoms, and sort them into the sub-pages according to
the formula given in algorithm 3.1. For each sub-page, we recursively repeat the process.
When the number of atoms assigned to a page no longer exceeds the limit, it is considered
a leaf page, and the vector of atoms is saved, instead of creating sub-pages. Once the
number of atoms on a page falls under the allowed maximum, we proceed to the creation
of the levels of detail, as described in section 3.2.2.

Figure 3.3 shows a simplified illustration of the subdivision of a data set, with a limit
of 3 atoms per page. The basic page contains more than 3 atoms, and is subdivided.
After the first subdivision, two sub-pages still exceed the limit. Pages are subdivided
depth first, so we check all children of the first of these two sub-pages recursively, before
moving on to check its siblings. When no page contains more than 3 atoms, we have
created the leaves of all branches and the final structure is reached.

The structure of a page can be summed up as follows. Each page saves its position, size,
lower and upper bound. A leaf node additionally stores an array containing the atoms
that fall within its bounds at different levels of detail. Inner nodes have pointers to their
child nodes.

30

3.2. The Octree Data Structure

(a) Basic page (b) Subdivision 1 (c) Subdivision 2 (d) Subdivision 3 (e) Final structure

Figure 3.3: Illustration of page subdivision with max. 3 atoms per page

Figure 3.4: Octree structure for the molecule 3j3q. The blue lines show the bounding
boxes of pages. In denser areas, more subdivisions are used.

Figure 3.4 shows the leaf nodes of the hierarchical data structure for the molecule 3j3q,
which contains 2,440,800 atoms, making it the largest individual molecule currently
available in the Protein Data Bank. The maximum number of atoms per page is set to
32,768, the largest number possible in our current setup. The figure shows the molecule
at the original resolution. Additionally, the bounding boxes of the pages are illustrated
in blue. In denser areas, the molecule is divided into smaller sub-pages while empty and
sparse areas are not subdivided any further.

3.2.2 Calculating Levels of Detail

Levels of detail are a common method to increase flexibility, and improve performance. For
point-based data, they are usually calculated bottom-up, using a variation of hierarchical

31

3. Data Structure

clustering. In order to calculate the clusters that form our coarser levels of detail, we use
the hierarchical clustering implementation by Müllner [M+13].

Several researches (Max [Max04], Bajaj et al. [BDST04], Van der Zwan et al. [VDZLBI11],
Waltemate et al. [WSB14]) propose using the natural hierarchy of molecules, rather than
purely spatial approaches. This method provides the user with additional structural
information, as well as a number of different levels of detail. However, the approach
is not particularly flexible, as it relies on very specific information, and cannot easily
provide intermediate levels of resolution. The main goal of our LOD implementation is
to optimize performance, and enable us to render larger data sets, not necessarily the
integration of additional structural information. That is why we chose the more flexible
approach of hierarchical clustering. Structural levels of detail could be considered in
addition to our existing LOD scheme in a future developing step.

Both our own tests, and the results achieved by Parulek et al. [PJR+14], show that
density-based clustering does not perform well on the type of data we use. Atoms within
most molecules do not show a significant variation in distribution. Therefore, density-
based clustering often results in only a single cluster for a large part of the molecule.
Hierarchical agglomerative clustering, such as the fastcluster algorithm proposed by
Müllner [M+13] which we use, is more suitable. Guo et al. [GNL+15] argue that the
algorithm has two limitations: according to their experiments, it is difficult to find the
most suitable parameters, and it requires hierarchical abstraction. They use a volume-
based distance metric in order to reduce the screen-space error. However, we found the
results satisfying, and the control over parameters sufficient.

Hierarchical agglomerative methods cluster input data based on a dissimilarity index,
starting with each point in a single cluster. Usually, the index is stored in a matrix,
which is by definition reflexive and symmetric. Another possibility is the so-called stored
data approach, where input points are handed to the clustering algorithm in vector form,
and dissimilarity is specified implicitly. The algorithm by Müllner provides two options
to define the size of clusters. The user can either specify the desired number of clusters,
or a cut-off distance. Algorithm 3.2 shows a simplified pseudocode of the hierarchical
clustering algorithm.

We calculate the dissimilarity matrix based on the Euclidean distance between two
respective points. Additionally, the algorithm either needs to know a cut-off distance,
or the number of desired clusters. In order to specify a reasonable number of desired
clusters manually, one would need some information about the structure of the molecule.
Specifying a cut-off distance is more flexible, as the user does not need any particular
information beforehand. Therefore, we found it more suitable for our needs and a variety
of molecules. In our implementation, we use a cut-off distance of c = 2l, where l is the
level of detail being calculated.

Müllner [M+13] implements four modes of linkage for hierarchical clustering: Single-
linkage (nearest neighbor), Complete, Average and Median. Figure 3.5 shows the results
of the different distance calculation formulas for the molecule 2btv at level 1 and 5. The

32

3.2. The Octree Data Structure

Algorithm 3.2: Fastcluster by Müllner [M+13] based on a nearest neighbor
approach. The algorithm needs a pair-wise dissimilarity (distance) index, as
well as the number of points to be clustered, and returns a list of labels that
divide the points into clusters.

Input: A pair-wise distance index D, the number of points to be clustered C
Output: Output list L, number of points per cluster P

1 create list of nearest neighbors nn
calculate priority queue of indices Q, mindist as keys
for j ← 0 to N − 1 do

2 a← min element of Q
b← nn[a]
while dist(a, b) 6= mindist(a) do

3 recalculate nearest neighbours
4 end
5 add (a, b) to L

update C
remove a from Q for remaining elements do

6 update distance matrix using formula 3.1
7 end
8 for remaining elements where x < a do
9 update nearest neighbor candidates

10 end
11 update mindist and Q with distance and nearest neighbor
12 end
13 return L;

methods that approximate the original molecule best, are Average and Complete. Figure
3.6 shows the number of points the clustering formulas result in. The blue line represents
the time it takes to calculate the entire level of detail structure using that metric. The
larger the molecule, the more important this factor becomes. We choose the Average
method, which achieves convincing results, and is more performant than the Complete
method. The Average-linkage method calculates the inter-cluster distance by adding up
the distance between all pairs of points in the cluster and then dividing by the number
of pairs. It updates the distance with the formula given in Equation 3.1, where I and J
are two clusters being joined into a new cluster, and K any other cluster. nI and nJ are
the sizes of the clusters. d is the dissimilarity measure, i.e., the Euclidean distance.

nId(I,K) + nJd(J,K)
nI + nJ

(3.1)

Algorithm 3.2 shows a pseudocode of the hierarchical clustering method. For a given set
of nodes, a pair of closest points is determined. Those nodes n1 and n2 are then joined

33

3. Data Structure

(a) Average level 1 (b) Median level 1 (c) Single level 1 (d) Complete level 1

(e) Average level 5 (f) Median level 5 (g) Single level 5 (h) Complete level 5

Figure 3.5: Levels of detail for the molecule 2btv

0

5000

10000

15000

20000

25000

30000

35000

Average Median Single Complete
0

1

2

3

4

5

6

7

Re
su

lti
ng

 n
um

be
r o

f p
oi

nt
s

Method

Se
co

nd
s

to
 c

al
cu

la
te

Clustering Methods

Level 1 Level 5 Time

Figure 3.6: Number of atoms at levels 1 and 5 and building time, showing the number of
resulting clusters for 2btv for level 1 (red) and 5 (green) as well ast the time it takes to
build the data structure using that method (blue).

34

3.2. The Octree Data Structure

(a) Full resolution (b) Level 1 (c) Level 2 (d) Level 3

(e) Level 4 (f) Level 5 (g) Level 6 (h) One sphere per page

Figure 3.7: Levels of detail for the molecule 2btv. In the original resolution in the top
left, the molecule contains 49,061 atoms, while level 7 on the lower right contains two
data points, one per page.

into a new node, which replaces the two original nodes. For n1 and n2, the labels and
distance are added to the output. In the next step, the dissimilarity (distance) from
the new node to all others in the set is calculated. This is repeated until all nodes are
clustered based on the cut-off distance or desired number of clusters. The result is a list
of labels for all input points. All points that are labeled with the same number are part
of the same cluster, and become a single data point in the new, coarser level of detail.
Figure 3.7 shows the resulting levels of detail for the molecule 2btv.

In order to create the new data points from the labeled cluster data, we need to find a
position, and a radius for each new point. Additionally, we have to choose one point
in each cluster that will be the "heir" to the parent on the coarser level. The "heir" is
the point into which all other points in the cluster transition when smoothly blending
between levels. This information is necessary in order to achieve a smooth transition
between different levels of detail, as described in more detail in Chapter 4. We choose
the point with the shortest distance to the center, i.e., the position of the new point
representing the cluster. We determine the position of the new point pc by calculating
the mean of all points in the cluster pc =

∑n

i=1 pi

n . Both Parulek et al. [PJR+14] and
Müllner [M+13] choose a radius that covers all contributing atoms. We found that this
method blows up the atom’s volume unnecessarily. Individual data points on coarser
levels of detail no long represent any actual atoms, but rather a cluster of several atoms
or sub-clusters. The relevant factor is therefore how visually similar the calculated LODs

35

3. Data Structure

(a) When covering the centers of all points in
the previous level, the overall volume of the
molecule increases with each level.

(b) Using the average distance between points
in as a basis for the radius of the new sphere,
the volume remains closer to the original.

Figure 3.8: Molecule 1sva. Comparing radius covering all points in the cluster vs average
distance using the original resolution (orange) vs. level 5 (white)

are to the original set of atoms. Rather than letting the radius cover all points in the
cluster, we calculate the new radius based on the average distance using the following
formula in Equation 3.2, where rc is the radius of the data point on the coarser level
of detail that represents the cluster, n is the number of points in the cluster, pi is the
position of a point in the cluster with the radius ri, and pc is the position of the new
data point, which is the average of all positions within the cluster.

rc =
∑n
i=1

distance(pi,pc)
2 + ri

n
(3.2)

Figure 3.8 compares our proposed method to a radius that covers all contributing atoms.
The only exception we make is for the final level, which is always one sphere per page.
In this case, we do choose a radius that covers all spheres on the previous level.

3.2.3 Storage and Encoding of Data Points

For each point, we need to store both the radius, and the parent ID, which links the
point and all its siblings to the point that represents the cluster they belong to on the
next level of detail. The first three components of the four-component vector that stores
each individual point are needed to define the point’s spatial position. Therefore, all
additional information has to be stored in a single 32 bit floating point. We use 16 bit to

36

3.3. Summary and Conclusion

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

encoded radius

central point flag

parent ID

z

y

x

Figure 3.9: A single data point stored in a 4 x 32 bit component vector

store the radius, and 1 to flag the central point in the cluster, i.e., the "heir", leaving 15
to store the parent ID. This allows us to store 32,768 distinct parent IDs, which defines
the limit of how many atoms can be in a single page.

Figure 3.9 illustrates how the data for a single point is stored. We encode the radius to
use those 16 bits of storage more efficiently. The smallest possible radius for an atom is
defined as 1.0, and we assume that even cluster points of accumulated atoms will not
exceed a radius of 50.0. As a 15 bit variable can store 32,768 unique values, an encoded
radius re is calculated for each point’s radius r using equation 3.3. This maps r to a
value between 0 and 32,768. In the shader, the encoding is reversed before using the
radius to render the corresponding sphere.

re = r − 1
50− 132768 (3.3)

3.3 Summary and Conclusion
In this chapter, we presented the concept of our data structure and its place within
the framework. We implement an octree constructed by nesting page components, that
encapsulate the data points. The extent of a pages bounding box is determined by the
given maximum amount of point in a page, as well as the density in the region. Addition-
ally, our data structure provides levels of detail that are calculated using agglomerative
hierarchical clustering. Levels of detail are linked together using a parent ID, which
makes it possible to smoothly interpolate between them, as we will see in the following
chapter, where we will also see some of the advantages of dividing space hierarchically
based on the density of a region. As the individual pages can be used to limit the amount
of data that needs to be considered when applying methods based on neighborhood
queries, as well as loaded and rendered per block, it allows us to deal with large data
sets that would be problematic without an advanced data structure.

37

CHAPTER 4
Rendering

When visualizing molecular data, it is important to allow the user to investigate both
the overall structure, and small details. Understanding the structure as a whole, requires
the user to be able to interact with it in real time. In order to make it easier to see
structural details, enhancement methods are helpful. This includes both general visual
enhancement methods that help to guide the viewers eyes to important details, such as
depth of field and ambient occlusion, and surface representation methods that are specific
to molecular data. In the first part of this chapter, we describe how we use our data
structure to render data sets. In part two, we give an overview over the enhancement
methods implemented in the framework.

4.1 Managing and Rendering the Octree Data Structure

The aim of our work is to render several million atoms in real time, without requiring
additional structural information, while facilitating enhancement and surface represen-
tation methods. We use a least recently used (LRU) cache, implemented on the CPU,
to manage the data structure described in Chapter 3. For any given frame, a certain
number of pages are visible, and need to be in memory. This sub-set of data is called the
working set.

Figure 4.1 shows the main components involved in rendering the data structure. Com-
ponents in gray are responsible for back-end data handling, which was discussed in the
previous chapter. This chapter is concerned with the components above the dashed line,
which are responsible for managing and rendering the data structure that was created in
a pre-processing step. The sphere renderer, which is a part of the viewer, manages the
rendering process. It has access to the viewer, which contains a scene, in which a protein
is stored. The cache, which handles the data using pages of the octree, is accessed by the
sphere renderer via the other components. The figure also shows the sphere renderer’s

39

4. Rendering

Protein

CachePage
access data

display

pdb data

main

Rendering
Data management

updateBuffer setLevelOfDetail

display

Scene

Viewer SphereRenderer

Figure 4.1: Rendering components. The main components responsible for the rendering
process are shown above the dashed line. Attached to the SphereRenderer are the
component’s most important methods.

three most important methods for the rendering process, shown as ellipses connected to
the component from which contains them.

4.1.1 Memory Management Using an LRU Cache

When rendering large data sets on a screen with its limited resolution with the entire
data set in view, individual spheres at some point become so small that they cover less
than a single pixel. Additionally, there is a high chance for data points in the back to
be covered up by other geometry. While zooming in to a part of the data set to look at
details on th other hand, parts of the data sets are invisible as they remain outside the
view frustum. Therefore, it is hardly ever necessary to render the entire, large data set
at the same time at full resolution.

In our pre-processing step, we have already spatially divided our data set into pages.
This allows us to look at entire chunks of the data set at once, instead of having to check
visibility for all individual atoms. We also know the maximum size of each block, as it
is possible to choose that when building the data structure. Therefore, we can now use
information about the system’s limits, or decide how much of its capacity we want our
program to use, to determine a maximum amount of pages that can be uploaded to the
GPU at the same time. If the allocated capacity is reached, a decision has to be made
about which pages to discard. This is where caching comes in as a memory management
strategy. The cache helps to efficiently update and manage which parts of the data set

40

4.1. Managing and Rendering the Octree Data Structure

are needed. Data can simply stay in memory, even when it is not visible, until we run
out of memory, and the space is needed by another page.

All types of cache have some limit to their memory. When this limit is reached, something
has to be removed in order to find space for a new entry. Depending on the application,
there are different schemes that can be used. Least recently used (LRU) caches get
their name from the fact that they remove the least recently used entry in order to
make space for a new one. In this context, least recently used means the page that has
not been requested or rendered for the longest amount of time. Consecutive frames
generally contain a similar sub-set of data, so data points that have been accessed recently,
have a high probability of being visible again in the next frame. Pages that have been
out-of-frame longest on the other hand, are more likely to be located in a completely
different area of the data set, and are therefore less likely to be needed for the next
frame. LRU caches are common in volume rendering (Hadwiger et al. [HSS+05], Reichl
et al. [RTW13]), though they have been used in direct particle rendering as well (for
example Fraedrich et al. [FSW09]). According to Beyer et al. [BHP15], another common
strategy is to use a combination of least recently used and most recently used (MRU)
caching. In the suggested strategy, LRU is used as long as there is enough space in
the cache. If the working set becomes too large for the cache, the program switches to
MRU, to reduce cache trashing, i.e., competition for available slots, resulting in cache
misses or overwriting of data blocks that are needed. In our implementation, we choose
to implement an LRU cache, and render the molecule at a lower resolution when we run
out of cache space instead.

We implement the LRU cache on the CPU side. Usually, an LRU cache is based on
two basic data structures, one that implements a queue, and one which provides hash
functionality. The implementation of our LRU cache is based on a list, and an unordered
map. As a key in the map, we use pointers to the pages. As value, we store a vector
containing the level of detail at which the data is uploaded, as well as the position in
the cache. If there are unused slots available in the cache at the time when the page is
added, the saved position is simply the position of the entry in the map. In case of a full
cache, we replace the least recently used page, that is the one at the bottom of the list
with the new page, and assign the original position of the replaced page to the new page.
This information is used when we use the LRU to update the buffers.

Figure 4.2 shows the molecule 3j3q. The pages’ bounding boxes are colored according
to the age of the page. Pages shown in green have been accessed recently, while pages
shown in red would be the first to be replaced, in case of a full buffer and cache.

4.1.2 Updating GPU Buffers Using the LRU

On the GPU side, we use two buffers that store two neighboring levels of detail, which
can be interpolated in the shader. We update them using the LRU cache, and a list of
visible pages for the current frame.

41

4. Rendering

Figure 4.2: Molecule 3j3q with colored bounding boxes for the pages of the octree. The
pages that were least recently accessed are shown in red, the most recently accessed pages
in green.

To update the rendering list, i.e., the list of at least partially visible pages for the current
frame, we perform coarse view frustum culling by checking each page’s bounding box
against the view frustum. A page that is entirely outside the view frustum, is not added
to the rendering list, which effectively means that we are discarding invisible parts of the
data for the current frame. After checking if the bounding box of a page lies within the
view frustum, we update the LRU cache for all pages that are at least partially visible.
The LRU cache saves a new pointer, if the page is not yet resident. If it already exists
in the cache, it reorders the page pointers in the list, thus marking the page as most
recently used.

To the second buffer, we upload the data for the next coarser level of detail. We want
to have two neighboring resolutions available in the shader in order to be able to blend
levels of detail smoothly. Both buffers are updated each frame, using the same LRU
cache and list of visible pages.

Figure 4.3 illustrates three situations that can arise when adding a page to the cache.
The upper row represents the cache, the lower row a buffer it manages. Blue pages have
already been added to the rendering list for this frame. In the first case on top of the
figure, there is unused space left, so we do not have to delete currently unused data in
the buffer. Instead, we assign it to the next available slot in the buffer. The second case
in the middle shows a full buffer. However, the number of pages added for the current
frame is still lower than the total number of entries allowed in the cache. We replace

42

4.1. Managing and Rendering the Octree Data Structure

0 1 2 3 4 5 6 7 8 9 1011121314

9 7 4 5 2 0 1 3 6 10 8 11121314

most recent least recent

?

0 1 2 3 4 5 6 7 8 9 1011121314

9 7 4 5 2 0 1 3 6 10 8 11141213

13

0 1 2 3 4 5 6 7 8 9 1011121314

9 7 4 5 2 0 1 3 6 10 8 11

currently not visible
currently visible

Cache

Buffer

Cache
Buffer

Cache
Buffer

11

Figure 4.3: Cache and buffer update. The first case in the top row shows a cache with
available space left, in the case shown in the middle, the cache is full, but parts of the
data are not currently needed, and the last illustration shows a cache that is too small to
hold all currently visible pages.

the least recently used page, and assign its slot, in this case number 13, to the new page.
The last case on the bottom of the figure shows a full cache. The rendering list for the
current frame exceeds the total number of allowed entries in the cache. In this case, we
do not replace the least recently used entry, as it is needed in the current frame. Instead,
we stop adding pages to the rendering list. The user has to choose to either reduce the
resolution, or zoom in to the relevant area of the data set, so that some areas become
invisible. It should be noted that, if the entire capacity of the GPU is used, this extreme
case only occurs when rendering data sets of several tens or hundreds of millions of atoms,
depending on the system.

Which position in the buffer we write the data to, is also managed by the cache. For each
page in the rendering list, we check if it is already resident in the buffer by looking it up
in the cache. If it is not, but there is still empty space available, it is assigned a position.
The offset of a newly added page’s data in a buffer is defined as its position in the cache

43

4. Rendering

Render
list
3
5
12
1
...

5 11 3 12 1

100 700300 500 900

page

original
position

2 1 3 5 4

currently not visible
currently visible

...

...

offset 1: 4x100
offset 2: 4x50

max atoms:
100

max atoms:
50

Cache

Buffer 1

Buffer 2

Figure 4.4: The buffer offset is calculated based on the original cache position and the
size of buffer chunks.

multiplied by the maximum number of atoms any page at that level of detail contains, as
illustrated in Figure 4.4. This offset remains the same until the page is thrown out of
the cache. Even if a page is temporarily outside the view frustum, its data remains in
the buffers, where it can be used again at need, without having to upload it again. For
example, if we add a new page with a maximum number of atoms 100 at level 0 and 50
at level 1, and a page is added to the cache at position 4, the offset when uploading to
the first buffer is 400, and that for the second is 200.

When we remove the least recently used page in order to make space for a new page, we
need to know which part of the buffer the data associated with the deleted page resides
in. This part of the buffer will be overwritten with the data of the new page. That is
why the cache saves the original position of a page in the value vector. When we replace
a page, the new page gets assigned the original "position" of the page it replaces, and we
overwrite the old page’s data in the buffers, using the offset derived from the position
and the maximum number of points for a page at the currently used level of detail.

The basic level of detail is the most detailed resolution we want to be able to display.
Usually, that is the original resolution. As we show the entire molecule as a default view
when we start the visualization, the basic level of detail is set to the highest resolution
at which all atoms of the molecule can fit into the available space. The user can later
change the basic level of detail in the interface. However, that clears the LRU cache and
doing so can therefore decrease performance for very large molecules. The basic level of

44

4.1. Managing and Rendering the Octree Data Structure

detail determines the size of buffer chunks, which is why we clear both the cache and the
buffers when it is changed.

In addition to the basic level, we define the rendering level, which is the level of detail
that we actually show. It can be the same as the basic level, or any level coarser than
that. If, for example, we have enough available space for the buffers to view the molecule
at the original resolution (level 0), but want to view it at level 2 to increase the frame
rate, we can change the rendering level. Instead of replacing and reshaping the entire
buffer, which is a costly and inefficient thing to do frequently, we simply re-use buffer
chunks and replace each block with its level 2 data when it is needed. Therefore, we
only recommend changing the basic level to anything other than full resolution, when
the GPU actually runs out of memory.

The rendering level also has to be taken into account when updating the cache and
buffers. Therefore, we also save the difference between the basic level, and the rendering
level in the value vector associated with a cache entry. If, for example, the global basic
level is 1, but we uploaded the data at rendering level 2, we save the number 1, indicating
that the resolution saved in the buffer differs from the basic level of detail by one level.
When we try to add a page to the cache, we have to check that value as well to see
whether it is saved at the desired resolution. If it is not, we update the value vector, and
return the offset of that page, which we then use to replace the data in the cache with
the new resolution.

Figure 4.5 shows a schematic illustration of the buffers for a given frame. All pages
shown in blue are currently at least partially visible, while pages illustrated in red are
completely outside the view frustum. The smaller pattern indicates pages rendered at a
finer resolution, while the ones covered in coarser dots are saved at a lower resolution.
The red pages without a pattern are neither visible, nor resident in the buffer, while
the two red-dotted pages were visible in a previous frame, and have not been deleted.
Though they are not rendered for the illustrated frame, the data associated with these
pages is still in the buffer, as there is space available in the buffer and cache, shown in
white in the illustration.

4.1.3 Rendering for Data Sets of Different Sizes

Initially when loading a data set, the entire molecule is in view. We render it at full
resolution if possible, and at the lowest available resolution if not. The user can later
adjust the position of the protein, as well as choose the level of detail. The goal is to
make rendering as efficient as possible. Data that actually needs to be rendered at a
given time has to be prioritized when uploading data to the GPU, while invisible data
should be discarded as early as possible.

As our standard rendering method, we use the list of visible pages to draw them
individually. We also support drawing the entire buffer in a single draw call instead, but
in that case, we do not have access to the information that links point to their parents,

45

4. Rendering

lower resolution

1 2
4 3 5

6 8

13

9 10

1112

7

higher resolution
currently not visible
currently visible

3 13 6 5 2 12 9 8 11 10

view frustum

Figure 4.5: The cube on the left is a two-dimensional representation of an octree data
structure with different-sized pages. Blue pages are currently at least partially within the
view frustum (green), red pages outside it. The dots represent the level of detail at which
the data is saved in the buffer. The two red dotted pages are in the buffers because they
were previously visible.

as parent IDs are relative to the page, not the entire buffer, so we cannot interpolate
between levels of detail.

Though all individual molecules currently available at the Protein Data Bank easily fit
into memory using our test hardware, we want our system to be able to handle larger
data sets. Therefore, we provide a set of options for very large data sets.

The size of the buffer slots is determined by the maximum number of atoms in a single
page at the current basic level. Therefore, the number of pages we can upload also
depends on the basic level of detail. By default, that is if the memory capacity allows it,
we render the entire data set at the original resolution when starting the program. The
maximum number of pages allowed in the cache is generally equal to the total number
of pages in the current data set, and the minimum level of detail is 0, or the original
resolution. However, the user has the option of limiting the number of rendered pages
manually later. If the minimum LOD is for example set to level 2 instead, levels 2 and
above can be shown, but not the more detailed levels 0 and 1.

The maximum number of pages of a certain resolution that we can fit onto the GPU can
be calculated depending on available memory. If the entire data set at original resolution
is too large to fit into memory, we run a GPU memory test to determine that limit for
all levels of detail. We then show the resulting limitations in the GUI, giving the user
the option of choosing whether to limit the maximum amount of pages, or the minimum
resolution. Limiting the number of pages means that only parts of the large data set can
be shown at any time. By default, we render the data set at the coarsest available level
of detail if the original resolution is not possible. If the user wants to see more details,

46

4.2. Smoothly Blending Between LODs

they have to change it back manually. The reason we implemented it like that rather
than automatically showing the highest possible resolution, even for very large data sets,
is that it slows down the system. Additionally, if the data set is very large, and all of it
is visible, it is probable that details are too small to be seen anyway. We find it more
convenient to be able to handle the entire data set at a "fast" resolution, and change to a
more detailed view after zooming into an interesting area.

4.2 Smoothly Blending Between LODs
We want to be able to show more than one level of detail at the same time. Figure 4.6
illustrates the transition from one level of detail to another. As described in Section
3.2.2, we use a flag in the vector’s fourth component to mark the point that is closest to
the center point of the cluster. The transformation from one level to the next, happens
on a scale from 0 to 1, where 0 is the higher resolution level (level 1 in the example)
and 1 the lower resolution level (level 2 in this case). Between these two states, all
children gradually migrate towards the parent position, i.e. the center of the cluster.
For all points except the "heir", the radius decreases from its original value towards 0.
The radius of the "heir", that is the point closest to the center, increases from its own
original radius to the radius of the parent sphere. Alternatively, one could let all spheres
grow and migrate closer to each other without singling out an heir. While that strategy
saves the hassle of defining an heir, it leads to issues when rendering Gaussian surfaces.
The optimized algorithm proposed by Bruckner [Bru19], which we use to calculate the
Gaussian surface, determines where a surface has to be drawn by creating an intersection
list. The surface is only created in areas where spheres overlap. If we let all spheres in a
cluster migrate towards the center, they overlap more and more, the closer we get to the
new level of detail. The more spheres overlap, the larger the surface area. Towards the
end of the transition, all spheres are at approximately the same position, and have the
same size, leading to almost 100% overlap of many spheres. When we reach the new level,
all spheres in the cluster are removed in favor of the single sphere that represents them
on the new level. Once that step is performed, there is no overlap anymore, which means
that no Gaussian surface is created either, leading to a sudden reduction in the size of
the surface. As the goal is a smooth transition, we therefor opted to choose a single heir
instead. Thus, all other spheres can be gradually shrunk and then removed, which means
that right before the swap, there is usually only a single sphere to be replaced. Even if
one or two of its neighbors are left, they are at this point both tiny and within the radius
of the now enlarged heir. Therefore, they do not visibly impact the Gaussian surface,
which allows for a smooth transition.

The data structure containing the pages at all levels of detail is stored in a nested
structure of pages, pointers, and arrays, containing the data in the leaves of the octree.
On the GPU, only two levels of detail are available at each given time for each loaded
page. It would be possible to upload all available levels, but as the maximum number
of data points per page is limited to 215, it is never necessary to interpolate between
more than two levels of detail within a single page. Instead, we choose the level of detail

47

4. Rendering

(a) Level 0 (b) Stage 1 (interpolated level of about 0.25)

(c) Stage 2 (interpolated level of about 0.75) (d) Level 1

Figure 4.6: Molecule 1sva. Transition of the entire molecule between level 0 and 1

that is uploaded to the GPU per page. As mentioned in the previous section, we have a
basic level of detail that determines the division of the buffer, and a render level that
determines at which level of detail the page is actually rendered. The rendering level
can never be a more detailed LOD than the basic level. Apart from this limitation, it
can be changed interactively by the user, or determined depending on the frame rate, or
distance. The distance-based option reduces the level of detail with increasing distance
from the camera, while the frame rate based modus reduces the detail once the frame
rate drops below a specified threshold.

4.2.1 Distance-based LOD Adjustment

We are trying to reduce the number of rendered spheres in order to speed up the rendering
process, while impacting the visual quality as little as possible. Spheres that are further
away from the camera are rendered smaller than closer spheres in perspective projection.
Additionally, they have a higher chance of being at least partially covered by other
spheres. Reducing the resolution in the back is less likely to be perceived by the user.
We can chose the resolution per page, depending on the distance between the camera
and the center of the page’s bounding box. However, we want to avoid visible artifacts
and sudden changes between neighboring pages. Therefore, we additionally smoothly
interpolate between levels in the shader.

48

4.2. Smoothly Blending Between LODs

On the CPU, we choose which level of detail to upload to the buffers, depending on the
distance to the camera. The basic level of detail for the entire molecule lb, is by default
level 0, that is the original resolution, but can be coarser if the molecule is too large
to fit into memory. The user can choose the distance threshold t, and the amount of
tolerance ε in the interface. On the CPU, only the distance threshold is used. For all
pages where the bounding box center has a distance to the camera dp, which is greater
than that threshold, the next coarser level of detail is uploaded to the buffers. If the
basic rendering level for the entire molecule is 1, the level in its secondary buffer would
be 2, while for all pages beyond the threshold, level 2 would be uploaded to the first, and
level 3 to the second buffer. The information at which level of detail the atoms of a page
are uploaded is needed in the shader in order to interpolate between individual points.
We encode it based on the difference to the molecule’s basic rendering level as shown
in equation 4.1. If the basic level of detail is used for a page, the difference is 0, if it is
beyond the threshold and the next coarser level is used, the difference is 1. Currently,
our system only supports interpolating between three levels of detail. However, it could
easily be expanded to several levels of detail if data sets with greater depth differences
required it.

lp =
{

0, if dp < t

1, if dp ≥ t
(4.1)

In the shader, we use both the distance threshold, and the tolerance to achieve a smooth
transition, using the mechanism described in section 4.2. Here, we deal with individual
atoms or points representing several atoms, rather than entire pages. Figure 4.7 illustrates
the interpolation between three levels in the shader. The pages shown in white are those
with center points closer to the camera than the cut-off distance, while the centers of
the gray pages are further away. The dashed line in the center of the figure shows the
threshold. The blue area around it, defined as t ± ε, shows the tolerance. All points
that fall within that area, are rendered at the overlapping level. If the white pages are
rendered between level 0 and 1, and the gray pages between 1 and 2, everything within
the blue area is rendered at level 1. Equation 4.2 shows how the rendered level of a point
is decided. For each atom (point), we have the option of interpolating between the two
levels in the buffer, one finer, and one coarser. Which LODs those are, is decided on
the CPU, see equation 4.1. As described in section 4.2, interpolation happens on a scale
from 0 to 1, where 0 is the finer, and 1 the coarser level of detail. The cases shown in
Equation 4.2 are marked with numbers from 1 to 5 in Figure 4.7. In case 1 and 5, the
finer and coarser available level are rendered respectively. Case 2, which corresponds
to the thick blue line in the illustration, uses the level the pages have in common, for
example level 1 in the example where we interpolate between levels 0 and 2. Cases 3 and
4, the areas between the dashed blue lines and the solid blue line, are the areas where
actual interpolation happens. The closer the atom or point is to the camera within the
extent of the area ε, the closer to 0 its interpolation result.

49

4. Rendering

It has to be noted that even with our interpolation system, abrupt level changes can
happen if the tolerance area ε is too small. Figure 4.7 shows a relatively small ε. The
red lines show where abrupt changes would happen, as the pages shown in white would
be rendered at level 1 and the gray pages at level 2. The correct solution to this issue
is simply to choose an appropriate size for ε. In practice, the difference is usually not
visible, as points in the part of the molecule facing away from the camera are mostly
covered by the points or atoms closer to the camera.

i =

0, if d < t− 2ε (case 1)
1− lp, if t− ε < d > t+ ε (case 2)
d−t−ε
ε , if t+ ε < d < t+ 2ε (case 3)

d−t+2ε
ε , if t− 2ε < d < t− ε (case 4)

1, if d > t+ 2ε (case 5)

(4.2)

4.2.2 Frame Rate-Based LOD Adjustment

One of the declared goals of our framework is to achieve interactive rates. We implemented
a method that chooses at which level of detail the molecule is rendered, depending on
the frame rate. The idea behind this mode is that a user might wish to investigate the
overall structure of a very large molecule in real time, without necessarily caring about
the finer details at this stage. For large data sets, it might not be possible to render the
entire structure at the frame rate the user desires at the original resolution. We let the
user specify a target frame rate via the interface. If the average frame rate, as calculated
based on the last 64 frames, is lower than the specified limit, a coarser level of detail is
chosen for the entire molecule. This method changes the rendering level, not the basic
level, so the cache structure remains the same. The method contains a counter that
measures the time that has passed since the last change of level. As operations such as
updating the atoms saved in the cache to the new rendering level have to be performed,
it takes a couple of seconds for the frame rate to stabilize after a change of level. If the
frame rate drops below the threshold, we check the counter to see whether at least 10
seconds have passed since the last time the level was changed by the frame rate based
rendering method before changing it again. We lower the resolution one level at a time.

4.3 Molecular Surface Rendering
Though enhancement methods and surface models are not the main focus of our imple-
mentation, we include basic methods as a proof of concept. The atoms or cluster spheres
can be rendered using the van der Waals, or a Gaussian Surface Model. For structural
and depth enhancement, our framework includes depth of field, ambient occlusion, and
edge enhancement. This section focuses on GPU aspects of rendering, as we implement
the effects largely in screen-space. Figure 4.8 gives an overview over the shader passes in
the sphere renderer. Gray shaders represent passes for optional screen space effects.

50

4.3. Molecular Surface Rendering

lower resolution in Buffer

Level i+1

Transition

Level i

TransitionLevel i+2

Figure 4.7: Illustration of the smooth transition between levels in distance based rendering.
Pages with a center point more than a defined distance from the camera are uploaded at
a coarser LOD (dotted pages). Within a parameter-defined area around that distance,
we interpolate levels of detail based on the distance.

SphereRenderer

sphere spawn shade gauss

SSAO

halo

DOF blend

Figure 4.8: Render passes. Shaders shown in gray are optional, the ones in white necessary
for our basic rendering process.

51

4. Rendering

The van der Waals Surface Model approximates the molecular surface by rendering
individual atoms as spheres using a center position and their van der Waals radii. Our
rendering framework is centered around a Gaussian Surface Model as proposed by
Bruckner [Bru19], which is based on vdW spheres.

The surface calculation method is achieved in image space, so the algorithm is output
sensitive. The influence the calculations have on the achievable frame rate is determined
by the atoms on the image plane, rather than the size of the molecule. That makes it
particularly suitable for very large structures. The basis of a Gaussian molecular surface
is the following density function:

ρ(x) =
∑
i

e

−s||x−ci||
2

r2
i

ci and ri are atom position and radius, s is a scaling factor. The final surface is a union
of the Gaussian surface and the vdW surface. Therefore, we can smoothly blend between
the two, adjusting the result by tweaking the parameters. In our implementation, the
user can do this by changing the sharpness factor and thereby the atoms’ sphere of
influence. According to Liu et al. [LCL15], it is possible to achieve a good approximation
of the SES and SAS with the correct parameters.

To evaluate the density function in image space, an intersection list is created. We define
each atom’s sphere of influence, which functions as a cutoff radius. Outside the sphere of
influence, an atom does not contribute to the density function. Therefore, the density
function only needs to be calculated in areas where these spheres overlap, and are not
occluded. The size of the sphere of influence is determined as follows, based on the
threshold t and the minimum number of contributing atoms at a position N

r′i = ri

√
ln(Nt)
s

We determine the intersection list in a separate rendering pass. The spheres of influence
are rendered in the same way as the van der Waals sphers: a single vertex is rendered
per atom, and a quad constructed based on the sphere’s screen space bounding box. For
van der Waals spheres, we stop after the first intersection, as our framework does not
support transparency. For each sphere of influence that is not occluded by van der Waals
spheres, we save the necessary information as an entry in the list. It contains near and
far intersection, center position, the index of the previous sphere entry, as well as the
information that is usually stored in the fourth component, i.e. radius, parent ID and
heir flag.

Bruckner [Bru19] proposes an adaptation of selection sort for ray traversal. As that
algorithm guarantees that the first i elements are correctly sorted after the i-th iteration,
and we only need the first intersection with the Gaussian surface, we can stop once that

52

4.3. Molecular Surface Rendering

Algorithm 4.1: Visibility-driven ray traversal, [Bru19]
Input: array of count intersection point indices ii, referring to the entry

containing information such as near and far about the spheres of
influence

1 ss = 0
for i← 0 to count− 1 do

2 k = i
for j ← i+ 1 to count− 1 do

3 if nearii[j] < nearii[k] then
4 k = j
5 end
6 end
7 swap(ii[i], ii[k])

if ss < i then
8 if i ≤ count− 1 or farii[ss] < nearii[i] then
9 if interesect(ss, i) then

10 break
11 end
12 ss = ss+ 1
13 end
14 end
15 end

intersection is detected. Algorithm 4.1 shows the pseudocode for visibility-driven ray
traversal proposed by Bruckner.

To calculate surface intersections, we use sphere tracing in the interval from neari + 1 to
farj − 1.

Depth Based Surface

In our implementation, the user can set the sharpness factor s in the interface, which
determines the extent of the surface. The radius of the sphere of influence is calculated
by multiplying the radius of the atom with a radius scale factor rs, which is calculated
using the sharpness and the contributing atoms constant ca . For a standard value of
ca = 32.0, the radius scaling factor is determined as follows:

rs =

√
log caes

s
(4.3)

Our depth based surface rendering mode changes the radius scaling factor using the
same principles as for distance based LOD rendering (see Section 4.2.1). The user can

53

4. Rendering

choose threshold and tolerance in the interface. All spheres closer to the camera than the
threshold are rendered using the radius scaling factor resulting from the chosen sharpness.
In the area between threshold, and threshold + tolerance, the scaling factor is linearly
decreased to 1, which results in a sphere of influence of the same size as the radius of the
sphere itself. As in the case of level of detail rendering, spheres that are further away from
the camera, usually take up less screen space and are more likely to be at least partially
occluded. They are therefore natural candidates when selectively decreasing resolution
or rendering details. Even the optimized molecular surface we use is computationally
expensive for large spheres of influence. So for larger surfaces, decreasing calculations on
spheres further from the camera is worth the extra calculations required, which is shown
in more detail in Section 6.4.3.

4.4 Visual Enhancement for Molecular Rendering

Visual enhancement methods are used to help the viewer to better understand both
details, and the overall structure of the data. All of the enhancement methods we include
in our framework are screen space methods, based on different variations of blurring
passes. In addition, we integrate an ambient occlusion library.

4.4.1 Depth of Field

In photography, depth of field is a result of light rays being broken in the camera’s lens.
Both photographic cameras, and the human eye are limited in the range of depth they
can perceive in focus at the same time. Therefore, we are used to seeing focus as a depth
cue. Two of the main reasons depth of field is implemented in computer graphics, are
that as depth cue, and to make scenes and objects look more realistic. A realistic looking
molecule to the human eye does not exist, given that they are too small for the human
eye to see. Depth of field can, however, play an important role when trying to understand
three-dimensional structures, irrespective of whether or not we can observe them in the
real world. In particle based data visualization, depth of field is often used to emphasize
certain parts of the structure by blurring the back- and foreground.

We adapted the implementation by Bukowski et al. [BHOM13] for our framework. Figure
4.9 shows their illustration of the algorithm. It is based on two blur passes, one horizontal
and one vertical. In order to achieve the effect, a rendered image of the scene is blurred
using a blur kernel to sample and add up neighboring pixels. Two different blurred
images are created, one for the background, and one for the foreground, with a stronger
blurring effect. The factor that decides which parts of an image are blurred and which
sharp, is called circle of confusion (CoC). It is calculated using the parameters aperture,
focal length, and focal distance. We store the calculated value in the alpha channel of the
blurred texture. The final depth of field image is calculated in a separate shading pass.

In addition, we implement an auto focus option, which sets the region in focus approxi-
mately to the current mouse position. We set the focal distance to the z value at the

54

4.4. Visual Enhancement for Molecular Rendering

Figure 4.9: Illustration of the depth of field algorithm from the publication by Bukowski
et al. [BHOM13]

position of the mouse points at the time the user presses the auto focus button.

Figure 4.10 shows two examples of depth of field blurring. Both screenshots were taken
at the same position, and with the same focal length. Screenshot 4.10a uses an F-stop of
0.7, highlighting only a few selected atoms, while screenshot 4.10b, with an F-stop of 11,
only blurs distant atoms, while everything closer to the camera is in focus.

4.4.2 Screen Space Enhancement

Ambient occlusion helps to better understand and illustrate the structure by darkening
surfaces that are on the inside of a structure. Our framework contains different versions

55

4. Rendering

(a) Blur F-stop 0.7 (b) Blur F-stop 11

Figure 4.10: Depth blur on the molecule 6qz0

of ambient occlusion and edge enhancement. We include the HBAOPlus library for
ambient occlusion. Additionally, we implement two versions based on a blurring pass,
which the the user can tweak using parameters.

Ambient Occlusion Using the HBAOPlus Library

The NVIDIA HBAO+ (Horizon Based Ambient Occlusion) library is a screen space
ambient occlusion library. It is an updated version of the work presented by Bavolia and
Sainz [BS09]. It is mainly designed to produce realistic ambient occlusion shadowing.

The library uses the depth buffer as an approximation of the scene. Rays are traced
directly in 2D, and the ambient occlusion is approximated from these 2D rays. They use
spherical coordinates, with the zenith axis oriented parallel to the Z axis in eye space.
They compute incremental horizon angles while stepping forward along a line in eye
space, and integrate the ambient occlusion based on the horizon angles.

In our framework, we wrap the library in the SSAO component. The component has
its own display method, which we call from within the sphere renderer, if the user
chooses to enable ambient occlusion. In the SSAO component, we also set the parameters.
Figure 4.11 shows the ambient occlusion effect achieved by the library. Realistic ambient
occlusion enhances the structure, and is therefore useful for our purposes. It is not
necessarily the only worthwhile technique to use though, given the fact that our goal is to
make it easier to understand the structure at hand, rather than light a human-recognizable
scene in a realistic way.

Blur-based Structure Enhancement

In addition to the library, we implement screen space enhancement based on two blurring
methods, which achieve slightly different results. The first version separable Gaussian
blur shader. Is is based on a an incremental Gaussian burring kernel, as described by
Turkowski [Tur07], and a GLSL shader published on a blog by Hay [Hay10] 1.

1https://callumhay.blogspot.com/2010/09/gaussian-blur-shader-glsl.html

56

https://callumhay.blogspot.com/2010/09/gaussian-blur-shader-glsl.html

4.4. Visual Enhancement for Molecular Rendering

Figure 4.11: Ambient occlusion using the HBAO+ library

It is used in a post-processing step and takes the output from the previous rendering
pass as texture input. The method uses two passes, one horizontal and one vertical, in
which the texture is sampled in the given direction. The sampled points are summed
up and weighted using the incremental Gaussian coefficients. The incremental Gaussian
coefficients are stored in a three dimensional vector and its initial values are calculated
as shown in Equation 4.4], where σ can be chosen by the user in the interface.

x = 1√
2πσ

y = exp−0.5σ2z = y2 (4.4)

Figure 4.12 shows examples with two different sets of parameters. The images on the left
are without enhancement, while the right side shows images created using the Gaussian
blur-based enhancement method. In Figure 4.12b, a smaller kernel size is used, which
results in more localized blurring, and thereby limits more to the edges. The image
shown in Figure 4.12d is achieved using a larger kernel size, which results in an additional
effect that is closer to ambient occlusion and enhances the structures at the core of the
molecule.

We also implement another type of blur-based enhancement, which uses a different type
of blurring effect. The halo blur shader is based on the works of Bruckner and Gröller
[BG07], as well as Rong and Tan [RT06]. Rong and Tan propose a flooding algorithm for
Voronoi diagrams. Bruckner and Gröller use a similar approach to create halo fields to
enhance volumetric data sets. Each pass, a neighborhood of eight pixels is sampled for
each point in the image. At pass n, the sampled point is 2n pixels away from the point
under consideration.

The main difference between this blurring method and the Gaussian blur is that the
strength of the effect is determined by the number of passes. Conceptually, the passes
are used in a similar way as in the jump-flooding algorithm by Rong and Tan [RT06].

57

4. Rendering

(a) No enhancement (b) Lambda 20, sigma 20, kernel 2

(c) No enhancement (d) Lambda 12, sigma 4, kernel 8

Figure 4.12: Examples of Gaussian blur based enhancement on the molecule 5odv

The distance at which we sample the texture depends on which pass it is. Each pass,
we sample pixels closer to our target pixel, until, during the final pass, we sample direct
neighbors.

Figure 4.13 shows the results of this rendering method. With fewer passes, such as for
example 2 passes in Figure 4.13b, finer details are enhanced. More passes result in a
stronger blur, as shown for 32 passes in Figure 4.13d. The result of 16 passes is shown

58

4.5. Summary and Conclusion

in Figure 4.13c. Here, the edges become thicker, resulting in an effect that emphasizes
larger structures. The disadvantage is that some details are lost in the edges.

(a) Screenshot without the effect (b) Halo with 2 passes and lambda 50

(c) Screenshot without the effect (d) Halo with 16 passes and lambda 11

Figure 4.13: Examples of halo-based ambient occlusion

4.5 Summary and Conclusion
In this section, we introduce the methods we use to render the data structure we
introduced in the previous chapter. The basic method relies on an LRU cache, a list of

59

4. Rendering

visible pages for each frame, and buffers which we use to upload two different levels of
detail to the GPU. The cache has a fixed capacity and saves pointers to the pages that
have been added, as well as the pages’ rendering level and index in the buffer. We also
explain different options for blending levels of detail and look at the special case of very
large data structures. In the second part of the chapter, we look at surface models, in
particular the Gaussian Surface Model, and screen space enhancement methods.

60

CHAPTER 5
Implementation

In this chapter, we explain the libraries, tools and technologies used in our implementation.
The code is written in C++ and OpenGL. Additionally, we use some libraries and base
parts of our implementation on previous work.

Figure 5.1 shows an overview over components and libraries. The components involved

Figure 5.1: System architecture

61

5. Implementation

in rendering and data handling have already been explained in previous sections. Here,
they are shown in the context of the entire framework. The viewer is the core of all
visualization tasks. It is connected to the data handling components via the scene. It
also contains interactors and renderers. Currently, there is one interactor that handles a
camera, and two main renderers, the sphere renderer and the bounding box renderer.
However, the system is expandable, and can contain as many interactors and renderers
as necessary. Libraries are shown in connection with the components that use them.
As they interact with most of the components, the GL libraries are illustrated without
individual connections to components for the sake of readability.

5.1 Libraries
Many tasks our framework has to handle are standard operations, for which we use
libraries when they are not part of the core of our research. In this section, we give an
overview over the libraries and how they are integrated into the implementation.

glbinding and globjects

We use glbinding1 and globjects2as wrappers for OpenGL. Globjects is an object oriented
wrapper library, which provides an interface for the programmable graphic pipeline.
OpenGL objects are mapped directly to C++ classes. Glbinding is a cross-platform C++
binding for OpenGL.

GLM

GLM3 (OpenGL Mathematics) is a library based on the OpenGL Shading Language
(GLSL) specifications. It implements classes and functions in C++, following the naming
conventions found in GLSL. We mostly use it for data types such as matrices, but also
some of its functions, such as transformations to radians.

GLFW

GLFW4 is an OpenGL utility library for creating windows, contexts and surfaces and
receiving input and events. We use it to create our window, handle keyboard events and
measure time.

ImGui

We use the ImGui5 library to build our graphical user interface. User interface elements
are created and drawn each frame, hence the name immediate mode GUI.

1https://glbinding.org/
2https://globjects.org/
3https://glm.g-truc.net/
4https://www.glfw.org/
5https://github.com/ocornut/imgui

62

https://glbinding.org/
https://globjects.org/
https://glm.g-truc.net/
https://www.glfw.org/
https://github.com/ocornut/imgui

5.2. Implementation Choices

LodePNG

The LodePNG6 library handles image loading. We use it in the SphereRenderer to load
environment maps and in the viewer to save screenshots.

fastcluster

As it is used in part of our core functionality, the fastcluster7 library has already been
described in chapter 3. It is a collection of several variations of the fast cluster algorithm.
We use it in the page component, to calculate levels of detail based on iterative clustering.

HBAOPlus

As mentioned in chapter 4, the HBAOPlus8 library is used for ambient occlusion. It is
encapsulated in the SSAO component. That component handles the parameters for the
library. It has its own display method, which is called by the sphere renderer, when the
user chooses to activate ambient occlusion. The display method requires the view and
projection matrix, a framebuffer, as well as depth and normal texture.

5.2 Implementation Choices

In this section, we go through the architecture of our implementation and discuss concrete
implementation choices for important components.

5.2.1 Data Structure

On the CPU side, the actual point-based data is stored within nested page components, as
marked in Figure 5.1. The single instance of a protein component within our scene handles
the basic page, i.e., root of the octree, via a shared pointer. std::shared_ptr<>
manages shared ownership of an object of the type page. The advantage of smart pointers
in C++ is that they manage the destruction of the object they point to. The object’s
memory is deallocated when the last pointer pointing to it is either destroyed, or assigned
to something else. In contrast to other smart pointers such as std::unique_ptr, it
allows several pointers to point to the same object.

A single page contains a data structure for sub-pages, and one for data points. For each
individual page, only one of them is used at any given time. If the page is an internal
node in the octree, it stores references to its sub-pages. We store this sub-octree as a 2
by 2 by 2 array of references: std::shared_ptr<Page>[2][2][2]. The advantage
of a multidimensional array over other structures, such as vectors, is that we can access
them in a way that reflects the page’s spatial position. Accessing a page in the array

6https://lodev.org/lodepng/
7https://github.com/dmuellner/fastcluster
8https://www.geforce.com/hardware/technology/hbao-plus

63

https://lodev.org/lodepng/
https://github.com/dmuellner/fastcluster
https://www.geforce.com/hardware/technology/hbao-plus

5. Implementation

using the pattern [1][1][1] for example not only gives us with the reference we need, but
also provides information about which area of the parent page it covers.

If a page is a leaf node in the data structure, it does not contain any sub-pages, so
no references are stored. Instead, we store the atoms and level of detail cluster points.
We store them in a vector of vectors: std::vector<std::vector<glm::vec4> >.
Individual data points are saved as glm::vec4. As the points are later uploaded to
the GPU, it is convenient to use the data structures of the GLM library, which provides
classes and functions with the same naming conventions and functionalities that GLSL
offers in C++. All points at a particular level of a page are saved in a std::vector,
so there is a std::vector<glm::vec4> for each level of detail. The vectors for
the different levels are stored in another vector, resulting in the final data structure
std::vector<std::vector<glm::vec4> >. The advantage of vectors compared
to other data structures, such as arrays, is that we do not need to define their size
beforehand. While we do know the maximum amount of atoms that can be on a page,
most pages are not filled to the maximum, which would leave unused space in an array
of pre-defined size. Right now, we calculate a fixed number of levels of detail, but using
a vector rather than an array leaves the option of extending it if an additional, coarser
level is required.

5.2.2 Cache

Our LRU cache implementation is based on a std::list and std::unordered_map.
The list contains a std::pair consisting of a pointer to the page std::shared_ptr
<Page> and a glm::ivec2 for the position and rendering level information. As a key,
the map also uses the pointer to the page and as a value an iterator over the list.

The C++ data structure std::list is a doubly linked list. In contrast to vectors and
arrays, it does not store elements at contiguous memory locations. Therefore, insertions
and deletions are more efficient, because instead of changing memory, only pointers
are changed. This also reflects the way we designed buffer access. While the data of
individual pages are stored contiguously, only parts of the memory that have not been
used recently are replaced when necessary. Instead, we use index information to point to
memory locations. This trait is advantageous in our implementation, because we push
pages to the front of the queue each time they are either used or added to keep track of
least recent use.

For the map component, we use a std::unordered_map, which is the C++ standard
library’s implementation of a hash map. In contrast to std::map, which is based on
a binary search tree, it uses a hash table to store data. The order in which the data is
added to the cache is tracked by the list, so we do not need the entries in the map to
be sorted, nor do we need to know an individual entry’s neighbors. We update the map
only if the cache does not contain the requested page yet, or when we have to delete a
page in order to free up space for new pages. The job of the map is to store the values

64

5.2. Implementation Choices

associated with the key, without any requirements of order. Therefore, the unordered
map is the most suitable type of map.

There are two values associated with rendering a page. Both the rendering level and
the offset position in the buffer are integer values. As a map only stores a single value
per key, we wrap them in a glm::ivec2. Though a std::vector would work just as
well, glm::ivec2 limits the data that can be stored to two integer values, which is all
we want to allow.

5.2.3 Buffers

To upload data points to the GPU, we need a data structure that does not have a size limit,
except the actual hardware constraints. We use the globjects/Buffer.h wrapper
for OpenGL buffer objects. As we want to be able to interpolate between levels of detail,
we use two buffers to store point positions of the current basic level, and the next coarser
LOD. For each of them, we store a unique pointer: std::unique_ptr<globjects::
Buffer>. The initial size of the buffers is determined at start up, and they are resized
when the basic level of detail is changed by the user. An alternative would be to store
position data in Texture Buffer Objects. The maximum size of a Buffer Object is generally
only limited by the size of the GPU. Though the size limit is usually higher than for
one-dimensional textures, Texture Buffer Objects do have a size limitation. However, as
mentioned in chapter 2, there are several papers with similar challenges to ours that do
use textures.

Each time a new page is loaded into the buffer, we replace the data in the relevant buffer
area with the points in the new page using setSubData for both buffers. The buffer
containing the basic rendering level is bound to a Vertex Array Object.

As a standard rendering method, we use drawArrays on sections of the buffer based on
offsets corresponding to individual pages. We iterate over all pages we want to render for
a given frame, and call the method drawPage. The method gets the pointer to the page
we are currently drawing, as well as the shader to be used. We then fetch the two values
stored in the cache, i.e. the page’s position in the buffer and the rendering level. We
draw the relevant part of the buffer using drawArrays from offset to end. The offset is
calculated based on the page’s position in the buffer, and the maximum atoms per page
for the current basic rendering level (which corresponds to the buffer slot size), and the
end is the size of atoms in the current page, so we do not draw the entire slot, just the
actual points.

We also upload the page position to the shader, because we need it for the second buffer,
which we upload to an Interface Block of type buffer, as shown in listing 5.2. On the
C++ side we bind the buffer using m_lowerLOD->bindBase(GL_SHADER_STORAGE_
BUFFER, 3). In a geometry shader, we use the page position and parent ID to connect
the correct parent to points. For each rendered point, we need to get the parent, the point
representing the cluster it belongs to, in order to achieve a smooth transition. Listing
5.3 shows the lines of code relevant to retrieving the position and radius of that point.

65

5. Implementation

Listing 5.1: DrawPage method
1 glm::vec2 values = viewer()−>scene()−>protein()−>cache()−>get(page);
2 long offset = values[0]∗viewer()−>scene()−>protein()−>maxAtomsPerPage(m_baselevel);
3
4 shader−>setUniform("pagePosition", (uint)values[0]);
5 shader−>setUniform("levelUp", values[1]−m_renderlevel);
6
7 long end = page−>atoms(values[1]).size();
8 m_vao−>drawArrays(GL_POINTS, offset, end);

Listing 5.2: Interface Block
1 layout(std430, binding = 3) buffer lodBlock
2 {
3 Position positions[];
4 };

Listing 5.3: Get parent point
1 #define DECODERADIUS(a) ((a/32768.0f)∗(50))
2
3 int sphereID = floatBitsToUint(gl_in[0].gl_Position.w);
4 int parentID = bitfieldExtract(sphereID, 16, 15);
5 glm::vec3 pos = positions[parentID+maxAtomsPerPage∗pagePosition].pos;
6
7 sphereID = floatBitsToUint(positions[parentID+maxAtomsPerPage∗pagePosition].rad_id);
8
9 int encodedRadius = bitfieldExtract(sphereID, 0, 16);

10 float sphereRadius = DECODERADIUS(encodedRadius);

First, we extract the parent ID from the fourth component of our data point. As IDs
are defined per page, not for the entire buffer, we have to combine the ID with the same
offset we used to render the basic rendering level in order to get the parent’s position.
The parent point’s radius is then extracted from its fourth component and decoded using
a macro.

66

CHAPTER 6
Results

In this chapter, we present the results of our work, compare different settings, and analyze
various parts of the implementation. Our tests focus on the two most important aspects
of our solution: the performance of the data structure, especially for large data sets, and
the effects of our levels of detail solution, both visually and in terms of performance.
Additionally, we take a look at the impact of the data set structure on neighborhood
based algorithms and the parameters of the enhancement methods.

All tests results are generated using an NVIDIA GeForce GTX 960M/PCIe/SSE2 graphics
card and an Intel Core i7-7500U @ 2.70 GHz with 16 GB RAM. Everything is rendered
in full HD (1920 by 1080 pixels).

6.1 Test Data

In order to test our framework in different situations and investigate how well our
implementation scales, we put together a small collection of test data. Our main set
consists of eight different-sized molecules, shown in Figure 6.1. The largest molecule
currently found in the PDB database is 3j3q, which represents the structure of an HIV-1
capsid. It contains 2,440,800 atoms. To test scalability beyond that, we use two artificially
created molecular data sets consisting of 10 and 50 instances of 3j3q, containing 24,408,000
and 122,040,000 atoms, respectively.

6.2 Configuring and Pre-processing the Data Structure

Our implementation focuses on rendering a single time-step. Building the octree and
calculating levels of detail is done in a pre-processing step. This speeds up rendering, at the
cost of a longer start-up time. In this section, we look at how pre-processing computation
scales for different-sized molecules and the impact of data structure configurations.

67

6. Results

(a) 1sva: 15,983 (b) 2btv: 49,061 (c) 5odv: 82,656 (d) 6ncl: 305,842

(e) 6o2s: 351,728 (f) 4v99: 546,120 (g) 6qz0: 1,161,565 (h) 3j3q: 2,440,800

Figure 6.1: Atoms in our test set with the number of atoms they contain

The time it takes to build the octree data structure including levels of detail increases
linearly with the number of atoms in the data set, as shown in Figure 6.2a. There are
several reasons why one might have to calculate data sets that are larger than the largest
single molecule currently available in the PDB database: the database continues to be
extended and new molecules added, one may want to render entire cells, or molecular
dynamics simulations with several time-steps. Therefore, we look at how the construction
of the data structure scales for larger data sets. In Figure 6.2b, we show the time required
to build the data set per atom for 26 molecules, and two artificial large data sets. Here,
we see that the time required to calculate the data structure including levels of detail
actually increases on a per-atom basis. This is due to the overhead of sorting atoms into
pages. However, it has to be noted that a simple nearest neighbor algorithm that checks
every point in the data set to find neighbors has an exponential execution time. By
sorting the atoms into pages with a maximum size, the maximum number of neighbors
an atom needs to be compared to is 215 − 1, even for very large data sets, which results
in a linear increase in the time it takes to compute the LOD data structure. The same
advantage can be leveraged when calculating any other type of neighborhood-based
algorithm. We sill have to sort all atoms and traverse nested pages, which is why the
time does increase per atom, but because of the division of the limit to the number of
neighborhood queries, the total execution time increases linearly, not exponentially.

Figure 6.2c shows that the time it takes to load a pre-processed data set also increases
linearly with size. However, the overall time required to load a pre-processed data set is
negligible compared to building it from scratch each time a data set is loaded. As we

68

6.2. Configuring and Pre-processing the Data Structure

1

10

100

1000

10000 100000 1000000 10000000

Se
co

nd
s

to
 b

ui
ld

 (l
og

ar
ith

m
ic

)

Number of atoms (logarithmic scale)

Time Required to Build Data Structure

(a) The time it takes to build the data struc-
ture increases exponentially with the number of
atoms in the data set.

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

se
co

nd
s

to
 b

ui
ld

Number of atoms in molecule

LOD Building Time / Atom

(b) As LOD creation requires neighborhood
queries, the time it takes to build them also
increases on a per-atom basis.

0.01

0.1

1

10

10000 100000 1000000 10000000

Ti
m

e
in

 se
co

nd
s

(lo
ga

rit
hm

ic
)

Number of atoms (logarithmic scale)

Time Required to Fetch Data

(c) The time it takes to load pre-processed data
also increases exponentially with the size of the
data set.

Load Build

(d) Pre-processed data can be loaded very
quickly compared to building the data struc-
ture from scratch.

Figure 6.2: Both building and loading times increase exponentially with the size of the
data set. As loading only takes a small fraction of the time required to build them, it is
well worth saving the data structures.

assume that the same data sets are going to be loaded and viewed several times, it is
therefore worthwhile to store the pre-processed data sets. Figure 6.2d shows the time it
takes to load a data set relative to the amount of time required to build the same data
set. The figure is based on the same data as Figures 6.2a and 6.2c. As building the data
structure is a significant overhead for large data structures, we save the data structure
into a *.lod, once it is completed.

While the most significant factor determining the building, loading, and rendering times
is the size of the data set, page sizes can also have an impact. We compare page sizes
ranging from the maximum possible atom count per page of 32,768, to a minimum of just
256 atoms per page. The results are shown in Figure 6.3. The time it takes to load the

69

6. Results

0

200

400

600

800

1000

1200

1400

32768 16384 8192 4096 2048 1024 512 256

Se
co

nd
s

to
 lo

ad
 (s

ta
ck

ed
)

Maximum number of atoms per page

Time Required to Load Data Structure

1sva 2btv 3j3q 4v99 5odv 6ncl 6o2s 6qz0

(a) The size of pages has very little impact on
the time it takes to load a data set

0

50

100

150

200

250

300

32768 16384 8192 4096 2048 1024 512 256

FP
S

(s
ta

ck
ed

)

Maximum atoms per page

FPS for Different Page Sizes

1sva 2btv 3j3q 4v99 5odv 6ncl 6o2s 6qz0

(b) On average, larger pages result in higher frame
rates

Figure 6.3: When comparing loading time and FPS, we found that larger pages tend to
perform slightly better.

data structure remains virtually the same for different page sizes. When looking closely, it
becomes visible that the page sizes that result in lower frame rates, are very slightly faster
when it comes to loading the data sets. However, the effect is negligible. Our system is
also optimized for runtime, rather than start-up time, so the more interesting results are
changes in frame rates. We show the average FPS using different page sizes on a set of
molecules in Figure 6.3b. While the exact result is also influenced by the structure of the
molecule, larger page sizes perform better in most cases. For our remaining tests, we
keep the maximum number of atoms per page set to 32,768 (215).

6.3 Rendering

The main objective of our framework is to render large molecules at interactive frame
rates, while keeping the quality of visual enhancement and the level of detail as high as
possible.

While frame rates are the most natural quantitative factor when analyzing rendering
frameworks, they vary strongly depending on various influences. Apart from hardware
and implementation overhead, which are usually constant when comparing data sets
within a single framework, the screen fill rate is highly significant. Figure 6.4 shows the
same molecule, using the same settings for enhancement methods, etc. at different zoom
levels, resulting in a different screen fill rate. In this case, the frame rate lies between
9 and 74 FPS, mostly due to the ray casting implementation. For frame rate based
performance tests across data sets, we therefore use a standardized position, where the
molecule is centered and scaled in such a way that its bounding box is maximized relative
to the viewpoint when using an orthographic camera. The size of the viewpoint in our
tests is full HD, that is 1920 by 1080 pixels, and we use a perspective camera with 60

70

6.3. Rendering

(a) 9 FPS on average (b) 27 FPS on average

(c) 59 FPS on average (d) 74 FPS on average

Figure 6.4: Different screen filling (6qz0)

degrees field of view. As a standard setup, all tests are conducted using the positions
shown in Figure 6.1. Additionally, we use a Gaussian surface with a sharpness of 16 (see
section 6.4.3), but no depth blur or ambient occlusion, unless specified otherwise.

6.3.1 Level of Detail Rendering

The main motivation for using levels of detail, is to reduce the amount of data that has to
be rendered in order to achieve performance improvement, as well as making it possible
to render data sets that are too large to be handled by a specific set of hardware. In
this section, we show how much the number of spheres is reduced for each level, and
how much the frame rate increases. We also visually investigate the the perceived loss of
detail for coarser levels of detail.

Table 6.1 shows the total number of atoms per level of detail for our test sets. The
corresponding screenshots are shown in Figure 6.5. The last column in the table shows
the number of pages into which the data is sorted, which also represent the last, coarsest
level of detail, where we use a single sphere per page, which is not shown in the figure.
Because we use two buffers, with the secondary one coarser than the primary buffer, this
last level cannot be chosen as basic level. The numbers in the table are visualized in
Figure 6.6. In Figure 6.6a, we show the total amount of data points per molecule and
LOD, providing an overview over relative sizes. As that makes it had to see the details

71

6. Results

Figure 6.5: LODs (top to bottom: 1sva, 2btv, 3j3q, 4v99, 5odv, 6ncl, 6o2s, 6qz0)

for smaller data sets and coarse LODs, Figure 6.6b shows the amount of points per level
next to each other and on a logarithmic scale. Figure 6.6c shows the average amount
of points per LOD relative to other LODs. While the exact reduction depends on the
structure of the molecule, the average reduction between neighboring LODs is between
40 and 60 percent, depending on the structure and density of the molecule.

72

6.3. Rendering

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000

1sva 2btv 3j3q 4v99 5odv 6ncl 6o2s 6qz0

N
um

be
r o

f p
oi

nt
s

Molecules

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Pages

(a) Total amount of points in the test molecules across LODs.

1

10

100

1000

10000

100000

1000000

10000000

1sva 2btv 3j3q 4v99 5odv 6ncl 6o2s 6qz0

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Pages

(b) Amout of points separated by level and
shown in logarithmic scale for easier compar-
ison.

(c) The amount by why the number of atoms is
reduced per LOD depends on the structure of
the molecule. Generally, points are reduced by
about 40-60 percent.

Figure 6.6: Comparing the relative and absolute amount of points per LOD for our test
data sets.

73

6. Results

Name Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Pages

1sva 15983 7240 2205 853 409 228 142 1
2btv 49061 22508 7315 2812 1282 689 409 8
3j3q 2440800 1171809 375594 148123 68567 38951 24011 260
4v99 546120 251943 80547 32012 14882 7945 4870 36
5odv 82656 31540 6760 2777 1216 705 428 8
6ncl 305842 138484 44268 17337 7901 4180 2493 36
6o2s 351728 158129 52977 20600 9407 5094 3045 63
6qz0 1161565 520817 171045 67621 30994 16604 10003 131

Table 6.1: Numbers of atoms per level of detail

Our general rendering test for all levels, shown in Figure 6.7, confirms that all molecules
currently available in the Protein Data Base can be rendered at interactive rates. The
maximum amount of atoms is set to the highest possible level of 32,768 atoms per page.
Frame rates for the standard views range from 27 to 84 in the original resolution. As
we want our framework to support even larger structures, as well as more complicated
enhancement methods, the jump in performance between level 0 and 1 for 3j3q, which
contains approximately 2.4 million atoms, from 27 to 55 FPS is particularly interesting.
In section 6.3.4, we investigate artificial data sets based on several instances of that
molecule.

6.3.2 Caching and Per-page Rendering

Our framework has the capability to render the data structure per page, using a list
of visible pages, or to render everything contained within a single buffer at once. In
Figure 6.8a, we compare the two rendering methods. In both cases, the frame rates were
measured with the molecules in the position shown in Figure 6.1, with the entire molecule
in view. For smaller molecules that contain few pages, it does not make a difference
whether we render per-page or the entire buffer, but for larger molecules, rendering per
page is more effective in our framework. Additionally, features such as blending between
levels of detail rely on per-page offsets, which means that if we want to use them, we
need to render per page. Our standard method is optimized for per-page rendering, as
the buffer is divided into blocks when uploading per page, which leaves empty space
(see Figure 6.8b). In order to verify that in our framework, per-page rendering for large
data sets is also faster than rendering a full, dense buffer, we compare frame rates for all
test sets at the original resolution. As discussed in Section 6.3.4, we also need to divide
the data set at some point, when, depending on the hardware, the molecule no longer
fits into memory in its entirety.For the remaining tests shown in this chapter, we render
blocks of data corresponding to pages individually.

Figure 6.9 demonstrates that only the pages that are actually needed are uploaded.
In screenshot 6.9a, the entire molecule 4v99, divided into 36 pages, is loaded at the

74

6.3. Rendering

20

30

40

50

60

70

80

90

100

Level 0 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

FP
S

FPS for Different LODs

1sva 2btv 3j3q 4v99 5odv 6ncl 6o2s 6qz0

Figure 6.7: Frame rates achieved for the data sets at different levels

original resolution. The colors represent their order in the cache, from oldest (red) to
newest (green). Usually, missing pages are automatically loaded when the perspective
changes and they become visible. In order to demonstrate that only pages that are
at least partially visible are uploaded to the buffer, we first zoomed in to a position
where only part of the data set is visible. Then, we cleared the buffer and disabled
cache updating. After that, we zoomed out again to view the entire molecule, without
allowing the program to load missing pages. Figure 6.9b shows which pages were already
loaded in the previous view, as well as those that are missing, which are enclosed by gray
bounding boxes. In order to observe this, we have to manually clear the cache, as pages
that become invisible are not automatically deleted, unless the cache runs out of space.

6.3.3 Selecting the Level of Detail

We want to use levels of detail in a way that increases performance as much as possible
or necessary, while keeping the required visual quality. Partially, visual quality can be
parameterized and automated, but the user has to have to option of choosing or at least
influencing the visual result, as the requirements may differ according to the task the
user wishes to perform. We provide a set of options that combine manual input and
automatic calculation to control the level of detail.

75

6. Results

0
10
20
30
40
50
60
70
80
90

1sva 2btv 5odv 6ncl 6o2s 4v99 6qz0 3j3q

FP
S

Molecules sorted from smallest to largest

Rendering Entire Bu�er And Per Page

Per page Entire bu�er

(a) Per page rendering compared to rendering the entire buffer for all molecules at level 0

Entire buffer

currently not visible
currently visible

rendered
not rendered

Per page

(b) The buffer is divided into page blocks, which can be drawn individually.

Figure 6.8: Rendering the entire buffer vs. page blocks

76

6.3. Rendering

(a) All 36 pages, level 0 (b) Pages are loaded when they are needed.

Figure 6.9: Page replacement (molecule 4v99). Only visible blocks were loaded at a
previous position. Stopping the buffer from updating allows us to interact with the
molecule and look at which pages were not needed in the previous view.

Manual LOD Selection

The user can set a target frame rate in the interface. When the user chooses a level in
the interface, the basic level of detail is changed. This means that the whole buffer is
cleared and divided into new chunks, based on the maximum size of atoms per page
for the newly set level of detail. For small and medium sized molecules, including all
examples in our test set, this task does not cause a visible delay. For very large data
sets, such as the examples discussed in section 2.3, it can take several seconds or more.
However, very large data sets are the main application for this option. If the user wants
to interactively study the entire structure of a data set that is to large to fit into memory
at the original resolution, they can choose to set a lower basic rendering level, which
allows all pages to fit into memory at the same time.

The smooth transition slider changes the rendering level. The buffer partition is left as
it is, but whenever a page becomes visible, the data of the selected rendering level is
uploaded instead of the current basic level. The slider starts at the basic level of detail
and goes up to the highest level (lowest resolution) available in the system. For example,
if the basic level is set to 1, the rendering level cannot be a finer resolution, but starts at
1, as the points contained in a single page at level 0 do not necessarily fit into the buffer
slots based on the maximum size of level 1. The slider allows for a smooth transition
between all levels, starting with the basic level. If the slider is for example set to 2.5, the
molecule will be rendered somewhere between level 2 and 3, as shown in Figure 6.10.

77

6. Results

(a) Level 2 (b) Level 2.5 (c) 3

Figure 6.10: Smooth transition (molecule 4v99). We calculate a finite number of discrete
levels of detail, but we can interpolate all steps in between them.

Frame Rate Dependent LOD Selection

The timeout window of 10 seconds before the level is reduced to the next lower resolution
is based on the observed amount of time in which the frame rate stabilizes in most
cases. This mode only lowers the resolution, it does not automatically increase to a finer
resolution, even if the target frame rate allows it. Though automatically returning to a
better resolution might be convenient in some situations, we prioritize avoiding frequent
jumps between levels, which slow the rendering down. This mode also changes the render
level, not the basic level.

View Dependent LOD Selection and Interpolation

The idea behind the view dependent level of detail rendering is to reduce the number of
atoms towards the back of the scene, as seen from the camera. They are rendered smaller
in a perspective projection, and are more likely to be covered by other atoms. Figure
6.11 shows the use of view dependent LODs. In this case, the interpolation is between
level 0, the original data, and level 2. Data points close to the camera are rendered at
level 0, with a gradual transition to level 1, the pages in the back have level 2 as their
rendering level and gradually transition to level 3. While a clear difference is visible
between the original resolution shown in 6.11a, and level 1 next to it (6.11b), it is hard
to see the difference between original data 6.11a, and the mixed levels 6.11c. The average
frame rate increases, as less spheres have to be rendered, while the data points in the
foreground remain the same. Figure 6.11d shows where level 0 is used (orange) and where
level 1 (violet) is used.

6.3.4 Rendering Very Large Data Sets

In order to test our solution beyond the molecules currently available in the Protein Data
Bank, we use two artificial data sets. Data set 1, shown in Figure 6.12b consists of 10
instances of 3j3q, the largest molecule currently available in the PDB. It approximately
represents the maximum data set size we can fit into memory as a whole using our test
hardware. The exact number of data points that can be uploaded to the GPU not only
depends on the hardware itself, but also on whether or not any other processes are using
part of it at the same time. Figure 6.12a shows data set 2, consisting of 50 instances

78

6.3. Rendering

Level Max pages Max atoms per page

0 11071 32750
1 25802 15740
2 76011 5067
3 183294 1996
4 365466 933
5 612167 536
6 1569797 341

Table 6.2: Numbers of atoms per level of detail

View Active pages Basic level Render level FPS Frozen Rendering

1 12886 6 6 39 no page
2 9471 2 2 7 no page
3 9471 2 4 23 no page
4 1743 0 0 5 no page
5 2934 1 1 4 yes buffer
6 13729 (all) 3 4 22 no page

Table 6.3: Data set at different views and LODs

of 3j3q. In total, this example contains 122,040,000 atoms, which we cannot load into
a buffer at the same time. Instead, it is rendered at level 2 in the screenshot, which
is the maximum resolution at which we can show all its pages at the same time. The
hierarchical data structure is pre-computed using the standard maximum page size of
215.

We conduct a number of tests on the special case of a data set that does not fit into the
buffer at full resolution on our system. Figure 6.13 contains 6 views at various resolutions
of test data set 2 (Figure 6.12a). Table 6.2 gives an overview over the maximum number
of pages that fit into the buffer at the same time using the capacity of our hardware.
The right hand column shows the maximum number of atoms per page for each level
of detail, while the second column shows how many pages could fit into the buffer at
the given level. The number of pages in this data set when dividing it into pages of up
to 215 atoms per page, is 13,729. Table 6.3 summarizes the configuration details of the
individual views shown in Figure 6.13. The column "active pages" refers to how many
pages are in the current render list. The render list contains the pages that are at least
partially visible in the current frame, unless the buffer is frozen, stopping it and the
render list from being updated. The basic level of detail is the level that determines
buffer partition, while the render level refers to the resolution at which the data points
are actually rendered. The last two columns indicate if the buffer is frozen, and whether
we draw the scene page by page, or render the entire buffer.

79

6. Results

At startup, we load all pages in the data set. If it exceeds the hardware capacity, the
basic level is set to 6. View 1 in Figure 6.13a shows this initial setup. In this view, 12,886
of 13,729 pages are active, i.e. at least partially within the view frustum. At 39 FPS, the
frame rate is interactive, but the reduced resolution is clearly visible at level 6. View 2
in Figure 6.13b shows a partial view where about 69% of pages are active, though that
does not necessarily correspond to 69% of the actual data being visible. Here, the basic
rendering level is set to 2, the highest resolution at which we can view the entire data
set. View 3 in Figure 6.13d is identical to Figure 6.13b, except that the rendering level
(but not the basic level) is set to 4, which more than triples the frame rate. View 4 in
Figure 6.13d shows part of the data set at the original resolution. In order to view part
of the data at a higher resolution than is possible for the entire data set at once, the user
has to zoom in to the section they would like to view in detail first, and then set the
level to the desired resolution. This limits the cache to the maximum amount of pages
that can fit into the buffer at that level. When the user moves the camera, pages are
replaced using the LRU principle. If the camera is moved in such a way that more pages
become active than fit into the cache, the remaining pages are ignored for that frame.
We find this behavior preferable to automatically reducing the level of detail, as it is
easy to accidentally zoom out too much, thereby triggering an undesired level change.
Deleting and restructuring the buffer causes a delay, especially for very large data sets.
Switching between basic levels, i.e. restructuring the buffer, should be avoided if it is not
what the user actually intends. View 5 in Figure 6.13e shows a rendering of the entire
buffer, while it is frozen. As discussed in Figure 6.9, data that remains in the buffer,
even though it is not needed, is only visible if the entire buffer is rendered at once, rather
than per-page. In this case, we see the part of the data set that we were viewing when
the buffer was frozen on the right side. On the left, we see left over data from a previous
view. The final view 6 (Figure 6.13f) shows the entire data set with the basic level of
detail set to 3, and the rendering level set to 4, which results in 22 FPS, a frame rate
usable for interaction.

6.4 Enhancement Methods

In this section, we demonstrate the enhancement methods included in our framework.
The included methods are in screen space, which means that they are applied on top of a
primary rendering pass. We mainly focus on visual results, and the impact parameter
settings have on frame rates.

6.4.1 Blur-based Enhancement Methods for Ambient Occlusion and
Edge Enhancement

We summarize different effects based on screen space blurring in Figure 6.14. In all images
in the figure, a Gaussian surface with a sharpness of 16 is used. For reference, Figures
6.14a and 6.14b show the molecule with no effects, and the HBAO+ library respectively.
The effects based on a Gaussian blur pass are shown in Figures 6.14c, 6.14d, and 6.14e.

80

6.4. Enhancement Methods

View Method Kernel/passes Lambda Sigma

a none - - -
b library - - -
c gaussian 2 10 20
d gaussian 10 20 20
e gaussian 10 18 2
f library + gauss 4 20 10
g halo 2 21 -
h halo 4 50 -
i halo 64 2 -
j library + halo 2 50 -

Table 6.4: Rendering details for Figure 6.14

Figures 6.14g, 6.14h, 6.14i show the effects based on halo blurring. Figures 6.14f and 6.14j
show a combination off the effect produced by the library, and Gaussian- or halo shader.
In general, the effect that can be achieved by the two methods is rather similar. It works
effectively for edge enhancement of different thicknesses, depending on the strength of the
blur and the parameters. The strength of the blur is influenced by the size of the kernel,
or number of passes, depending on the method (see for example 6.14c vs 6.14c), but
also the parameters lambda and sigma. Figure 6.14e looks very similar to Figure 6.14c,
except for a stronger enhancement of lines around the molecule compared to internal
borders, even though it uses the same kernel size as Figure 6.14e. The internal structures
enhanced by the library (Figure 6.14b) are hardly visible in Figure 6.14a. When applying
halo blurring with a large number of passes, as in Figure 6.14i, where 64 pixels are
sampled around each point, the shader achieves an ambient occlusion effect. Compared
to the ambient occlusion library, it has the advantage of exclusively darkening deeper
structures at the center of the molecule, making them more clearly visible. However,
the darkening around the edge of the molecule, where the contrast caused by blurring
is strongest, hides details in that area. In conclusion, the blurring based enhancement
shaders would have to be developed further in order to sensibly replace the library for
ambient occlusion blurring, but they do work well for edge enhancement. We also found
a combination of edge enhancement, and blur shaders, as demonstrated in Figures 6.14f
and 6.14j, useful to investigate larger and smaller structures within the molecule at the
same time.

6.4.2 Screen-space Depth of Field Effect

The depth of field effect can be used to draw attention to specific areas. Its parameters
work like the settings of a camera. The user can set the focal length, and the F-stop.
Additionally, the maximum circle of confusion (CoC) radius can be set. Figure 6.15 and
table 6.5 show different settings for the depth of field shading. From one view to the

81

6. Results

View Focal distance F-stop Max COC Effect

a - - - -
b 1.4 1.2 6 -
c 1.4 11 6 -
d 4.9 1.2 6 -
e 1.4 1.2 1.5 -
f 1.4 1.2 14 -
g 1.4 1.2 6 HBAO+
h 1.4 1.2 6 Gauss (4/20/9)

Table 6.5: Rendering details for Figure 6.14

next, only a single parameter is changed. The focal distance determines where, relative
to the camera, the focus is, while the F-stop determines how deep the area in focus is.
On an optical camera, a low value for the F-stop means an open aperture, which lets
more light in, but also scatters the light rays, so the area of focus is narrower, which we
reflect in our blurring formula. The maximum circle of confusion radius determines the
strength of the blur in the blurred areas. A larger radius means that more neighboring
pixels have to be considered when blurring. Therefore, this is the only parameter that
directly affects the frame rate. It is also possible to combine the effect with ambient
occlusion (Figure 6.15g), or edge enhancement (Figure 6.15h). In that case, the render
passes for both effects are executed consecutively.

6.4.3 Rendering the Gaussian Surface Model

Though the Gaussian Surface is a less computationally expensive alternative to the full
Solvent Excluded Surface, it is the most expensive of the methods we currently provide
in our framework. The dominant factor for its performance, is the extent of the surface,
as that factor is responsible for the length of the intersection list that has to be checked
for each ray. We use the method proposed by Bruckner [Bru19]. A detailed performance
analysis of the algorithm itself, is outside the scope of this thesis. In this section, we
analyze the method in the context of our work.

Figure 6.16 shows the Gaussian surface with different sharpness parameters, and the
resulting frame rate. For the same view and settings, the frame rates range from 29 to 3
FPS. In most use cases, the goal of rendering a Gaussian surface is to approximate an
SES, so the sharpness value of 0.5 may not be a particularly realistic case. However, it
does demonstrate how dependent the rendering performance is on the parameter of the
Gaussian surface. The method as proposed by Bruckner [Bru19], is output sensitive, so
its performance depends on its own parameters, and the number of spheres in the view
frustum for the current frame, rather than the total amount of atoms in the molecule.
The only difference between images in Figure 6.16 is the sharpness factor. This parameter
influences the size of the neighborhood that is considered, when determining overlapping

82

6.5. Conclusion and Comparison to Similar Solutions

spheres, and thereby the amount of spheres in the intersection list.

As we use a screen space method to build the molecular surface, the data structure used
on the CPU is not directly relevant for its performance. The only part of our hierarchical
data structure that influences it directly, both in terms of visual results and frame rates,
are levels of detail. Figure 6.17 shows three versions of molecule 5odv, using a sharpness
factor of 2.5. The images in the top row show the entire screenshot, the row below a
cropped out detail. Figures 6.17a and 6.17d show the molecule at the original resolution,
without any optimization. The resulting frame rate is 12 FPS. In Figures 6.17b and 6.17e,
the extent of the molecular surface is attenuated, based on the camera distance with a
threshold of 113, and a tolerance of 87, resulting in a frame rate of 15.5 FPS. For the
last view, 6.17c and 6.17f, we use both distance based attenuation, and distance based
LOD, with a threshold of 173, and a tolerance 17, and achieve a frame rate of 21.5 FPS.
While there are some visible differences, especially between detail view 6.17d and 6.17f,
users can set the parameters themselves, and in some cases, a slight loss of detail could
well be considered acceptable, given that in this case, the frame rate is almost doubled.

6.5 Conclusion and Comparison to Similar Solutions

Due to variations in hardware and a lack of consistent standards, direct comparisons of
measurements such as frames per second, are often not meaningful. As mentioned above,
frame rates also depend on other factors, notably the perspective, so even a rendering
of the same molecule using the same hardware cannot necessarily be compared directly.
Therefore, we mention noteworthy differences to a selection of closely related recent
work, and try to give a general comparative overview, rather than presenting a direct
comparison of frame rates.

Grottel et al. [GRDE10] use a combination of optimization strategies that include caching,
two-level culling, and deferred shading. Figure 6.18a shows the results they present in
their paper, for data sets ranging from 107,391 to 100,000,000 points. The main difference
to our work is that they do not use a hierarchical data structure. They focus on molecular
dynamics simulations, and therefore find the overhead of creating it prohibitive. As
our main optimization strategy relies on levels of detail that have to be pre-calculated,
a hierarchical data structure is more suitable, and the overhead negligible in our case.
Sharma et al. [SKNV04] do use an octree, and levels of detail. However, their octree is
limited to three levels, and they use polygons to render their spheres. Levels of detail in
that case refer to the resolution ot the sphere, rather than the number of spheres. Their
framework manages to render very large data sets (see Figure 6.18b), especially given
that their research was already published in 2004. However, they only render points as
spheres, and do not include or discuss molecular surface models or enhancement methods.
The advantage of their LOD solution compared to ours is that it can be determined
on the fly. Our method has the advantage of actually reducing the number of spheres
that have to even be considered for culling. Figure 6.18b shows the results achieved in
their framework, Atomsviewer, without optimization, using the octree, and a parallel and

83

6. Results

distributed version. Their work is a standard to which most other relevant works refer.
Contrary to many solutions proposed afterwards, we return to a similar data structure,
while using more recent techniques when it comes to rendering.

Parulek et al. [PJR+14] on the other hand focus their work on molecular surfaces. The
largest atom size they test is, at 58.674 atoms, relatively small compared to other
implementations that include tests up to billions of atoms. However, they present a
more advanced surface model than any of the other closely related implementations we
found. According to their results, their mixed model, which includes levels of detail and
three different surface models, achieves up to 20x the frame rate compared to a full SES
representation. Our optimizations do not boost rendering as much, but our system does
not (yet) include the more computationally expensive SES, so direct comparisons are not
possible. We do, however, use the same clustering method to build our levels of detail.
Our surface representation setup is not as advanced as theirs, but we do provide a data
structure that is capable of rendering much larger data sets, which could be extended to
include such a visualization model.

The work done by Matthews et al. [MEK+17] is similar to ours in that they also focus
on a single instance, and investigate the use of data structures to boost performance.
They employ a grid-based data structure. The main difference is that they focus on
molecular trajectories, so they avoid pre-computations. They achieve interactive results
while constructing the data structure on the fly, including ambient occlusion enhancement.
However, the largest data set they render in their tests consists of 316,404 atoms. They
do not include levels of detail, as the required clustering is computationally expensive.
For molecular dynamics or animations, their work is more performant and suitable than
ours, but it is much more limited in the sizes it is capable of handling.

A lot of recent work in molecular visualization focuses on instance based rendering (Guo
et al. [GNL+15], Le Muzic et al. [LMPSV14], Falk et al. [FKE13], Lindow et al. [LBH12]).
They achieve very high numbers when it comes to the absolute results in terms of how
many millions or billions of atoms the framework can render. However, this approach is
limited to very large data sets that do in fact contain repetitive structures. Lindow et
al. [LBH12] mention in their future work section that they recommend the inclusion of
LODs and occlusion culling in their framework, which Falk et al. [FKE13] provide. Guo
et al. [GNL+15] use a very similar type of hierarchical clustering to ours in order to build
levels of detail. They prove that it can be used with instance rendering. None of the
given examples use an octree data structure which we argue is more convenient, because
it divides space more equally in terms of density. As the papers only provide results for
the entire scenes, containing up to millions of repeating instances, frame rates are hard
to compare. Our system scales well for large non-repetitive structures well beyond the
scale of the basic molecules used in testing the instance based rendering systems. In our
opinion, it would however be worthwhile to additionally extend our framework to be able
to handle repetitive structures.

84

6.5. Conclusion and Comparison to Similar Solutions

(a) Level 0. 43 fps on average (b) Level 1. 59 fps on average

(c) Mixed. 51 fps on average (d) Interpolation. Yellow: level 0, violet: level 2

Figure 6.11: View dependent level of detail (molecule 4v99). The user can set a distance
from the camera and threshold. The resolution of the molecule is reduced in areas far
from the current camera position, saving rendering time.

85

6. Results

(a) 50 instances of 3j3q at level 2 (b) 10 instances of 3j3q, original resolution

Figure 6.12: Large test data sets

(a) View 1 (b) View 2

(c) View 3 (d) View 4

(e) View 5 (f) View 6

Figure 6.13: Artificial data set with 50 instances of 3j3q

86

6.5. Conclusion and Comparison to Similar Solutions

(a) No effects (b) Library

(c) Gauss (d) Gauss

(e) Gauss (f) Library + Gauss

(g) Halo (h) Halo

(i) Halo (j) Library + halo

Figure 6.14: 6ncl with different enhancement effects.

87

6. Results

(a) No effects (b) F-stop 1.2

(c) F-stop 11 (d) Focal distance 4.9

(e) Max COC 1.55 (f) Max COC 14

(g) HBAO+ (h) Gaussian edge

Figure 6.15: 6o2s with depth of field effects

88

6.5. Conclusion and Comparison to Similar Solutions

(a) Sharpness: -, FPS: 29 (b) Sharpness: 10, FPS: 25.5

(c) Sharpness: 2, FPS: 15.5 (d) Sharpness: 0.5, FPS 3

Figure 6.16: Gaussian surface (5odv)

(a) Level 0, no optimization, 12
FPS

(b) Level 0, sharpness attenua-
tion, 15.5 FPS

(c) Attenuation, distance based
LOD, 21.5 FPS

(d) Detail of 6.17a (e) Detail of 6.17b (f) Detail of 6.17c

Figure 6.17: Gaussian surface (5odv)

89

6. Results

(a) D1: 107,391; D5: 100,000,000 [GRDE10] (b) [SKNV04]

Figure 6.18: Results achieved in related work

90

CHAPTER 7
Discussion

In this thesis, we present a rendering system for large-scale molecular data sets, including
levels of detail, and enhancement methods. Our approach is a novel combination of existing
techniques, in order to bridge the gap between medium-sized molecular visualization
schemes, and extreme-scale data sets that either rely on repeating structures, or do not
provide visual enhancement methods.

7.0.1 Summary and Contributions

The main contributions of this thesis are a hierarchical, multi-resolution data structure,
and a least recently used caching system tailored to it. We believe that our proposed
combination can bridge a gap between research focusing on advanced rendering methods
for medium-sized molecules, and those concerned with extreme scale data sets, but
with much more limited visualizations options. Our tests were conducted on data sets
containing up to over 100 million individual atoms. While our artificial large-scale data
sets do contain several instances of the same molecule, we render them as a single molecule.
At about 2.44 million atoms, 3j3q may be the largest single structure to be found in the
Protein Data Base right now, but it is certainly not the most complex molecular data
set anyone will ever want to render. It therefore pays off to have a framework capable
of rendering much larger structures, without having any prior information about its
components. We propose to use our data structure in a way that combines the advantages
of hierarchically divided space, and linear buffers. Contrary to many implementations
that use a regular grid as a basic data structure, the pages in our octree contain a similar
and controllable amount of atoms each. The advantage of this structuring becomes
evident when calculating clusters in order to build levels of detail. It makes the maximum
size and the approximate maximum computation time for neighborhood-based algorithms
on each page predictable and balanced. As discussed in Section 3.2.2, division of space
is necessary for some tasks, such as in our case the hierarchical clustering algorithm.
The division of space into density-based pages that result in fewer, and more predictable

91

7. Discussion

units can be effectively used whenever neighborhood queries are necessary. Atoms on the
same page are guaranteed to be neighbors with a given amount of maximum distance.
While we do not currently use this feature, octrees also make it relatively easy to access
neighboring pages, compared to other trees, such as the kd-tree. Therefore, they extend
the possibilities of neighborhood queries even beyond neighbors on the same page.

The LRU cache makes sure that the buffer is managed efficiently. Only pages that are
needed are ever uploaded to the GPU, and they remain there until the space is needed
by something else. This does not make much of a difference for small to medium sized
molecules, but is highly relevant when dealing with very large data sets. Our system
of differentiating between basic level of detail and rendering level makes it possible to
quickly change between the advantages of more detailed and coarser, faster resolutions,
without having to upload all the data from scratch. For large data sets, uploading to the
GPU is one of the main bottlenecks. We provide a flexible approach to levels of detail,
that also makes it possible to blend different resolutions per page, or based on distance
measurements.

7.0.2 Limitations

When it comes to the scale of data sets, there are two main limitations. Firstly, the
data set, including all the different LOD resolutions does have to fit into CPU memory,
in order for our implementation to be able to handle it. Secondly, we assume that the
coarsest level of detail fits into GPU memory. While our system is designed not to crash
even if the coarsest level exceeds memory, we only tested it up to a maximum size of
about 100 million atoms. This data set fits into the GPU at LOD 2, this is approximately
a quarter of the original atoms.

Most other frameworks for molecular visualization provide the option of rendering
a Solvent Excluded Surface, which our framework currently lacks. We provide an
implementation of the less computationally expensive Gaussian surface, and assume that
our neighborhood-based division of the data set would be an asset when implementing
SES, but it is not included in the current version of the framework.

Our page-based buffer slots allow us to mix different levels of detail, which is highly
useful when trying to find an optimal compromise between maximum resolution in the
foreground. It also helps to reduce computations where they do not have an effect.
However, it also leaves buffer space unused. Therefore, we do not use the entire capacity
of GPU memory. It is possible in our system to upload a data set as a whole instead of
per page, but this comes at the expense of loosing the advantages we described. Levels of
detail are calculated per page, so if it is desirable to upload everything without unused
space on the GPU, the data has to be uploaded at the original resolution, without
advantages such as block-wise visibility culling.

When it comes to our implementation of visual effects, limitations include the fact that
we do not provide transparency, and currently disregard additional molecular information
such as chains and residues.

92

7.0.3 Future Work

There are several aspects of our work that could be extended to address some of the
limitations. We think that it would be worthwhile to extend our data structure in such a
way that it can be used for repeating structures. While one of the features that sets our
proposed solution apart from other recently presented work in the field, is the fact that
we do not rely on the existence of, or prior knowledge about, repeating structures, there
is no reason not to combine the advantages of both approaches.

The other source of very large molecular data sets are molecular dynamics simulations.
Our level of detail scheme makes a pre-processing step necessary, which is not ideal for
animation-based visualizations. However, we believe that it would be possible to develop
a smart pre-processing system that makes use of the similarity of consecutive time-steps.

When it comes to visual effects, the main component that would be desirable to have is
the Solvent Excluded Surface. Implementing and optimized version of it would be the
next step in that department. There are also some additional effects that we think could
profit from a data structure divided into equal neighborhoods, such as the interreflection
effect proposed by Skånberg [SVGR15].

Additionally, there are a couple of tweaks to our existing system that could be worth
exploring. One such example is the interactive, manual selection of resolutions and
effects. Selecting bounding boxes of pages, or drawing areas on the screen, and assigning
resolution and effects, could give researchers some useful and dynamic tools, especially
for very large data sets or computationally expensive methods such as the SES. This type
of effect could make excellent use of the flexibility of mixed-block rendering, where areas
in focus could be replaced with denser, high-resolution blocks, while the area that are
not being investigated could be rendered at a lower resolution to increase frame rates.

93

CHAPTER 8
Conclusion

Many different solutions for rendering biomolecular data sets in particular and large
point-based data sets in general already exist. In recent years, there has been a lot
of research into rendering whole cells containing billions of atoms by taking repetitive
structures into account, based mostly on the work of Lindow et al [LBH12]. However,
these publications only work on structures that do contain repeating structures, and
require additional structural information. In our research into the state of the art of
solutions targeting large biomolecular data sets, we observed a certain lack of attention
for very large data sets, without additional structural information that still need to be
rendered at interactive frame rates, while using computationally expensive surface models.
We see two specific advantages of our proposed data structure. The division of space
into blocks containing a similar amount of data, which can be controlled by the user,
is advantageous for algorithms that rely on neighborhood queries. Depending on the
method, only the block itself, or the block and its direct neighbors, need to be taken into
account. Blocks of equal size require approximately the same amount of time to calculate,
which makes calculations predictable. Moreover, there are several possible applications
for the flexible buffer updating system that allows us to mix different levels of detail.

The main disadvantage of our proposed solution is the computationally expensive pre-
processing step, which makes it impractical for more than one time-step. However, we
feel that the data structure we propose is a valuable contribution to the are of large
point based-data sets, especially when neighborhood-based calculations are expected, or
rendering at different resolution in a single frame are used. Of course, the data sets we
presented as challenging to our system, could already be rendered without an advanced
data structure on systems with higher capacity. But while it can be expected that
hardware capacities will continue to increase, so will the complexity of data sets that
need to be visualized. If the current maximum amount of atoms per page no longer
makes sense for a system with higher capacity, simply adding a few bits, in order to store
longer IDs, would make it possible to save more points per page. The system remains the

95

8. Conclusion

same, whether for a few thousand atoms, or entire cells, organs, or complex organisms.
Even on a system with hight capacity, the possibility of using simple neighborhood-based
algorithms with a linear increase in execution time, instead of an exponential increase, is
worthwhile.

96

List of Figures

1.1 Historical examples of data visualizations . 3

2.1 Octree data structure by Sharma et al. [SKNV04] that divides the data set
into three levels of detail, as illustrated in their publication 9

2.2 Comparisons of the object space error of different distance metrics by Guo et
al. [GNL+15] . 11

2.3 Data slices shown in Harada et al. [HKK07]. They compare a fixed grid data
structure (left) with the dynamic grid they propose (right) 16

2.4 The hierarchy levels as implemented and illustrated by Hopf and Ertl [HE03].
The illustrated hierarchy is decoupled from the storage of the underlying point
data. Points are stored in a continuous array, while the hierarchical data
structure illustrated in the figure only stores pointers. 18

2.5 Level of detail construction as implemented by Fraedrich et al. [FAW10]. The
data structure is constructed bottom-up. Particles are copied to the next level
as long as their diameter is larger than the grid sampling resolution, those
that are smaller are merged. 19

2.6 At increasing distance from the camera, Le Muzic et al. [LMPSV14] skip
atoms, adapting the radius accordingly . 20

3.1 The main components involved in handling the data structure. Blue indicates
where the actual (per point) data is located. The black arrows show which
components contain each other. 27

3.2 Flow of data while creating the data structure. Blue indicates where actual
point data is saved. The protein component manages the data structure which
consists of nested page components. 29

3.3 Illustration of page subdivision with max. 3 atoms per page 31
3.4 Octree structure for the molecule 3j3q. The blue lines show the bounding

boxes of pages. In denser areas, more subdivisions are used. 31
3.5 Levels of detail for the molecule 2btv . 34
3.6 Number of atoms at levels 1 and 5 and building time, showing the number of

resulting clusters for 2btv for level 1 (red) and 5 (green) as well ast the time
it takes to build the data structure using that method (blue). 34

97

3.7 Levels of detail for the molecule 2btv. In the original resolution in the top left,
the molecule contains 49,061 atoms, while level 7 on the lower right contains
two data points, one per page. 35

3.8 Molecule 1sva. Comparing radius covering all points in the cluster vs average
distance using the original resolution (orange) vs. level 5 (white) 36

3.9 A single data point stored in a 4 x 32 bit component vector 37

4.1 Rendering components. The main components responsible for the rendering
process are shown above the dashed line. Attached to the SphereRenderer
are the component’s most important methods. 40

4.2 Molecule 3j3q with colored bounding boxes for the pages of the octree. The
pages that were least recently accessed are shown in red, the most recently
accessed pages in green. 42

4.3 Cache and buffer update. The first case in the top row shows a cache with
available space left, in the case shown in the middle, the cache is full, but
parts of the data are not currently needed, and the last illustration shows a
cache that is too small to hold all currently visible pages. 43

4.4 The buffer offset is calculated based on the original cache position and the
size of buffer chunks. 44

4.5 The cube on the left is a two-dimensional representation of an octree data
structure with different-sized pages. Blue pages are currently at least partially
within the view frustum (green), red pages outside it. The dots represent the
level of detail at which the data is saved in the buffer. The two red dotted
pages are in the buffers because they were previously visible. 46

4.6 Molecule 1sva. Transition of the entire molecule between level 0 and 1 48
4.7 Illustration of the smooth transition between levels in distance based rendering.

Pages with a center point more than a defined distance from the camera are
uploaded at a coarser LOD (dotted pages). Within a parameter-defined area
around that distance, we interpolate levels of detail based on the distance. . . 51

4.8 Render passes. Shaders shown in gray are optional, the ones in white necessary
for our basic rendering process. 51

4.9 Illustration of the depth of field algorithm from the publication by Bukowski
et al. [BHOM13] . 55

4.10 Depth blur on the molecule 6qz0 . 56
4.11 Ambient occlusion using the HBAO+ library 57
4.12 Examples of Gaussian blur based enhancement on the molecule 5odv 58
4.13 Examples of halo-based ambient occlusion . 59

5.1 System architecture . 61

6.1 Atoms in our test set with the number of atoms they contain 68
6.2 Both building and loading times increase exponentially with the size of the

data set. As loading only takes a small fraction of the time required to build
them, it is well worth saving the data structures. 69

98

6.3 When comparing loading time and FPS, we found that larger pages tend to
perform slightly better. 70

6.4 Different screen filling (6qz0) . 71
6.5 LODs (top to bottom: 1sva, 2btv, 3j3q, 4v99, 5odv, 6ncl, 6o2s, 6qz0) 72
6.6 Comparing the relative and absolute amount of points per LOD for our test

data sets. 73
6.7 Frame rates achieved for the data sets at different levels 75
6.8 Rendering the entire buffer vs. page blocks 76
6.9 Page replacement (molecule 4v99). Only visible blocks were loaded at a

previous position. Stopping the buffer from updating allows us to interact
with the molecule and look at which pages were not needed in the previous
view. 77

6.10 Smooth transition (molecule 4v99). We calculate a finite number of discrete
levels of detail, but we can interpolate all steps in between them. 78

6.11 View dependent level of detail (molecule 4v99). The user can set a distance
from the camera and threshold. The resolution of the molecule is reduced in
areas far from the current camera position, saving rendering time. 85

6.12 Large test data sets . 86
6.13 Artificial data set with 50 instances of 3j3q 86
6.14 6ncl with different enhancement effects. 87
6.15 6o2s with depth of field effects . 88
6.16 Gaussian surface (5odv) . 89
6.17 Gaussian surface (5odv) . 89
6.18 Results achieved in related work . 90

List of Tables

6.1 Numbers of atoms per level of detail . 74
6.2 Numbers of atoms per level of detail . 79
6.3 Data set at different views and LODs . 79
6.4 Rendering details for Figure 6.14 . 81
6.5 Rendering details for Figure 6.14 . 82

99

Bibliography

[AGL05] James Ahrens, Berk Geveci, and Charles Law. Paraview: An end-user tool
for large data visualization. In The Visualization Handbook, pages 717–731,
2005. doi: 10.1016/B978-012387582-2/50038-1.

[BDST04] Chandrajit Bajaj, Peter Djeu, Vinay Siddavanahalli, and Anthony Thane.
Texmol: Interactive visual exploration of large flexible multi-component
molecular complexes. In Proceedings of IEEE Visualization, pages 243–250,
2004. doi: 10.1109/VISUAL.2004.103.

[Ben75] Jon L Bentley. Multidimensional binary search trees used for associative
searching. Communications of the ACM, 18(9):509–517, 1975. doi: 10.
1145/361002.361007.

[BG07] Stefan Bruckner and Eduard Gröller. Enhancing depth-perception with
flexible volumetric halos. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1344–1351, 2007. doi: 10.1109/TVCG.2007.70555.

[BHOM13] Mike Bukowski, Padraic Hennessy, Brian Osman, and Morgan McGuire.
The skylanders swap force depth-of-field shader. In GPU Pro 4: Advanced
Rendering Techniques, pages 175–186, 2013.

[BHP15] Johanna Beyer, Markus Hadwiger, and Hanspeter Pfister. State-of-the-art
in gpu-based large-scale volume visualization. Computer Graphics Forum,
34(8):13–37, 2015. doi: 10.1111/cgf.12605.

[Bli82] James F Blinn. A generalization of algebraic surface drawing. ACM
Transactions on Graphics, 1(3):235–256, 1982. doi: 10.1145/357306.
357310.

[Bru19] Stefan Bruckner. Dynamic visibility-driven molecular surfaces. Computer
Graphics Forum, 38(2):317–329, 2019. doi: 10.1111/cgf.13640.

[BS09] Louis Bavoil and Miguel Sainz. Multi-layer dual-resolution screen-space
ambient occlusion. In SIGGRAPH Talks, pages 45–45, 2009. doi: 10.
1145/1597990.1598035.

101

10.1016/B978-012387582-2/50038-1
10.1109/VISUAL.2004.103
10.1145/361002.361007
10.1145/361002.361007
10.1109/TVCG.2007.70555
10.1111/cgf.12605
10.1145/357306.357310
10.1145/357306.357310
10.1111/cgf.13640
10.1145/1597990.1598035
10.1145/1597990.1598035

[BWF+00] Helen M. Berman, John Westbrook, Zukang Feng, Gary Gilliland, T. N.
Bhat, Helge Weissig, Ilya N. Shindyalov, and Philip E. Bourne. The
protein data bank. Nucleic Acids Research, 28(1):235–242, 2000. doi:
10.1093/nar/28.1.235.

[CHP+79] Charles Csuri, Ron Hackathorn, Richard Parent, Wayne Carlson, and
Marc Howard. Towards an interactive high visual complexity animation
system. In Proceedings of ACM SIGGRAPH, pages 289–299, 1979. doi:
10.1145/965103.807458.

[CLK+11] Matthieu Chavent, Bruno Lévy, Michael Krone, Katrin Bidmon, Jean-
Philippe Nominé, Thomas Ertl, and Marc Baaden. Gpu-powered tools
boost molecular visualization. Briefings in Bioinformatics, 12(6):689–701,
2011. doi: 10.1093/bib/bbq089.

[CMB13] Paul A Craig, Lea Vacca Michel, and Robert C Bateman. A survey of educa-
tional uses of molecular visualization freeware. Biochemistry and Molecular
Biology Education, 41(3):193–205, 2013. doi: 10.1039/B5RP90005K.

[DVVC19] David Dubbeldam, Jocelyne Vreede, Thijs JH Vlugt, and Sofia Calero.
Highlights of (bio-) chemical tools and visualization software for computa-
tional science. Current Opinion in Chemical Engineering, 23(1):1–13, 2019.
doi: 10.1016/j.coche.2019.02.001.

[Ede99] Herbert Edelsbrunner. Deformable smooth surface design. Discrete & Com-
putational Geometry, 21(1):87–115, 1999. doi: 10.1007/PL00009412.

[FAW10] Roland Fraedrich, Stefan Auer, and Rudiger Westermann. Efficient high-
quality volume rendering of sph data. IEEE Transactions on Visualization
and Computer Graphics, 16(6):1533–1540, 2010. doi: 10.1109/TVCG.
2010.148.

[FGE10] Martin Falk, Sebastian Grottel, and Thomas Ertl. Interactive image-space
volume visualization for dynamic particle simulations. In Proceedings of
SIGRAD, pages 35–43, 2010.

[FK03] Randima Fernando and Mark J Kilgard. The Cg Tutorial: The defini-
tive guide to programmable real-time graphics. Addison-Wesley Longman
Publishing Co., Inc., 2003. isbn: {9780321194961}.

[FKE13] Martin Falk, Michael Krone, and Thomas Ertl. Atomistic visualization of
mesoscopic whole-cell simulations using ray-casted instancing. Computer
Graphics Forum, 32(8):195–206, 2013. doi: 10.1111/cgf.12197.

[Fra02] Eric Francoeur. Cyrus levinthal, the kluge and the origins of interactive
molecular graphics. Endeavour, 26(4):127–131, 2002. doi: 10.1016/
S0160-9327(02)01468-0.

102

10.1093/nar/28.1.235
10.1145/965103.807458
10.1093/bib/bbq089
10.1039/B5RP90005K
10.1016/j.coche.2019.02.001
10.1007/PL00009412
10.1109/TVCG.2010.148
10.1109/TVCG.2010.148
 {9780321194961}
10.1111/cgf.12197
10.1016/S0160-9327(02)01468-0
10.1016/S0160-9327(02)01468-0

[FSW09] Roland Fraedrich, Jens Schneider, and Rüdiger Westermann. Exploring
the millennium run-scalable rendering of large-scale cosmological datasets.
IEEE Transactions on Visualization and Computer Graphics, 15(6):1251–
1258, 2009. doi: 10.1109/TVCG.2009.142.

[GIK+07] Christiaan P Gribble, Thiago Ize, Andrew Kensler, Ingo Wald, and Steven G
Parker. A coherent grid traversal approach to visualizing particle-based sim-
ulation data. IEEE Transactions on Visualization and Computer Graphics,
13(4):758–768, 2007. doi: 10.1109/TVCG.2007.1059.

[GKM+14] Sebastian Grottel, Michael Krone, Christoph Müller, Guido Reina, and
Thomas Ertl. Megamol—a prototyping framework for particle-based vi-
sualization. IEEE Transactions on Visualization and Computer Graphics,
21(2):201–214, 2014. doi: 10.1109/TVCG.2014.2350479.

[GKSE12] Sebastian Grottel, Michael Krone, Katrin Scharnowski, and Thomas Ertl.
Object-space ambient occlusion for molecular dynamics. In Proceedings
of IEEE PacificVis, pages 209–216, 2012. doi: 10.1109/PacificVis.
2012.6183593.

[GNL+15] Dongliang Guo, Junlan Nie, Meng Liang, Yu Wang, Yanfen Wang, and
Zhengping Hu. View-dependent level-of-detail abstraction for interactive
atomistic visualization of biological structures. Computers & Graphics,
52(C):62–71, 2015. doi: 10.1016/j.cag.2015.06.008.

[GRDE10] Sebastian Grottel, Guido Reina, Carsten Dachsbacher, and Thomas Ertl.
Coherent culling and shading for large molecular dynamics visualiza-
tion. Computer Graphics Forum, 29(3):953–962, 2010. doi: 10.1111/j.
1467-8659.2009.01698.x.

[Hay10] Callum Hay. Gaussian blur shader (glsl), 2010. Accessed:
2020-07-28, https://callumhay.blogspot.com/2010/09/
gaussian-blur-shader-glsl.html.

[HDS96] William Humphrey, Andrew Dalke, and Klaus Schulten. Vmd: visual
molecular dynamics. Journal of Molecular Graphics, 14(1):33–38, 1996. doi:
10.1016/0263-7855(96)00018-5.

[HE03] Matthias Hopf and Thomas Ertl. Hierarchical splatting of scattered data.
In Proceedings of IEEE Visualization, pages 433–440, 2003. doi: 10.1109/
VISUAL.2003.1250404.

[Her06] Angel Herraez. Biomolecules in the computer: Jmol to the rescue. Bio-
chemistry and Molecular Biology Education, 34(4):255–261, 2006. doi:
10.1002/bmb.2006.494034042644.

103

10.1109/TVCG.2009.142
10.1109/TVCG.2007.1059
10.1109/TVCG.2014.2350479
10.1109/PacificVis.2012.6183593
10.1109/PacificVis.2012.6183593
10.1016/j.cag.2015.06.008
10.1111/j.1467-8659.2009.01698.x
10.1111/j.1467-8659.2009.01698.x
https://callumhay.blogspot.com/2010/09/gaussian-blur-shader-glsl.html
https://callumhay.blogspot.com/2010/09/gaussian-blur-shader-glsl.html
10.1016/0263-7855(96)00018-5
10.1109/VISUAL.2003.1250404
10.1109/VISUAL.2003.1250404
10.1002/bmb.2006.494034042644

[HKG+17] Pedro Hermosilla, Michael Krone, Victor Guallar, Pere-Pau Vázquez, Àlvar
Vinacua, and Timo Ropinski. Interactive gpu-based generation of solvent-
excluded surfaces. The Visual Computer, 33(6):869–881, 2017. doi: 10.
1007/s00371-017-1397-2.

[HKK07] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. Sliced
data structure for particle-based simulations on gpus. In Proceedings of
GRAPHITE, pages 55–62, 2007. doi: 10.1145/1321261.1321271.

[Hof65] August Hoffmann. On the combining power of atoms. In Proceedings of the
Royal Institution, pages 401–430, 1865.

[HSS+05] Markus Hadwiger, Christian Sigg, Henning Scharsach, Khatja Bühler, and
Markus Gross. Real-time ray-casting and advanced shading of discrete
isosurfaces. Computer Graphics Forum, 24(1):303–312, 2005. doi: 10.
1111/j.1467-8659.2005.00855.x.

[HVS04] Xuejun Hao, Amitabh Varshney, and Sergei Sukharev. Real-time visualiza-
tion of large time-varying molecules. In Proceedings of the High-Performance
Computing Symposium, pages 109–114, 2004.

[IWR+17] Mohamed Ibrahim, Patrick Wickenhäuser, Peter Rautek, Guido Reina,
and Markus Hadwiger. Screen-space normal distribution function caching
for consistent multi-resolution rendering of large particle data. IEEE
Transactions on Visualization and Computer Graphics, 24(1):944–953, 2017.
doi: 10.1109/TVCG.2017.2743979.

[JH14] Graham T Johnson and Samuel Hertig. A guide to the visual analysis and
communication of biomolecular structural data. Nature Reviews Molecular
Cell Biology, 15(10):690–698, 2014. doi: 10.1038/nrm3874.

[JJS05] Loretta L Jones, Kenneth D Jordan, and Neil A Stillings. Molecular visual-
ization in chemistry education: the role of multidisciplinary collaboration.
Chemistry Education Research and Practice, 6(3):136–149, 2005.

[KAD+06] Richard Keiser, Bart Adams, Philip Dutré, Leonidas J Guibas, and Mark
Pauly. Multiresolution particle-based fluids. Technical report, Swiss Federal
Institute of Technology Zurich, Department of Computer Science, 2006. doi:
10.3929/ethz-a-006780981.

[KGE11] Michael Krone, Sebastian Grottel, and Thomas Ertl. Parallel contour-
buildup algorithm for the molecular surface. In Proceedings of IEEE BioVis,
pages 17–22, 2011. doi: 10.1109/BioVis.2011.6094043.

[KKF+17] Barbora Kozlíková, Michael Krone, Martin Falk, Norbert Lindow, Marc
Baaden, Daniel Baum, Ivan Viola, Julius Parulek, and Hans-Christian Hege.
Visualization of biomolecular structures: State of the art revisited. Computer
Graphics Forum, 36(8):178–204, 2017. doi: 10.1111/cgf.13072.

104

10.1007/s00371-017-1397-2
10.1007/s00371-017-1397-2
10.1145/1321261.1321271
10.1111/j.1467-8659.2005.00855.x
10.1111/j.1467-8659.2005.00855.x
10.1109/TVCG.2017.2743979
10.1038/nrm3874
10.3929/ethz-a-006780981
10.1109/BioVis.2011.6094043
10.1111/cgf.13072

[KSES12] Michael Krone, John E Stone, Thomas Ertl, and Klaus Schulten. Fast
visualization of gaussian density surfaces for molecular dynamics and parti-
cle system trajectories. In Proceedings of EuroVis (Short Papers), pages
67–71, 2012. doi: 10.2312/PE/EuroVisShort/EuroVisShort2012/
067-071.

[KW03] Jens Kruger and Rüdiger Westermann. Acceleration techniques for gpu-
based volume rendering. In Proceedings of IEEE Visualization, pages
287–292, 2003. doi: 10.1109/VIS.2003.10001.

[KWN+14] Aaron Knoll, Ingo Wald, Paul Navratil, Anne Bowen, Khairi Reda,
Michael E Papka, and Kelly Gaither. Rbf volume ray casting on mul-
ticore and manycore cpus. Computer Graphics Forum, 33(3):71–80, 2014.
doi: 10.1111/cgf.12363.

[LBH12] Norbert Lindow, Daniel Baum, and Hans-Christian Hege. Interactive
rendering of materials and biological structures on atomic and nanoscopic
scale. Computer Graphics Forum, 31(3pt4):1325–1334, 2012. doi: 10.
1111/j.1467-8659.2012.03128.x.

[LBH14] Norbert Lindow, Daniel Baum, and Hans-Christian Hege. Ligand ex-
cluded surface: A new type of molecular surface. IEEE Transactions
on Visualization and Computer Graphics, 20(12):2486–2495, 2014. doi:
10.1109/TVCG.2014.2346404.

[LBPH10] Norbert Lindow, Daniel Baum, Steffen Prohaska, and Hans-Christian
Hege. Accelerated visualization of dynamic molecular surfaces. Computer
Graphics Forum, 29(3):943–952, 2010. doi: 10.1111/j.1467-8659.
2009.01693.x.

[LC87] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3d surface construction algorithm. ACM SIGGRAPH Computer Graphics,
21(4):163–169, 1987. doi: 10.1145/37401.37422.

[LCL15] Tiantian Liu, Minxin Chen, and Benzhuo Lu. Parameterization for molec-
ular gaussian surface and a comparison study of surface mesh genera-
tion. Journal of Molecular Modeling, 21(5):113, 2015. doi: 10.1007/
s00894-015-2654-9.

[LGF04] Frank Losasso, Frédéric Gibou, and Ron Fedkiw. Simulating water and
smoke with an octree data structure. ACM Transactions on Graphics,
23(3):457–462, 2004. doi: 10.1145/1015706.1015745.

[LH91] David Laur and Pat Hanrahan. Hierarchical splatting: A progressive
refinement algorithm for volume rendering. ACM SIGGRAPH Computer
Graphics, 25(4):285–288, 1991. doi: 10.1145/122718.122748.

105

10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
10.1109/VIS.2003.10001
10.1111/cgf.12363
10.1111/j.1467-8659.2012.03128.x
10.1111/j.1467-8659.2012.03128.x
10.1109/TVCG.2014.2346404
10.1111/j.1467-8659.2009.01693.x
10.1111/j.1467-8659.2009.01693.x
10.1145/37401.37422
10.1007/s00894-015-2654-9
10.1007/s00894-015-2654-9
10.1145/1015706.1015745
10.1145/122718.122748

[LMPSV14] Mathieu Le Muzic, Julius Parulek, Anne-Kristin Stavrum, and Ivan Viola.
Illustrative visualization of molecular reactions using omniscient intelligence
and passive agents. Computer Graphics Forum, 33(3):141–150, 2014. doi:
10.1111/cgf.12370.

[LO11] Phillip A Laplante and Seppo J Ovaska. Real-time systems design and
analysis: tools for the practitioner. John Wiley and Sons, 2011. isbn:
978-0470768648.

[Lod00] Harvey F. Lodish. Molecular Cell Biology. W.H. Freeman, 2000. isbn:
978-1464109812.

[LPK06] Jun Lee, Sungjun Park, and Jee-In Kim. View-dependent rendering of
large-scale molecular models using level of detail. In Proceedings of the
International Conference on Hybrid Information Technology, pages 691–698,
2006.

[LR71] Byungkook Lee and Frederic M Richards. The interpretation of protein
structures: estimation of static accessibility. Journal of Molecular Biology,
55(3):379–400, 1971. doi: 10.1016/0022-2836(71)90324-X.

[M+13] Daniel Müllner et al. fastcluster: Fast hierarchical, agglomerative clustering
routines for r and python. Journal of Statistical Software, 53(9):1–18, 2013.
doi: 10.18637/jss.v053.i09.

[Mar65] James Martin. Design of real-time computer systems. Prentice Hall, 1965.
isbn: 978-1114207875.

[Max04] Nelson Max. Hierarchical molecular modelling with ellipsoids. Journal of
Molecular Graphics and Modelling, 23(3):233–238, 2004. doi: 10.1016/j.
jmgm.2004.07.001.

[MCG03] Matthias Müller, David Charypar, and Markus Gross. Particle-based
fluid simulation for interactive applications. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 154–
159, 2003. doi: 10.2312/SCA03/154-159.

[MEK+17] Nick Matthews, Robert Easdon, Akio Kitao, Steven Hayward, and Stephen
Laycock. High quality rendering of protein dynamics in space filling mode.
Journal of Molecular Graphics and Modelling, 78(1):158–167, 2017. doi:
10.1016/j.jmgm.2017.09.017.

[MOBH11] Morgan McGuire, Brian Osman, Michael Bukowski, and Padraic Hennessy.
The alchemy screen-space ambient obscurance algorithm. In Proceedings of
the ACM SIGGRAPH Symposium on High Performance Graphics, pages
25–32, 2011. doi: 10.1145/2018323.2018327.

106

10.1111/cgf.12370
10.1016/0022-2836(71)90324-X
 10.18637/jss.v053.i09
10.1016/j.jmgm.2004.07.001
10.1016/j.jmgm.2004.07.001
10.2312/SCA03/154-159
10.1016/j.jmgm.2017.09.017
10.1145/2018323.2018327

[MS15] Steve Marschner and Peter Shirley. Fundamentals of computer graphics.
CRC Press, 2015. isbn: 978-1568814698.

[NJB07] Paul Navratil, Jarrett Johnson, and Volker Bromm. Visualization of cos-
mological particle-based datasets. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1712–1718, 2007. doi: 10.1109/TVCG.2007.
70526.

[PB13] Julius Parulek and Andrea Brambilla. Fast blending scheme for molecular
surface representation. IEEE Transactions on Visualization and Computer
Graphics, 19(12):2653–2662, 2013. doi: 10.1109/TVCG.2013.158.

[PGH+04] Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch,
Daniel M Greenblatt, Elaine C Meng, and Thomas E Ferrin. Ucsf chimera—a
visualization system for exploratory research and analysis. Journal of
Computational Chemistry, 25(13):1605–1612, 2004. doi: 10.1002/jcc.
20084.

[PJR+14] Julius Parulek, Daniel Jönsson, Timo Ropinski, Stefan Bruckner, Anders
Ynnerman, and Ivan Viola. Continuous levels-of-detail and visual abstraction
for seamless molecular visualization. 33(6):276–287, 2014. doi: 10.1111/
cgf.12349.

[PV12] Julius Parulek and Ivan Viola. Implicit representation of molecular surfaces.
In Proceedings of IEEE PacificVis, pages 217–224, 2012. doi: 10.1109/
PacificVis.2012.6183594.

[PZVBG00] Hanspeter Pfister, Matthias Zwicker, Jeroen Van Baar, and Markus Gross.
Surfels: Surface elements as rendering primitives. In Proceedings of ACM
SIGGRAPH, pages 335–342, 2000. doi: 10.1145/344779.344936.

[QEE+05] Wei Qiao, David S Ebert, Alireza Entezari, Marek Korkusinski, and Gerhard
Klimeck. Volqd: Direct volume rendering of multi-million atom quantum
dot simulations. In Proceedings of IEEE Visualization, pages 319–326, 2005.
doi: 10.1109/VISUAL.2005.1532811.

[RE05] Guido Reina and Thomas Ertl. Hardware-accelerated glyphs for mono-and
dipoles in molecular dynamics visualization. In Proceedings of EuroVis,
pages 177–182, 2005. doi: 10.2312/VisSym/EuroVis05/177-182.

[Ree83] William T Reeves. Particle systems—a technique for modeling a class of
fuzzy objects. ACM Transactions On Graphics, 2(2):91–108, 1983. doi:
10.1145/357318.357320.

[RGE19] Guido Reina, Patrick Gralka, and Thomas Ertl. A decade of particle-based
scientific visualization. The European Physical Journal Special Topics,
227(14):1705–1723, 2019. doi: 10.1140/epjst/e2019-800172-4.

107

10.1109/TVCG.2007.70526
10.1109/TVCG.2007.70526
10.1109/TVCG.2013.158
10.1002/jcc.20084
10.1002/jcc.20084
10.1111/cgf.12349
10.1111/cgf.12349
10.1109/PacificVis.2012.6183594
10.1109/PacificVis.2012.6183594
10.1145/344779.344936
10.1109/VISUAL.2005.1532811
10.2312/VisSym/EuroVis05/177-182
10.1145/357318.357320
10.1140/epjst/e2019-800172-4

[Ric77] Frederic M Richards. Areas, volumes, packing, and protein structure.
Annual Review of Biophysics and Bioengineering, 6(1):151–176, 1977. doi:
10.1146/annurev.bb.06.060177.001055.

[RK09] Steffen Raschdorf and Michael Kolonko. Loose octree: a data structure for
the simulation of polydisperse particle packings. Technical report, Clausthal
University of Technology, 2009.

[RL00] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point
rendering system for large meshes. In Proceedings of ACM SIGGRAPH,
pages 343–352, 2000. doi: 10.1145/344779.344940.

[RM00] Paul Read and Mark-Paul Meyer. Restoration of motion picture film.
Elsevier, 2000. isbn: 978-0750627931.

[RT06] Guodong Rong and Tiow-Seng Tan. Jump flooding in gpu with applications
to voronoi diagram and distance transform. In Proceedings of the Symposium
on Interactive 3D Graphics and Games, pages 109–116, 2006. doi: 10.
1145/1111411.1111431.

[RTW13] Florian Reichl, Marc Treib, and Rüdiger Westermann. Visualization of
big sph simulations via compressed octree grids. In Proceedings of the
IEEE International Conference on Big Data, pages 71–78, 2013. doi:
10.1109/BigData.2013.6691717.

[Sam90] Hanan Samet. The design and analysis of spatial data structures. Addison-
Wesley Reading, MA, 1990. isbn: 978-0201502558.

[Sch15] LLC Schrödinger. The pymol molecular graphics system, version 1.8. 2015.

[SGG15] Joachim Staib, Sebastian Grottel, and Stefan Gumhold. Visualization of
particle-based data with transparency and ambient occlusion. Computer
Graphics Forum, 34(3):151–160, 2015. doi: doi:10.1111/cgf.12627.

[SI94] Hikmet Senay and Eve Ignatius. A knowledge-based system for visualization
design. IEEE Computer Graphics and Applications, 14(6):36–47, 1994. doi:
10.1109/38.329093.

[SKNV04] Ashish Sharma, Rajiv K Kalia, Aiichiro Nakano, and Priya Vashishta. Scal-
able and portable visualization of large atomistic datasets. Computer Physics
Communications, 163(1):53–64, 2004. doi: 10.1016/j.cpc.2004.07.
008.

[SMK+16] Karsten Schatz, Christoph Müller, Michael Krone, Jens Schneider, Guido
Reina, and Thomas Ertl. Interactive visual exploration of a trillion parti-
cles. In Proceedings of the IEEE Symposium on Large Data Analysis and
Visualization, pages 56–64, 2016. doi: 10.1109/LDAV.2016.7874310.

108

10.1146/annurev.bb.06.060177.001055
10.1145/344779.344940
10.1145/1111411.1111431
10.1145/1111411.1111431
10.1109/BigData.2013.6691717
doi:10.1111/cgf.12627
10.1109/38.329093
10.1016/j.cpc.2004.07.008
10.1016/j.cpc.2004.07.008
10.1109/LDAV.2016.7874310

[SMW95] Roger A Sayle and E James Milner-White. Rasmol: biomolecular graphics
for all. Trends in Biochemical Sciences, 20(9):374–376, 1995. doi: 10.
1016/S0968-0004(00)89080-5.

[SVGR15] Robin Skånberg, Pere-Pau Vazquez, Victor Guallar, and Timo Ropinski.
Real-time molecular visualization supporting diffuse interreflections and
ambient occlusion. IEEE Transactions on Visualization and Computer
Graphics, 22(1):718–727, 2015. doi: 10.1109/TVCG.2015.2467293.

[SWBG06] Christian Sigg, Tim Weyrich, Mario Botsch, and Markus H Gross. Gpu-
based ray-casting of quadratic surfaces. In Proceedings of the Symposium on
Point-Based Graphics, pages 59–65, 2006. doi: 10.2312/SPBG/SPBG06/
059-065.

[TA96] Maxim Totrov and Ruben Abagyan. The contour-buildup algorithm to
calculate the analytical molecular surface. Journal of Structural Biology,
116(1):138–143, 1996. doi: 10.1006/jsbi.1996.0022.

[TCM06] Marco Tarini, Paolo Cignoni, and Claudio Montani. Ambient occlusion
and edge cueing for enhancing real time molecular visualization. IEEE
Transactions on Visualization and Computer Graphics, 12(5):1237–1244,
2006. doi: 10.1109/TVCG.2006.115.

[TL04] Rodrigo Toledo and Bruno Levy. Extending the graphic pipeline with new
gpu-accelerated primitives. Technical report, INRIA, 2004.

[Tra92] Anthony S Travis. August wilhelm hofmann (1818–1892). Endeavour,
16(2):59–65, 1992. doi: 10.1016/0160-9327(92)90003-8.

[Tuf83] Edward R Tufte. The Visual Display of Quantitative Information. Graphics
Press, 1983. isbn: 1930824130.

[Tuf97] Edward R Tufte. Visual and statistical thinking: Displays of evidence for
making decisions. Graphics Press Cheshire, CT, 1997. isbn: 978-0961392130.

[Tur07] Ken Turkowski. Incremental computation of the gaussian. In GPU Gems
3, pages 877–890, 2007.

[VdW73] Johannes Diderik Van der Waals. Over de Continuïteit van den Gas- en
Vloeistoftoestand. Sijthoff, 1873.

[VDZLBI11] Matthew Van Der Zwan, Wouter Lueks, Henk Bekker, and Tobias Isenberg.
Illustrative molecular visualization with continuous abstraction. Computer
Graphics Forum, 30(3):683–690, 2011. doi: 10.1111/j.1467-8659.
2011.01917.x.

109

10.1016/S0968-0004(00)89080-5
10.1016/S0968-0004(00)89080-5
10.1109/TVCG.2015.2467293
10.2312/SPBG/SPBG06/059-065
10.2312/SPBG/SPBG06/059-065
10.1006/jsbi.1996.0022
10.1109/TVCG.2006.115
10.1016/0160-9327(92)90003-8
10.1111/j.1467-8659.2011.01917.x
10.1111/j.1467-8659.2011.01917.x

[Wes89] Lee Westover. Interactive volume rendering. In Proceedings of the Chapel
Hill Workshop on Volume Visualization, pages 9–16, 1989. doi: 10.1145/
329129.329138.

[WIK+06] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G
Parker. Ray tracing animated scenes using coherent grid traversal. ACM
Transactions on Graphics, 25(3):485–493, 2006. doi: 10.1145/1141911.
1141913.

[WKJ+15] Ingo Wald, Aaron Knoll, Gregory P Johnson, Will Usher, Valerio Pascucci,
and Michael E Papka. Cpu ray tracing large particle data with balanced
pkd trees. In Proceedings of IEEE SciVis, pages 57–64, 2015. doi: 10.
1109/SciVis.2015.7429492.

[WSB14] Thomas Waltemate, Björn Sommer, and Mario Botsch. Membrane mapping:
combining mesoscopic and molecular cell visualization. In Proceedings of
the Eurographics Workshop on Visual Computing for Biology and Medicine,
pages 89–96, 2014. doi: 10.2312/vcbm.20141187.

[XZY17] Xiangyun Xiao, Shuai Zhang, and Xubo Yang. Real-time high-quality
surface rendering for large scale particle-based fluids. In Proceedings of
the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games,
pages 1–8, 2017. doi: 10.1145/3023368.3023377.

[ZCW+04] Huabing Zhu, Tony Kai-Yun Chan, Lizhe Wang, Wentong Cai, and Simon
See. A prototype of distributed molecular visualization on computational
grids. Future Generation Computer Systems, 20(5):727–737, 2004. doi:
10.1016/j.future.2003.11.023.

[ZD17] Tobias Zirr and Carsten Dachsbacher. Memory-efficient on-the-fly voxeliza-
tion and rendering of particle data. IEEE Transactions on Visualization and
Computer Graphics, 24(2):1155–1166, 2017. doi: 10.1109/TVCG.2017.
2656897.

110

10.1145/329129.329138
10.1145/329129.329138
10.1145/1141911.1141913
10.1145/1141911.1141913
10.1109/SciVis.2015.7429492
10.1109/SciVis.2015.7429492
10.2312/vcbm.20141187
10.1145/3023368.3023377
10.1016/j.future.2003.11.023
10.1109/TVCG.2017.2656897
10.1109/TVCG.2017.2656897

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Motivation
	Contribution
	Structure

	State of the Art
	Frameworks and Systems for the Visualization of Biomolecular Data
	Rendering of Point-based Data
	Methods for Handling Large Point-based Data Sets
	Biomolecular Representation Models and Enhancement Methods
	Summary and Conclusion

	Data Structure
	Overview of the Components for CPU Data Handling
	The Octree Data Structure
	Summary and Conclusion

	Rendering
	Managing and Rendering the Octree Data Structure
	Smoothly Blending Between LODs
	Molecular Surface Rendering
	Visual Enhancement for Molecular Rendering
	Summary and Conclusion

	Implementation
	Libraries
	Implementation Choices

	Results
	Test Data
	Configuring and Pre-processing the Data Structure
	Rendering
	Enhancement Methods
	Conclusion and Comparison to Similar Solutions

	Discussion
	Conclusion
	List of Figures
	List of Tables
	Bibliography

