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Kurzfassung

Datenwissenschaftler analysieren Patientendaten, um Korrelationen zwischen Krankheits-
bildern und Umweltfaktoren wie Lärm und Luftverschmutzung zu identifizieren. Die große
Anzahl an Attributen führt zu vielen möglichen paarweisen Korrelationsmodellen. Um die
Qualität dieser vollständig zu analysieren, ist es wichtig, Fehler in der Modellausgabe, das
heißt die Residuen, lokal zu vergleichen. Die große Anzahl an Datenpunkten erschwert
dies jedoch. Darüber hinaus ist es wichtig, Korrelationen zwischen Geodatenwerten und
Attributen zu identifizieren, um neue Modelle zu erstellen und deren Qualitätsindikatoren
entlang der geografischen Achsen zu analysieren. Niedrige Residuen der Modelle und
geringe Schwankungen entlang der räumlichen Attributachsen sind Indikatoren für hoch-
wertige Modelle. Ziel dieser Bachelorarbeit ist es, eine spezielle Visualisierung im Kontext
einer Geodatenkarte zu entwerfen und implementieren, welche Datenwissenschaftlern
dazu dient, Attribute und die Qualität von Korrelationsmodellen lokal und global zu
vergleichen. Wir haben es mit Geodaten mit Attributvektoren zu tun. Daher müssen wir
mehrere Attribute gleichzeitig in einem geografischen Kontext vergleichen. Um dies zu
erreichen, wird ein neues Konzept namens Geospatial-Slicing eingeführt. Beim Geospatial-
Slicing werden die Daten als Volumen behandelt, wobei die x- und y-Achse Längen- und
Breitengrade darstellen und die z-Achse entweder Attribute oder Modellqualitätsindikato-
ren darstellt. Krankheitsbilder können mit mehreren Umweltfaktoren korrelieren. Daher
werden die Werte dieser Attribute oder Modellqualitätsindikatoren für einen bestimmten
Bereich in gestapelten Histogrammbalken dargestellt. Das resultierende Volumen kann
dann geschnitten werden, um dessen Querschnitt zu zeigen. Dadurch können mehrere
Attribute benachbarter Datenpunkte verglichen werden. In einigen Fällen kann nicht nur
die räumliche Verteilung von Attributen oder Modellqualitätsindikatoren von Interesse
sein. Es kann auch aufschlussreich sein, wie sich Attribute oder Modellqualitäten entlang
nicht räumlicher Attributachsen ändern. Dies ermöglicht die Erörterung von Fragen wie
"Wie ändert sich die Modellqualität für verschiedene Werte der Bevölkerungsdichte und
Arbeitslosigkeit?". Um dies zu ermöglichen, wird eine zweite Ansicht implementiert. Hier
repräsentieren die x- und y-Achse Attribute anstelle von Längen- und Breitengraden.
Die Implementierung ist webbasiert und wird in deck.gl realisiert, einer Open-Source-
Javascript-Bibliothek für hardwarebeschleunigte kartenbasierte Visualisierung. Um unsere
Ergebnisse auszuwerten, wurde die Implementierung einem Datenwissenschaftler vorge-
stellt. Seine Einschätzung war, dass die Visualisierung ein nützliches Werkzeug ist, um
Teilmengen der Daten zu analysieren.
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Abstract

Data scientists are analysing patient data, to identify the correlations between disease
patterns and local environmental factors, like noise and air pollution. The large number
of different attributes leads to many possible pairwise correlation models. To fully
analyse the quality of these correlation models, it is important to locally compare
errors in the model output, i.e., the local residuals. However, the large number of
data points complicates this task. Additionally, it is important to identify correlations
between geospatial values and attributes to build new models and to analyse the model
quality indicators along geospatial attribute axes. Low residuals of the models and little
fluctuation of them along geospatial attribute axes are indicators for high-quality models.
Therefore, the goal of this bachelors thesis is to design and implement a specialized
visualization in the context of a geospatial map, which serves as a tool for data scientists
to locally and globally compare the attributes and the quality of correlation models. We
are dealing with geospatial samples with attribute vectors. Thus, we need to compare
multiple attributes simultaneously in a geospatial context. To accomplish this, a new
concept named geospatial slicing is introduced. Geospatial slicing treats the data as a
volume, where the x- and y-axis represent longitude and latitude, the z-axis represents
either multiple attributes or model quality indicators. Disease patterns can correlate to
multiple environmental factors. Hence, the values of these attributes or model quality
indicators for a specific area are depicted in histogram bars, which are stacked on top of
each other. The resulting volume can then be sliced to show its cross-section. This way,
multiple attributes of neighbouring data points can be compared. In some cases, not
only the geospatial distribution of attribute vectors or model quality indicators may be
of interest. It can also be revealing to see how attributes or model quality changes along
non-spatial attribute axes. This enables the investigation of questions such as "How does
the model quality change for different levels of population density and unemployment?".
In order to enable the analysis of these data volumes not only in a geospatial context,
but also in reference to non-spatial attribute ranges, a second view is implemented. In
the second view the x- and y-axis represent attributes instead of longitude and latitude.
The implementation is web-based and carried out in deck.gl, which is an open source
javascript library for hardware accelerated map-based visualization. To evaluate our
results, we showcased the implementation to a data scientist. His assessment was that
the visualization is a useful tool to analyse subsets of the data.
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CHAPTER 1
Introduction

1.1 Motivation

Our health and diseases are heavily influenced by the environment. The more we
understand which environmental factors influence disease occurrences, the better we can
understand how to decrease them [PM14]. To this end, data scientists are analysing patient
data, to identify the correlations between disease patterns and local environmental factors,
like noise and air pollution [RKK+13]. Especially for infectious diseases environmental
factors can be linked to the spread of these diseases [YKHKT18]. But also other disease
occurrences are affected by the environment. For instance, Wei et al. [WLFY16] in their
study about the correlation of the living environment and children’s health problems in
Dailan show a correlation between children’s allergic diseases and their living environment.

1.2 Problem Statement

The analysed datasets are geospatially distributed. The data points are spread across
a specific region for instance Austria in form of a grid. Each square of the grid depicts
one data point. These data points reflect the measurements for their respective area. To
analyse these factors in detail we need a high resolution, which leads to dense sampling
points and therefore a big number of them. Many different environmental factors could
affect our health. Thus, the datasets have a large number of data points and attributes
per data point. The numbers can reach up to hundreds of thousands data points, with
each having an attribute vector of up to 100 measurements. For that reason, comparing
geospatial variations of attributes in detail is difficult. Additionally, when comparing
local model quality indicators, it is hard to find correlation models that consider the
entire data. For a full analysis of the quality of the correlation models it is important to
locally analyse and compare their deviations and attributes.
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1. Introduction

1.3 Aim of the Work

The goal of this bachelor thesis is to implement a novel visualization that should enable
data scientists to analyse and locally as well as globally compare the deviations of
correlation models and attributes of the data points.

1.4 Methodology

To accomplish the defined goal, we need a visualization technique that enables users to
analyse areas in detail and also offers them an overview of the whole data. In medical
visualization MRI- or CT-Scans are often displayed as 3D volume rendering. Additionally
to the 3D visualization there usually is a 2D slice-based view. These two views complement
each other. While the 2D visualization provides a detailed view of a specific region,
the 3D visualization gives an overview of the whole scan and adds insight to where in
the volume the slice is [DPL+11], [TMS+06]. In our case, the data does not have three
spatial dimensions, but we can depict non-spatial attributes along the third spatial axis.
Figure 1.1 shows the basic idea of geospatial slicing. The x- and y-axis depict longitude
and latitude. The attributes or different model quality indicators are depicted in form
of histogram bars along the z-axis. Figure 1.1a shows the data volume before slicing.
Figure 1.1b shows the same volume from the top with a x-z-cutting plane. This cutting
plane can be moved along the y-axis. In Figure 1.1c the data volume after slicing is
shown. To add the possibility to compare multiple attributes, the user can select multiple
attributes whose histogram bars are stacked in the data points. The total height of a
histogram bar either encodes the aggregated attribute value or the aggregated model
quality for the respective grid area, depending on whether attributes or model qualities
are selected. By observing the height differences on the map, the data scientists get a
global overview of the overall characteristics of either the attribute values or the model
qualities of the selected models. This aspect of our visualization can be used to identify
possible correlation models. For instance, the diabetes prevalence is higher in the east
compared to the west of Austria. This values can be explored in our tool and compared
to other attributes like noise, air pollution, population density, availability or proximity
to medical services. If one of these attributes have a similar distribution from east to
west, the data scientists can externally generate a linear regression model based on this
similarity. We discuss linear regression in Section 3.1. The quality indicators of the
resulting model, usually the residuals, can then be analysed in our tool. Little fluctuation
of these residuals along the geospatial attribute axes are indicators for high-quality models,
while a low-quality model has high fluctuations and for instance big differences of the
residuals between conurbations and less densely populated areas. To be able to analyse
the residuals locally in detail, the visualized volume can be sliced to yield a cross-section
view of the volume. To slice the data we move the x-z- or the y-z-cutting-plane along their
respective axis. Meaning that the x-z-cutting-plane is moved along the y-axis and the
y-z-cutting-plane along the x-axis. This can be seen in Figure 1.1 for the x-z-cutting plane.
By slicing, we reveal a cross-section of the volume. This enables the user to compare
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1.5. Structure of Thesis

multiple attributes of neighbouring data points. We call this visualization technique
Geospatial Slicing. In some cases, not only the geospatial distribution of attribute vectors
or model quality indicators can be of interest. It can be revealing to see how attributes
or model quality changes along non-spatial attribute axes. This enables the investigation
of questions such as "How does the model quality change for different levels of population
density and unemployment?". In order to enable this, a second view is implemented. In
the second view the x- and y-axis therefore represent attributes instead of longitude and
latitude.

(a) The data volume before it
is sliced

(b) The volume shown from
the top with a x-z-cutting
plane. This cutting plane can
be moved along the y-axis.

(c) The data volume shown
in (a) after the slicing is done
with the cutting plane shown
in (b).

Figure 1.1: Illustrating the principle idea of geospatial slicing.

The implementation of the visualization is web-based and carried out in deck.gl [dec] which
is an open source javascript library for hardware accelerated map-based visualization.

This thesis is carried out in collaboration with the Complexity Science Hub Vienna.
There, data scientists are investigating the correlation between disease patterns and
environmental factors like noise and air pollution. This is done by building models using
linear regression and analysing them. This collaboration ensures that the implemented
tool fits the needs of the involved data scientists. To evaluate the implementation it was
showcased to a data scientist with whom subsequently an interview was conducted. He
identified drawbacks of our implementation and stated that the visualization is a useful
tool to analyse subsets of the data.

1.5 Structure of Thesis
This thesis is structured as follows: Chapter 2 gives a quick overview of other geospatial
lenses and other multivariate geospatial data visualization techniques. In Chapter 3 we
discuss the background of this thesis and take a closer look at volume visualization and
linear regression. Then, in Chapter 4 our proposed solution is explained in detail. The
implementation is described in Chapter 5. We move on with the results of this thesis
and the shortcomings of the implementation in Chapter 6 and conclude in Chapter 7
with a discussion of possible future work.
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CHAPTER 2
Related Work

In their extended survey of interactive lenses for visualization Tominski et al. [TGK+17]
compared multiple different types of interactive lenses in the context of information
visualization. They described lenses as an important class of methods to support
interactive multifaceted data exploration and that the idea behind them is to provide on
demand an alternative visual representation of the data underlying a local area of the
screen. The discussed lenses are also categorized. In the next section, we take a closer
look at the lenses categorized as geospatial.

2.1 Geospatial Lenses
Appert et al. [ACP10] explore the limitation of magnification lenses using focus+context
techniques by exploring the quantization problem in their work. They describe the
quantization problem as "the mismatch between visual and motor precision in the
magnified region". To solve this problem they introduce three new interaction techniques,
Speed, Key, and Ring. Speed maps the precision of the lens to the input device’s speed.
This relies on the assumption that the input device’s speed is high if navigating large
distances, while a low speed is used for precise adjustments. This can be seen in Figure 2.1.
The Key technique uses a context speed mode and a focus speed mode. The context
speed mode is used for navigating large distances and the focus speed is used to perform
precise navigation. To switch between these modes an additional key like SHIFT is used.
The Ring technique can be imagined as a large rigid ring, like a bracelet on a flat surface.
The Ring is moved by putting a finger into it that touches the surface, hence pulling the
ring. In this case the Ring is the focus region of the lens and the cursor is the finger.

Spindler et al. [STSD10] introduced in their work tangible interactions or tangible views
as an alternative to the traditional input devices like mouse and keyboard and visual
feedback given on desktop displays. With tangible views the data gets projected onto
a tabletop and rather than restricting the interaction to the display surface alone, the
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2. Related Work

Figure 2.1: As speed increases, the speed-coupled blending lens smoothly fades into the
context (from t1 to t3), and gradually fades back in when the target has been reached
(t4 and t5). The inner circle fades in as the lens fades out; it delimits which region of the
context gets magnified in the lens. The magnification factor remains constant [ACP10].

three-dimensional space above the tabletop is used for interaction with multiple displays.
These displays show a visualization corresponding to their own position in the three-
dimensional space above the tabletop. To compare different aspects of the data in a
specific point the tangible views can be horizontally or vertically frozen. For instance
Figure 2.2 shows two tangible views horizontally frozen. In this case the tabletop’s x-
and y-axis shows the spatial context as a geographic map and along the z-axis the 12
months of the year are mapped. Depending on the distance to the tabletop the views
show data for a specific month. By horizontally freezing different months for this specific
region, they can be compared.

Figure 2.2: After locking the focus of two tangible views to the same location by
horizontally freezing, users can visually compare between the two views by lifting or
lowering them simultaneously [STSD10].

Color scales are often used to represent data. Analysing a subset of the data with the
maximum or minimum values of the data set outside of the subset can lead to a small
amount of the color scale being used. To overcome this limitation, Elmqvist et al. [EDF10]
intodruced the Color Lens. The Color Lens inspects the lens contents in data space and
optimizes the color scale for the lens. In Figure 2.3 this technique is used on a geospatial
scatterplot of US Census Data. In the bar on top of the zoomed in views the maximum
and minimum of data points inside this subset are shown. Additionally, the optimized
color scale mapped to the values is shown beneath.

6



2.1. Geospatial Lenses

Figure 2.3: Multiscale navigation in US Census data, involving successive zooms into
both space and color domains [EDF10].

Hurter et al. [HTE11] introduced a technique for interactive exploration of multivariate
relational data in form of the MoleView. Given a spatial visualization of the data like a
scatterplot or a graph, the lens allows users to keep selected data in the area of interest
unchanged, while the rest of the data is deformed towards the edge of the lens. Figure 2.4
shows the lens applied to a color-coded image of the traffic in Lisbon at night. Here the
green hues, which show relatively slow moving vehicles, are selected. All the non-green
parts are pushed away from the focus. Therefore, the spatial map context is preserved
for the data of interest.

Figure 2.4: Element-based MoleView applied to color-mapped traffic speed im-
age [HTE11].

Butkiewicz et al. [BDW+08] introduced the usage of geospatial probes in information
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2. Related Work

visualization in their study. By presenting this technique they want to overcome the
limitations of traditional geospatial information visualizations of restricting the user only
to a single perspective. If zoomed out, local trends become surpressed and if zoomed in
spatial awareness is lost. They define a probe as "a pair consisting of a user-defined region-
of-interest and a pane containing any variety of information visualizations coordinated to
depict and interact with the data within that region-of interest". The user defines these
probes by selecting a region-of-interest (either with a focal point and a specific radius or
by manually selecting irregularly shaped regions) and then chooses the location of the
visualization pane on the main geospatial visualization. Figure 2.5 shows this technique
with four probes simultaneously.

Figure 2.5: Four probes with focal point and radius are applied to a geospatial map. In the
panes, a detailed view of the data in the area of the respective probe is shown. The multiple
probes allow the user to compare the data of the different areas of interest [BDW+08].

2.2 Other Multivariate Geospatial Data Visualization
Techniques

Maps are commonly used to visually depict multivariate geospatial data. But, with
the geospatial dimensions occupying two of the spatial dimensions, the possibilities to
visualize multiple attributes are limited. Commonly used techniques for visualization of
single attributes on a map are choropleth maps or heatmaps as shown in Figure 2.6 and
Figure 2.7, where color is used to portray the data [KK04]. By using different aspects of
color like lightness, saturation and hue, multiple attributes can be displayed concurrently
leading to multivariate visualizations. But, the possible number of depicted attributes is
limited [TSH+14].

Another approach to make sense of multiple attributes in a geospatial context, is using
interactive techniques. Here, the data is often visualized with a basic technique like a

8



2.2. Other Multivariate Geospatial Data Visualization Techniques

Figure 2.6: Choropleth map showing US unemployment rates of different regions from
2008, where a darker color means a higher unemployment rate [ZWC+16].

Figure 2.7: Visualizing hotspots in a city using a heatmap. The locations with a large
number of vehicles passing by are shown in red [ZWC+16].

point-based visualization as shown in Figure 2.8 or a heatmap as shown in Figure 2.7.
Additionally, to this basic visualization, a non-geospatial depiction of the data based on
user input is supplied. So, the additional visualization can show the data in more detail for
specific regions. For instance, the formerly discussed work of Butkiewicz et al. [BDW+08]
uses this technique. Another example is the Community Health Map introduced by
Sopan et al. [SNK+12]. This specific work addresses a similar subject as this thesis. In
this case, the basic visualization is a choropleth map. Based on user input, the data can
be analysed in more detail with tables showing multiple attributes for multiple regions or
bar charts. This can be seen in Figure 2.9. Turkay et al. [TSH+14] also use an interactive
technique in their study. They introduce attribute signatures, which are interactively
crafted graphics that show the geographic variability of statistics of attributes. This
concept can be seen in Figure 2.10. They enable the user to visually explore the extent

9



2. Related Work

Figure 2.8: Example of point-based visualization of locations: Pickups (blue) and drop-
offs (orange) of taxi trips in Manhattan from 7 to 8 am on May 1, 2011 are labeled by
colored points [ZWC+16].

of dependency between the attributes and geography. Those graphics can be represented
in different ways, ranging from single sparklines to multi-bar charts.

Another method to visualize geospatial data in the context of a map is to use the third
spatial dimension to display attributes. This can be accomplished by depicting the data
in bars on top of the map as shown in Figure 2.11. In their study Seipel et al. [SC12]
compared the usage of 2D and 3D bar charts in a geospatial context. These charts can
be seen in Figue 2.11. They conducted a user study to gain insight into which of the
two visualizations is more user-friendly. The participants were required to carry out
multiple analytical tasks, both on a 2D and 3D geospatial visualization. The conclusion
of their experiments showed no significant difference in speed and accuracy, if using
2D visualizations opposed to 3D visualizations. Therefore, we decided to use a 3D
visualization for our implementation. A large number of bars can lead to adjacent bars
obscuring each other. A 3D navigation does not fully solve this problem but by being
able to rotate the view in all three dimensions provides the user with a better spatial
awareness.

10



2.2. Other Multivariate Geospatial Data Visualization Techniques

Figure 2.9: The Community Health Map interface consists of a map (top), hinted double-
sided sliders for map and table filtering (middle), a color coded table (bottom), and the
selection panel (right). The selection panel allows users to click the link to render a layer
on the map, or check boxes to display a table with the selected variables [SNK+12].
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2. Related Work

Figure 2.10: Comparing statistics for four different levels of NUTS (Nomenclature of
Territorial Units for Statistics) using attribute signatures with multi-bar charts [TSH+14].

12



2.2. Other Multivariate Geospatial Data Visualization Techniques

(a)

(b)

Figure 2.11: A stimulus containing ten bars as used in the experiment. Stimuli were
represented and visualized in 2D (a) or visualized as a 3D slanted map with 3D bars (b).
Imaginary lines between bar ends in sub-figure (b) are here indicated only for illustration
purposes and they were not visible in the actual experiment [SC12].
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CHAPTER 3
Background

The goal of this thesis is to design and implement a visualization that serves as a tool for
data scientists to locally and globally compare attributes and the quality of correlation
models in a geospatial context. Such correlation models are based on linear regression.
So, to fully understand the requirements for such a tool, we need to take a closer look at
linear regression. Additionally, our visualization is based on slicing a volume visualization.
That is why in this chapter we will also take a closer look at linear regression and volume
slicing.

3.1 Linear Regression

In statistics, linear regression is a linear technique to model the correlation between a
dependent variable (response variable) and one or more independent variables (explanatory
variables). In the case of the data scientists, the response variable is disease occurrences
and the explanatory variables are environmental factors. The response variable is modelled
as a linear function of the explanatory variables and a random error. The parameters of
the function are determined based on a predefined method. Most commonly used is the
least squares principle. In this case the parameters of the function are defined to lead to
the smallest value of added squares of the residuals of the data points. The residuals
are the vertical distances between the data points and the function line. This means
that we minimize the squared error for this regression model. The resulting function
can help to predict the response value based on the explanatory values. The residuals
can be analysed to identify the quality of the regression model. Little fluctuations of
them along the geospatial attribte axes are indicators for high-quality models, while a
low-quality model has high fluctuations and for instance big differences of the residuals
between conurbations and less densely populated areas [YS09].
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3. Background

3.2 Volume Slicing

To visualize our data, we decided to use a volume representation superimposed on a map.
Volume visualization is an often used technique in medical and industrial image analysis.
Magnetic Resonance Imaging (MRI) or 3D Computed Tomography (3D CT) use different
image acquisition modalities to generate volumetric images, where each sample point
in the volume represents one or more attributes measured at that location [DPL+11].
This data can then either be segmented and observed in 3D or analysed slice by slice to
interactively identify spatial attribute variations that are hidden in the volume. Although,
a purely slice based representation can lead to the loss of spatial awareness. By combining
3D visualization and 2D slice-based views they complement each other. While the 2D
view provides a detailed view of a specific region, the 3D visualization gives an overview
of the whole data and adds spatial awareness [TMS+06]. We want to combine these two
advantages in our implementation and therefore use a volume visualization and enable
the user to slice it.

3.3 Considerations for Visual Comparison

In their study of Considerations for Visual Comparison Gleicher et al. [GAW+11] discusses
the issues if implementing a tool for visual comparison and provides a strategy to avoid
these issues. The proposed strategy is divided into four sections. We will present these
sections and show how they are applied to our implementation:

• Identify the Comparative Elements: There are two common elements of comparison,
a set of targets and an action performed on the relationships among these targets.
In our case, the set of targets are the data points with each containing multiple
attributes and model quality indicators. The action performed on the relationships
among these targets are identifying the relationships among them and thus, finding
new possible correlation models.

• Identify the Comparative Challenges: The difficulty of comparison grows with
three factors: the number of items to compare, the size or complexity of the items,
and the size or complexity of the relationships between items. The large number of
data points in our data set and the large number of attributes for each of them
lead to comparative challenges.

• Identify a Comparative Strategy: There are different strategies to compare data.
The used strategy is dependent on the challenges identified. These strategies can
be summarized into three categories: scanning sequentially, selecting a subset, and
summarization. Due to the challenges identified, we need to make use of two of these
strategies in our implementation. We use selecting a subset and summarization
strategies. By aggregating the data points into a grid we summarize the data.
Selecting a subset is used in two different ways in our implementation. On the one
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3.3. Considerations for Visual Comparison

hand, only selected attributes are visualized and on the other hand the slicing also
leads to a subset of the data.

• Identify a Comparative Design: The visual designs for comparison fall into three
categories: juxtaposition, superposition, and explicit encoding. In our implementa-
tion we use juxtaposition and superposition. While the different data points that
need to be compared are situated next to each other and are thus juxtapositioned,
the different attributes are visualized on top of each other and are therefore in
superposition.

17





CHAPTER 4
Proposed Solution

The goal of this bachelors thesis is to design and implement a specialized visualization
in the context of a geospatial map, which serves as a tool for data scientists to locally
compare the attributes and the quality of correlation models. Additionally, it should
provide the user with an overview of the whole data set to identify trends and correlations
of different attributes. To accomplish this, we introduce a novel visualization technique
called Geospatial Slicing.

4.1 Geospatial Slicing
For this technique, we treat the data as a volume. Therefore, the longitude and latitude
are mapped to the x- and y-axis. On the z-axis, the stacked attributes are depicted. The
data points are then visualized by histogram bars stacked on top of each other. Each
value of a specific attribute is depicted by one of the stacked histogram bars. Each data
point contains longitude and latitude coordinates. The stacked bars are visualized in 3D
on top of a map at their respective coordinates, enabling users to compare attributes
based on their position as well as their variations across position. For instance, if a
disease is known to have a higher prevalence in a specific region, the map can be helpful
to identify environmental attributes with a similar distribution and thus higher values in
this specific region. This can lead to new correlation models between the disease pattern
and the environmental attribute.

Placing the 3D bars on a map, very quickly causes occlusion of the lower stack, only
allowing a user to view the general height of the stacked bars. To alleviate this issue,
we introduce geospatial slicing. The slicing is comparable to the slicing in medical
visualizations of CT- or MRI-Scans [TMS+06]. The volume is sliced with the x-z- and
y-z-plane. Figure 1.1 shows this principle with an x-z-cutting plane. Figure 1.1a shows
the volume without slicing. Figure 1.1b shows the volume from the top with a x-z-
cutting plane. This cutting plane can be moved along the y-axis. Figure 1.1c shows
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4. Proposed Solution

the data volume after the slicing. The corresponding cross-section enables the user to
locally compare multiple attributes or model deviations on that revealed latitudinal
or longitudinal coordinates. Zooming in on this cross-section provides the user with a
detailed view to compare the neighbouring data. If zoomed out the user has an overview
of the whole data set to observe global variations of the stacked attribute vectors and to
identify the regions where detailed local analysis is necessary.

For the data scientists not only comparing the geospatially neighbouring data points
is interesting, but also comparing neighboring points in "attribute space". In this case,
the height of the bar shows the error of the model at the respective attribute value.
This enables the users to see if the local model quality indicators correlate with certain
attribute ranges, for instance with high or low noise. For this reason, we provide a second
view, where the x- and y-axis are not longitude and latitude but attributes. The z-axis
still depicts stacked attributes, resulting in a volume, which we can slice in the same way
as mentioned above to observe the cross-section. We will refer to this second view in the
following as the abstract view and to the other view as the geospatial view.

4.2 Data

The analysed dataset is geospatially distributed. The data points are spread across
Austria in the form of a grid. The grid consists of 250 by 250 meter squares and each
square represents one data point. These data points reflect the measurements for their
respective area. Therefore, each data point needs to contain a longitude and latitude
value for them to be displayed on the map. Additionally to longitude and latitude, every
data point has an attribute vector. The values of this vector either depict local correlation-
model quality-indicators like the residuals or other attributes like environmental factors
or disease occurrences. In our case, there are 178,957 data points with each having a 92
dimensional attribute vector. This big amount of data can be challenging to visualize
and influences design decisions.

4.3 Data Normalization

The values of the different attributes can have different units and the range of these
values can differ from attribute to attribute. Thus, to enable the comparison of attribute
variations, all values are normalized before encoding them in a stacked bar. We offer
two ways to normalize the data: local and global normalization. In each case, the
Equation (4.1) is used. Depending on the used normalization, zmax changes. In the local
normalization, each attribute is normalized separately. This means that the maximum of
this attribute gets mapped to one and zero gets mapped to zero. In our case, the data set
does not contain negative values. A possible solution to handle negative values is to map
the minimum value to zero. We did not use this approach, due to the ratios between
the bars being distorted. Meaning that a bar that is double the height of another bar
does not mean that the value displayed by that bar is double the value of the other
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bar. The local normalization is useful to compare the variation of attributes whose
values are not in the same range or have different units. It makes the heights of the bars
comparable and the user can easily identify which attributes are high in certain areas.
In the Equation (4.1) this means that zn is the normalized value, z is the original value
and zmax is the maximum value of the attribute that z is a value of. This means that a
specific height of a bar can depict different values depending on the represented attribute.

zn = z

zmax
(4.1)

As mentioned above, in the global normalization Equation (4.1) is used as well, but
zmax changes. Global normalization normalizes the attributes using the global maximum
across all attributes. Zero still is mapped to zero. As mentioned above, we are not
dealing with negative values, but the aforementioned solution of mapping the minimum
value to zero is also applicable for the global normalization. This normalization only
makes sense if all attributes have the same unit and are in a similar range. It is useful to
compare attributes that are similar, like the percentage of infected people across different
age groups. Due to the values being in the same range, the values depicted on the z-axis
can refer to the values of the attributes in their respective dimensions. This is not the
case for the global normalization, where the values on the z-axis depict fractions of the
maximum value of the respective attribute.

4.4 Sorting by Variance
The stacking of the different attributes can lead to the attributes on the higher layers
having irregular baselines, if the attributes on lower layers have a high variance. This
can be seen in Figure 4.1b. These irregular baselines make it hard to compare the
values of the attribute of the top layer. In order to to minimize this effect, we sort our
visualized attributes by variance. Figure 4.1 shows how sorting by variance can affect the
visualization. In our case, the attribute with the lowest variance will be at the bottom
layer as shown in Figure 4.1a. This leads to the attributes on higher layers still having
similar baselines. The closer the different baselines of the values of one attribute are,
the easier are these values to compare. The opposite is shown in Figure 4.1b. Here the
attribute with the high variance is depicted at the bottom layer. Hence, the baselines of
the bars in the top layer differ. This leads to the top layer not being easily comparable.
Still, with multiple attributes stacked on top of each other, the values of the attribute
depicted at the top layer will be harder to compare as opposed to the bottom layer.

4.5 Aggregation
We initally visualized the data at its original resolution of 250 by 250 meter per data
point. But, the big amount of data points and attributes lead to difficulties. We tested
the performance in these two regards with the hardware configurations shown in Table 6.1
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4. Proposed Solution

(a) The attribute with the lower variance is
pictured in the bottom layer. This leads to
the values of the attribute on the top layer
with the high variance still being compara-
ble, because they have similar baselines.

(b) The attribute with the higher variance is
pictured in the bottom layer. This leads to
the values of the attribute on the top layer
with the low variance harder to compare,
because they have different baselines.

Figure 4.1: Sorting attributes by variance

on a computer running Windows 10. With our data set of 178,957 data points and a
single visualized attribute, the frame rate dropped below one frame per second when
moving the camera. Therefore, we give users the option to spatially aggregate their data
on the fly, if exploration at high resolution is not feasible. This is accomplished with
a slider input that changes the cell size of the histogram bars. This leads to multiple
data points per histogram bar. In our case, the data points are not necessarily equally
distributed. This means that after the aggregation not all histogram bars include the
same number of data points. To still keep the aggregated values comparable (per certain
area), each bar encodes the average of the aggregated values. This aggregation is done
by deck.gl and will be described in more detail in Chapter 5.

4.6 Interface

Figure 4.2 shows our interface, currently in the geospatial view with three selected
attributes and no slicing. It consists of the stacked bars on top of the map and three
control panels: the axis controls shown in Figure 4.4a in the top left corner, the bar
controls shown in Figure 4.4b in the top right corner, and the selectable attributes shown
in Figure 4.4c in the bottom right corner.

In the Attributes Control panel shown in Figure 4.4c, the user can select the attributes to
visualize on the map. If an attribute gets selected or deselected, a new sorting is triggered.
Each attribute has an assigned color in which it is depicted. To have distinguishable
colors, we use a color scale tested with the Chroma.js Color Palette Helper [col]. The
color scale ranges from yellow to dark green. The used colors are equally distributed
along this scale. The color corresponding to the attribute is shown next to the selected
attribute.
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4.6. Interface

Figure 4.2: Geospatial view showing percentage of unemployed people at the age of 15
years or older (dark blue), the number of male people at the age between 45 and 59
diagnosed with diabetes (blue), the number of female people at the age between 45 and
59 diagnosed with diabetes (light blue), the prevalence of diabetes for male people at the
age between 45 and 59 (green) and the prevalence of diabetes for female people at the
age between 45 and 59 (yellow). A label is displayed at the bar the cursor was hovering
over, showing the values of the respective bar. Figure 4.3 shows the same attributes
visualized in juxtapositioned choropleth maps. With five or more attributes it can get
tidy to locally compare attributes on a juxtapositioned maps. Our visualization simplifies
this task.

The Bar Controls shown in Figure 4.4b support the following operations: By moving the
Cell Size slider the base area of each bar is changed and therefore the spatial aggregation
is adjusted. Exclude Longitude and Exclude Latitude are the sliders for the slicing.
The labels of these sliders are depending on the name of the attribute depicted on the
respective axes. For instance, if the geospatial view is shown, then the labels read Exclude
Longitude and Exclude Latitude. If the abstract view is shown and the attribute depicted
on the x-axis is householdSize, then the slider for the x-axis reads Exclude householdSize.
Moving these sliders moves the slicing plane along their respective axis as shown in
Figure 4.5. The Elevation Scale is a multiplier for the height of the bars and changes the
bars and the height of the axis accordingly.

The Axis Controls shown in Figure 4.4a provide the user with settings to change the
axis. With the check box Geospatial View, the user can change between the geospatial
view shown in Figure 4.2 and the abstract view shown in Figure 4.6. In the abstract
view, the x- and y-axis do not depict longitude and latitude, but selectable attributes.
These attributes are selected in the X Attribute and Y Attribute drop down list for
their respective axis. The values shown at the ticks of the axes also update to values in
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4. Proposed Solution

(a) Number of female people at the age be-
tween 45 and 59 diagnosed with diabetes

(b) Number of male people at the age be-
tween 45 and 59 diagnosed with diabetes

(c) Prevalence of diabetes for female people
at the age between 45 and 59

(d) Prevalence of diabetes for male people
at the age between 45 and 59

(e) Percentage of unemployed people at the
age of 15 years or older

Figure 4.3: Figure (a) to (e) showing choropleth maps with the same data as is depicted
in Figure 4.2. The red colored regions have high values, while the blue colored regions
have low values. For the black regions there are no data points. These maps were created
with the kepler.gl [kep] demo.

the range of the selected attribute. If the Show Axes check box is ticked, the axes at
the bottom, back, and right are shown as in Figure 4.2. These axes can be hidden by
deselecting the check box. To help the user to analyse the height of the bars at the slicing
cross-section, the user can display axes at the slicing plane as shown in Figure 4.5 for the
basic view and in Figure 4.7 for the second view. This is done by selecting the check boxes
Show Axis for x Slice and Show Axis for y Slice. These axes move with their respective
slicing planes as the slice sliders are moved. To adjust the axes to the users needs, the
user can also change the number of ticks shown on each axis with the z-, x-, and y-axis
sliders. To change between the different normalizations mentioned in Chapter 4.3 the
user can check and uncheck the global normalization check box. Changing this, triggers

24



4.6. Interface

(a) In the Axis Controls panel
the user can change between
the geospatial and abstract
view, the attributes depicted
along the x- and y-axis in the
abstract view can be changed,
the axis can be turned on and
off, the number of ticks along
a specific axis can be changed
and the user can switch be-
tween the global and local
normalization.

(b) In the Bar Controls panel
the user can change the cell
size used for the aggregation,
move the slicing panes and
change the elevation scale of
the visualization. The slic-
ing planes are moved with the
’Exclude Longitude’ and ’Ex-
clude Latitude’ sliders. The
labels of these sliders change
based on the attribute de-
picted on the respective axis.

(c) In the Attribute Controls
panel the user can select the
attributes to visualize. The
colors, the attributes are de-
picted in, can be seen next to
the attribute names.

Figure 4.4: Control Panels

a new normalization. If the normalization is global, the numbers on the z-axis show real
values of the attributes. As mentioned in Section 4.3, the local normalization leads to
the values of the attributes being mapped between zero to one. This means that the
maximum of each normalized attribute is one. So, the values on the z-axis are relative
and range from zero to number of attributes rendered on top of the map.

For the navigation, we utilize broadly used 3D navigation techniques. The map can be
panned by holding down the left mouse button and moving the mouse. The map can be
zoomed by turning the mouse wheel. The visualization can be rotated by holding down
the right mouse button and moving the mouse. This allows the user to observe certain
areas in the data in detail. If the pitch which is the angle between the normal of the map
and the camera direction is higher than 60°, the map is not rendered. This can be seen
in Figure 4.8. The bars are an important tool to compare the different values, but do
not allow the user to know the exact values of the grid points. Therefore, the user can
hover over one of the bars to show the values of the attribute depicted by this bar and
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Figure 4.5: Geospatial view showing the same attributes as Figure 4.2. Additionally,
slicing along the latitude axis is applied to show a cross-section of the data. Here we can
identify peaks in the data in the region of Linz and in the south of Austria.

the location of the gridpoint as seen in Figure 4.5.
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Figure 4.6: Abstract view showing the prevalence of diabetes for male people at the age
between 45 and 59 (green) and the prevalence of diabetes for female people at the age
between 45 and 59 (yellow). The x-axis shows the employment of people at the age of 15
to 64 years in percentage. The y-axis depicts the percentage of unemployment of people
at the age of 15 or older. We can see a slight increase of the combined prevalence for low
employment and high unemployment.

Figure 4.7: Abstract view showing the same attributes and the axes as in Figure 4.6.
The data is sliced at an employment of 60.341 percent an an unemployment of 1.184 to
reveal cross-section. Here we can analyse the data for this value of unemployment in
detail. High employment is on the right side of the visualization. We can see an increase
of the prevalence with decreasing employment.
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4. Proposed Solution

Figure 4.8: Geospatial view showing the same attributes as Figure 4.2. The data is
sliced along the latitude axis to reveal the cross-section and the camera is rotated to a
pitch bigger than 60°, hence the map is not rendered. This is the same slice as shown in
Figure 4.5. We can see that the data has peaks in urban areas and in the south (right
side).
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CHAPTER 5
Implementation

The implementation is web-based and carried out in javascript using deck.gl [dec] for
hardware accelerated map-based visualization. Deck.gl renders data visualization layers
like scatterplots or heatmaps onto a map. The map is provided by mapbox [map] and
rendered by react-map-gl [rea]. In Table 5.1, the utilized libraries with their respective
usages are listed.

Library Usage
deck.gl Visualization layers

luma.gl Shader programming

chroma-js Color scaling

react-map-gl Map Rendering

Papa Parse Data loading

d3 Scales for Axes

Table 5.1: Libraries used in our implementation.

In Figure 5.1 a simple graphic of our program pipeline can be seen. First, data is loaded
and simultaneously the maxima of the attributes are calculated. Afterwards, the data is
normalized. Then, we sort the attributes by variance. In the next step, the data is sliced
and the layers get rendered. User input can trigger new normalizing, sorting, or slicing
of the data. In the next sections, we are going to take a closer look at these steps and
how they are realized in our implementation.
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5. Implementation

Figure 5.1: Program Pipeline: First the data is loaded and the maxima of the attributes
are calculated. Then, the data is normalized. In the next step, the selectable attributes
are sorted by variance. Afterwards, the data is sliced and then the layers are rendered.
User input can trigger new normalizing, sorting, or slicing of the data.

5.1 Data Loading

As mentioned in Section 4.2 the data has to be provided as a grid of data samples, which
contain latitude and longitude coordinates and an attribute vector. The test data we
used consisted of data points scattered across Austria on a grid with 250 meter by 250
meter sample areas, each of them associated with 92 attributes. This data is loaded
from a csv-file into an array of objects using Papa Parse [pap]. Each object represents a
single data point. Since every row and every value has to be loaded into the array by
looping through it, we use this loading loop to additionally calculate the maximum and
minimum values of the attributes and also load them into an array of objects containing
the maximum and minimum value of a single attribute. If handling big amounts of data
this can take some time. We will discuss the performance later in Chapter 6.

5.2 Data Normalization

As mentioned in Section 4.3 two types of data normalizations are supported: global and
local normalization. The "normalizeData" function in our program is carried out at the
start of the program after the data loading and is triggered if the user changes between
local and global normalization. To normalize the data, we use the attribute maxima that
are calculated while loading the data. In Algorithm 5.1, the data normalization function
is shown in pseudo code. The code shows a simplified version of our algorithm. Due
to the data having a high number of attributes, in our case 92, we hard coded which
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of the attributes are interesting and should be selectable in the visualization. To save
computation time, only the attributes that are selectable are normalized. The other
attributes are ignored. Longitude and latitude are not normalized. Algorithm 5.1 shows
the basic logic behind the data normalization.

Algorithm 5.1: Data Normalization
Input: isGlobal: boolean true = global normalization / false = local

normalization, data: array of data point objects each having a position
and attribute fields, maxValues: object containing a field for every
attribute’s max value, globalNormalizingMax: maximum value across
all attributes

Output: normalizedPoints dataPoints with normalized values
1 normalizedPoints← [ ];
2 i← 0 foreach dataPoint in data do
3 j ← 0;
4 foreach attributeValue in dataPoint do
5 if isGlobalNorm then
6 normalizedPoints[i][j]← attributeV alue

globalNormalizingMax ;
7 else
8 normalizedPoints[i][j]← attributeV alue

maxV alues[j] ;
9 end

10 j ← j + 1;
11 end
12 i← i + 1;
13 end
14 return normalizedPoints;

5.3 Sorting

As mentioned in Section 4.4, to make the bars in the visualization as convenient to
compare as possible, we need to sort the attributes by variance. The sorting function is
called after the data normalization and every time the user changes the selected attributes.
The function calculates the variance and sorts the attributes according to it. Equation 5.1
shows how to calculate the variance. s2 is the variance, n is the number of data points, x̄
is the arithmetic middle of the attribute across all data points, and xi is the value of the
attribute for the data point with the index i. Due to the number of data points being the
same for every attribute we do not need to divide by n to order the attributes by variance.
The Algorithm 5.2 shows our sorting in pseudo code. For the sorting, the javascript
function sort is used. This javascript function uses a sorting algorithm provided by the
used browser. For instance, Google Chrome uses Insertion Sort for arrays with the length
of ten or less and Quick Sort for longer arrays [jav].
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s2 = 1
n

n∑
i=1

(xi − x̄)2 (5.1)

5.4 Slicing

After the attributes are sorted, the data is sliced. This is done at the start of the program
after the sorting and is triggered by different input events: Changing the slicing sliders
causes slicing. Switching between the geospatial and the abstract view triggers slicing.
Additionally, when the attributes for the x- or y-axis are changed, slicing is invoked.
Before we added the aggregation due to performance issues, the slicing was done in the
shader. So, the 3D visualization was sliced. Although, at one point we started to use an
aggregator provided by deck.gl. To save computing time, this aggregator is programmed
in a shader and therefore runs on the GPU. The input data we get for our shader is
determined by the aggregator and hence cannot be customised. This leads to us not
being able to pass the required data for the slicing to our custom shader. Thus, we had
to find another way to slice our visualization. The slicing is now done beforehand by
slicing the data. This leads to the aggregator having a different data set as input after
the slicing, and triggering a new aggregation. This can lead to the bars changing their
location and size due to different data points being aggregated together. A possible
solution for this problem is to slice in steps of the grid size. We will discuss this solution
in Chapter 7. As mentioned above, we slice our data based on the slider inputs and
whether the user observes the geospatial view or the abstact view and which attributes
are visualized. The sliders define minimum values for their respective attributes. Thus,
every data point that has a lower value for the specific attribute is sliced from the data
set. In the geospatial view these attributes are longitude and latitude. In the abstract
view the attributes are the selected attributes for the x- and y-axis.

5.5 Layer Rendering

The processed data now needs to be visualized on top of the map. In deck.gl [dec] this is
done through visualization layers. Multiple existing layers are provided by deck.gl but
none of these were suitable for our task. Although, there is a histogram bar layer with
aggregation, the bars can not be stacked, because the bottom of the bar is always on
map level. Therefore, we extended the GPUGridLayer of deck.gl with a custom shader,
which allows the bars to levitate at a certain height. This leads to every attribute having
a separate layer. These layers are combined in our composite layer. The composite layer
gets the processed data, the attribute order and the visualization settings as inputs.
Additionally, an array of colors, one for every visualized attribute, gets passed to the layer.
The colors are generated with chroma-js [chr]. The composite layer then creates a layer
for every visualized attribute starting with the one at the bottom. As mentioned before,
we aggregate our data points. This means that multiple data points are aggregated into

32



5.5. Layer Rendering

Algorithm 5.2: Attribute Sorting
Input: attributes array of names of the selectable attributes, data array of

data points each having attributes that are in the same order as in
attributes

Output: sortedAttributes array of the selectable attributes in the correct
order

1 attributeQuantity ← attributes.size;
2 means← [ ];
3 quadmeans← [ ];
4 s2 ← [ ];
5 index← 0;
/* Calculating mean and quadratic mean values for all

attributes */
6 foreach dataPoint in data do
7 j ← 0;
8 foreach attribute in dataPoint do
9 if index > 0 then

10 sums[j]← means[j] + attribute;
quadsums[j]← quadmeans[j] + attribute2;

11 else
12 means[j]← attribute;
13 quadmeans[j]← attribute2;
14 end
15 j ← j + 1;
16 end
17 index← index + 1;
18 end

/* calculating variance */
19 n← data.length;
20 for i← 0 to n− 1 do
21 s2[i]← [ ];
22 s2[i][0]← quadmeans[i]

n − (means[i]
n )2;

23 s2[i][1]← attributes[i] ; // saving attributename into the array

24 end
/* sorting */

25 s2 ← javascript sort s2 by s2[n][0];
26 sortedAttributes← [ ];
27 for i← 0 to s2.length do
28 sortedAttributes← s2[i][1];
29 end
30 return sortedAttributes;
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one bar. This aggregation is provided by deck.gl with the GPUGridAggregator. In an
article by Ravi Akkenapally [gpu] the method of this aggregation is discussed. As the
name suggests, the aggregation is carried out on the GPU for better performance. The
aggregation data is then directly passed to the shader. Every layer except the first one
has values for the distance to the map plane, which are the sums of the values of the
attributes in the layers below. These values need to be aggregated in the same way as the
height of the bars. So, they are passed to the GPUGridAggregator as a second attribute
to aggregate. The aggregated values are then used in the shader for the distance to the
map plane of the bars. The GPUGridAggregator provides different aggregation operators
like sum or mean. The aggregation leads to different numbers of data points per cell. Due
to this and the fact that most of our attributes are provided in percent, we decided to
use the mean aggregation. At the time our tool was implemented, the mean aggregation
of the GPUGridAggregator was not working properly. It just summed the values and
did not divide them by the number of data points, meaning that it did the same as the
sum aggregation. The number of data points aggregated into the cell is passed to the
custom shader by the aggregator. Therefore, we used the sum operator and divided
the aggregated value by the number of data points in the cell. The result of this is the
average.

In the abstract view we use the values of the x- and y-axis attributes as longitude and
latitude coordinates. These coordinates are most likely not in the same area on the map
as the coordinates used for our geospatial view. This would mean that we need to move
the camera of our visualization. To avoid this, we need to convert the values of our x-
and y-axis attributes into longitude and latitude coordinates that are in the same area
as the coordinates for our geospatial visualization. Hence, the minimum value of our
x-attribute is scaled to the minimum longitude and the minimum value of our y-attribute
is scaled to the minimum latitude in our dataset.

For our axes, we used the axes layer of the plot layer from deck.gl and fitted it to our
needs. We have three different layers for the axes. The first one represents the axes which
are at the bottom, back and right of the visualization as seen in Figure 4.2. These range
from the minimum longitude to the maximum longitude and from the minmum latitude
to the maximum latitude. The second and third layer represent the axes that move with
the slicing. The scales passed to these axis layers are created using d3 [d3].
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CHAPTER 6
Results

In this chapter we take a look at the performance of the implementation, we discuss the
feedback we received from the domain expert, and the advantages and disadvantages of
our approach.

6.1 Performance
As we mentioned before, there are two areas in our implementation where the performance
can be an issue. On the one hand, the data loading, maxima calculation, and data
normalization can be time intensive and on the other hand, a large number of individual
bars can lead to performance issues. We tested the performance in these two regards
with the hardware configuration shown in Table 6.1 on a computer running Windows 10.

Hardware Type
CPU Intel Core i7-6700HQ
GPU NVIDIA GeForce GTX 960M
RAM 16 GB DDR4

Table 6.1: Hardware configuration used for our performance evaluation.

We analysed the computation time to load the data including the maxima calculation
and also the time it took to normalize the data. This data can be seen in Figure 6.1.
The biggest suitable data set we had available consisted of 178,957 data points with each
having a 92 dimensional attribute vector. The data loading with maxima calculation
took on average 21.37 seconds and the data normalization with local normalization took
4.04 seconds on average. The data loading, which took the most time, is only done once
when the tool is started. The normalization is done after the start of the program and
can be triggerd again by changing the normalization method. After scaling down the
data set to 100,000 data points while each still having a 92 dimensional attribute vector,
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the time for the data loading took 11.77 seconds and the data normalization took 2.67
seconds on average. When testing with 50,000 data points the computation time was
roughly cut in half. The average time for the data loading was 5.97 seconds and the data
normalization took 1.32 seconds on average.
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Figure 6.1: Plot of the computation time of the data loading with the maxima calculation,
and the data normalization in relation to the number of data points visualized

The performance concerning the number of bars visualized is evaluated based on the frame
rate. The frame rate of the implementation is dependant on the number of individual
bars visualized. The number of these bars is determined by the size of the data set,
the cell size for the aggregation and the number of attributes visualized. The larger
the number of data points as well as attributes in the data set is, the more data has
to be visualized and needs to be aggregated, and therefore the computational workload
is bigger. The larger the cell size is, the more data points are aggregated into single
bars and thus the visualization workload is lower. The bigger the number of visualized
attributes is, the more bars need to be visualized due to each attribute being depicted in
a separate layer. This means that the number of bars is based on the number of cells
multiplied by the number of attributes. Our evaluation showed that our frame rate was
consistently above 25 fps (frames per second) if the number of bars was lower than 30,000.
But with a rising number of bars our frame rate dropped rapidly and we experienced lag.
With roughly 40,000 bars the frame rate was consistently below 10 fps.

6.2 Feedback
This implementation should act as a tool for data scientists to locally compare the
attributes and the quality of correlation models. So, to evaluate the implementation we
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6.3. General Discussion

showcased it to a data scientist, who is analysing patient data, to identify the correlations
between disease patterns and local environmental factors, like noise and air pollution.
In his assessment he mentioned the issue with slicing, as it triggers new aggregation.
This leads to different data points being combined in the histogram bars, which means
that the positions and heights of the bars change due to the slicing. He mentioned that
the slicing needs to be consistent and cut the data volume like a cake. Additionally,
he said that if this issue is solved the implementation is a useful tool to analyse what
is going on in subsets of the data and provides the ability to locally explore the data.
He also said that the tool can be useful to identify possible correlation models and to
analyse the formed models. The idea for our abstract view was based on feedback of a
senior data scientist. He suggested that it would be good to be able to analyse the data
not only in a geospatial context, but also in reference to non-spatial attribute ranges,
therefore enabling the users to see if the local model quality indicators correlate with
certain attribute ranges, for instance with high or low noise.

6.3 General Discussion
Our implementation provides the user with an overview of the whole data set with spatial
awareness if zoomed out as seen in Figure 4.2. The user can identify areas in the data
which need further analysis. The area of interest can then be observed by moving the
slicing plane to it, exposing the cross-section and zooming in as shown in Figure 4.8.
As mentioned before, the slicing triggers new aggregation for the histogram bars and
therefore can lead to changed positions and heights of the displayed bars. This is due
to our slicing being continuous, while the spatial aggregation is based on a fixed grid.
There are situations where continuous slicing can be beneficial. For instance, if a subset
of the data sliced at a specific value is of interest. But, it can also be a drawback, if for
instance the variation of the attributes across the whole data is of interest while slicing.
At this moment our implementation only supports continuous slicing. In Chapter 7, we
will provide possible solutions to the drawbacks of the continuous slicing for future work
on this implementation. Another drawback is that the computational workload due to
the 3D visualization forces us to spatially aggregate the data for big data sets. Hence,
we lose a certain degree of detail. This issue is specific to large data sets.
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CHAPTER 7
Conclusion and Future Work

The aim of this thesis was to to design and implement a specialized visualization in
the context of a geospatial map, which serves as a tool for data scientists to locally
compare the attributes and the quality of correlation models. To accomplish this, we
introduced the novel visualization technique called Geospatial Slicing and implemented a
visualization tool based on this technique. Additionally, we wanted to enable the analysis
of the data not only on a geospatial context, but also in reference to attribute ranges.
To achieve this, we implemented a second non-geospatial view. We showed that the
implementation provided can help get an overview of the data and analyse it in detail.

Concerning drawbacks, the slicing needs to be improved. Right now, the bars are newly
aggregated each time the slicing is done. Therefore, the grid changes every time we slice.
A possible solution to this issue is to do the slicing in steps that are the same as the width
and length of the bars. This means that if we slice the data, we slice all the data points
that are in a certain bar together. Another possible solution is to do the slicing after the
aggregation in the shader like we did before we added aggregation to our implementation.
This way not directly the data would be sliced, but the volume itself. As mentioned in
Section 5.4 the aggregator provided by deck.gl prevents us from doing this, because the
aggregator provides the input data for our shader.

It is planned to implement our tool into a model exploration tool of the Complexity
Science Hub Vienna. Thereby, more user feedback can be collected. This can lead to
more insight into how and if our tool is used by data scientists. Additionally, the user
feedback could tell us which additions to our tool would be beneficial and what needs to
be adjusted.
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