
Improving Real-Time Rendering
Quality and Efficiency using

Variable Rate Shading on Modern
Hardware

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Stefan Stappen, BSc.
Matrikelnummer 1329020

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Univ.Ass. Dipl.-Ing. Johannes Unterguggenberger

Wien, 11. November 2019
Stefan Stappen Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Improving Real-Time Rendering
Quality and Efficiency using

Variable Rate Shading on Modern
Hardware

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Stefan Stappen, BSc.
Registration Number 1329020

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Univ.Ass. Dipl.-Ing. Johannes Unterguggenberger

Vienna, 11th November, 2019
Stefan Stappen Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Stefan Stappen, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 11. November 2019
Stefan Stappen

v

Danksagung

Besonders bedanken möchte ich mich bei Johannes Unterguggenberger, für das durch-
gängig konstruktive und motivierende Feedback während der Entwicklung der neuen
Algorithmen, für die gemeinsame Ideenfindung und die Hilfe bei deren Umsetzung. Au-
ßerdem gebührt meinem Betreuer Michael Wimmer großer Dank für das effiziente und
akademisch wertvolle Feedback.

Außerdem bedanke ich mich beim Dekanat Informatik für das Förderungsstipendium,
welches einen Großteil der nötigen Hardware für diese Diplomarbeit finanziert hat.

Ebenso gebührt meiner Mutter besonderer Dank für ihre Geduld während dieser anstren-
genden Phase meines Studiums. Ihrem Verständnis ist es zu verdanken, dass ich meinen
Fokus durchwegs auf diese Arbeit richten konnte. Ich möchte mich auch noch bei meinen
Kollegen aus der Firma, Vereinen und Freunden bedanken, die mich immer wieder mit
ihren Unterbrechungen aus meinem Tunnelblick herausgerissen haben und mir somit
die Möglichkeit gaben, neue Perspektiven auf die neuen Herausforderungen der Arbeit
zu gewinnen. Auch bei meiner Firma, und besonders meinem Vorgesetzten, bedanke
ich mich, dass sie mir mit den flexiblen Arbeitszeiten und Homeoffice die Absolvierung
meines Studiums ohne unnötige Aufschübe ermöglichten.

vii

Acknowledgements

Special thanks goes to Johannes Unterguggenberger for the continuously constructive
and motivating feedback during the development of the new algorithms, new ideas and
implementation of this thesis. In addition, I want to thank my supervisor Michael
Wimmer for the efficient and academically valuable feedback.

For the financing of a big part of the necessary hardware, I want to thank the Office of
the Dean of TU Wien Informatics, which granted me a funding scholarship.

I thank my mother for her patience during this exhausting phase of my studies. Only
due to her efforts I could fully concentrate on my studies. I want to thank my colleges in
my company, clubs, and friends, for their continuous interruptions that helped me out of
routine-blinded phases. These interruptions allowed me to regain new perspectives and
create new approaches. Additionally, I have to thank my company and especially my
superiors for the flexible working hours and the allowance of home office, which enabled
the possibility to complete my studies without unnecessary deferral.

ix

Kurzfassung

Mit der neuen Grafikkartenmikroarchitektur NVIDIA Turing wurde nicht nur die Leis-
tung erhöht, sondern es wurden auch neue Hardwarefunktionen eingeführt, wie Variable
Rate Shading (VRS). VRS ermöglicht die Fokussierung der Rechenleistung durch dy-
namische Anpassung der Shading-Auflösung pro 16x16 Pixel-Bereich des Framebuffers.
Die Shading-Auflösung entspricht der Anzahl der Pixel, die schattiert werden, wobei
in Bereichen mit geringem visuellen Detailgrad weniger Pixel und in Bereichen mit
höherem Detailgrad mehr Pixel schattiert werden können. Es gibt diverse Strategien,
um den nötigen Detailgrad pro Bereich festzustellen. Darunter fallen die Techniken
“Content-Adaptive Shadin” und “Motion-Adaptive Shading”, die von NVIDIA vorge-
schlagen wurden. Content-Adaptive Shading variiert die Shading-Rate auf Basis des
Inhalts des vorhergehenden Frames. Motion-Adaptive Shading passt die Shading-Rate
an die Bewegungen von Kamera und Objekten aufeinanderfolgender Frames an. Es gibt
unterschiedliche Ansätze, welche Parameter zur Bestimmung der Shading-Rate herange-
zogen werden. Ein weiterer Ansatz zur Bestimmung der Shading-Rate ist die Anpassung
der Auflösung an den Fokus des Betrachters. Das Zentrum des Fokus kann dabei hö-
her aufgelöst werden, während Bereiche im Umfeld niedriger aufgelöst werden können.
Dies kann in Kombination mit einem Eye-Tracking Gerät erfolgen und wird “Foveated
Rendering"genannt. Neben diesen Vorgehensweisen zur Bestimmung der Shading-Rate
beschreibt diese Diplomarbeit eine weitere, neue Strategie, nämlich „TAA-Adaptive
Shading“. Diese verwendet Daten von Temporal Anti-Aliasing Techniken zur Erkennung
von Regionen, die zu niedrig oder zu hoch abgetastet wurden und wählt auf Basis dieser
die Shading-Rate aus. Fünf Algorithmen wurden von uns entwickelt: Content-Adaptive
Shading basierend auf Kanten und auf Texeldifferentialen, Motion-Adaptive Shading
unter Berücksichtigung der Bewegungen aufeinanderfolgender Frames, Single-Pass Fo-
veated Rendering und TAA-Adaptive Shading. Die Anwendbarkeit jedes Algorithmus
auf moderne Renderer-Architekturen mit Forward Shading, Deferred Shading sowie
Anti-Aliasing Post-Processing wurde evaluiert. Einige der VRS-Techniken, die in dieser
Diplomarbeit beschrieben werden, sind in der Lage, eine Szene in vierfacher Auflösung
bei gleichbleibender Performance oder mit vierfacher Performance bei gleicher Auflösung
zu rendern.

xi

Abstract

With the NVIDIA Turing graphics card micro-architecture released in 2018, not only
performance in terms of operations per second is increased but also new hardware features
are introduced, like Variable Rate Shading (VRS). VRS allows focussing the processing
power by dividing the framebuffer into tiles and dynamically controlling the resolution of
each tile. To be precise, the screen is partitioned into tiles of 16x16 pixels and for each tile,
it can be specified how often the fragment shader shall be executed. It is both possible,
to have fewer fragment shader invocations than there are fragments, or more fragment
shader invocations than there are fragments. This allows individually defining lower
sampling rates or supersampling for regions of the screen. Regions of less interest or with
less visual details can be assigned less computational power in terms of shader executions
while regions that should provide high fidelity can be supersampled. The challenges here
are to find and distinguish these regions in a dynamic scene, like it is the case for games,
and how this technique integrates with commonly used techniques in the industry, like
deferred shading. NVIDIA already proposed some strategies on how these regions can
be distinguished and how the shading rate can be selected. Among these strategies are
Content-Adaptive Shading and Motion-Adaptive Shading. Content-Adaptive Shading
varies the shading rate according to the current content of a frame and does not take
temporal coherence into account. Motion-Adaptive Shading adapts the shading rate
according to the changes in the scene. Stable regions, like for example the horizon and
the car in a driving simulation, will be rendered with higher quality. In contrast, moving
regions like the street will be rendered more coarsely because the viewer cannot focus on
these regions anyway. Another approach for selecting the shading rate is to adapt the
resolution to the viewer’s focus. This can be done in combination with an eye-tracking
device and is called foveated rendering. We invented a novel approach that utilizes data
from temporal anti-aliasing techniques to detect under- and oversampled regions and
select the appropriate shading rate for these regions. We developed five algorithms,
edge-based and texel-differential based Content-Adaptive Shading, Motion-Adaptive
Shading integrating the motion over multiple frames, single-pass foveated rendering
and TAA-Adaptive Shading. The applicability of each algorithm to modern renderer
architectures with forward and deferred shading and anti-aliasing post-processing has
been evaluated. The major advantage of our VRS techniques is that some of them enable
up to 4x higher rendering resolution with the same performance or up to 4x better
performance at the same resolution.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1

2 Related Work 5
2.1 Dynamic Resolution Approaches . 5
2.2 Eye-Tracking and Foveated Rendering 7
2.3 Deferred Rendering . 9
2.4 Anti-Aliasing . 9

3 Variable Rate Shading 15
3.1 Possibilities . 17
3.2 Limitations . 20
3.3 Integration with a Rendering Engine 26
3.4 Hardware Support and Usage Scenarios 27

4 Techniques and Algorithms for Variable Rate Shading 29
4.1 Content-Adaptive Shading . 29
4.2 Motion-Adaptive Shading . 38
4.3 Eye-Tracking and Foveated Rendering 41
4.4 TAA-Adaptive Shading . 43

5 Evaluation 49
5.1 Quality and Performance . 50
5.2 Forward and Deferred Shading Performance Comparison 52
5.3 Temporal Artifacts . 53

6 Conclusion and Future Work 63

List of Figures 67

xv

List of Tables 73

List of Algorithms 75

Bibliography 77

CHAPTER 1
Introduction

Real-time 3D rendering applications strive to deliver visually appealing and often realistic-
looking images while maintaining high frame rates of 60 Hz for desktop applications,
90 Hz for VR applications or even more frames per second for other high-responsive
applications. Furthermore, with the increase in screen resolutions, higher quality images
can be presented to the viewers, which comes at increased performance costs when
rendering in their native resolutions. In order to meet these requirements of performance
and quality, many different measures are taken. For example, one could focus on parts
that are perceived stronger by a viewer and therefore neglect parts not directly visible to
a viewer. NVIDIA’s Turing Architecture [NVI18] provides us with a new tool putting us
into the position to achieve exactly this, namely: Variable Rate Shading (VRS).

In computer graphics, triangles and other primitives are rasterized into so-called fragments
by the rasterizer. Assuming that depth testing is enabled and blending is disabled in the
graphics pipeline, the fragment which is closest to the camera will determine the final
pixel color for the corresponding screen location. There are also techniques where multiple
fragments are evaluated to determine the final pixel color, which is the fundamental idea
of anti-aliasing techniques like supersampling, a well-researched anti-aliasing technique
[AMHH18]. VRS, on the other hand, not only allows multiple fragments to determine the
final color of one screen pixel, but it allows also the opposite: one fragment can determine
the color of multiple screen pixels. This is called Coarse Shading while the former, where
multiple fragments determine the color of one screen pixel, is called Supersampling. VRS,
for example, enables us to compute twice as many fragments for a single screen pixel and
average their results for the final pixel color value. Full viewport coarse shading can be
achieved by simply rendering into a smaller framebuffer and up-scaling the image. In
the same way, full viewport supersampling can be achieved by rendering into a higher
resolution framebuffer and down-scale the image. VRS provides more fine-grained control
over the type of sampling for individual parts of the framebuffer. This is achieved by
dividing the image into a grid and specifying a shading rate for each cell of the grid. The

1

1. Introduction

grid data is provided with an image, the shading-rate image, to the hardware. The so
specified shading rate is then looked up in a table, the shading rate palette, to find the
real shading rate, e.g., one invocation for 4x4 pixels, or 16x invocations per pixel.

With this new hardware feature, there are two fundamental possibilities, namely increasing
the performance by coarse shading and increasing the quality by supersampling. We
can improve performance by increasing the size of a multitude of fragments and perform
coarse shading in suitable regions. This has a negative impact on the quality and may
result in visible fragment edges if the color is not monotone across fragments, as it can be
viewed in Figure-1.1. Depending on the scene, quality can be improved by increasing the
invocations per fragment and therefore do supersampling. This has a negative impact on
the performance as we do more work per pixel. Therefore, the main targets to be able
to utilize this new hardware feature are to detect regions that would be beneficial to
render with a better quality, regions that could be rendered with lower quality and how
to mitigate the effects of rendering with lower quality.

This thesis addresses four main approaches to detect these regions, namely Content-
Adaptive Shading, Motion-Adaptive Shading, foveated rendering and TAA-Adaptive
Shading. The goal of Content-Adaptive Shading is to align the shading rate with
the content of the scene captured in the current viewport. Depending on the scene,
different properties could be used for selecting the right shading rate, and it can be a
challenging task to select appropriate properties. Yang et al. [YZK+19], for example,
uses luma. However, other properties are suitable for defining the shading rate, too. We
have investigated two properties different from Yang et al. and present two different
algorithms for Content-Adaptive Shading. Strategies for selecting the shading rate,
especially Content-Adaptive Shading approaches, may introduce temporal artefacts into
the rendered images by oscillating shading rates. Measures to reduce these artefacts
and their root causes should be taken because these artefacts can be very noticeable to
viewers. We propose an algorithm to counter these temporal artefacts.

Motion-Adaptive Shading utilizes the effect that motion is perceived blurred and aligns
the shading rate with the motion of the scene, e.g., moving parts are rendered with lower
resolution while stable parts are rendered with higher resolution. Foveated rendering
exploits the physical nature of human perception by increasing the resolution within the
focus of the viewer and decreasing the resolution in the peripheral vision, as described by
Guenter et al. [GFD+12].

In real-time 3D rendering applications, anti-aliasing techniques are used to reduce aliasing
artefacts and render images of higher visual quality. A special sub-category is represented
by temporal anti-aliasing (TAA) techniques. Temporal anti-aliasing techniques use the
information of previous frames to perform anti-aliasing. The data from the history frames
used by TAA can also be useful for determining the shading rate. Based on this finding,
we have developed a novel approach for determining the shading rate, TAA-Adaptive
Shading. TAA-Adaptive Shading utilizes data from temporal anti-aliasing techniques to
detect under- and oversampled regions and selects the appropriate shading rate for these
regions.

2

These approaches lead to the following contributions of this thesis:

• We propose two novel algorithms for Content-Adaptive Shading operating on generic
scenes: By deriving and using properties of the contents of the previous frame,
namely edges in our first algorithm and texel differentials in our second algorithm,
the shading rate is defined for the next frame using forward projection. Texel
differential-based Content-Adaptive Shading utilizes the effective shading rate to
be less impacted by changing shading rates.

• We describe a novel approach for controlling the shading rate based on data derived
during TAA: TAA reduces the effects of wrong or missing temporal information,
e.g., ghosting, by clipping color values of historic frames which deviate heavily from
the current color value, for a specific fragment. High differences of historic color
values indicate undersampled regions and could, therefore, benefit from a higher
shading rate. If the differences are low, the historic information can be assumed to
have a high probability of being correct and the shading rate can be lowered.

• We propose a technique, which is independent of the shading rate selection mech-
anism, that stabilizes the shading rates over time to mitigate temporal artefacts
introduced by changes in the shading rate. Our technique can be described as a
variant of temporal anti-aliasing that is specifically tailored to be applied to the
shading-rate image of VRS.

• We present an algorithm and a concrete implementation for Motion-Adaptive
Shading and an integration of VRS with a deferred shading pipeline. By utilizing
motion vectors, for example, computed for motion blur post-processing techniques,
we control the shading rate of regions of still parts of the scene and parts in motion.

The remainder of this thesis is structured the following way: In chapter 2, we review
related work concerning dynamic resolution approaches before VRS existed, deferred
shading and how it can be incorporated with multi-sampling approaches, eye-tracking
and foveated rendering, and anti-aliasing techniques for mitigating the inevitable aliasing
of coarse shading. In chapter 3, we describe the capabilities of VRS in detail. We will
discuss the possibilities and also its limitations. In addition, we describe how to integrate
our new VRS techniques into an existing rendering engine. In chapter 4, we present our
developed algorithms and go into technical details of the implementation. First, each
algorithm is described in detail with all the necessary steps. The main steps, like the
computation of the shading-rate image, are further divided into sub-steps, explained
and reasoned. Afterwards, we discuss how to incorporate eye tracking with VRS and an
existing engine. To evaluate our approaches, we will compare the frame times of each
method in a forward and a deferred renderer with and without VRS in chapter 5.

3

1. Introduction

Figure 1.1: A visible edge at the border of different shading rates in the rendered image
at the left-hand side. The right-hand side shows the shading-rate image with 1x1 shading
in the green circle, 2x2 in the cyan circle and 4x4 in the blue circle.

4

CHAPTER 2
Related Work

2.1 Dynamic Resolution Approaches
He et al. [HGF14] presented with their multi-rate shading a concept that is pretty close
to VRS. They state that fragment shading computations use most of the computational
power for rendering a frame in real-time graphics. For mobile applications, the amount
of time spent in the fragment shader compared to everything else goes up to 95%. This
makes clear why techniques like VRS are advantageous for the field of real-time computer
graphics: It enables us with better control of the area where we have most to gain. The
extended graphics pipeline He et al. proposed, therefore reduces the fragment shader
computations per-pixel to a factor of two to three. They evaluated their concept with
a CPU implementation simulating heavy SIMD executions. Though, their concept is
designed to be supported natively in graphics cards. In comparison to VRS, multi-rate
shading performs rasterization on coarse fragments and then decides in coarse fragment
shading if a fine per-pixel fragment shading is necessary. This leads to jagged images
and more aliasing as edges are effectively rasterized at a lower resolution.

Ragan-Kelley et al. [RKLC+11] proposed extensions for modern graphics pipeline
architectures which decouple visibility samples from shading samples. This is achieved
by applying a hash function after each visibility sample which maps to a shading sample.
The shading sample is cached and reused for further visibility samples. With this hash
function, a many-to-one relationship between visibility and shading is defined. This
extension would allow efficient supersampling for motion blur, defocus blur and also
enables VRS. For example, with the hash function, one could reduce the shading rate by
mapping four visibility samples to the same shading sample, or apply supersampling for
visibility while keeping the shading rate at fragment size, as Multisample anti-aliasing
(MSAA) does. The authors describe it as a generalized form of MSAA, though, the option
of specifying a hash-mapping function is much more flexible. For example, coarse shading
can have dynamic morphologies of dynamic sizes and does not have to be quadratic

5

2. Related Work

tiles of predefined size. This flexibility comes with a disadvantage. The hash function
has to be evaluated for each visibility sample. While this cost might not be excessive
and as simple as a 3D matrix multiplication, another disadvantage might have more
impact. The size of the framebuffer has to be the full supersampling resolution. For this
reason, a manual resolve which scales the framebuffer to the screen resolution has to be
implemented and added to the pipeline. In contrast, VRS allows supersampling only
on a region basis, though utilizes current MSAA hardware support for the additional
samples needed and the resolve function.

Very close to VRS is the proposed adaptation of the graphics pipeline by Vaidyanathan
et al. [VST+14]. Like the extensions developed by Ragan-Kelley et al. [RKLC+11],
their method decouples the visibility samples from the shading. Though, they already
suggested to divide the screen into tiles and define the shading rate for each tile. They
state, that the simplifications of a tiled-based approach together with fixed, predefined
coarse shading rates would allow efficient implementation in current graphics hardware.
The shading rate is specified as coarse pixel size x and y and can be controlled either as
interpolated values of vertex shader outputs, set as a constant value for the whole frame
or as a radial function in screen coordinates for foveated rendering. The so defined coarse
pixel size is then quantized to the closest predefined shading rate and the minimal size of
all defined shading rates is taken as size for a tile to meet the required shading rate. With
VRS one cannot select the desired coarse pixel size freely but choose from a predefined
set of shading rates. Additionally, the shading rate is controlled by a shading-rate image
and not by a radial function or vertex-attributes. Vaidyanathan et al. [VST+14] also
compensate for visible shading rate changes by scaling the texture LOD with the coarse
pixel size. This is handled similarly with VRS: The hardware automatically chooses the
right texture LOD level based on the shading rate.

Hillesland and Yang [HY16] proposed a method called Texel Shading which transfers the
shading into the texture space, effectively decoupling the shading from the fragment size.
Their method consists of three stages: Shade Queuing, Shade Evaluation, and Shade
Gathering. In the first stage, Shade Queuing, the tiles of texels that require shading are
computed by a geometry pass and added to a queue. They apply a caching algorithm to
not add already shaded tiles to the queue. The second stage, Shade Evaluation, a compute
pass shades the texels in texture space. In the final stage, Shade Gathering, a second
geometry pass, the shaded texels are retrieved and the screen space image is computed.
The whole algorithm works on a texel basis at a certain mipmap level. With this mipmap
level, the shading rate can be effectively controlled. Their method requires that each
mesh has an object-space parametrization. Additionally, this parametrization has to be
non-overlapping in texture space and static. These requirements are very restrictive if
one takes into account modern high-fidelity scenes. For example, tessellated displacement
mapping cannot be easily used in combination with this method. Additionally, it is hard
to integrate such an approach into an existing engine because it changes the whole stages
setup.

Recently, several patents held by Microsoft were published, concerning variable rate

6

2.2. Eye-Tracking and Foveated Rendering

shading, e.g., [GGNB18], [NFGG18]. Both patents are concerned with abilities to
dynamically control the shading rate. The patent held by Nevraev et al. [NFGG18]
describes how the shading rate can be controlled by a map. It is described how map
coordinates can be derived by coarse scanning a primitive. These map coordinates are
then used to query a sampling rate parameter (SRP) map. By identifying a lookup value
a fragment variable is calculated which is then used to determine the shading rate. The
patent held by Grossman et al. [GGNB18] describes a method of how the shading rate
parameter can be controlled on a per primitive basis. For example, they describe the
definition of a shading rate per-vertex. This shading rate is then interpolated between
the vertices, e.g., at the intersection of a tile and a primitive, in order to compute the
final shading rate for the tile. This control mechanism was not mentioned by NVIDIA at
the release of the Turing Architecture [Bho18]. Though, it might be supported in the
future, as the patent of Nevraev et al. [NFGG18] utilizes the control mechanism of a
per-primitive basis indirectly to control the shading rate via the shading-rate image.

2.2 Eye-Tracking and Foveated Rendering
Microsoft holds a patent for a foveated rendering method published by Guenter et
al.[GFS+17]. This method is based on eye-tracking the gaze point of a user and computing
eccentricity layers. These eccentricity layers are then anti-aliased and used to render
a foveated image. This is the common way how foveated rendering was done before
hardware support for different shading rates was present. Guenter et al. [GFD+12]
describe why foveated 3D graphics are needed due to the falloff of perception in the
human visual system. Their method uses three layers of rendered images at different
resolutions hence with different sampling rates combined with an anti-aliasing strategy.
It can be viewed in figure 2.1. The layer with the highest resolution is defined by tracking
the user’s gaze point. Around this point, the falloff for the different layers is computed
and the layers are rendered and combined. Of course, this leads to unnecessary fragment
shader executions around the center. To tackle this problem, they reduce the temporal
resolution of the outer layers. With VRS unnecessary fragment shader executions and
blending computations can be avoided.

In order to study the effects of a decreasing resolution, Patney et al. [PSK+16] performed
a user study utilizing foveated rendering images simulated by Gaussian blurs using a
progressively increasing filter based on the distance to the focus of the user. The result
of this study was that a large blur radius causes the user to feel a kind of tunnel vision.
The reason for this effect is that the human vision indeed has reduced resolution in
the periphery, though it has a high contrast sensibility. The needed contrast gets lost
with a Gaussian blur and therefore they had to apply a contrast-preserving Gaussian
filter. Additionally, they noticed a higher sensibility to motion in the periphery of the
human vision. Patney et al. [PSK+16] designed a foveated rendering system that copes
with these effects while still exploiting the reduced acuity in the peripheral vision for a
performance gain. Their system consists of a pre-filtering step for some shading attributes,
a software implementation of coarse shading from Vaidyanathan et al. [VST+14] and two

7

2. Related Work

Figure 2.1: Foveated rendering method based on three layers at different resolutions by
Guenter et al. [GFD+12].

post-processing steps, an adapted temporal antialiasing (TAA) algorithm and a contrast
preservation based on Grundland et al. [GVWD06] work. The pre-filtering steps are to
avoid aliasing from coarse shading. The coarse shading approach by Vaidyanathan et
al. [VST+14] has already been discussed above. In order to avoid gaze-tracked aliasing,
which results from changing shading rates following the gaze of the user, they introduce
variance sampling, an adapted TAA algorithm. Variance sampling uses a mean and
variance-based bounding box for the color of the previous frame. Additionally, to cope
with fast saccade changes of the eye the alpha blend value of TAA is adapted to accelerate
the convergence of the image. Contrast is reduced by alleviating aliasing with the pre-
filtering and post-processing. For this reason, a contrast preserving post-processing step,
a variant of unsharp masking, is applied after all other post-processing effects.

8

2.3. Deferred Rendering

2.3 Deferred Rendering

Deferred shading is a technique that is applied to postpone the complex lighting com-
putations and only execute them once per pixel. Applying VRS in a deferred shading
renderer can lead to similar problems like with MSAA in a deferred shading renderer.
The basic problem is the mismatch between the sampling rate in the geometry pass
and the light pass. Therefore, it is of interest how this problem has been solved for
MSAA. Some techniques use the already present information at a superresolution to
perform post-processing anti-aliasing, like Chajdas et al. [CML11] do with Subpixel
Reconstruction Anti Aliasing (SRAA). They use textures of the geometry buffer and
normal buffer, which are present at a higher resolution to apply morphological post-
processing anti-aliasing. The advantage compared to morphological anti-aliasing is that
their technique has fixed runtimes independent of the scene complexity. Such techniques
are not directly applicable to integrate VRS with deferred shading because they replace
MSAA instead of integrating it.

2.4 Anti-Aliasing

Aliasing is the result of sampling a signal under the Nyquist rate. The lower the sampling
the more this effect is prevalent in images. This undersampling happens especially with
coarse shading in VRS as the sampling rate is further reduced. It not only results in a
loss of quality but also in flickering during motion destroying the immersion in the scene.
For this reason, we propose to apply and adapt anti-aliasing approaches in order to cope
with the artefacts of shading rate-dependent aliasing.

The straightforward way to reduce aliasing is to sample at higher rates. This is called
Supersampling Anti-aliasing (SSAA) and delivers very high-quality results, though at a
high performance cost, Akenine-Moller et al. [AMHH18]. In order to improve performance
while still maintaining a high anti-aliasing quality, multisampling anti-aliasing (MSAA)
has been developed. With MSAA, visibility is sampled at a higher resolution, while
shading samples are reused. For example, four samples are used for a single pixel, see
Figure 2.2. When a triangle is rasterized, all samples covering the triangle for the pixel are
computed. Then a single fragment shader execution is performed and the value is written
in all samples covering the triangle of the pixel. After rendering all objects, a resolve
pass averages all the samples and computes the final pixel value. With this technique,
geometry aliasing is effectively reduced and at a level of SSAA. Texture aliasing is still
present in the image and the performance impact is lower compared to SSAA but still
too high, Akenine-Moller et al. [AMHH18].

Due to the lack of texture anti-aliasing of MSAA and because it does not integrate
well with deferred shading, post-processing anti-aliasing techniques have been developed.
Jimmer at el. [JGY+11] provide an overview of the main post-processing AA techniques
used in modern game engines. FXAA, developed by Lotte/NVIDIA [Lot11], is one of the
most performant post-processing anti-aliasing techniques which gives good results and

9

2. Related Work

Figure 2.2: An example of drawing a triangle with MSAA disabled and with four MSAA
samples. Reprinted from Pettineo [Pet12]

is therefore provided by most modern game engines. In order to reduce computational
effort, FXAA operates only on edges.

The detailed process consists of the following steps and each step is visualized in Figure 2.3
numbered from left to right, top to bottom:

1. The input image as non-linear RGB color is internally converted into a scalar
luminance value.

2. Edges (marked red) and sub-pixel aliasing (marked yellow) are detected based on
local contrast.

3. The detected edges are classified as horizontal (gold) or vertical (blue).

4. Utilizing the edge orientation, the highest contrast pixel pair perpendicular to the
edge is selected (blue/green).

5. By comparing the average luminance of the high contrast pixel pairs perpendicular
to the edges the end-of-edge in both directions, negative (red) and positive (blue)
is computed.

6. With the ends of the edge, the pixel position is transformed into a sub-pixel shift
90 degrees perpendicular to the edge in order to reduce aliasing, red/blue for
minus/plus horizontal shifts, gold/skyblue for minus/plus vertical shifts.

7. With this sub-pixel offset, the input image is re-sampled.

8. In the last step, the amount of the detected sub-pixel aliasing is utilized for blending
in a lowpass filter.

FXAA reduces the contrast of subpixel features or blurres them completely depending
on the parameters. With coarse shading of VRS, this does not only apply to subpixel
features but also to features spanning more than a single pixel, e.g., a coarse pixel. This
would introduce a larger blur to the region coarsely shaded, which is perfectly fine as
there is not more information present to reconstruct these features. FXAA and other
edge finding algorithms are not temporally stable, e.g., they jitter under motion.

10

2.4. Anti-Aliasing

Figure 2.3: The steps of FXAA visualized. First, edges are computed based on the local
contrast relative to the local maximal luminance. These edges form the basis for the
anti-aliasing. Next, the edges are classified as horizontal or vertical. Then, the highest
contrast pixel pair perpendicular to each edge is selected. With this high contrast pixel
pair, both ends of an edge are searched by looking for a significant change in the average
of the pair. These ends are then used to compute a subpixel offset perpendicular to
the edge. Finally, the input texture is re-sampled with the computed subpixel offset
and a low pass filter based on the detected subpixel aliasing is applied. Reprinted from
Lotte/NVIDIA [Lot11].

Amortized Super Sampling by Yang et al. [YNS+09] utilizes the data from previous
frames to exactly receive this missing information for reconstructing subpixel features.
Their approach is a Monte Carlo integration utilizing importance sampling. Instead
of rendering the scene multiple times they reuse the previous frames. Each frame is
rendered with a subpixel offset moving it in one quadrant of the pixel and then saved
into an individual subpixel buffer. The current image is computed as a weighted average
of the four sub-pixel buffers. The process is visualized in Figure 2.4. Without motion,
this would result in an image with double resolution SSAA. With motion, a re-projection
is needed and the image gets blurry. Additionally, the re-projection might fail. Then
they invoke the shader for this failed sample to get the correct value.

The current state-of-the-art for temporal methods, temporal supersampling anti-aliasing
(TAA), was developed by Karis [Kar14]. In contrast to the method of Yang et al.
[YNS+09] TAA only uses the previously resolved buffer for blending with the current
frame, instead of multiple subpixel buffers. By utilizing a weighted average with large
importance for the previous frame, one can approximate an average over multiple previous
frames and therefore save the framebuffer memory and computational effort of sampling
multiple textures. The detailed process can be viewed in Figure 2.5. In order to avoid
clustering in space or time, a low discrepancy progressive sequence is used for the subpixel

11

2. Related Work

Figure 2.4: The main steps of amortized super sampling Yang et al. [YNS+09]. The four
buffers on the left-hand side represent the four previous frames. In the current frame, at
step 1, the scene is rendered with the next offset. In step 2., one of the subpixel buffers
is updated with the result of this rendering. In step 3., the final image is computed by
averaging the four subpixel buffers.

offsets, e.g, Halton sampling. Misses due to re-projection, which would result in ghosting,
are handled by clipping the history value to the value of the current frame. This clipping
is performed not in Chroma but Luma color space, as Luma has a high local contrast
compared to Chroma. TAA delivers high-quality anti-aliasing with subpixel features at
real-time ready performance rates. Nevertheless, it requires fine-tuning for the alpha and
clamping parameters to avoid ghosting and other artefacts. Additionally, a static scene
with no moving camera might result in flickering due to clipping.

12

2.4. Anti-Aliasing

Previous Frame

1

2

3

4

5

6

7

8

Halton Sampling Current Frame New Frame

Clipping

Reprojection

𝛼 1 − 𝛼

Figure 2.5: The main steps of TAA. Left in the bottom row, the current frame is sampled
at the next Halton sample. At the top row, the previous frame is reprojected onto the
current frame. Next, still in the top row, a clipping space based on the color values of
the current frame is computed and used to clip the luma values of the reprojected frame.
This image is then combined with the current frame by the weight α. The result of this
weighted average then gives the anti-aliased new frame. Adapted from Karis [Kar14].

13

CHAPTER 3
Variable Rate Shading

Without VRS, the GPU hardware assigns each region of the framebuffer the same amount
of fragment processing power. Disregarding overdraw and blending, there is exactly
one fragment shader execution per pixel. In other words, the shading rate is one for
each pixel. With NVIDIA’s Turing architecture, this restriction has been removed and
one can control the amount of processing power per framebuffer region, as described by
Bhonde/NVIDIA [Bho18] and in the NVIDIA Turing architecture whitepaper [NVI18].

For example, a region spanning four pixels is only shaded once and the result is copied into
all four pixels. As already discussed in chapter 2, there were already various proposals to
extend the GPU architecture in order to be able to control the shading rate. He et al.
[HGF14] proposed multi-rate shading, doing rasterization with a lower resolution and
deciding per pixel if a higher shading rate is needed. Ragan-Kelley et al. [RKLC+11]
proposed a hash-based shading-rate selection where already shaded samples are reused
based on a computed hash for a visibility sample. The proposal of Vaidyanathan et al.
[VST+14] already utilizes tiles for which a shading rate is defined. Many of these proposals
have in common that the control of the shading rate resides between rasterization and
fragment shader executions. For this reason, visibility is still computed at a higher rate,
which avoids geometry aliasing. This means, VRS allows the reduction of fragment
shader executions. This important fact has to be kept in mind while searching for various
scenarios where we could utilize VRS. VRS not only allows to do lower sampling by
taking regions spanning multiple pixels, called coarse shading, but also enables adaptive
supersampling, e.g., shade a single pixel at multiple subpixels. The supported shading
rates at the time of writing are:

• default sampling 1x1

• supersampling in invocations per pixel: 2x, 4x, 8x

• coarse shading in pixel regions: 1x2, 2x1, 2x2, 2x4, 4x2, 4x4

15

3. Variable Rate Shading

• no invocation

The coarse shading rates can be viewed in Figure 3.1. In addition to the shading
rates displayed in Figure 3.1, shading rates for supersampling and a shading rate for
no invocations per pixel can be used. While these are the shading rates which are
currently supported by the hardware, one could imagine other shading rates. For
example, the Vulkan specification [Khr19] already defines a supersampling shading rate
for 16 invocations per pixel.

Figure 3.1: Supported coarse shading rates with an example of VRS in a racing scene.
Reprinted from the NVIDIA Turing architecture whitepaper [NVI18].

For coarse shading, the center of the pixel region is used to interpolate the varying values
for the fragment shader. If the center of the pixel regions is not inside the rasterized
triangle, this can lead to the same aliasing artefacts as without coarse shading when the
center of the pixel is not inside the rasterized triangle, though much more severe as now
multiple pixels are affected. To reduce this effect, centroid sampling may be used, which
guarantees that the varying values for the fragment shader are computed at a location
where the fragment and the triangle intersect. In Figure 3.2 coarse pixels with coverage
samples, the coarse pixel center and the centroid are exemplarily depicted.

The shading rate is controlled in a two-step fashion with one indirection step. First, a
shading-rate image is created. This image specifies the desired shading rate for each
16x16 tile of the target viewport. The size (wi, hi) of the image should, therefore, be
wi = bw+15

16 c and hi = bh+15
16 c, where w and h are the dimensions of the viewport. For a

pixel (x,y), the coordinates (u,v) in the shading-rate image are computed by u =
⌊

x
16

⌋
and v =

⌊ y
16

⌋
. The shading rate at this location is used as an index in a lookup table

to compute the real shading rate. This lookup table can be specified per viewport and
allows changing the effective shading rate without the need to compute and bind a new
shading-rate image. The process is visualized in Figure 3.3. While the tile size is currently
fixed to 16x16 pixels by the NVIDIA hardware implementation, the Vulkan specification
[Khr19] states that this value is implementation dependent and requires the user of the

16

3.1. Possibilities

Figure 3.2: Coarse pixel center and example centroid for coarse shading rates 2x1 and
2x2. The centroid is only guaranteed to be in the intersection of the primitive, e.g., a
triangle, and the coarse pixel. It can, therefore, be anywhere inside of this intersection.
Reprinted from Bhonde/NVIDIA [Bho18].

API to query it. An example scene with the shading rates as overlay for each tile can be
viewed in Figure 3.1.

3.1 Possibilities

In the previous section, we have described the capabilities of VRS. In this section, we
describe how this new hardware feature can be exploited to improve performance and
quality. We have the ability to do selective supersampling and selective coarse shading.
These two possibilities apply only to fragment-shader executions. Hence, the visibility
resolution stays constant throughout the image and cannot be dynamically adapted with
VRS. Only the shading resolution can be dynamically adapted. For this reason, the focus
of the optimization lies on the shading resolution, e.g., by detecting regions that should
be shaded with higher fidelity and regions that are not required to be shaded in full
resolution. Finding such regions in real time can be expensive, and the cost for analyzing
the scene and defining such regions with high and low details has to be weighed against
the gain in performance achieved by lower sampling or the additional performance impact
for higher quality. NVIDIA provides some examples of how to utilize VRS in the Turing
architecture whitepaper, namely Content-Adaptive Shading, Motion-Adaptive Shading

17

3. Variable Rate Shading

Figure 3.3: The process of the shading rate selection with the indirection step visualized.
(u, v) coordinates in the shading-rate image are computed based on the (x, y) coordinates
in the image. These coordinates are used to fetch an index. Subsequently, the fetched
index is used to look up the actual shading rate in the Shading Rate Lookup Table.
Reprinted from Bhonde/NVIDIA [Bho18].

and foveated rendering [NVI18].

In Content-Adaptive Shading, the shading rate is defined by the content of the scene.
In the best case, homogeneous regions with only low-frequency content are shaded with
a lower resolution and the perceived image stays the same. In practice, this is not always
achievable. For example, there can be scenes where all regions have a high frequency
or just some regions smaller than 16x16 pixels are homogeneous. Undersampling such
regions would result in aliasing, which is more or less visible to the viewer. Another
problem lies in the definition of the shading rate. The shading-rate image defining the
shading rate must be computed and bound before the draw commands are submitted.
Thus, information as to which regions are homogeneous needs to be known beforehand.
NVIDIA suggests computing the shading rate after a frame is drawn for the next frame
[NVI18]. The advantages of this approach are that little additional processing power is
used for the computation of the shading-rate image and it can easily be integrated into
an existing pipeline with only minor changes to the shaders. However, some points have
to be considered for this approach: Due to changes in the scene, e.g., from animation or
camera movement, a forward-projection to the next frame is necessary. The shading-rate
image has to be computed before the frame is drawn, based on data from the previous
frame and the current motion. The current motion can be used to compute the position
in the new frame. The information the shading rate is based on can then be the spatial
and temporal color coherence of the previous frames.

18

3.1. Possibilities

An alternative approach would be to pre-render the scene in a lower resolution. The
resolution can be as low as 1

16 in width and height of the screen size. This low-resolution
pre-pass adds the computational effort of approximately 1

256 of a full-resolution rendering
in terms of fragment shader executions plus the duplicate geometry processing. However,
one has to be very careful to pre-filter all required resources to avoid aliasing. Pre-
filtering for resources like standard textures can be easily achieved with mipmapping.
The pre-filtering of normal maps or procedurally generated resources can be harder to
achieve or is not even possible. Depending on the screen resolution and the geometry
of the scene, the lowered resolution can even cause geometric aliasing, e.g., visibility is
sampled too low. In order to save additional GPU cycles, shaders directly computing
the necessary results, e.g., edges for the shading-rate image, could be used. This kind of
optimization could be taken even further, for example by pre-computing the edge images
of textures and avoid real shading completely. Of course, this would not capture high
frequencies introduced by lighting, e.g., on a rough surface. However, with a combined
analysis of normals, geometry, and textures, even this problem can be addressed, and
only dark spots with complex geometry or a rough surface would not be recognized as
homogeneous areas. This approach requires a lot of pre-computation work, partially even
on an artistic side, and existing pipelines would have to be adapted.

Results from psychophysical research suggest that motion is perceived blurred. Apthorp
et al. [ASK+12] investigated the perception of random moving objects on a screen
without motion blur artefacts and the connected neural activities. They discovered that
blurred lines, or “motion streaks” as they call them, occur in the visual system due to
temporal integration. These motion streaks are used by our perception to detect the
direction of the motion. In computer animation, no real motion takes place but images
are presented one after another, commonly in a 60 Hz update fashion. Due to temporal
integration and objects jumping from one position on the screen to the next one during
frame swaps, our eye combines both images for a short time. The object is not perceived
in full detail but blurred. This perceived blurring of regions on the screen allows to
improve the performance by reducing the rendered resolution. In Figure 3.4 an example
of an object moving from left to right is shown. The multiple images seen by our eye are
integrated. The blurred image at the bottom right of the figure is the result.

As suggested by the NVIDIA Turing architecture whitepaper [NVI18], it would be
wasteful to render regions that are perceived blurred at full resolution. The resolution in
these regions could be reduced without a noticeable visual impact. This effect is already
simulated by motion blur, and Motion-Adaptive Shading takes advantage of this,
too. NVIDIA [NVI18] suggests computing the shading rate directly from the magnitude
and directions of the motion vectors, which are already computed for TAA. Furthermore,
other blur effects like depth of field (DOF) could also be exploited with VRS in order to
save performance.

As already discussed in Chapter 2, VRS can also be utilized for foveated rendering.
Due to the physical composition of the human eye, the perceivable resolution falls off
the more acute the viewing angle gets. The highest resolution is only achieved at the

19

3. Variable Rate Shading

Figure 3.4: An object moved from left to right, perceived blurred by our eyes. On the
left, the object is displayed. Top right, the motion is schematically represented. The
image bottom right shows the possible perceived result. Reprinted from NVIDIA Turing
architecture whitepaper [NVI18].

center, the Fovea centralis. Hence, the name foveated rendering. With VRS we are able
to directly use data from eye trackers to compute the shading-rate image and then set
this image for the whole scene. The performance is expected to increase depending on
how much time is spent computing the shading rate compared to the multi-pass setups
or the emulations of VRS.

3.2 Limitations

While VRS offers great new possibilities to developers, there are also limitations. These
limitations have to be considered when finding new application scenarios for VRS and
should always be kept in mind during the implementation of new algorithms utilizing
VRS. One core concept of VRS is that it separates the visibility sampling from the
shading. We can dynamically configure the shading rate but not the visibility rate.

This leads us to an important limitation of VRS: We can only save performance or
improve quality by controlling the number of fragment shader executions.

As an example of this limitation, we discuss how VRS seems to be applicable for cascaded
shadow mapping. By creating better-fitting non-rectangular viewports, specifying the
target frustum as shading-rate image and changing the shading rate based on the cascade,
we expect a faster computation of the shadow maps. Cascades closer to the camera would
be assigned higher shading rates than cascades further away from the camera. This

20

3.2. Limitations

would allow a single-pass cascaded shadow mapping at different resolutions. However,
VRS cannot be utilized in this way for cascaded shadow mapping as VRS separates the
visibility sampling from the shading. For shadow mapping, we only need the visibility, e.g.,
the depth, and therefore no fragment shader is executed. Hence, VRS is not applicable
to improve cascaded shadow mapping as described.

Another limitation that has to be considered during the development of VRS-based
algorithms is the size of a tile controlling the shading rate. This tile size is limited to
16x16 pixels. At the time of writing, no other tile sizes are supported by VRS.

To illustrate this limitation, we present an example where we apply Content-Adaptive
Shading on different types of scenes. The Content-Adaptive Shading implementation is
based on edges. We extract an edge image from the previous frame and base our shading
rate on these edges by doing a forward-projection. The amount of edges in a 16x16 tile
specifies the shading rate. For example, in a region with no edges, 4x4 coarse shading
is used, in a region with few edges, 2x2 coarse shading is used and in a region with
many edges, the shading rate is specified as 1x1. This can be viewed in Figure 3.5a. In
Figure 3.5b higher shading rates are colored green, while lower shading rates are colored
cyan to blue. For this scene with many large homogeneous regions, like a large water
surface and an island with grass in the distance, this approach works well. The shading
rate is reduced for regions with few details, e.g., the water or the black sky and some
parts of the green grass. Other parts like the palms and especially borders between
the water and the island are rendered with high shading rates. In another scene, we
have brick stone walls and a brick stone floor, as display in Figure 3.6a. The bricks are
each too small to include a complete tile. While the regions inside of each brick have a
homogeneous color, our shading rate is computed to be high for all the brick stone walls
and floors. The reason for this is that each 16x16 tile of the image contains at least one
junction of two bricks. A junction is visible as an edge and correctly computed as one.
The shading rate is specified for a 16x16 tile, which contains these edges and is therefore
kept at a level to preserve these edges. In Figure 3.6b we use an overlay to visualize the
tile size. As a result, we have invested processing power in computing the edge image
and the shading rate and did not gain anything, though there are many but very small
homogeneous regions.

Another, not so obvious limitation of VRS has its roots in the hardware limitations and
configuration of MSAA, specifically the MSAA samples. VRS supersampling utilizes
the coverage samples of MSAA in the pipeline and textures. For this reason, the
maximal amount of possible and configured MSAA samples defines the highest possible
supersampling shading rate. If a higher shading rate is specified, it will automatically
be reduced to the maximum possible with the current configuration. For example, if
one specifies a shading rate of 16x supersampling and the hardware supports only 8x
MSAA samples and 8x MSAA samples are configured for the pipeline and the framebuffer
attachments, the shading rate will be automatically adjusted to 8x supersampling as it
can be viewed in Figure 3.11. While this aspect might seem plausible as the existing
samples for MSAA are reused, the configured MSAA sample count is not only limiting

21

3. Variable Rate Shading

(a) The island scene. (b) The island scene with a shading rate over-
lay. Green marks high shading rates, blue low
shading rates.

Figure 3.5: Example scene with an island in the sea. The island has more details and
edges and is therefore shaded with a higher rate.

supersampling but coarse shading of VRS, too. In order to explain this limitation, we
first have to describe a new implementation-dependent maximum introduced with VRS,
namely shading rate max. coarse coverage samples. A single fragment, regardless of its
size, only supports this maximum amount of coverage samples. Therefore, the hardware
limits the number of coarse coverage samples for a single fragment, e.g., on a GTX2080
TI the number of possible coarse coverage samples is 16. For example, 4x4 fragment sizes
are possible with one MSAA sample as there are 16 pixels multiplied with one coverage
sample per pixel, and this number is lower or equal than the maximum of 16 coverage
samples, as depicted in Figure 3.8. If we increase the coverage samples we want to use by
configuring, for example, 2x MSAA samples, we now need two coverage samples per pixel
and only fragment areas of pixel count 16

2 are possible. Any shading rates specifying
larger fragment sizes will be adjusted in order to not exceed the number of maximum
coarse coverage samples. Figures 3.9, 3.10 and 3.11 show each possible configuration
from 2x MSAA to 8x MSAA with the set and effective shading rates.

The Vulkan Specification [Khr19] describes this as follows:

“Once a base shading rate has been established, it is adjusted to produce
a final shading rate. First, if the base shading rate uses multiple pixels for
each fragment, the implementation may reduce the fragment area to ensure

22

3.2. Limitations

(a) The brick wall. (b) The brick wall with tile size overlay.

Figure 3.6: The tile size as a limitation: A brick wall with too small bricks for edge-based
Content-Adaptive Shading.

that the total number of coverage samples for all pixels in a fragment does
not exceed an implementation-dependent maximum.” (Vulkan Specification,
Chapter 26.6. Shading Rate Image [Khr19])

How it is reduced is not specified and therefore open to the driver implementation. During
our experiments, we have observed that the y-coordinate for coarse shading is given
preference over the x-coordinate. In the above example, 2x MSAA and a 4x4 shading rate
result in a 2x4 effective shading rate. An interesting side effect is that shading rates with
a larger x-coordinate get reduced, too. For example, the shading rate 4x2 gets reduced
to 2x2 as it is depicted in Figure 3.9. This is not compliant with the specification, as a
fragment of size 4x2 needs the same amount of coverage samples as a fragment of size
2x4, and the latter is possible with the same configuration. Reducing the MSAA samples
to one again enables the shading rate of 4x2. This preference of the y-coordinate can
be observed for the 2x1 and 1x2 shading rates too, depicted in Figure 3.11. With 8x
MSAA samples, every coarse fragment size larger than 1x2 gets reduced to 1x2, except
the fragment size of 2x1, which gets reduced to 1x1.

In Figures 3.8, 3.9, 3.10 and 3.11 this limitation is visualized. For these images, the
same shading-rate image, depicted in Figure 3.7, and the same shading rate palette are
used. Only the MSAA sample count is altered between the values: 1x MSAA samples
(disabling MSAA), 2x MSAA samples, 4x MSAA samples, and 8x MSAA samples.

23

3. Variable Rate Shading

Figure 3.7: The MSAA sample count as a limitation: The shading-rate image with the
corresponding palette values.

Figure 3.8: The MSAA sample count as a limitation: MSAA is disabled for this image.
The shading rate image is distinguished as the a-section, the effective shading rate by the
b-section. The full shading-rate image can be viewed in Figure 3.7. This image depicts
that all coarse shading rates are possible but no supersampling shading rates can be used
with no MSAA samples.

24

3.2. Limitations

Figure 3.9: The MSAA sample count as a limitation: 2x MSAA samples are configured for
this image. The shading-rate image is distinguished as the a-section, the effective shading
rate by the b-section. The full shading-rate image can be viewed in Figure 3.7. With
2x MSAA samples x2 supersampling is possible. This image also shows how the coarse
pixel size is reduced to the maximum possible with a preference for the y-coordinate. 4x2
coarse shading is not possible and reduced to 2x2 while 4x4 and 2x4 are both effectively
have the 2x4 coarse pixel size.

MSAA Samples Coarse Shading Rates Supersampling Shading Rates

1x 1x2, 2x1, 2x2, 2x4, 4x2, 4x4 -
2x 1x2, 2x1, 2x2, 2x4 2x
4x 1x2, 2x1, 2x2 2x, 4x
8x 1x2 2x, 4x, 8x

Table 3.1: Possible shading rates per MSAA sample configuration.

Only a subset of the available shading rates can be used based on the configured MSAA
level. By disabling MSAA, supersampling shading rates cannot be used but all coarse
shading rates can be utilized. On the other hand, with 8x MSAA, only the 1x2 coarse
shading rate can be used, but up to 8x supersampling shading rates are enabled. All
intermediate cases aside from 1x and 8x MSAA samples function as discussed above. An
overview of all possible configurations is given in Table 3.1.

25

3. Variable Rate Shading

Figure 3.10: The MSAA sample count as a limitation: 4x MSAA samples are configured
for this image. The shading-rate image is distinguished as the a-section, the effective
shading rate by the b-section. The full shading-rate image can be viewed in Figure 3.7.
With 4x MSAA samples up to x4 supersampling is possible. Coarse shading is limited to
2x2 coarse pixel sizes.

3.3 Integration with a Rendering Engine

Aside from additional properties, needed for the computation of the shading rate, the
integration of VRS with an existing rendering engine is straightforward. The following
steps are necessary:

1. Enable the VRS extension in the graphics API.

2. Configure a shading rate palette for each existing pipeline where VRS should be
used.

3. Create an image with usage flags for a shading-rate image. This image has to be a
one-component integer image.

4. Fill this image, for example, with a compute shader.

5. Set the image before executing a draw command which should use VRS.

These steps are based on the steps necessary for the Vulkan graphics API. However, they
were abstracted and can be used as a guide for OpenGL and Direct3D, too. During the

26

3.4. Hardware Support and Usage Scenarios

Figure 3.11: The MSAA sample count as a limitation: 8x MSAA samples are configured
for this image. The shading-rate image is distinguished as the a-section, the effective
shading rate by the b-section. The full shading-rate image can be viewed in Figure 3.7.
With 8x MSAA samples up to x8 supersampling is possible. This image again shows the
preference for the y-coordinate during hardware adaptation of the effective shading rate.
2x1 coarse shading is not possible and reduced to 1x1 while all other coarse shading rates
are reduced to 1x2.

initialization phase, the only structures which need to be changed are the pipelines. All
other steps are additional steps that can be integrated easily. For the run-time phase,
there are only two additional steps needed: computing and setting the shading-rate image.
If additional properties are needed to compute the shading-rate image, steps to compute
these have to be integrated into the existing pipeline, e.g., the shaders, attachments, etc..

3.4 Hardware Support and Usage Scenarios

At the time of writing, VRS is only supported by hardware with NVIDIA’s Turing
architecture. However, AMD already filed a patent by Saleh et al. [SBPW19] that
describes a very similar technique to VRS. In the meantime, Microsoft has standardized
for DirectX 12 a version of VRS with an additional control mechanism for the shading
rate: per-primitive 1.

1 https://devblogs.microsoft.com/directx/variable-rate-shading-a-scalpel-in-a-world-of-
sledgehammers/

27

3. Variable Rate Shading

Many real-time computer graphics applications can potentially profit from the reduced
fragment shader load when using VRS. Yang et al. [YZK+19], for example, used it
successfully to improve the rendering performance of the game Wolfenstein II: The
New Colossus and Epic Game’s Infiltrator demo in the Unreal Engine 4 by 5% to 20%.
Virtual reality applications, with their high-resolution head-mounted displays and high
refresh-rate targets, could benefit from VRS even more, e.g., by foveated rendering,
which potentially allows reducing the shading resolution additionally in the regions of a
user’s peripheral vision [PSK+16]. For advanced foveated rendering, additional hardware,
namely an eye tracker, is needed. Eye trackers enable us to follow the focus of the user
and adapt the scene resolution based on this data. This is an advancement compared
to early foveated rendering methods, which assume the focus of the eye at the center of
the screen. This assumption may often be correct, especially depending on the type of
application, e.g., for ego-shooters, where the user can be expected to look to the crosshair
at the center of the screen most of the time. However, it is an assumption that might
be wrong as well, and when it is wrong, it breaks the immersion due to visible aliasing
artefacts at the corners. By utilizing eye trackers, we are able to deliver a continuous
adaptation of the resolution to the focus of the viewer. In the last decade, eye trackers
have evolved from scientific gadgets to full-fledged devices appropriate for the mass
market. As such, these devices are affordable and deliver accurate data. For this work,
we used the TOBII eye-tracker 4C, which captures and provides the focus of the eye at a
rate of 90 Hz, for details see the specification [Tob]. The licence of this eye tracker only
permits “interaction us”, while analytical use is prohibited. Our use case is to adapt the
shading rate based on the current user focus, e.g., the user interaction.

28

CHAPTER 4
Techniques and Algorithms for

Variable Rate Shading

In this chapter the algorithms that were developed in the context of this thesis are
described and how they can be integrated into existing rendering engines. First, our
algorithms for the three strategies proposed in the NVIDIA Turing architecture whitepaper
[NVI18], Content-Adaptive Shading, Motion-Adaptive Shading and foveated rendering,
discussed in Chapter 3, are described. For Content-Adaptive Shading, we present two
algorithms, one based on texel differentials and one on edges. In Chapter 4.1, we
will describe temporal artefacts, which arise for many situations when using VRS. To
counter these artefacts, a method that generally reduces these artefacts by stabilizing
the shading rate over time is proposed. For Motion-Adaptive Shading and foveated
rendering, we present concrete implementations and discuss which details are important
to get useful results with these techniques. Subsequently, we present our novel approach,
TAA-Adaptive Shading.

4.1 Content-Adaptive Shading
The target of Content-Adaptive Shading is to adapt the shading rate to the content of
the scene. This means the content of the scene needs to be analyzed in order to find
regions where it is appropriate to lower the shading rate and regions where a higher
shading rate is required to preserve more visual details. The scene’s content offers many
properties. There are primary properties, which are available due to the need for shading,
e.g., depth, normals or the final color, and secondary properties which are derived from
the primary properties, e.g., edges. Choosing suitable properties for a meaningful shading
rate selection can be challenging. Primary properties could be directly used to control
the shading rate. For example, color offers direct information of brighter or darker spots.
Under the assumption that brighter spots have more often the focus of the viewer and

29

4. Techniques and Algorithms for Variable Rate Shading

offer more visual details, for example on rough surfaces where light introduces higher
frequencies due to the angle, the shading rate of darker spots could be lowered. However,
this assumption might not hold for many scenes. Another example would be to directly
use the depth information. Objects further away often have lower resolution and could,
therefore, be shaded with a lower shading rate. However, in real scenes, objects in the
distance often are objects with high-frequency surfaces just displayed smaller. Blur effects
like DOF get the high-frequency image and do correct downsampling. With VRS, the
signal is already sampled at a lower resolution. If high-frequency signals are sampled too
low, the result is not a proper blur but aliasing.

Our Content-Adaptive Shading algorithm strives to be generally applicable to many
scenes while not introducing unnecessary aliasing. For this reason, we developed two
approaches based on secondary properties:

• Edges

• Texel differentials

While the two algorithms differ in details, like properties and how the shading rate is
computed, the base algorithm is very similar and shown in Figure 4.1. At the beginning
of the render loop, the shading-rate image is cleared. This is necessary to guarantee a
default shading rate for all regions not covered by the shading-rate image computation.
In the next step, we downscale the properties image computed in the previous iteration to
1
16(w, h), where w and h denote the width and height of the image, to derive a shading rate
from the computed properties image. Downscaling uses bilinear interpolation, averaging
each of the 16x16 tiles and its neighbourhood. Downscaling is necessary as the shading
rate is specified for 16x16 tiles and an average of the properties can be suitable to
describe the region. How this downscaling affects the individual properties is discussed
for each property. In a subsequent step, the computation of the shading rate based
on the downscaled properties image is performed. In a final step, the scene is drawn
and the required properties are computed. Depending on the type of properties, the
computation can be performed during the drawing of the scene, e.g., texel differentials,
or as a post-processing step, e.g., edges.

A high-level overview of the common steps shared by all our shading-rate computation
algorithms, is shown in Figure 4.2. First, our algorithm samples the properties image and
derives the shading rate from it. The subsequent steps are to compute the coordinates in
the next frame by a forward projection and sample the previous shading rate at the new
coordinates for our shading-rate stabilization algorithm. Finally, the computed shading
rate is stored at the new coordinates.

The result of the shading-rate computation is used as an index into the shading-rate
palette. Our configuration for the shading-rate palette consists of eleven different values
in increasing order, where index zero denotes a coarse shading rate of 4x4 and index ten
a supersampling shading rate of x8. This configuration allows a simple adaptation of

30

4.1. Content-Adaptive Shading

Clear Shading Rate Image

Scale Down Textures Containing
Properties from the Previous Iteration

Compute Shading Rate Image Using
Properties from the Previous Iteration:

Edges / Texel Differentials

Draw Scene

Compute New Properties
of Scene Content

Figure 4.1: The basic steps of our algorithm for Content-Adaptive Shading. These steps
are executed inside the render loop in each iteration. At the start, the shading-rate image
is cleared. Then, the image containing the properties computed during the previous
iteration is downscaled and used to compute the shading rate for each 16x16 pixel region.
Finally, the scene is drawn using the computed shading-rate image and the properties for
the next iteration are computed.

the MSAA sample count without the need to change anything else in the setup. VRS
automatically reduces the sample count to the maximum possible if a higher shading rate
is specified than there are MSAA samples configured. The same applies if there are not
enough coverage samples for a coarse pixel, the coarse pixel size is reduced automatically.
For more details about the possible configurations, refer to Chapter 3. Table 3.1 shows
all the configurations that are possible on a NVIDIA Turing RTX 2080 Ti.

In order to compute the shading-rate image, we would already need the properties of the
frame before it is drawn. Since we do not have them for the current frame, we try to
derive them from the previous frame. By forward projecting the screen position based
on the motion of the camera, we base the new shading rate upon the data from the
previous frame. The motion of the camera from the last to the current frame is usually
available and therefore the position in the current frame can be computed in the same
way as a backward-projection, for example during TAA. During a backward-projection,

31

4. Techniques and Algorithms for Variable Rate Shading

Derive Shading Rate from Properties

Forward Project

Stabilize Shading Rate with Previous

Shading Rate

Save Shading Rate to New Coordinates

1 2 7 9 8

2 3 5 7 8

7 7 7 1 6

1 2 7 9 8

2 3 5 7 8

7 7 7 1 6
2 4 5

0 3

1 2 7 9 8

2 3 5 7 8

7 7 7 1 6

Figure 4.2: The common steps for the computation of the shading-rate image. First, the
shading rate is derived from the properties. This process depends on the used properties.
In the next step, the coordinates in the next frame are computed by a forward projection.
Finally, the shading rate is stabilized by our TAA-based approach and saved to the new
coordinates.

the screen-space coordinates of the previous frame are computed. These coordinates
can be used to sample the corresponding data from the previous frame’s framebuffer.
The data can then be combined with the current frame data and written at the current
screen-space coordinates.

For a forward projection, the process to compute the new screen-space coordinates is
similar: First, the world position of the previous frame is computed using its depth and
x,y screen-space coordinates. Then, the computed world position is used to compute the
current screen-space coordinates. However, there is a big difference in those two processes:
For a backward projection, this process yields a value for each pixel in the image. This
value might be wrong, as the current position might be occluded or not inside in the
last frame and therefore handled by texture border strategies. For a forward projection,
the coordinates written to are computed inside the process. This computation has two
problems, first, some target coordinates might not be written at all and second, others
might be written multiple times. To address the first problem, we clear the shading-rate
image with a default shading rate before computing the new values as it happens in the
first step of the base algorithm shown in Figure 4.1.

The second problem requires further investigation. Multiple points fall into one point

32

4.1. Content-Adaptive Shading

inside the next frame because they are projected into it. For example, the camera has
zoomed out, four points further away may fall into a single one. If this case is not
considered, the value written to the new coordinate would be one of the four, the last
one written by the shader. A more correct way would be to average all of the points
falling into this single point. However, as the values of the shading rate are already
based on properties derived from an average of 16x16 pixels, there is not much difference
between neighbouring values and the last written value is sufficient for all cases except
if two neighbouring tiles are sampled. These cases were neglected to avoid expensive
synchronizations inside shaders during the computation of the shading rate, which would
become necessary to compute the average of multiple shader executions.

For animated objects, additional computations can become necessary to track their
positions in screen space. Each object may be identified in screen space to apply the
correct model matrices during a forward projection. This can become bothersome with
many objects, and pipeline changes would probably become necessary to identify the
objects in screen space.

One challenge of basing Content-Adaptive Shading on secondary properties directly
derived from the rendered frame is inherent in the technique itself: the shading rate
might change the final color in the rendered frame and therefore the computed properties
as a direct consequence. That means, the next frame’s shading rate is a function of the
previous frame and indirectly of the shading rate from the previous frame. This may
result in the flipping of shading rates.

An example for shading rate flipping is shown in 4.3. Edges are used as properties for
the example. Two neighbouring tiles of size 4x4 pixels initially shaded at full resolution
have a low difference in color. The other 14 4x4 pixel tiles are homogeneous. For this
reason, the shading rate is lowered to 4x4 for the complete 16x16 tile. Now, the difference
between the two aforementioned 4x4 pixel tiles is suddenly slightly above the threshold,
an edge is detected. This results in an increase in the shading rate for the whole tile
and we get an oscillating behaviour. The visual result of this artefact is a floating or
flickering texture.

We tried various approaches to compensate for this behavior and to stabilize the shading
rate. In one of our approaches, we reduced the resolution of the rendered scene image
before the computation of the properties takes place. This approach achieved a stable
shading rate, but at the cost of quality. Properties get lost and, therefore, undersampled
with a low shading rate. In order to reduce the effect of the shading-rate flips, we
applied TAA. TAA utilizes information from previous frames and therefore alleviates the
flickering of the parts were the shading-rate flips. However, the effect is only reduced
and the textures seem to slowly float. TAA was introduced by Karis [Kar14] in order to
reduce spatial as well as temporal aliasing. The human visual perception is especially
sensitive to motion like it is perceived if there is temporal incoherence, e.g., the same
object in a scene changes color over time, or some small parts change color like it is the
case if the shading rate oscillates.

33

4. Techniques and Algorithms for Variable Rate Shading

4 pixels 4 pixels
4

pi
xe
ls

4 pixels 4 pixels

4
pi
xe
ls

(a) With the full resolution at the beginning (left) the edge image (right) shows no edges.
4 pixels 4 pixels

4
pi
xe
ls

4 pixels 4 pixels

4
pi
xe
ls

(b) The shading rate is reduced based on the previous edge image and a bigger color difference
arises (left). The new edge image (right) shows clearly an edge.

4 pixels 4 pixels

4
pi
xe
ls

4 pixels 4 pixels

4
pi
xe
ls

(c) This edge then leads to an increase in the shading rate. We get again a low local change in
color. No edge is detected.

4 pixels 4 pixels

4
pi
xe
ls

4 pixels 4 pixels

4
pi
xe
ls

(d) This again leads to a decrease in the shading rate. Again, an edge is detected. We observe an
oscillating behavior.

Figure 4.3: Changes in the shading rate lead to changes in the color output and therefore
to flipping shading rates.

34

4.1. Content-Adaptive Shading

Our novel approach to mitigate this oscillation is based on TAA. We apply a modified
version of TAA on the shading-rate image itself. We know from the previous shading-rate
image that a particular region was sampled at a high rate. We can conclude that the
property in this region indicates a high rate, as it was detected in the previous frame.
Therefore, we can sample it again at a high rate. In contrast to color values, shading
rates are discrete numbers and there are only ten different shading rates, from which a
maximum of six can be used at the same time, depending on the MSAA configuration,
for details see Chapter 3. Taking the rounded average of such small discrete numbers
does not lead to the desired shading rate in most cases, e.g., a weighted average of both
shading rates. For example, there is no shading rate between 2x2 and 2x4. It is rounded
to one of them and the previous or the current shading rate wins. If the previous shading
rate was high, our assumption is that there must have been a property indicating a high
rate. We take the maximum of the previous and the current shading rate and are sure to
miss no property indicating a high rate. The problem is, if once such a property was
seen, a high shading rate will be used for this tile and if the camera moves, the shading
rate stays the same: The result is shading-rate ghosting.

In TAA, ghosting is mostly resolved by clipping the color values of the previous frame
to locally averaged color values of the current frame, details are described in Chapter 2.
Similarly to TAA clipping, we clamp the shading rate value of the previous frame to the
current shading rate value before computing the maximum of both. A fast reduction of
the shading rate may introduce motion due to flipping colors. To reduce this effect, we
based the clamping distance on the current shading rate and favor higher shading rates.
For example, if we have eleven values in our shading-rate table with ascending shading
rates, the current shading rate is the number six in the table, the clamping region will be
−1 + 6 < x < 6 + 2. This enables a slower reduction of the shading rate and therefore
a slower change in the scene, e.g., there is less motion if a property indicating a high
shading rate diminishes and the viewer does not recognize the reduction in resolution.

In the next two subsections, the properties we selected to control shading rate, are
described and the selection is reasoned. Subsequently, the algorithms are discussed in a
step-by-step fashion with supporting pseudo-code.

4.1.1 Edges

Edges represent frequency changes and are therefore well suited to divide the scene into
homogeneous and inhomogeneous regions. Edges enable us to sample each part of the
scene at the needed frequency. By detecting sharp discontinuities in the depth, object
borders can be distinguished. This allows a lower sampling of inner object parts while
preserving the contrast between objects. On the other hand, object borders could be
sampled at a higher rate. This would be an advancement of MSAA where only the
visibility is sampled at a higher rate at object borders. With our approach, not only the
visibility but also the shading is supersampled. Furthermore, computing edges of the
final image color enables us to detect high frequencies due to texture, normal mapping
or any other effects introduced to the scene. We have decided to use the same edge

35

4. Techniques and Algorithms for Variable Rate Shading

detection as presented by the post-processing anti-aliasing technique FXAA developed
by Lotte/NVIDIA [Lot11] because it is tailored for real-time applications in terms of
performance and quality.

Algorithm 4.1 gives a high-level view of the steps which are necessary on the CPU part.
The edge image is initialized with white on line 1, which is equivalent to an image
consisting only of edges, so the first frame is not coarse-shaded. On line 9, the edge image
is computed based on the final color image after all post-processing effects. To derive
a shading rate from the computed edge image, on line 4 we downscale the edge image
to 1

16(w, h), where w and h denote the width and height of the image. As discussed
before, downscaling uses bilinear interpolation, averaging each of the 16x16 tiles and
its neighbourhood. The result is that regions with more edges produce higher values
and regions with fewer edges produce lower values. As the number of edges is directly
correlated with the frequency, the shading rate is increased the more edges are detected.
In the next step on line 5, the shading-rate image is computed with a compute shader
and on line 6 set for subsequent draw calls like on line 7.

The pseudo-code of the compute shader for calculating the shading rate is presented in
Algorithm 4.2. On line 2 of Algorithm 4.2, the forward projection used for computing
the coordinates in the next frame begins. The world position of the previous frame
is computed by using the depth and x,y screen-space coordinates received as input in
the compute shader. In line 3, the world position to compute the current screen-space
coordinates is used. After computing the target coordinates, the next step is to compute
the shading rate. On line 5, the computation of the index in the aforementioned shading-
rate palette starts. First, the values of the downscaled edge image are multiplied with the
highest index in the shading-rate palette, e.g., ten in our basic configuration. The next
two steps on lines 6 and 7 are our shading-rate stabilization technique, based on TAA.
So, on line 6 of Algorithm 4.2, the shading-rate value of the previous frame is clamped to
the current shading-rate value before computing the maximum of both on line 7.

4.1.2 Texel Differentials

Our second approach for computing the shading rate on secondary properties of the
content of the scene utilizes texel differentials. Texel differentials are the partial derivatives
in x and y direction of the texture space, e.g., the UV coordinates. This technique is more
invasive, as it is not possible to compute texel differentials in a post-processing step, and
existing fragment shaders have to be adapted to store the required values. However, texel
differentials are very valuable. They convey the information of the used mipmap-level
of a texture. Larger values of texel differentials result in higher mipmap levels being
selected. Depending on the screen resolution and the texture resolution, with very large
texel differentials whole textures fall into a single pixel. Hence, the shading rate can
be reduced for regions with high texel differentials. Very small texel differentials mean
a texture is oversampled and the shading rate can therefore again be reduced. Texel
differential values between these two maxima can be sampled at the usual shading rate

36

4.1. Content-Adaptive Shading

Algorithm 4.1: Render Engine: Edge-based Content-Adaptive Shading
Input: Color image used for rendering the scene C, depth image D, edge image

E, edge image scaled down Es, shading-rate image S, motion vector
image M

1 E⇐ clear image with white;
2 while renderLoop do
3 S⇐ clear image to default shading rate;
4 Es ⇐ scale down E to 1

16resolution;
5 S⇐ computeShadingRateImage(Es,S); // see Algorithm 4.2
6 set S for draw calls;
7 C,D,M⇐ draw scene;
8 C⇐ apply temporal anti-aliasing to C using M;
9 E⇐ find edges in C;

10 end

Algorithm 4.2: computeShadingRateImage: Edge based Compute Shader
Input: edge image scaled down Es, shading-rate image S, inverse projection

matrix P−1
prev, inverse view matrix of previous frame V−1

prev, view
projection matrix of next frame V,P

Output: shading-rate image S
1 // forward projection: compute new NDC coordinates
2 vec3 posw ⇐ back project x,y,D[x,y] with P−1

prev,V−1
prev ;

3 xc, yc ⇐ forward project posw with V,P;
4 // compute shading rate
5 int sr ⇐ floor(Es[x, y] ∗ 11);
6 int prevSr ⇐ clamp(S[xc, yc], sr − 1, sr + 2);
7 sr ⇐ max(sr, prevSr);
8 S[xc, yc]⇐ sr;

or higher shading rates. As with edge-based Content-Adaptive Shading, we use a shading
rate palette with ascending values, the higher the index the higher the shading rate.

Algorithm 4.3 gives a high-level view of the steps which are necessary on the CPU part.
These steps are similar as in Algorithm 4.1, with the difference that there is no edge
image but a texel differential image. This texel differential image is computed during the
drawing of the scene at line 7. The computation of this additional property during the
draw is presented in Algorithm 4.5. We again scale the texel differential image down by
bilinear interpolation at line 4 of Algorithm 4.3 to get the average texel differential for
the region.

In Algorithm 4.4 the pseudo-code of the compute shader that is used to calculate the
shading rate is presented. On lines 2 and 3, a forward projection to receive the new

37

4. Techniques and Algorithms for Variable Rate Shading

position in the current frame is performed, as discussed previously. With the instructions
on lines 5 and 6, the shading rate is computed. As discussed at the beginning of this
section, high and low values of texel differentials should receive low shading rates. For
this reason, we transform the texel differential on line 5. First, we shift the value from
the range [0, 1] to the range [−1, 1]. Next, we use a quadratic function so that originally
low and high values are both high. Finally, we subtract the result from 1, with the result
that low and high values now both have low values and therefore get low shading rates
assigned. Intermediate values will receive intermediate to high shading rates. On line
6 the value is then again scaled with the highest index in the shading rate palette to
receive the final shading rate index.

Content-Adaptive Shading based on texel differentials suffers, similarly as the method
based on edges, from temporal artefacts introduced by unstable shading rates. Texel
differentials get bigger if the shading rate is reduced and smaller if it is increased. At
border cases, the shading rate oscillates. As texel differentials directly correlate with the
shading rate they can be scaled by it as we do in Algorithm 4.5 on line 4. So, the texel
differentials are additionally scaled by the inverse fragment size for coarse shading or
multiplied by the sample count for supersampling. This helps to reduce the flipping in
addition to our TAA-based approach for the shading-rate image.

Algorithm 4.3: Render Engine: Texel Differential-based Content-Adaptive
Shading
Input: Color image used for rendering the scene C, depth image D, texel

differential image T, texel differential image scaled down Ts,
shading-rate image S, motion vector image M

1 T⇐ clear image with white;
2 while renderLoop do
3 S⇐ clear image to default shading rate;
4 Ts ⇐ scale down T to 1

16resolution;
5 S⇐ computeShadingRateImage(Ts,S); // see Algorithm 4.4
6 set S for draw calls;
7 C,D,M,T⇐ draw scene; // see Algorithm 4.5
8 C⇐ apply temporal anti-aliasing to C using M;
9 end

4.2 Motion-Adaptive Shading

In Chapter 3 we discussed that Motion-Adaptive Shading utilizes the fact that objects in
motion appear blurry to the human visual system. Rendering them at lower resolution
should have little to no impact on their appearance, as perceived by the human visual
system.

The base algorithm, shown in Figure 4.4, is very similar to Content-Adaptive Shading as

38

4.2. Motion-Adaptive Shading

Algorithm 4.4: computeShadingRateImage: Texel Differential based Compute
Shader
Input: texel differential image scaled down Ts, shading-rate image S, inverse

projection matrix P−1
prev, inverse view matrix of previous frame V−1

prev,
view projection matrix of next frame V,P

Output: shading-rate image S
1 // forward projection: compute new NDC coordinates
2 vec3 posw ⇐ back project x,y,D[x,y] with P−1

prev,V−1
prev ;

3 xc, yc ⇐ forward project posw with V,P;
4 // compute shading rate
5 float td⇐ 1− (Ts[x, y] ∗ 2− 1)2;
6 int sr ⇐ floor(td ∗ 11);
7 int prevSr ⇐ clamp(S[xc, yc], sr − 1, sr + 2);
8 sr ⇐ max(sr, prevSr);
9 S[xc, yc]⇐ sr;

Algorithm 4.5: draw scene: additional properties Texel Differentials
Input: resources used for shading, UV coordinates uv, effective shading rate sr

(sr.x/sr.y = fragment size, sr.z = sample count)
Output: Color image C, depth image D, motion vector image M, texel

differentials image TD/td
1 // light/shade scene, compute motion vectors
2 ...
3 // compute texel differentials
4 td = fwdith(uv/sr.xy) ∗ sr.z;

discussed in Section 4.1 and shown in Figure 4.1. The main difference is the computation
of the properties. For Motion-Adaptive Shading, regions in motion need to be detected.
The straightforward approach would be to directly use the extents and directions from
the motion vectors, e.g., computed during motion blur or TAA, which point from the
previous to the current frame, to derive the shading rate for the next frame.

This assumes that the motion at a point leading from the previous frame to the current
frame is equal to the motion leading from the current frame to the next frame at the same
point. This assumption of a homogeneous motion can be true, e.g., for a homogeneously
forward-moving camera, or wrong, e.g., for abrupt camera stops or objects changing
motion direction. As motion is a process usually over multiple frames, the basic idea
of our algorithm is to utilize these motion vectors and combine them with new motion
vectors, pointing from the current frame to the next frame. The new motion vectors can
be computed during the shading-rate computation itself, as the coordinates of the next
frame are already computed by the forward projection to receive the target coordinates
for writing the shading rate. This leads to our Motion-Adaptive Shading algorithm,

39

4. Techniques and Algorithms for Variable Rate Shading

Clear Shading Rate Image

Scale Down Motion Vector Texture

Compute Shading Rate Image Using

Motion Vectors

Draw Scene

Figure 4.4: The basic steps of our algorithm for Motion-Adaptive Shading. These steps
are executed in each iteration of the render loop. In the beginning, the shading-rate
image is cleared. Then, the motion vector image is averaged for each tile and used to
compute the shading rate. Finally, the scene is drawn using the computed shading-rate
image. The motion vectors are computed by other effects, like motion blur or TAA.

utilizing motion paths to grasp the real motion of the scene. However, what we cannot do
is compute the motion from the next frame to the frame after the next because we only
have the camera matrices for the next frame. Additionally, this approach does not work
with independently moving objects and animations. For this kind of objects, identification
of objects and forward projection per object is needed as discussed in Section 4.1.

The CPU steps of our Motion-Adaptive Shading are shown in Algorithm 4.6. In contrast
to the CPU steps of the previous Algorithms 4.1, 4.3, we do not need to compute additional
properties, as we reuse the motion vectors from TAA. The motion-vector image still has
to be scaled down on line 4 in order to use the average motion for the computation of
the shading rate. Additionally, on line 1, we need to clear the motion-vector image to a
zero motion as it is now used before it would be written. As the forward projection does
not necessarily cover all pixels, we have to set a default shading rate for uncovered pixels
on line 3 of Algorithm 4.6.

In Algorithm 4.7, under the assumption of a homogeneous motion, we forward project as
discussed in Section 4.1 on the lines 2 and 3 and sample the motion pointing from the
previous to the current frame on line 5. For homogeneous motion, we would already get
the correct results. As we do a forward projection, we can also compute the new motion
vectors leading to the new location and utilize them for specifying the shading rate, this

40

4.3. Eye-Tracking and Foveated Rendering

is done on line 6 in Algorithm 4.7. On line 7, we now combine the lengths of the previous
motion vector and the new one and so integrate over the motion of the last two frames
leading to the new position. Afterwards, we subtract the result from 1, because larger
distances mean more motion and hence should result in a lower shading rate. Finally,
the shading rate is again computed by upscaling the value with the maximum index of
the shading rate palette to receive a shading rate index.

Algorithm 4.6: Render Engine: Motion-Adaptive Shading
Input: Color image used for rendering the scene C, depth image D, shading-rate

image S, motion vector image M, motion image scaled down Ms
1 M⇐ clear image with zero, e.g., no motion;
2 while renderLoop do
3 S⇐ clear image to default shading rate;
4 Ms ⇐ scale down M to 1

16resolution;
5 S⇐ computeShadingRateImage(Ms,S); // see Algorithm 4.7
6 set S for draw calls;
7 C,D,M⇐ draw scene;
8 C⇐ apply temporal anti-aliasing to C using M;
9 end

Algorithm 4.7: computeShadingRateImage: Motion based Compute Shader
Input: motion image scaled down Ms, shading-rate image S, inverse projection

matrix P−1
prev, inverse view matrix of previous frame V−1

prev, view
projection matrix of next frame V,P

Output: shading-rate image S
1 // forward projection: compute new NDC coordinates
2 vec3 posw ⇐ back project x,y,D[x,y] with P−1

prev,V−1
prev ;

3 xc, yc ⇐ forward project posw with V,P;
4 // compute shading rate
5 float mp ⇐ length(Ms[x, y]);
6 float mc ⇐ length(xc − x, yc − y);
7 float m⇐ 1− avg(mc,mp);
8 int sr ⇐ floor(m ∗ 11);
9 int prevSr ⇐ clamp(S[xc, yc], sr − 1, sr + 2);

10 sr ⇐ max(sr, prevSr);
11 S[xc, yc]⇐ sr;

4.3 Eye-Tracking and Foveated Rendering
As discussed in Chapter 3, eye trackers are well researched and working devices. Eye
tracking is a form of user input and should therefore not interfere with rendering at

41

4. Techniques and Algorithms for Variable Rate Shading

all. For this reason, we introduce an interface where the application can fetch the last
seen eye position as a two-dimensional vector with values in a range between [0,1] for
the x and y coordinate. The internals of the eye tracking run in a parallel thread, only
updating the data returned by the interface with a single atomic operation. Querying the
last eye data runs almost without blocking, e.g., the application receives the last known
position or awaits a single atomic address copy and then receives the last known position.

For the integration of foveated rendering with VRS, we focused on the part of how
the shading-rate image is generated. The shading-rate image basically stays the same
and only a different viewport is needed to shift the center around. An example of such
a shading-rate image can be viewed in Figure 4.5. In Algorithm 4.8 the steps of our
foveated rendering are shown. The base shading-rate image computed at line 1 is double
the size in width and height and can look like Figure 4.5 without the overlay highlighting
the excerpts. Before the draw calls are submitted on line 6, at line 4 the right excerpt of
the shading-rate image is copied into the actual shading-rate image and this image is
then set on line 5. As such copy processes are quite fast on modern hardware there is
not much overhead. In order to define the excerpt, as the required width and height are
known, only the offsets need to be computed. The offset is exactly the width and height
times the position of the eye in the range [0,1].

Figure 4.5: The base shading-rate image used for foveated rendering. Each frame, the
eye focus is captured via an eye-tracking device and the fitting excerpt of this base
shading-rate image is copied into the final shading-rate image. The four quadrants that
are used if the eye focus lies at a corner and the center quadrant if the eye focus lies at
the center are highlighted with a border.

42

4.4. TAA-Adaptive Shading

Algorithm 4.8: Render Engine: Foveated Rendering
Input: Color image used for rendering the scene C, depth image D, shading-rate

image S,base shading-rate image B, motion vector image M
1 B⇐ compute base shading-rate image;
2 while renderLoop do
3 float ex, ey ⇐ get eye position;
4 S⇐ shift B with offsets (width ∗ ex, height ∗ ey);
5 set S for draw calls;
6 C,D,M⇐ draw scene;
7 C⇐ apply temporal anti-aliasing to C using M;
8 end

4.4 TAA-Adaptive Shading
In this section we present TAA-Adaptive Shading, our completely novel approach for
defining the shading rate. TAA-Adaptive Shading utilizes information generated by TAA
as a side-product to reduce aliasing artefacts.

4.4.1 Derivation

TAA, developed by Karis [Kar14] , uses the information from previous frames for spatial
as well as temporal anti-aliasing. As described with the aid of Figure 2.5 in Chapter 2,
TAA is basically supersampling over time. Each frame, another subpixel is sampled
utilizing a low-discrepancy progressive sequence, e.g., Halton sampling. This newly
sampled subpixel is combined with the previously sampled subpixels by blending them
with an adaptive blend factor. The blend factor defines how strong the history data
should be weighted compared to the current frame’s data. To take motion into account,
TAA utilizes a backward projection to receive the correct history values. Sampled history
values may not always be correct, as parts of the scene may have been invisible previously
due to perspective or moving objects. Wrong history values result in artefacts called
ghosting.

To reduce ghosting artefacts, Karis [Kar14] proposes a clipping technique. The historic
color value of a specific pixel is clipped to a range computed by the local neighbourhood
of the corresponding pixel in the current frame. In the original algorithm, the minimum
and maximum color values of the local neighbourhood of the corresponding pixel are
combined with a configurable parameter to define the clipping distance and thresholds,
the clipping factors.

This approach works well for reducing ghosting. However, it introduces another artefact,
namely flickering. Flickering occurs with a static camera and missing subpixel informa-
tion as a consequence of undersampling. As shown in Figure 4.6, the history frame’s
corresponding pixel color is clipped to the current frame’s pixel color which has divergent
subpixel information. The final value is near this divergent subpixel information. In

43

4. Techniques and Algorithms for Variable Rate Shading

the next frame, another subpixel is sampled which diverges from the previous frame’s
corresponding pixel color and the color changes again. This results in constantly changing
color values for one pixel. The whole image has flickering regions. The workaround
proposed by Karis for this problem is to reduce the blend factor in favor for the current
frame when the history values are near the clipping factors [Kar14]. This solution in-
troduces more ghosting and blurring back into the scene. Coarse shading rates of VRS
amplify the problem as the subpixel regions are as large as one or multiple pixels.

2 subpixels

2
su
bp

ix
el
s

Sampled Subpixel

2 subpixels 2 subpixels

2
su
bp

ix
el
s

2
su
bp

ix
el
s

1.

2 .

3.

Historic Color Value Clipped Color Value

Figure 4.6: For pixels with non-homogeneous subpixel information, e.g., a higher frequency
than resolution, depending on the sampled subpixel, a different color is computed. In the
first row, the top-left subpixel, marked red, is sampled. The color is dark, the historic
color is dark and, therefore, inside the clipping range. In the second row, a bright subpixel
is sampled. The historic color is dark and therefore clipped to the bright color value. In
the third row, the sampled subpixel is dark, and the bright historic color value is clipped
to the darker value. Whenever a subpixel with a diverging color value is sampled, the
effective color changes and the pixel flickers.

44

4.4. TAA-Adaptive Shading

In the case of color-value clipping, flickering emerges as the result of undersampling a
signal. This core understanding of flickering leads us to our novel approach for controlling
the shading rate: TAA-Adaptive Shading. The fundamental strategy is to increase the
shading rate for higher color differences between a pixel in the current frame and the
corresponding pixel in the history frame. Conversely, the shading rate can be reduced
if the difference gets smaller, as it can be assumed that the history values have a high
probability of being correct and not undersampled.

Another problem introduced by applying TAA on coarsely shaded images has its roots in
the computation of the clipping factors. With coarse shading, the defined local neigh-
bourhood used to compute the clipping range might carry the same color values, which
restrains the clipping region to a single color. As such, the defined local neighbourhood is
not representative of the pixel and in fact, no anti-aliasing happens as the current frame’s
color value is used. To solve the coarse shading clipping-range restriction, the size of
the neighbourhood should be scaled with the effective shading rate of a pixel. A lower
shading rate and therefore a larger coarse pixel size results in a larger neighbourhood.

The problem of a non-representative neighbourhood due to coarse shading has already
been addressed by Patney et al. [PSK+16], by introducing variance sampling to TAA.
Variance sampling utilizes statistical moments to define a clipping distance and with it the
clipping factors. Instead of computing the min and max values of the local neighbourhood
for every pixel, they compute the first two raw moments of the local color distribution
and derive the mean and the variance. The clipping distance is defined by the standard
deviation computed with the variance. The clipping factors are the mean plus/minus the
standard deviation. Since these statistical moments are linear quantities, they can be
pre-filtered with mipmapping. The shading rate is used to select the right mipmap level.

We use these clipping factors sampled at the right mipmap level computed by variance
sampling during TAA to define our shading rate. Color values inside the so defined
clipping region are assumed to be historically correct and are therefore coarsely shaded.
Color values outside of this clipping region are assumed to be undersampled or wrong
and are therefore supersampled. This approach of utilizing the clipping distance could
even be utilized for other application scenarios where a division in undersampled and
oversamples regions in real time is necessary.

4.4.2 Algorithm

The steps of the base algorithm are shown in Figure 4.7 and are similar as for Content-
Adaptive Shading described in Section 4.1, shown in Figure 4.1. However, the computation
of the shading-rate properties is done during the post-processing step of TAA. For
the computation of the shading-rate image, the same common steps as used by our
Content-Adaptive Shading algorithm, shown in Figure 4.2., are performed. However, the
computation of the shading rate differs as it depends on the clipping factors of TAA.

Algorithm 4.9 gives an overview of the steps and commands issued on the CPU. We start
by clearing the clipping distance image to white on line 1, which is equal to setting the

45

4. Techniques and Algorithms for Variable Rate Shading

Clear Shading Rate Image

Scale Down Textures Containing Clipping

Distance from the Previous Frame

Compute Shading Rate Image Using

Property from the Previous Frame:

Clipping Distance

Draw Scene

TAA and Compute Clipping Distance of

the Current Frame

Figure 4.7: The basic steps of our algorithm for TAA-Adaptive Shading. These steps are
executed inside the render loop in each iteration. At the start, the shading-rate image
is cleared. Then, the image containing the properties computed during the previous
iteration is downscaled and used to compute the shading rate for each 16x16 pixel region.
Subsequently, the scene is drawn using the computed shading-rate image. Finally, the
drawn image is anti-aliased using TAA and the clipping distance for the next iteration is
computed.

whole image to the maximum shading rate as all regions are initially undersampled. On
line 3, the shading-rate image is again reset to a default shading rate due to pixels not
covered by the forward projection, as discussed in Section 4.1. Afterwards, on line 4,
the image is scaled down to 1

16(w, h), where w and h denote the width and height of the
image, to receive an average color difference for each 16x16 tile. As discussed before,
downscaling uses bilinear interpolation, averaging each of the 16x16 tiles. In the next
step on line 5, the shading-rate image is computed with a compute shader utilizing the
historic color differences and on line 6 set for subsequent draw calls like on line 7. For
variance sampling, the mean, the variance and the corresponding mipmaps are computed
at line 8. These images are then used on line 9 to perform TAA.

In Algorithm 4.10 the shading rate is computed based upon the previously saved color
difference. The data from the previous frame is forward projected on lines 2 and 3, as

46

4.4. TAA-Adaptive Shading

Algorithm 4.9: Render Engine: TAA-Adaptive Shading
Input: Color image used for rendering the scene C, depth image D, clipping

distance image T, clipping distance image scaled down Ts, shading-rate
image S, motion vector image M, color average image Ca and color
variance image Cv

1 T⇐ clear image with white, e.g., max. distance;
2 while renderLoop do
3 S⇐ clear image to default shading rate;
4 Ts ⇐ scale down T to 1

16resolution;
5 S⇐ computeShadingRateImage(Ts,S); // see Algorithm 4.10
6 set S for draw calls;
7 C,D,M,T⇐ draw scene;
8 Ca,Cv ⇐ compute color average and variance of C with mipmaps;
9 C⇐ apply temporal anti-aliasing to C using M,Ca,Cv; // see

Algorithm 4.11
10 end

discussed in Section 4.1. The final color difference value is multiplied with the highest
index of an ascending ordered shading-rate palette on line 5. The result is the shading
rate, an index in this palette. On lines 6 and 7, our shading-rate stabilization technique
is applied. Finally, on line 8, the shading rate is saved into the shading-rate image.

Algorithm 4.10: computeShadingRateImage: TAA based Compute Shader
Input: clipping distance image scaled down Ts, shading-rate image S, inverse

projection matrix P−1
prev, inverse view matrix of previous frame V−1

prev,
view projection matrix of next frame V,P

Output: shading-rate image S
1 // forward projection: compute new NDC coordinates
2 vec3 posw ⇐ back project x,y,D[x,y] with P−1

prev,V−1
prev ;

3 xc, yc ⇐ forward project posw with V,P;
4 // compute shading rate
5 int sr ⇐ floor(Ts[x, y] ∗ 11);
6 int prevSr ⇐ clamp(S[xc, yc], sr − 1, sr + 2);
7 sr ⇐ max(sr, prevSr);
8 S[xc, yc]⇐ sr;

Algorithm 4.11 shows our adaptation of TAA developed by Karis[Kar14] including
variance shading, as described by Patney et al. [PSK+16]. Utilizing the mipmaps
computed for variance sampling, on line 4 the shading rate specifies the mipmap level to
fetch the correct mean and variance. For example, a 2x2 shading rate can use the second
mipmap level and a shading rate of 4x4 the third. Therefore, variance sampling allows us
to have an efficient multi-scale TAA implementation. Additionally, it reduces ghosting

47

4. Techniques and Algorithms for Variable Rate Shading

better than min-max neighbourhood clipping as outliers have less impact. In order to
compute the shading-rate image, we extend this TAA post-processing program on line 6
to compute the absolute difference between the mean color value of the current frame at
the mipmap level of the current shading rate and the value of the history frame. This
value is then divided by the clipping distance computed during TAA on line 5. With
this division, values larger than the clipping distance are transformed to values larger
than one and values inside the clipping distance are transformed into values smaller than
one. By dividing by two, the value range [0, 0.5] belongs to coarse shading rates and the
region [0.5, 1] above the threshold corresponds to supersampling shading rates. The final
value is saved in an additional image.

Algorithm 4.11: TAA: additional property clipping distance
Input: Color image C, color average image Ca, color variance image Cv,

previous color image used for rendering the scene Cp, depth image D,
inverse projection matrix P−1

prev, inverse view matrix of previous frame
V−1

prev, view projection matrix of next frame V,P, effective shading rate
sr (sr.x/sr.y = fragment size, sr.z = sample count)

Output: Anti-aliased color image C, clipping distance image T/t
1 // back-project and sample correct history value
2 ...
3 cp ⇐ Cp at back-projected position;
4 ca, cv ⇐ color average and variance of Ca at mipmap level sr.x+sr.y

4 + 1;
5 s⇐ compute clipping distance with ca and cv;
6 t = length(abs(cp−ca)

2s);
7 // anti-alias C with cp, ca and s
8 ...

48

CHAPTER 5
Evaluation

The evaluation of our implemented VRS techniques consists of a performance and a
quality analysis. For the performance analysis, we captured the frame times during
an animation in various test configurations. The quality comparison of the different
VRS approaches is based on frames which where captured at fixed animation-times and
compared in terms of Peak Signal to Noise Ratio (PSNR) and Structure Similarity Index
(SSIM). These metrics have also been used by Vaidyanathan et al. [VST+14] to evaluate
their software implementation of a VRS approach, and by Hillesland and Yang [HY16],
who used it to evaluate their approach to VRS, texel shading.

The test configurations vary in two scenes, forward and deferred shading, four resolutions
and four MSAA sample configurations, which control the possible shading rates, making
a total of 64 configurations for five runs, one per algorithm and one with VRS disabled.
The first scene, displayed in Figure 5.1, consists of Crytek’s Sponza1, with detailed normal
maps for each surface lit by 100 point lights and one directional light. The second scene,
displayed in Figure 5.2, is an island in the sea consisting of large flat surfaces. Details
are introduced by small tiles of grass and palms with geometry-only leaves to evaluate
geometric aliasing. As for the shading model, physically based shading was used, which
introduces heavy fragment shader loads (970 SPIR-V instructions).

We compare the performance of forward rendering and deferred rendering for all VRS
techniques we implemented. For each of the following four resolutions, we used 1x,2x,4x
and 8x MSAA samples:

• 1920x1080 (Full HD)

• 2560x1440 (WQHD)
1created by Frank Meinl, modified by Morgan McGuire in 2014 and by Johannes Unterguggenberger

in 2018

49

5. Evaluation

Figure 5.1: The Sponza scene: Frank Meinl’s Crytek Sponza model with detailed normal
maps for each surface lit by 100 point lights and one directional light.

• 3840x2160 (UHD-I/4k)

• 7680x4320 (UHD-II)

The animation has a duration of ten seconds and its camera path transitions from an
overview shot over the complete scene to various close-up views.

The hardware which served for the evaluation consists of an Intel Core i7-8700k at a
clock speed of 5.0 GHz, 16 GiB DDR4 3200 MHz memory and RTX 2080 Ti at a clock
speed of 1650 MHz featuring 11 GiB GDDR5 1750 MHz memory.

5.1 Quality and Performance

As VRS allows both a higher performance by coarse shading and higher quality by
supersampling, we evaluate by varying the MSAA sample configurations described above
and discuss which trade-offs can be considered. In Figure 5.3 the performance for all
configurations for the Sponza scene is visualized. The SSIM and PSNR values for all
configurations computed in the Sponza scene are shown in Figure 5.4 and Figure 5.5,
respectively. The ground truth used for the SSIM and PSNR computations is represented
by images rendered at a resolution of 7680x4320 with 8x MSAA with VRS disabled.
In all figures, from 5.3 to 5.9, “NONE” will be the configuration with VRS disabled,
“VRS CAS TEXEL” stands for Content-Adaptive Shading based on texel differentials,

50

5.1. Quality and Performance

Figure 5.2: The Island scene: An island in the sea with large flat surfaces and palm
leaves consisting of geometry to evaluate geometric aliasing.

“VRS CAS EDGE” for Content-Adaptive Shading based on edges, “VRS MAS” for our
Motion-Adaptive Shading algorithm and “VRS TAA” for our novel method of TAA-
Adaptive Shading. In Table 5.1 the used shading rates per MSAA sample configuration
are given. With higher numbers of configured samples, more supersampling shading
rates get enabled and fewer coarse shading rates can be used, as discussed in Chapter 3.
As Figure 5.3 shows, all VRS techniques besides Motion-Adaptive Shading using the
configuration with 1x MSAA sample are at least 25% faster compared to not using VRS
in terms of frame times for our configuration. At low resolutions, the performance gain
of Motion-Adaptive Shading is negligible, while at resolutions equal or above 7680x4320
the performance gain is 25%, too. VRS TAA and VRS CAS TEXEL show similar frame
times for resolutions as high as 3840x2160 at 2x MSAA compared to rendering with
a lower resolution of 1920x1080 with VRS disabled and are four times faster in terms
of frame times compared to rendering at the same resolution with VRS disabled while
preserving a similar quality. At a very high resolutions of 7680x4320 with 8x MSAA
samples, these two techniques still outperform the other techniques and show frame
times as low as two-thirds of the ground truth’s. The quality for this configuration is
very close to the ground truth with an SSIM of 98%, as can be seen in Figure 5.4. We
noticed that, while rendering with VRS disabled, more MSAA samples are almost for free
on modern hardware. In Figure 5.4 the correlation between configured MSAA samples
and quality can be observed. This is expected, as more MSAA samples result in higher
supersampling rates and less coarse shading, therefore result in better quality at the
cost of performance. In terms of quality, aside from NONE, VRS MAS delivers the best

51

5. Evaluation

MSAA Samples Coarse Shading Rates Supersampling Shading Rates

1x 1x1, 2x2, 4x4 -
2x 1x1, 2x2, 2x4 2x
4x 2x2 2x, 4x
8x 1x2 2x, 4x, 8x

Table 5.1: Used shading rates per MSAA sample configuration.

results, which are always very close to the renderings with VRS disabled and sometimes
even better, as VRS MAS supersamples still regions. However, the SSIM values of all
methods are between 81% and 98% and therefore deliver reasonable results. VRS TAA
and VRS CAS TEXEL perform similarly in terms of quality whereby VRS TAA performs
slightly better for low MSAA samples like 1x or 2x. VRS CAS EDGE outperforms these
two at lower resolutions, though it produces very similar results up from 3840x2160 with
4x MSAA. The PSNR values in Figure 5.5 support these discussed quality comparisons
except for resolutions of 7680x4320 and above, where VRS MAS is the only technique
that produces similar PSNR values and as such quality as renderings with VRS disabled.
The PSNR value for the configuration with VRS disabled at the resolution 7680x4320
with 8x MSAA samples is equivalent to the ground truth and therefore infinite, which is
the reason why it is not displayed in Figure 5.5.

The performance metrics for the Island model, displayed in Figure 5.6, are quite similar,
despite one major difference: VRS CAS EDGE performs similarly to VRS CAS TEXEL
and VRS TAA. The reason for this might be that the Island model has more flat surfaces
while the Sponza model with its heavily normal-mapped surfaces does not offer many
surfaces without edges to optimize. The value ranges of the SSIM metric displayed
in Figure 5.7 is very close and highlights that quality is insignificantly reduced by our
VRS techniques in such scenes, with a worst SSIM value of 99%. Similarly, the PSNR
values displayed in Figure 5.8 have, for almost all VRS techniques, per configuration a
maximum difference of three. Only for the highest resolution of 7680x4320 and at the
highest sample rate of 8, VRS MAS shows higher quality as all the other techniques.

5.2 Forward and Deferred Shading Performance
Comparison

With deferred shading, the MSAA resolve has to take place in the lighting pass, which
makes it more expensive. This also has an impact on supersampling with VRS, as can be
observed in Figure 5.9. The overlayed bars are frame times computed by deferred shading
while the background bars are computed with forward shading. With only one MSAA
sample, most of the techniques are faster or at least almost as fast as with deferred
shading enabled. For higher MSAA sample counts, deferred shading falls behind forward
shading, and at 8x MSAA frame times show a substantial overhead. VRS CAS TEXEL

52

5.3. Temporal Artifacts

and VRS TAA delivery the same or better performance for all configurations in the
Sponza scene with forward shading and should, therefore, be preferred for scenes like
Sponza. For the island scene, as it is more simple in terms of lighting, deferred shading
is slower for all configurations. Additionally, VRS may already reduce the shader load
with coarse shading and therefore reduces the advantage of deferred shading. However,
for scenes that profit highly from deferred shading, performance improvements may be
possible, at least with no MSAA samples.

5.3 Temporal Artifacts
In Chapter 4 we discussed the temporal instability of the shading-rate image for techniques
that base the shading rate on properties of the previous frames. Due to the oscillation
of the shading rate, regions of pixels change their color value continuously. This effect
is reduced by temporal anti-aliasing, as the color-changing pixels are averaged with
color values from the corresponding pixels of previous frames. Additionally, we applied
our variant of temporal anti-aliasing directly to the shading-rate image to stabilize the
shading rates. Both these measures are effective in reducing the number of shading
rate changes and their visibility. However, they cannot eliminate this effect completely.
In Figure 5.10 an example of these temporal artefacts can be seen. Three consecutive
frames were captured at a frame time of about 5ms. The excerpt used for the comparison
is highlighted with a white border in Figure 5.10a. Three differences are highlighted
in Figures 5.10b, 5.10c, and 5.10d by red circles. These effects emerge especially in
dark scenes with non-flat surfaces and near lights because there color differences of
neighbouring pixels are high, as is the case for the Sponza test scene. In the Island
test scene, such artefacts could not be observed. Additionally, these artefacts could
only be observed for configurations focusing on performance over quality because these
configurations heavily use the maximum coarse shading rates. With configurations that
disable the maximum coarse shading rate, like 4x MSAA samples, such artefacts are
drastically reduced and are almost not visible in the Sponza scene.

53

5. Evaluation

0 10 20 30 40 50 60 70 80 90

Frame Times in ms

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a
m

p
le

s

Frame Times per Resolution and MSAA Configuration, for the Sponza Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.3: The bar chart shows how rendering at different resolution configurations
affects performance of ordinary rendering (labeled “NONE”, which means VRS disabled,
represented by the blue line) and of rendering with VRS enabled (orange, yellow, purple,
and green lines, each representing a different VRS technique as described in Chapter 4).
The resolution configurations vary in framebuffer resolution and the number of MSAA
samples. The more MSAA samples are used, the more supersampling shading rates are
enabled and, consequently, more coarse shading rates get disabled.

54

5.3. Temporal Artifacts

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

SSIM

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a

m
p

le
s

SSIM per Resolution and MSAA Configuration, for the Sponza Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.4: This bar chart displays the quality measured with SSIM for the Sponza
scene for each configuration and VRS technique as described in Figure 5.3. It highlights
that quality depends on the number of MSAA samples. Especially methods with better
performance as shown in Figure 5.3, profit from higher sample counts. The ground truth
was set by images rendered without VRS at a resolution of 7680x4320 with 8x MSAA.

55

5. Evaluation

0 10 20 30 40 50 60

PSNR

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a

m
p

le
s

PSNR per Resolution and MSAA Configuration, for the Sponza Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.5: This bar chart shows the quality measured with PSNR for the Sponza scene for
each configuration and VRS technique as described in Figure 5.3. For the computations,
the same ground truth images as for the SSIM evaluation displayed in Figure 5.4 were
used. In contrast to the SSIM evaluation, PSNR values of the faster techniques show a
higher difference to the ground truth for larger resolutions like 7680x4320.

56

5.3. Temporal Artifacts

0 5 10 15 20 25 30 35

Frame Times in ms

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a
m

p
le

s

Frame Times per Resolution and MSAA Configuration, for the Island Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.6: The performance for the Island scene in frame times for each configuration is
visualized by this chart. The structure is described in and based on Figure 5.3 for the
frame times of the Sponza scene. The results are very similar to the Sponza frame times,
besides that VRS CAS EDGE performs similarly as VRS CAS TEXEL or VRS TAA.

57

5. Evaluation

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1

SSIM

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a

m
p

le
s

SSIM per Resolution and MSAA Configuration, for the Island Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.7: This bar chart displays the quality measured with SSIM for the Island scene
for each configuration and VRS technique as described in Figure 5.3. It underpins the
results measured for the Sponza scene shown in Figure 5.4, though the quality gap of the
different techniques is smaller for the Island scene.

58

5.3. Temporal Artifacts

0 10 20 30 40 50 60 70

PSNR

7680x4320x8

7680x4320x4

7680x4320x2

7680x4320x1

3840x2160x8

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a

m
p

le
s

PSNR per Resolution and MSAA Configuration, for the Island Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.8: This chart shows the quality measured with PSNR for the Island scene for
each configuration and VRS technique as described in Figure 5.3. The values show,
compared to the PSNR values of the Sponza scene displayed in Figure 5.5, very small
differences for each configuration and VRS technique.

59

5. Evaluation

0 5 10 15 20 25 30 35

Frame Times in ms

3840x2160x4

3840x2160x2

3840x2160x1

2560x1440x8

2560x1440x4

2560x1440x2

2560x1440x1

1920x1080x8

1920x1080x4

1920x1080x2

1920x1080x1

R
e

s
o

lu
ti
o

n
 a

n
d

 M
S

A
A

 S
a

m
p

le
s

Frame Times per Resolution and MSAA Configuration and Overlayed Deferred Lines, for the Sponza Scene

NONE

VRS MAS

VRS CAS EDGE

VRS TAA

VRS CAS TEXEL

Figure 5.9: This chart visualizes the measured performance of forward shading and
deferred shading (box overlays) for the Sponza scene in frame times for each configuration.
Deferred shading can improve performance for low MSAA sample counts while with
higher numbers of MSAA sample counts the performance demands increase significantly.

60

5.3. Temporal Artifacts

(a)

(b) (c) (d)

Figure 5.10: Example of temporal artefacts occurring in the Sponza Scene. The excerpt
that is investigated is highlighted in (a) by a white border. In (b),(c) and (d), consecutive
frames are displayed and three regions with differences marked by red circles.

61

CHAPTER 6
Conclusion and Future Work

In this thesis, we examined VRS, a new hardware feature introduced with the NVIDIA
Turing micro-architecture. We gave a detailed explanation of what can be achieved with
it, discussed its potential and which limitations for this new technology arise. Especially
the limitations that not all shading rates can be used at the same time and that they are
limited by the number of configured MSAA samples is an interesting finding.

Exploiting the capabilities of VRS, we developed various novel algorithms for selecting a
shading rate per 16x16 pixels region. Content-Adaptive Shading and Motion-Adaptive
Shading are two standard strategies for selecting appropriate shading rates. We pro-
pose two new approaches for Content-Adaptive Shading, namely edge-based and texel
differential-based Content-Adaptive Shading. Depending on the scene content’s properties
used for computing the shading rate, the shading rate may be unstable which introduces
temporal artefacts.

To counter the artefacts introduced by unstable shading rates, we apply shading rate-
dependent TAA using variance sampling. Additionally, we propose a technique for
stabilizing the shading rate, independent of the shading-rate selection mechanism. Our
stabilization technique applies an adaptation of TAA on the shading-rate image itself and
successfully stabilizes the shading rate in many cases. However, shading-rate instabilities
are not eliminated completely and as such, temporal artefacts can arise depending on
the concrete properties.

We also introduce a completely novel algorithm, TAA-Adaptive Shading, based on the
idea of calculating the shading rate from different color samples over time. The core
concept behind this algorithm is that color deviations of different subpixels inside the
same pixel indicate additional subpixel information. In contrast, very similar colors
of different subpixels inside the same pixel may indicate homogeneous regions. This
information can easily be derived during TAA, which our algorithm is based on.

63

6. Conclusion and Future Work

Additionally, we present concrete implementations for Motion-Adaptive Shading, based
on the motion of multiple frames, and the integration with a deferred shading pipeline.

Our results show that some of our algorithms can increase the performance by a factor
of four or allow the increase of the resolution by the same factor while not affecting
performance. The quality of our algorithms in terms of PSNR and SSIM is high, with
SSIM values of 82%, to very high at SSIM values of 98%. The integration of our best-
performing algorithms into existing rendering pipelines is straightforward, requires few
additional steps and few changes to the pipeline itself.

Further temporal stabilization of the shading rate could be an interesting challenge for
future work. Besides temporal stabilization of the shading rate, temporal stabilization of
the final color could hide the effects of unstable shading rates. For example, previous
frames could be weighted stronger during TAA for static cameras to alleviate the effects
of unstable shading rates even more. However, this approach does not work for moving
objects in the scene as ghosting artefacts would be introduced by a higher weight for
previous frames. Objects in motion could be tracked by their motion vectors and regions
in motion could be assigned a lower weight for previous frames compared to the stable
regions. An example of such regions would be the region where objects have moved away
from.

Another possibility for future work is the creation of new shading rate control algorithms,
as Microsoft has standardized a new version of VRS for DirectX 12 which allows to
control the shading rate per primitive. 1. This new control mechanism could enable
algorithms that do not need to know information about the scene beforehand and could
show more temporal stability. These new algorithms could use any information present
in the vertex shader, like position or depth. Other properties could be precomputed in
the vertex shader to define the shading rate. As the DirectX 12 specification defines a
combination of the shading rate from the shading-rate image and the primitive, shading
rates per primitive could be used to stabilize the shading rate and, therefore, reduce the
temporal artefacts.

As discussed in Chapter 3, the Vulkan specification states that the tile size for the
shading-rate image is implementation-dependent. The same applies to the number of
coverage samples. In future hardware generations, these limitations could be removed or
at least extended with more supported configurations. With smaller tile sizes, problems
as present in the scene with the brick wall could be avoided at the cost of more expensive
shading-rate image computations as the resolution needs to be increased. Maybe the tile
size could even be configured dynamically and an additional shading-rate image specifies
the different tile sizes. This concept could be taken further by a shading-rate pyramid,
e.g., by mipmapped shading-rate images. This leads to another topic, the number of
shading rates. By increasing the number of coverage samples and MSAA samples, more
shading rates could be used at the same time. Additionally, more shading rates could be

1 https://devblogs.microsoft.com/directx/variable-rate-shading-a-scalpel-in-a-world-of-
sledgehammers/

64

easily imagined, as coarse shading rates like 8x8, 16x16, or supersampling shading rates
like 16x, 32x. Especially higher coarse shading rates will be needed as screen resolutions
increase. In conclusion, we expect many new algorithms based on VRS and its upcoming
extensions, given its ease of integration and its potential.

65

List of Figures

1.1 A visible edge at the border of different shading rates in the rendered image
at the left-hand side. The right-hand side shows the shading-rate image with
1x1 shading in the green circle, 2x2 in the cyan circle and 4x4 in the blue
circle. 4

2.1 Foveated rendering method based on three layers at different resolutions by
Guenter et al. [GFD+12]. 8

2.2 An example of drawing a triangle with MSAA disabled and with four MSAA
samples. Reprinted from Pettineo [Pet12] 10

2.3 FXAA visualization . 11
2.4 The main steps of amortized super sampling Yang et al. [YNS+09]. The four

buffers on the left-hand side represent the four previous frames. In the current
frame, at step 1, the scene is rendered with the next offset. In step 2., one of
the subpixel buffers is updated with the result of this rendering. In step 3.,
the final image is computed by averaging the four subpixel buffers. 12

2.5 The main steps of TAA. Left in the bottom row, the current frame is sampled
at the next Halton sample. At the top row, the previous frame is reprojected
onto the current frame. Next, still in the top row, a clipping space based on
the color values of the current frame is computed and used to clip the luma
values of the reprojected frame. This image is then combined with the current
frame by the weight α. The result of this weighted average then gives the
anti-aliased new frame. Adapted from Karis [Kar14]. 13

3.1 Supported coarse shading rates with an example of VRS in a racing scene.
Reprinted from the NVIDIA Turing architecture whitepaper [NVI18]. . . 16

3.2 Coarse pixel center and example centroid for coarse shading rates 2x1 and
2x2. The centroid is only guaranteed to be in the intersection of the primitive,
e.g., a triangle, and the coarse pixel. It can, therefore, be anywhere inside of
this intersection. Reprinted from Bhonde/NVIDIA [Bho18]. 17

67

3.3 The process of the shading rate selection with the indirection step visualized.
(u, v) coordinates in the shading-rate image are computed based on the (x, y)
coordinates in the image. These coordinates are used to fetch an index.
Subsequently, the fetched index is used to look up the actual shading rate in
the Shading Rate Lookup Table. Reprinted from Bhonde/NVIDIA [Bho18]. 18

3.4 An object moved from left to right, perceived blurred by our eyes. On the left,
the object is displayed. Top right, the motion is schematically represented.
The image bottom right shows the possible perceived result. Reprinted from
NVIDIA Turing architecture whitepaper [NVI18]. 20

3.5 Example scene with an island in the sea. The island has more details and
edges and is therefore shaded with a higher rate. 22

3.6 The tile size as a limitation: A brick wall with too small bricks for edge-based
Content-Adaptive Shading. 23

3.7 The MSAA sample count as a limitation: The shading-rate image with the
corresponding palette values. 24

3.8 The MSAA sample count as a limitation: MSAA is disabled for this image. The
shading rate image is distinguished as the a-section, the effective shading rate
by the b-section. The full shading-rate image can be viewed in Figure 3.7. This
image depicts that all coarse shading rates are possible but no supersampling
shading rates can be used with no MSAA samples. 24

3.9 The MSAA sample count as a limitation: 2x MSAA samples are configured
for this image. The shading-rate image is distinguished as the a-section, the
effective shading rate by the b-section. The full shading-rate image can be
viewed in Figure 3.7. With 2x MSAA samples x2 supersampling is possible.
This image also shows how the coarse pixel size is reduced to the maximum
possible with a preference for the y-coordinate. 4x2 coarse shading is not
possible and reduced to 2x2 while 4x4 and 2x4 are both effectively have the
2x4 coarse pixel size. 25

3.10 The MSAA sample count as a limitation: 4x MSAA samples are configured
for this image. The shading-rate image is distinguished as the a-section, the
effective shading rate by the b-section. The full shading-rate image can be
viewed in Figure 3.7. With 4x MSAA samples up to x4 supersampling is
possible. Coarse shading is limited to 2x2 coarse pixel sizes. 26

3.11 The MSAA sample count as a limitation: 8x MSAA samples are configured
for this image. The shading-rate image is distinguished as the a-section, the
effective shading rate by the b-section. The full shading-rate image can be
viewed in Figure 3.7. With 8x MSAA samples up to x8 supersampling is
possible. This image again shows the preference for the y-coordinate during
hardware adaptation of the effective shading rate. 2x1 coarse shading is not
possible and reduced to 1x1 while all other coarse shading rates are reduced
to 1x2. 27

68

4.1 The basic steps of our algorithm for Content-Adaptive Shading. These steps
are executed inside the render loop in each iteration. At the start, the
shading-rate image is cleared. Then, the image containing the properties
computed during the previous iteration is downscaled and used to compute
the shading rate for each 16x16 pixel region. Finally, the scene is drawn using
the computed shading-rate image and the properties for the next iteration
are computed. 31

4.2 The common steps for the computation of the shading-rate image. First,
the shading rate is derived from the properties. This process depends on
the used properties. In the next step, the coordinates in the next frame are
computed by a forward projection. Finally, the shading rate is stabilized by
our TAA-based approach and saved to the new coordinates. 32

4.3 Changes in the shading rate lead to changes in the color output and therefore
to flipping shading rates. 34

4.4 The basic steps of our algorithm for Motion-Adaptive Shading. These steps
are executed in each iteration of the render loop. In the beginning, the
shading-rate image is cleared. Then, the motion vector image is averaged for
each tile and used to compute the shading rate. Finally, the scene is drawn
using the computed shading-rate image. The motion vectors are computed by
other effects, like motion blur or TAA. 40

4.5 The base shading-rate image used for foveated rendering. Each frame, the
eye focus is captured via an eye-tracking device and the fitting excerpt of
this base shading-rate image is copied into the final shading-rate image. The
four quadrants that are used if the eye focus lies at a corner and the center
quadrant if the eye focus lies at the center are highlighted with a border. 42

4.6 For pixels with non-homogeneous subpixel information, e.g., a higher frequency
than resolution, depending on the sampled subpixel, a different color is
computed. In the first row, the top-left subpixel, marked red, is sampled.
The color is dark, the historic color is dark and, therefore, inside the clipping
range. In the second row, a bright subpixel is sampled. The historic color is
dark and therefore clipped to the bright color value. In the third row, the
sampled subpixel is dark, and the bright historic color value is clipped to the
darker value. Whenever a subpixel with a diverging color value is sampled,
the effective color changes and the pixel flickers. 44

4.7 The basic steps of our algorithm for TAA-Adaptive Shading. These steps are
executed inside the render loop in each iteration. At the start, the shading-rate
image is cleared. Then, the image containing the properties computed during
the previous iteration is downscaled and used to compute the shading rate for
each 16x16 pixel region. Subsequently, the scene is drawn using the computed
shading-rate image. Finally, the drawn image is anti-aliased using TAA and
the clipping distance for the next iteration is computed. 46

69

5.1 The Sponza scene: Frank Meinl’s Crytek Sponza model with detailed normal
maps for each surface lit by 100 point lights and one directional light. . . 50

5.2 The Island scene: An island in the sea with large flat surfaces and palm leaves
consisting of geometry to evaluate geometric aliasing. 51

5.3 The bar chart shows how rendering at different resolution configurations
affects performance of ordinary rendering (labeled “NONE”, which means
VRS disabled, represented by the blue line) and of rendering with VRS enabled
(orange, yellow, purple, and green lines, each representing a different VRS
technique as described in Chapter 4). The resolution configurations vary in
framebuffer resolution and the number of MSAA samples. The more MSAA
samples are used, the more supersampling shading rates are enabled and,
consequently, more coarse shading rates get disabled. 54

5.4 This bar chart displays the quality measured with SSIM for the Sponza scene
for each configuration and VRS technique as described in Figure 5.3. It
highlights that quality depends on the number of MSAA samples. Especially
methods with better performance as shown in Figure 5.3, profit from higher
sample counts. The ground truth was set by images rendered without VRS
at a resolution of 7680x4320 with 8x MSAA. 55

5.5 This bar chart shows the quality measured with PSNR for the Sponza scene
for each configuration and VRS technique as described in Figure 5.3. For
the computations, the same ground truth images as for the SSIM evaluation
displayed in Figure 5.4 were used. In contrast to the SSIM evaluation, PSNR
values of the faster techniques show a higher difference to the ground truth
for larger resolutions like 7680x4320. 56

5.6 The performance for the Island scene in frame times for each configuration is
visualized by this chart. The structure is described in and based on Figure 5.3
for the frame times of the Sponza scene. The results are very similar to the
Sponza frame times, besides that VRS CAS EDGE performs similarly as VRS
CAS TEXEL or VRS TAA. 57

5.7 This bar chart displays the quality measured with SSIM for the Island scene
for each configuration and VRS technique as described in Figure 5.3. It
underpins the results measured for the Sponza scene shown in Figure 5.4,
though the quality gap of the different techniques is smaller for the Island
scene. 58

5.8 This chart shows the quality measured with PSNR for the Island scene for each
configuration and VRS technique as described in Figure 5.3. The values show,
compared to the PSNR values of the Sponza scene displayed in Figure 5.5,
very small differences for each configuration and VRS technique. 59

5.9 This chart visualizes the measured performance of forward shading and de-
ferred shading (box overlays) for the Sponza scene in frame times for each
configuration. Deferred shading can improve performance for low MSAA sam-
ple counts while with higher numbers of MSAA sample counts the performance
demands increase significantly. 60

70

5.10 Example of temporal artefacts occurring in the Sponza Scene. The excerpt
that is investigated is highlighted in (a) by a white border. In (b),(c) and (d),
consecutive frames are displayed and three regions with differences marked by
red circles. 61

71

List of Tables

3.1 Possible shading rates per MSAA sample configuration. 25

5.1 Used shading rates per MSAA sample configuration. 52

73

List of Algorithms

4.1 Render Engine: Edge-based Content-Adaptive Shading 37

4.2 computeShadingRateImage: Edge based Compute Shader 37

4.3 Render Engine: Texel Differential-based Content-Adaptive Shading . . 38

4.4 computeShadingRateImage: Texel Differential based Compute Shader . 39

4.5 draw scene: additional properties Texel Differentials 39

4.6 Render Engine: Motion-Adaptive Shading 41

4.7 computeShadingRateImage: Motion based Compute Shader 41

4.8 Render Engine: Foveated Rendering . 43

4.9 Render Engine: TAA-Adaptive Shading 47

4.10 computeShadingRateImage: TAA based Compute Shader 47

4.11 TAA: additional property clipping distance 48

75

Bibliography

[AMHH18] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman. Real-Time Render-
ing. AK Peters/CRC Press, 4th edition edition, 2018.

[ASK+12] Deborah Apthorp, D Samuel Schwarzkopf, Christian Kaul, Bahador Bahrami,
David Alais, and Geraint Rees. Direct evidence for encoding of motion
streaks in human. Proceedings of The Royal Society B: Biological Sciences,
2012.

[Bho18] Swaroop Bhonde. Turing variable rate shading in vrworks. NVIDIA developer
blog, https://devblogs.nvidia.com/turing-variable-rate-shading-vrworks/,
September 2018. online, accessed 12.11.2019.

[CML11] Matthäus G Chajdas, Morgan McGuire, and David Luebke. Subpixel
reconstruction antialiasing for deferred shading. In Symposium on Interactive
3D Graphics and Games, pages 15–22. Citeseer, 2011.

[GFD+12] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder.
Foveated 3d graphics. ACM Transactions on Graphics (TOG), 31(6):164,
2012.

[GFS+17] Brian K Guenter, Mark Finch, John Snyder, Steven Drucker, and Desney S
Tan. Foveated image rendering, August 8 2017. US Patent 9,727,991.

[GGNB18] Mark S Grossman, Jason Matthew Gould, Alexander Nankervis, and
Charles Neill Boyd. Variable rate shading, February 15 2018. US Patent
App. 15/237,334.

[GVWD06] Mark Grundland, Rahul Vohra, Gareth P. Williams, and Neil A. Dodgson.
Cross dissolve without cross fade: Preserving contrast, color and salience in
image compositing. Computer Graphics Forum, 25(3):577–586, 2006.

[HGF14] Yong He, Yan Gu, and Kayvon Fatahalian. Extending the graphics pipeline
with adaptive, multi-rate shading. ACM Transactions on Graphics (TOG),
33(4):142, 2014.

77

[HY16] Karl E Hillesland and JC Yang. Texel shading. In Proceedings of the 37th
Annual Conference of the European Association for Computer Graphics:
Short Papers, pages 73–76. Eurographics Association, 2016.

[JGY+11] Jorge Jimenez, Diego Gutierrez, Jason Yang, Alexander Reshetov, Pete
Demoreuille, Tobias Berghoff, Cedric Perthuis, Henry Yu, Morgan McGuire,
Timothy Lottes, et al. Filtering approaches for real-time anti-aliasing. ACM
SIGGRAPH Courses, 2(3):4, 2011.

[Kar14] Brian Karis. High-quality temporal supersampling. Advances in Real-Time
Rendering in Games, SIGGRAPH Courses, 1:1–55, 2014.

[Khr19] The Khronos R© Vulkan Working Group. Vulkan R© 1.1.113 -
A Specification (with all registered Vulkan extensions), June
2019. https://www.khronos.org/registry/vulkan/specs/1.1-
extensions/html/vkspec.html, from git branch: github-master commit:
8897c572ce5473486bb92e3ab9574a5f130794c3.

[Lot11] Timothy Lottes. Fxaa. NVIDIA white paper, 2:8, 2011.

[NFGG18] Ivan Nevraev, Martin JI Fuller, Mark S Grossman, and Jason M Gould.
Variable rate shading, August 23 2018. US Patent App. 15/629,997.

[NVI18] NVIDIA Corporation. NVIDIA Turing Architecture Whitepaper,
2018. https://www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-Turing-
Architecture-Whitepaper.pdf, accessed on 12.11.2019.

[Pet12] Matt Pettineo. A quick overview of msaa. The Danger Zone,
https://mynameismjp.wordpress.com/2012/10/24/msaa-overview/, October
2012. online, accessed 12.11.2019.

[PSK+16] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman,
Nir Benty, David Luebke, and Aaron Lefohn. Towards foveated rendering
for gaze-tracked virtual reality. ACM Transactions on Graphics (TOG),
35(6):179, 2016.

[RKLC+11] Jonathan Ragan-Kelley, Jaakko Lehtinen, Jiawen Chen, Michael Doggett,
and Frédo Durand. Decoupled sampling for graphics pipelines. ACM
Transactions on Graphics (TOG), 30(3):17, 2011.

[SBPW19] Skyler Jonathon Saleh, Christopher J. Brennan, Andrew S. Pomianowski,
and Ruijin Wu. Variable rate shading, February 2019. US Patent App.
15/687421.

[Tob] Tobii AB. Specifications for the Tobii Eye Tracker 4C.
https://help.tobii.com/hc/en-us/articles/213414285-Specifications-for-the-
Tobii-Eye-Tracker-4C.

78

[VST+14] Karthik Vaidyanathan, Marco Salvi, Robert Toth, Tim Foley, Tomas
Akenine-Möller, Jim Nilsson, Jacob Munkberg, Jon Hasselgren, Masamichi
Sugihara, Petrik Clarberg, et al. Coarse pixel shading. In Proceedings of
High Performance Graphics, HPG ’14, pages 9–18. Eurographics Association,
2014.

[YNS+09] Lei Yang, Diego Nehab, Pedro V. Sander, Pitchaya Sitthi-amorn, Jason
Lawrence, and Hugues Hoppe. Amortized supersampling. ACM Trans.
Graph., 28(5):135:1–135:12, December 2009.

[YZK+19] Lei Yang, Dmitry Zhdan, Emmett Kilgariff, Eric B. Lum, Yubo Zhang,
Matthew Johnson, and Henrik Rydgard. Visually lossless content and
motion adaptive shading in games. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 2(1):6:1–6:18, 2019.

79

	Kurzfassung
	Abstract
	Contents
	Introduction
	Related Work
	Dynamic Resolution Approaches
	Eye-Tracking and Foveated Rendering
	Deferred Rendering
	Anti-Aliasing

	Variable Rate Shading
	Possibilities
	Limitations
	Integration with a Rendering Engine
	Hardware Support and Usage Scenarios

	Techniques and Algorithms for Variable Rate Shading
	Content-Adaptive Shading
	Motion-Adaptive Shading
	Eye-Tracking and Foveated Rendering
	TAA-Adaptive Shading

	Evaluation
	Quality and Performance
	Forward and Deferred Shading Performance Comparison
	Temporal Artifacts

	Conclusion and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

