
To appear in IEEE VR 2019 Conference Proceedings

Live Coding of a VR Render Engine in VR
Markus Schütz*

TU Wien
Michael Wimmer†

TU Wien

Figure 1: Left: Drag&Drop scene objects into source code to create selector snippet. Middle: Change brush generation and
rendering code at runtime. Right: Modify OpenGL calls, e.g. draw gl.POINTS instead of gl.TRIANGLES.

ABSTRACT

Live coding in virtual reality allows users to create and modify their
surroundings through code without the need to leave the virtual
reality environment. Previous work focuses on modifying the scene.
We propose an application that allows developers to modify virtually
everything at runtime, including the scene but also the render en-
gine, shader code and input handling, using standard desktop IDEs
through a desktop mirror.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual Reality;

1 INTRODUCTION AND RELATED WORK

Programming environments with notebook interfaces such as Math-
ematica [6], Jupyter [2] and MATLAB Live Editor [7] provide live
coding environments where results are displayed directly within the
code. The code is split into sections that can be evaluated separately,
and the result of a section can be shown to the user as static text
output and images, but also interactive widgets such as 2D or 3D
scenes that react to input from sliders, buttons or mouse.

Other live coding environments such as Shadertoy [5] recompile
the code, in this specific case the code of fragment shaders, at
runtime and immediately display the updated results. This allows
developers to quickly and iteratively tweak and refine their code.

RiftSketch [4], CodeChisel3D [3] and Rumpus [1] already pro-
vide live coding environments for virtual reality. The former two are
browser-based applications using three.js 1, the latter is an applica-
tion that is available on Steam. All of them are developed as live
coding for VR scenes, e.g., creation and animation of objects in a
scene, and they are tied to specific basic text editors.

To the best of our knowledge, our framework is the first live cod-
ing framework for VR that gives developers the ability to tweak the
underlying render engine at runtime. RiftSketch and CodeChisel3D
have a similar ability at least in theory, but the underlying render
engine, three.js, is not built to be modified at runtime. For example,
many functions in the renderer are private and cannot be modified at
runtime without replacing the whole renderer.

*e-mail: mschuetz@cg.tuwien.ac.at
†e-mail: wimmer@cg.tuwien.ac.at

1https://threejs.org/

2 LIVE CODING

Our C++ & Javascript live coding application allows developers
to modify and tweak the underlying render engine directly in VR.
Developers can add, remove and modify OpenGL calls, which allows
them to fix errors, tweak existing rendering logic and even add
new functionality without the need to take off their head-mounted
display. This is possible because of our custom rendering engine,
which is written mostly in Javascript and with modifications at
runtime in mind. Rendering logic is distributed in various files
and whenever one of these files is modified and saved, it will be
executed immediately. Upon execution, the executed code will
replace respective parts of the old render engine with new functions
due to statements like renderBuffers = function(view, proj, target){
... }, which replaces the old renderBuffer function with a new
one. In case of classes, functions can be overridden for all existing
instances by modifying the prototype of the class. For example,
BrushNode.js defines the update function of Brush scene nodes as
BrushNode.prototype.update = function(){ ... }. The first time that
this code is executed, it will add an update function to the BrushNode
class. Each consecutive time it is executed, it will replace the current
update function with a new one. This architecture allows developers
to rewrite most parts of the render engine at runtime by modifying
and then saving files, where saving of a file automatically triggers
its execution.

Users can use any IDE or text editor of their choice to live code,
since a 1280x720 pixel large region of the upper-left part of the
desktop monitor is mirrored in VR. Our IDE of choice for the live
coding framework is Visual Studio Code 2 because it is relatively
slim with a low amount of visual clutter, thereby leaving more
available space to the code, which is especially important due to the
low resolution of the desktop mirror.

We currently limit the resolution of the desktop mirror to
1280x720 pixels due to the relatively low resolution of currently
available HMD displays. The HTC Vive Pro, for example, has a
display resolutions of 1440x1600. Desktop resolutions larger than
that consequently produce resampling artifacts on display devices
with a lower resolution. The main problem, however, is that large
desktop resolutions lead to smaller UI elements, which won’t be
visible or appear blurry, especially text. In our tests, 1280x720 has
shown to be a good trade-off between amount of content that fits on
screen and legibility when viewed in VR.

2.1 OpenGL Shaders
Live coding of OpenGL shaders is a basic functionality that is easily
integrated even in rendering applications that otherwise need compi-

2https://code.visualstudio.com/

1



To appear in IEEE VR 2019 Conference Proceedings

lation. This is usually limited to changing the computations within
the shader, however, and does not allow changing shader inputs with-
out respective changes to the compiled code that feeds these inputs.
Live coding of shaders is also a core part of our framework, with the
additional possibility to modify shader inputs such as uniforms and
uniform blocks, because the Javascript code that feeds these inputs
can also be changed accordingly at runtime.

2.2 OpenGL
Coding an OpenGL application regularly involves trial & error,
especially for beginners. Developers may have to test multiple con-
figurations of state-changing calls, such as gl.enable and gl.disable,
or experiment with parameters to calls such as gl.blendFunc. Our
live coding framework allows developers to do these experiments
at runtime without recompilation, and even inside VR in order to
judge the impact to the renderings within the virtual environment,
which can be a very different experience compared to viewing the
renderings on a desktop monitor.

2.3 OpenVR
While live coding, developers have access to the pose matrices and
state of the virtual reality devices, including HMD and controllers.
The default controller behavior, a direct mapping of physical pose to
virtual pose, is one of the first things that we developed during a live
coding session. We used our live coding framework to tweak the
mapping from input pose to their representation of the controllers
inside the scene graph, and also to map the XY location of the finger
on the controller’s trackpad to a certain functionality.

2.4 Drag & Drop
We provide a drag & drop feature for live coding where developers
can pick one of the scene objects at runtime, and drag it towards the
desktop mirror. Dropping the object on the desktop mirror creates a
selector code-snippet at the respective location in the source code,
for example $(’house.window 1’), which can be used to retrieve an
instance of this object and then modify it programmatically.

3 IMPLEMENTATION

Our live coding application is implemented in C++ and Javascript.
We use Google’s V8 engine to map C++, OpenGL, and OpenVR
calls to Javascript. The MS Windows desktop duplication API
is used to obtain a DirectX texture of the desktop, and the
NV DX interop OpenGL extension is employed so that this tex-
ture can be used in our OpenGL live coding application.

During startup, C++ generates the OpenGL window and executes
the start.js script file once. During the render loop, it repeatedly
calls the update and render script functions, which handle all the
input and rendering, and which can be modified at runtime by the
developers.

Our application comes with a basic Javascript rendering engine
that is developed in a way so that re-executing source files at runtime
will replace already running parts with new code.

The desktop mirror is a quad with a texture of the desktop mon-
itor. We render the quad with mipmapping enabled, at least 4x
multisample anti-aliasing, and 16x anisotropic filtering in order to
improve readability and reduce discomfort from aliasing artifacts
under motion in VR.

Drag & drop of scene objects into the desktop mirror is imple-
mented by invoking windows API commands to simulate the mouse
moving to the drop location, a left click, pressing the end key, press-
ing the enter key, and finally, pressing ctrl + v to paste the code from
the clipboard.

4 PERFORMANCE

Our test system consists of an AMD Ryzen 5 1600 CPU and an
NVIDIA GTX 1060 GPU. Performance was measured with VR

turned off to illustrate the overall performance achievable with our
system. The performance impact of VR on our system is the same
as for native C++ applications.

The duration from starting the application to the first execution
of the rendering loop is 1.37s. The full timeline is: 0.66s until the
OpenGL windows is created, 0.69s until the V8 Javascript engine
and all C++/JS bindings are set up, and finally 1.37s until start.js has
been executed. Start.js creates a default scene consisting of a skybox,
a ground plane, loads respective images and materials, and compiles
various shaders for meshes, point clouds, and post processing.

During each iteration of the render loop, the script functions
update and render are called. In their most basic form, with an
empty update script and a render script that sets the clear color
and then clears color and depth buffer, the application needs about
0.196ms to render a frame (5,100 frames per second). A simple
scene with a skybox, a ground plane, and a desktop mirror takes
about 0.666ms to render (1,500 frames per second).

5 LIMITATIONS AND FUTURE WORK

Live coding environments have quirks that developers need to be
aware of. For example, restarting the application may lead to unex-
pected behaviour if the developer did not produce code with a restart
in mind. A simple example would be a live coding session with a
variable that is already initialized and in use. The developer then
removes the code that initializes the variable, but not the code that
uses it, which will keep working for the current session, but result in
an error after a restart.

Users of this application also have to take care about resource
loading and generation in code that is frequently executed during
a session. For example, a source file that creates scene objects and
loads textures from disk should make sure to account for existing
instances, either by updating existing instances, doing nothing if
they already exist, or by removing and unloading them first.

We currently don’t visualize keyboard or mouse inside the VR
environment. This hasn’t shown to be an issue for the mouse, but
users of our application need to be able to use their keyboard blindly.
In the future, we would like to experiment with see-through via the
cameras on the HTC Vive. We omitted it for now because initial tests
have resulted in severe impacts on the performance if the cameras
were enabled.

6 CONCLUSION

We have shown a live coding application for VR that allows devel-
opers to modify the underlying render engine without leaving the
virtual environment. It is neither intended nor possible to be used
during all development stages, but it promises to be a significant
productivity boost in some, especially during prototyping and tweak-
ing phases, but also partially during debugging. This application
was already successfully used by ourselves to develop, evaluate
and benchmark rendering algorithms for ongoing research at our
institute.

The source code of our live coding framework is available at
https://github.com/m-schuetz/Fenek.

REFERENCES

[1] L. Iannini. Rumpus: A livecoding playground for room-scale vr.
http://rumpus.land/.

[2] P. Jupyter. Jupyter. https://jupyter.org/.
[3] R. Krahn. Codechisel3d: Live programming with three.js and we-

bvr. https://robert.kra.hn/past-projects/live-programming-with-three-
and-webvr.html.

[4] B. Peiris. Riftsketch: An html5 live-coding environment based on webvr.
https://github.com/brianpeiris/RiftSketch.

[5] I. Quilez and P. Jeremias. Shadertoy. https://www.shadertoy.com/.
[6] W. Research. Mathematica. http://www.wolfram.com/mathematica/.
[7] I. The MathWorks. Matlab live editor.

https://www.mathworks.com/products/matlab/live-editor.html.

2

https://github.com/m-schuetz/Fenek

	Introduction and Related Work
	Live Coding
	OpenGL Shaders
	OpenGL
	OpenVR
	Drag & Drop

	Implementation
	Performance
	Limitations and Future Work
	Conclusion

