
Problem Statement

Live Coding of a VR Render Engine in VR
Markus Schütz, Michael Wimmer

TU Wien,
Institute of Visual Computing & Human-Centered Technology

Abstract

Tweaking Brushes

Use Cases

Modify brush generation and animation
at runtime. Experiment with colors, size,
spread and animate the vertices.

Drag & Drop Scene Nodes
Pick objects in the scene and drop them in the
source code to generate a selector. Then
write code that affects the selected object.

Modify OpenGL Draw Calls
Change render logic and draw calls and their parame-
ters at runtime. Experiment with parameters, fix bugs,
adjust input to shaders without restart.

Live coding in virtual reality allows users
to create and modify their surroundings
through code without the need to leave
the virtual reality environment. Previous
work focuses on modifying the scene at
runtime [1, 2, 3]. We propose an applica-
tion that allows developers to modify vir-
tually everything at runtime, including the
scene but also the render engine, shader
code and input handling, using standard
desktop IDEs through a desktop mirror.

Results
This live coding framework was developed to aid us
in the development of “Real-Time Continuous Level
of Detail Rendering of Point Clouds” [4], which is
also accepted as a paper at IEEE VR 2019. We
used it extensively to prototype, tweak and polish
our point-cloud rendering algorithm, both in desktop
and VR mode. In VR mode it was especially useful
to us to work on issues that are not apparent in
desktop mode, such as aliasing artifacts and flicker-
ing issues that look fine on desktop but pose a prob-
lem in VR.

References
[1] L. Iannini. Rumpus: A livecoding playground for room-scale vr. http://rumpus.land/.
[2] R. Krahn. Codechisel3d: Live programming with three.js and webvr.

https://robert.kra.hn/past-projects/live-programming-with-threeand-webvr.html.
[3] B. Peiris. Riftsketch: An html5 live-coding environment based on webvr. https://github.com/brianpeiris/RiftSketch.
[4] M. Schütz, K. Krösl, M. Wimmer. Real-Time Continuous Level of Detail Rendering of Point Clouds,

In Proceedings of IEEE VR 2019

Acknowledgements
This research was enabled by the Doctoral College Computa-
tional Design (DCCD) of the Center for Geometry and Com-
putational Design (GCD) at TU Wien.

Common VR Dev Workflow Our VR Live Coding Workflow
VR and desktop experiences are very differ-
ent, and many iterations are necessary to get
things right. Switching between desktop and
VR is cumbersome and time consuming.

Basic development on desktop, and tweaking
and polishing in VR to improve the VR experi-
ence directly in VR, without the need to take off
the HMD or restart the application.

Desktop Mirror
The desktop mirror shows part of the desktop
monitor inside the VR environment, which
allows developers to use any IDE of their
choice to code in VR, and even use browsers
to look up documentation or find solutions with-
out leaving the VR environment.

Limitations & Future Work
• See-through is not yet supported, so developers need to be able to use their keyboard

blindly. We will evaluate the usage of the VIVE cameras or third-party cameras as part
of future work.

• This framework is intended to enhance regular coding workflows but not completely re-
place them. Some changes are easier done on desktop, others are easier applied by
restarting rather than changing the running state, and many changes are easier done
by modifying code directly at runtime in VR.

Implementation
This framework is implemented in C++
using OpenGL 4.5, OpenVR and the V8
JavaScript engine. The entire rendering
engine is written in JavaScript through JS
bindings to the OpenGL and OpenVR
APIs. The scripts can be modified at run-
time by editing and saving the respective
JavaScript files. Saving (ctrl+s) immedi-
ately replaces old code with the new code
at runtime. DirectX is used to retrieve a
texture of the desktop and then pass it to
OpenGL to use for the desktop mirror.

The source code is available at:
https://github.com/m-schuetz/Fenek

(a) Desktop (b) VR

