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Kurzfassung

Die Visualisierung von Protein-Protein Interaktionen ist ein wichtiger Schritt, um diese
zu verstehen. Es gibt bereits viele Möglichkeiten, die dieses Problem lösen. Diese lassen
aber meistens die Position der Proteine im Inneren der Zelle außer Acht. Jedoch ist dies
eine wichtige Information, die in einer Visualisierung nicht verloren gehen soll. Diese
Arbeit stellt einen neuen Ansatz vor,um die Position von Proteinen zu visualisieren. Das
vorgestellte Programm nutzt ein dreidimensionales Modell einer Zelle als Basis. Dieses
wird geschnitten, um eine zweidimensionale Oberfläche des Durchschnitts zu erzeugen. Die
Oberfläche wird abgetastet und rekonstruiert um einen Algorithmus anzuwenden, welcher
mit physikalischen Kräften einen Graphen erzeugt. Dieser Algorithmus wird auch dazu
verwendet einzelne Zellteile zu skalieren um zu gewährleisten, dass alle innenliegenden
Proteine darin Platz finden. Auf diese Weise wird sichergestellt, dass kein Teil der Zelle
überfüllt wird. Mit dieser Methode ist es möglich nicht nur Protein-Protein Interaktion
sondern auch die Position der Protein in der Zelle zu visualisieren.
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Abstract

Background: The visualization of networks for protein interactions is an important
step to understand them. There are already many approaches for this task, but most
of them do not show any information about the compartment of the cell the proteins
belong to. Motivation: Since the placement of proteins inside a cell is important
information, because it helps to understand their interactions, this thesis proposes a
method to visualize protein inside cell compartments. Goal: The objective of this
project is a clear and understandable visualization of interactions between proteins and
where these interactions or reactions happen inside the cell. Method: This project
uses a three-dimensional model of a cell as a base and intersects it using cutting planes.
Then the intersection surface is sampled and reconstructed using Delaunay triangulation.
To the mesh created by the triangulation, a force-directed algorithm is applied. This
algorithm is used to scale single cell parts in order to fit all proteins inside. This ensures
that none of the cell parts gets overfilled. Result: The result is a new method which
makes it possible to visualize not only protein-protein interactions but also in which
compartment of the cell the proteins are located.
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CHAPTER 1
Introduction

The following chapter will give an introduction to the thesis. It will provide information
about the background and motivation. Furthermore the objective of the thesis will be
explained. There will be information about the approach as well as the result. The last
subsection describes how this thesis is structured.

1.1 Background

Visualizing networks for protein interactions is an important step in understanding them
better. Because tabular data can be hard to read, especially when it comes to information
about relationships, visualizing this date gives an easier insight. There are many different
approaches for visualizing biological interaction data, ranging from graphs to matrices
and heat maps. Most tools using a graph for displaying interaction data are focusing on
showing the graph with the best and clearest layout possible and ignore the location of
the proteins inside the cell completely to reach this goal.

1.2 Motivation

There are many approaches and tools for displaying protein interaction data that lack
information about in which compartment of cell a protein is located. Because of that,
there is a demand for a tool that displays interaction data in a clear way as well as showing
where the interaction is happening within the cell. For example, locations of proteins
inside the cell can help to understand patterns of relations or how cell compartments
are related to different activities [Heberle et al., 2017]. For this reason it is important to
develop a tool that gives the possibility to show in which compartments the interactions
happen since this is valuable information that gets lost otherwise.
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1. Introduction

1.3 Objective

The objective of the thesis is to visualize which compartments of a cell a protein belongs
to. The most important task is to make this information clearly visible. For this reason
it has to be possible to scale cell compartments. The scaling is necessary because it is
possible that there is not enough room for all proteins in a compartment. Since graphs
are the most common approach for visualizing protein interactions, the interactions shall
be represented by a graph. The reason for this is, that it will be easy to understand for
biologists who are already used to this visualization type. In the resulting graph the
nodes represent proteins and the edges are the interactions (in the following referred to as
protein graph). This graph should be placed on an intersection of a cell (in the following
referred to as intersection mesh) to show the location of the interactions. To better
visualize the proteins inside the cell it is important that the different compartments of
the cell are scalable individually. If there are too many nodes in one compartment of the
cell to display them clearly it is necessary to scale that compartment, so all vertices that
belong there can be displayed. This provides a technical challenge because the scaling
of the compartments has to deform the compartment evenly. To reach this goal it is
important to keep the number of edge crossing in the mesh representing the intersection
surface as low as possible. The main objective of this thesis is to visualize proteins and
interactions between proteins. But the same approach can be applied to other chemical
compounds as well. This is possible by making the nodes symbolize genes, enzymes or
other compounds instead of proteins.

1.4 Result

The result of this project is a prototypical version of a tool that not only shows the
relationships between proteins but also their location. The input is a a three-dimensional
model of a cell that is cut in half using cutting planes, then sampled and reconstructed
using Delaunay triangulation. This results in a two-dimensional intersection of the cell.
To that intersection surface a force-directed algorithm is applied that enables the scaling
of single cell parts. The output is a visualization that displays a protein graph on top of
a cell intersection and shows in which compartments the proteins are located. There is a
high possibility of more proteins being located in a cell part than would fit in the original
size of it. For that reason it is important to have the possibility to scale cell compartments,
to ensure that all proteins can be placed in their assigned cell compartment.

1.5 Structure of the Thesis

This thesis starts with this introduction chapter 1, afterward in the chapter 2 “Related
Work” important information about protein-protein interactions and visualization meth-
ods for those will be introduced. Existing approaches for the problem of mapping the
protein graph onto an intersection of a cell will be discussed. In the "Methodology"
chapter 3 the data set will be introduced and the theory of cutting planes, triangulation
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1.5. Structure of the Thesis

and force-directed graph generation will be explained. The "Implementation" chapter 4
contains information about the importing, displaying and cutting of the cell with OpenGL
and ASSIMP. Afterward the generation of sample points and the triangulation with
CGAL will be explained. Furthermore the scaling of the cell parts with the force-directed
graph algorithm as well as the positioning of the proteins onto the intersection mesh will
be described. The thesis finishes with a description of the result in chapter 5 as well as a
conclusion and a discussion about possible future work directions in chapter 6.
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CHAPTER 2
Related Work

There are many ways for visualizing protein interactions and other biological pathways.
The most common approach is to represent the relationship data as a network. Other
approaches include matrices, heat maps and a nodetrix. The following chapter gives
information about state-of-the-art visualization tools for protein interaction data.

2.1 Visualization Methods for Protein Interactions

Protein interactions are part of biological pathways that can be represented as a network.
In this case, the nodes of a graph represent single proteins that interact with each
other. These interactions are represented by edges connecting the proteins. These graph
visualizations exist in two dimensions, as in the aforementioned examples, as well as in
three dimensions.

2.1.1 Two-Dimensional Graph Visualization

Popular tools for this network visualization of biological relationship data include "Cy-
toscape" ,which is an open-source software for visualizing biomolecular interaction net-
works [Mario Cannataro, 2011] and "VisANT" where the back end supports data retrieval
as well as visualization [Mario Cannataro, 2011]. Another tool is “Medusa” a open-source
Java application that is optimized for protein interaction data. It supports weighted
graphs and works best for smaller networks [Mario Cannataro, 2011] . “ProViz” is another
tool that uses a two-dimensional graph visualization. It’s a scalable open source applica-
tion that makes extensive use of plugins [Mario Cannataro, 2011]. Another application
that visualizes in two dimensions is “Pivot” which is used to visualize protein interactions
[Mario Cannataro, 2011]. “Pajek” which supports directed and weighted graphs falls into
the category of two-dimensional graph visualizations as well [Mario Cannataro, 2011].
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2.1.2 Three-Dimensional and Pseudo-Three-Dimensional Graph
Visualization

The first two tools that fall in that category are not using real three-dimensional visual-
ization but pseudo-three-dimensional which means that the visualization looks like it is
three-dimensional but in reality it is not. The tools using this form of visualization are
"ProViz" [Mario Cannataro, 2011] and "Pajek" [Mario Cannataro, 2011]. An approach
that uses three dimensions is "Jak-Stat" [Ganesan et al., 2016] which is a framework
based on modeling biochemical reactions in three-dimensional space. For this it ex-
ploits the parallelism of the GPU [Ganesan et al., 2016]. The second tool that uses real
three-dimensional visualization is "BioLayout Express". Compared to the aforementioned
"Jak-Stat" it provides the option to switch between a two- and three-dimensional view
[Mario Cannataro, 2011].

2.1.3 Other Approaches

Another possible way to visualize protein interaction data is by using adjacency matrices
or heat maps. Tools using adjacency matrices like "MatLink" reduce the data to binary
interactions between proteins and therefore making them easier to understand and analyze
[Fekete, 2009]. “PathwayMatrix” is a tool that uses a matrix exclusively to display a
network. It tackles the challenge of visualizing and analyzing complex pathways by
visualizing binary relations between proteins with the use of an interactive adjacency
matrix [Dang et al., 2015]. A special way of visualization is "NodeTrix" which uses a
nodetrix and is therefore a mix between matrix- and graph visualization [Fekete, 2009].

All of these tools do not reference the position of the proteins inside of the cell for the
visualization of the data which makes the approach presented in this thesis necessary.

2.2 Existing Approaches for Visualizing Compartments

There are already some approaches that take into account which compartment of a cell a
protein belongs to, when visualizing protein interactions in a graph. Those approaches
will be explained in the following. Compared to the approach presented in this thesis,
those state-of-the-art tools do not deform cell compartments for better visibility of
proteins.

2.2.1 CellNetViz

CellNetViz [Heberle et al., 2017] uses a force-directed layout to place networks into
cellular compartments. It shows where network elements are located and concentrated
and therefore visually organizes networks by cellular compartments. CellNetViz is written
in Javascript and HTML making it a web-based approach [Heberle et al., 2017].
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2.2.2 Mosaic

Mosaic [Salomonis et al., 2012] is a Cytoscape plugin that supports interactive network
annotation, partitioning, layout and coloring. It uses a cell template that defines graphical
regions that represent cellular compartments to create a cell-based layout. Nodes are
positioned into cellular compartments based on annotations. After the positioning of the
nodes a force-directed layout is applied within each region [Salomonis et al., 2012].

2.3 Contribution of this Thesis

1. State of the art approaches use a two-dimensional cell model as a base for their
visualization. This thesis introduces an approach that uses a three-dimensional cell
model as a base.

2. While most other approaches are web-based, this project is written as a desktop
application in C++ and OpenGL.

3. The main contribution of this thesis is a method to scale cell parts by using a
force-directed algorithm on the intersection of the cell. This method gives the
option to enlarge single cell compartments to ensure that all belonging proteins
can be displayed.
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CHAPTER 3
Methodology

The following chapter gives an overview on all techniques used for this approach. It
provides definitions and theoretical explanations of all techniques.

3.1 Data-Set
The data set used for the prototype consists of an three-dimensional cell object and a
protein interaction graph. The following section gives details on those data sets.

3.1.1 Cell Model

The three-dimensional cell object consists of four individual spheres in different colors
that represent the compartments of the cell. Those compartments are a core (or inner
layer), a middle layer, the mitochondria and an outer layer. As shown in figure 3.1 the
outer layer encases the mitochondria, the middle layer and the core. The middle layer
encases the core. The center of each sphere is in the origin (0.0, 0.0, 0.0) except for
the mitochondria which is positioned on the left side above the middle layer inside the
outer layer. Each sphere has 32 segments and 16 rings which means it consists of 1984
vertices. Since the contour of each cell part is used for the intersection mesh generation
it is important to keep the number of segments and rings low for better performance.

3.1.2 Protein Graph

The protein graph has 20 nodes that are connected by 20 edges. Each node represents
a protein in a specified compartment of the cell and each edge represents a connection
between two proteins. The positions of the nodes are two dimensional and each node
and edge is rendered as a two dimensional quad on top of the intersection surface. These
nodes have different colors, as shown in figure 3.2, symbolizing the cell compartment the
vertex belongs to.
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3. Methodology

Figure 3.1: The 3D cell object.

The protein graph is a simple graph. Which means it is defined as a tuple G = (V,E)
that consists of a set of vertices V = {v1, v2, ..., vn} representing entities (in this case
proteins) and a set of edges E = {e1, e2, ..., em} ⊆ V ×V representing mutual connectivity
[Wu et al., 2019] (in this case interactions).

3.2 Cutting Plane

Cutting planes are a method to cut objects. Additional to the object polygon mesh a
plane mesh is needed. Generally, the object is cut into two parts per plane used. The
plane has to be placed in a way that it intersects the object that will be cut, as shown in
figure 3.3 on picture b. The first step is to sort the vertices of the object depending on
which side of the cutting plane they are located. After that there are two options, either
keep all vertices and generate two new meshes that represent the two parts of the object
or remove the vertices from one side completely and keep only half of the original mesh.

3.3 Sampling and Triangulation

After the cell is cut using cutting planes the colors of the screen are sampled to create
a two-dimensional reconstruction of the intersection. The sample points are generated

10



3.3. Sampling and Triangulation

Figure 3.2: The protein graph with color coded nodes depending on the cell compartment
they belong to.

using the Halton sequence and their coordinates are used as input for the Delaunay
triangulation.

3.3.1 Halton Sequence

After the cutting of the cell, the colors on the intersection surface are sampled. For the
generation of these sample points the Halton sequence is used. The Halton sequence
is a generalization of the van der Corput sequence, where the idea is to express every
value n ∈ N in a base b. Then the expanison is reflected into the unit interval I =
[ 0, 1] ⊂ R . In comparison, the main idea for the Halton sequence is to generate d
one-dimensional sequences and form the corresponding d-dimensional vector sample
points [Hokayem et al., 2003] . The defintion of the Halton sequence is based on the
radical inverse function

φp(n) ≡ b0
p

+ b1
p2 + ...+ bm

pm+1 ,

where p is a prime number, the p-ary expansion of n is given as n = b0 + b1p+ ...+ bmp
m

with integers 0 ≤ bj ≤ p. Compared to other low-discrepancy sequences, the Halton
sequence is easy to implement because the implementation of the radical inverse function
is relatively simple [Chi et al., 2005].

3.3.2 Delaunay Triangulation

Triangulation is a method for creating a mesh out of a set of points or polygons. The
Delaunay triangulation of a point set S is characterized by the empty circumdisk property
(explained in the definition below). This means that there is no point in S within any of
the triangles created.
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3. Methodology

Figure 3.3: Steps of cutting a mesh using a cutting plane.

Definition: “In the context of a finite point set S, a triangle is Delaunay if its vertices
are in S and its open circhumdisk is empty - i.e. contains no point in S. Note that any
number of points in S can lie on a Delaunay triangle’s circumcircle. An edge is Delaunay
if its vertices are in S and it has at least one empty open circumdisk. A Delaunay
triangulation of S, denoted DelS, is a triangulation of S in which every triangle is
Delaunay.“[Cheng et al., 2012, p.32]

Every point set has a Delaunay triangulation. In two dimensions the Delaunay triangula-
tion has the advantage that it maximizes the minimum angle and also optimizes several
other geometric criteria.[Cheng et al., 2012].

12



3.4. Force Directed Graph Generation

Figure 3.4: Sample Points with x-axis Halton sequence base 2, y-axis Halton sequence
base 3

3.4 Force Directed Graph Generation

3.4.1 Graph Layouts Based on Physical Analogies

For the scaling of single compartments of the intersection graph a force-directed layout
algorithm was used. While many other graph layout algorithms are based on structural
characteristics of the graph, this approach sees the vertices of the graph as physical objects
and uses their characteristics for layout generation. The advantages of methods based
on physical analogies like this one are that they are very intuitive, easy to understand
and that they generate fairly good results, especially on medium-sized graphs up to 50
vertices. A force-directed graph generation has two main components.The model of the
graph, consisting of physical objects that represent vertices and edges and an algorithm

13



3. Methodology

that computes an equilibrium configuration of said graph [Hutchison and Mitchell, 1973].

3.4.2 Basic Spring Embedder

The algorithm of Eades uses a mechanical model to produce two-dimensional layouts.
This model replaces the vertices of a graph with steel rings and the edges with springs so
they form a mechanical system. The graph has a random initial layout and when the
springs are let go their forces on the rings move the system to a minimal energy state
[Eades, 1984].

Figure 3.5: The input and output of the basic spring embedder.

In this spring embedder, the repelling forces used between every pair of non-adjacent
vertices are defined as

14



3.5. Protein Graph Placement

frep(pu, pv) = c%
||pv − pu||2

· −−→pupv
,

where c% is the repulsion constant.

The spring forces between adjacent vertices are defined as

fspring(pu, pv) = cσ · log ||pu − pv||
l

· −−→pvpu,

where l is the natural length of the spring, the cσ is a constant defining the strength
of the spring. The direction of the vertex displacement depends on whether the actual
distance between two vertices is greater or smaller than l [Hutchison and Mitchell, 1973].

3.5 Protein Graph Placement
For the placement of the protein graph, a simple algorithm is used. The graph has an
initial layout where vertices that are assigned the same cell compartment are already
clustered. For each compartment boundaries are calculated. For this the program searches
for the vertices inside this compartment that have the highest and lowest x-coordinate
and the highest and lowest y-coordinate. Then the boundaries are set by using the
highest and lowest value on the y- and x-axis. This gives a rough idea of the size of
this compartment without using the contour. Then the centre of each protein-cluster
is calculated using a similar method. The algorithm checks for every cluster if it is
positioned within the boundaries of the assigned cell compartment. If it is not placed
in the right compartment the whole cluster is moved to its assigned compartment (a
detailed description of this algorithm is presented in section 4.5.
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Figure 3.6: An overview of the methodology of the approach showing the pipeline.
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CHAPTER 4
Implementation

The following chapter gives details on the implementation of the different techniques
explained in chapter 3. Furthermore there is information about the system requirements
as well as all used libraries that the program uses.

4.1 Program Environment and Installation

The program is written in C++ and OpenGL/GLSL. It was developed and tested in
Visual Studio 2015 in Debug x86 mode, with an NVIDIA GTX950M and 8GB RAM.

Additionally it uses the following libraries which need to be installed and linked for it
to compile and run properly. GLEW32 Version 2.1.0 for determining which OpenGL
extensions are supported [gle, 2019] and GLFW3 Version 3.2.1 [glf, 2019] for creating
windows. GLM Version 0.9.9.4 [glm, 2019] because it provides classes with the same
naming conventions used by glsl which is important for the shaders to work. CGAL Version
4.13.1 [The CGAL Project, 2019] for the Delaunay traingulation and boost Version 1.66.0
[boo, 2019] for CGAL to work.

4.2 Importing and Cutting the Cell

The first step in the pipeline is to import a three-dimensional cell model and cut it using
cutting planes. The following sections will explain the implementation of this steps in
detail.

4.2.1 Generating the Cell in Blender

The cell model used in the project was generated using Blender[ble, 2019], a free 3D-
modeling program. First the four spheres were generated and each of them was assigned
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4. Implementation

distance vertex position
= 0.0 on plane
< 0.0 outside of plane
> 0.0 inside of plane

Table 4.1: Vertex distances to the clipping plane.

a different material and therefore different color. Four spheres are used to keep the
performance high by not adding too many compartments into the prototype. Any
number lower than four would not have shown the cases of compartments being encased
in other compartments, therefore four is the chosen number. In this case, the main goal
of the color selection was to get contrasting colors, because it is important that the
differences between the cell parts are very visible in the final intersection. In the next
step the position, rotation, and scale of each sphere were included in the coordinates of
the vertices. Since the model is exported to a collada file this means that there is no
transformation matrix included in this file and the transformations are included in the
coordinates of the vertices instead. The advantage of that is, that it is not necessary
to implement transformations in the program, the disadvantage is that it makes the
positioning, rotating and scaling of the three-dimensional object less flexible. Since it is
not necessary to move the object in the program, the lacking flexibility is not an issue.

4.2.2 Importing the Cell Using ASSIMP

The collada file was imported into the program using ASSIMP(Open Asset Import
Library) which is an importing library for most three-dimensional-model formats. First
the whole object is imported as a scene object and split into the individual meshes. For
each mesh the vertices, indices of the vertices and the material are imported. The color
is derived from the material and for each part of the cell an individual mesh object is
generated. Each mesh is rendered individually when the draw method for the cell object
is called.

4.2.3 Cutting Planes in OpenGL

The cutting plane is implemented using OpenGL (Open Graphics Language) and the
gl_ClipDistance function in the vertex shader. The function provides a mechanism
for vertex clipping. It specifies a distance to the clipping plane P . The distance for each
vertex to P is calculated and all vertices with a distance smaller than 0.0 are clipped
and therefore no longer rendered [Khronos, 2019]. The orientation of the clipping plane
for the cell object is defined as

−→
P = ( 0, 0,−1, 0) .

The cutting of the cell creates 4 hollow semi spheres that are rendered. This rendering is
the base for the sampling and reconstruction of the cell intersection surface.

18



4.3. Generating the Intersection Mesh

4.3 Generating the Intersection Mesh

For the generation of the intersection mesh the original cut and rendered cell object is
sampled. The coordinates of the sample points are generated using the Halton sequence
and the color of the screen at those coordinates is sampled. Those sample points are
used to create the vertex positions for the intersection mesh. The edges were created
using the two-dimensional Delaunay triangulation function of CGAL (The Computational
Geometry Algorithm Library)[The CGAL Project, 2019].

4.3.1 Halton Sequence

For the Halton sequence the algorithm 4.1 is used. It is called two times per sample point
that is created. Once for the x-coordinate with a base of 2 and once for the y-coordinate
with a base of 3. Those numbers where used because they are prime numbers. The base
represents b from the radical inverse function (for a more detailed explanation see section
3.3.1 ). The algorithm is called in a loop and the counter variable of this loop is used as
the index, therefore creating different coordinates for every sample point.

Algorithm 4.1: generateHaltonSequence
Input: An integer index, an integer base
Output: A double result

1 f ← 1 ;
2 result← 0 ;
3 while index > 0 do
4 f ← f

base ;
5 result← result+ f · ( index mod base) ;
6 index← index

base ;
7 end
8 return result

4.3.2 Delaunay Triangulation

For the triangulation, a point set created from the sample point coordinates is used. Then
the Delaunay_triangulation_2 by CGAL is used to create the mesh via Delaunay
triangulation. This class represents the Delaunay triangulation of a point set in a plane.
It creates a triangulation that fulfills the empty circumdisk property (explained in section
3.3.2) [The CGAL Project, 2019].

4.4 Scaling Cell Compartments

For the scaling of the cell parts a force-directed algorithm 4.2 is used. This algorithm
is an implementation of the simple spring embedder explained in chapter 3. The main
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4. Implementation

Figure 4.1: Sample points generated with the Halton sequence ontop of the cell model

adjustment to the algorithm for using it for scaling is that the ideal spring length is
changed according to the scaling factor. Then the constant for the calculation of the
repulsive force (in the following c_rep) is enlarged every iteration for all vertices that
are included in the cell compartment that is scaled. Therefore c_rep is different for
vertices that are part of the scaled cell compartment and the rest of the vertices. This
makes the repulsive force onto the scaled vertices stronger which causes them to drift
apart. Therefore it creates a larger surface of the cell part. The Delaunay triangulation
is applied before and after the scaling to make the mesh more stable. This results in a
reduction of edge crossings. Figure 4.2 shows a comparison of the final mesh with and
without remeshing after every iteration.
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4.4. Scaling Cell Compartments

Algorithm 4.2: scaleCellCompartment
Input: An undirected graph G = (V,E) , an undirected graph

Gscaled = (Vscaled, Escaled), number of iterations K ∈ N.
Output: void

1 t← 0 ;
2 crep← 0.001 ;
3 crepscaled ← 0.001 ;
4 cspring ← 0.1 ;
5 threshold← 0.1 ;
6 while t < K do
7 for u← 0 to number of vertices do
8 for v ← 0 to number of vertices do
9 distance← euklidean distance( pu, pv) ;

10 if u 6= v ∧ distance > 0 then
11 l← idealSpringLength( pu, pv) ;
12 if u, v ∈ E then
13 fspring(pu, pv) = cspring · log ||pupv ||

l · −−→pvpu ;
14 else
15 if u ∈ Vscaled then
16 frep(pu, pv) = crepscaled

||pv−pu||2 ·
−−→pupv;

17 else
18 frep(pu, pv) = crep

||pv−pu||2 ·
−−→pupv;

19 end
20 end
21 end
22 end
23 displacementu ←

∑
u:(u,v) /∈E frep( pu, pv) +

∑
u:(u,v)∈E fspring( pu, pv) ;

24 pu ← pu + displacementu ;
25 end
26 t← t+ 1 ;
27 end
28 return
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4. Implementation

Figure 4.2: The mesh without remeshing (unstable) and with remeshing (stable).

4.5 Positioning Protein Graph Vertices

The last step is to position the vertices of the protein graph in their assigned cell parts.
For this task multiple approaches were tested.

The first one was to render the protein graph and then two algorithms were applied.
These algorithms used the minimal and maximal values of the coordinates of the cell
compartment as boundaries to check if the vertex is in the right part of the cell. If
the vertex is placed outside of its assigned cell compartment a random position inside
the cell compartment is calculated and the vertex is moved. This was applied to each
vertex and after all, vertices are placed inside their cell compartments the protein graph
was rendered again. This approach placed the vertices of the protein graph in the right
compartments, but it led to a lot of edge crossings which made the visualization very
confusing. Therefore, another approach was chosen.
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4.5. Positioning Protein Graph Vertices

The new approach uses the clustering of the protein graph. Because of this it only works
with protein graphs where the protein nodes are already clustered by their assigned cell
compartment. Then the algorithm 4.3 is applied. First for each cluster the centre of the
cluster is calculated by getting the maximum x- and y- coordinates and calculating the
middle. After this the program checks if the cluster is already inside the assigned cell
compartment. For this the maximum x- and y-coordinates of the compartment mesh are
used. If the cluster is not inside the assigned cell compartment the centre of the cluster
is positioned in either the centre of the compartment (for compartments that do not
enclose other compartments) or on one side of the compartment (for compartments that
enclose other compartments). If the centre of the cluster is repositioned all the vertices
belonging to the cluster are moved to the compartment as well. This method gives a
clearer layout with less edge crossings than just randomly positioning the vertices which
is why it was the one used in the visualization in the end.

Algorithm 4.3: positionProteinVertices
Input: An undirected Graph Gcell = (Vcell, Ecell) that is sorted by compartments

an undirected Graph Gprotein = (Vprotein, Eprotein) that is sorted by
clusters

Output: void
1 for Cluster0 toClustern do
2 clusterCentre← calculateCenterOfCluster() ;
3 repositionedClusterCentre← moveClusterCenterToCompartment() ;
4 if clusterCentre 6= repositionedClusterCentre then
5 moveClusterNodes() ;
6 end
7 end
8 return
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CHAPTER 5
Result

This chapter presents the results of the thesis. It will also describe the finished approach
in detail and give examples for the scaling of the cell compartments.

5.1 Sampling and Reconstruction
The usage of the Halton sequence to calculate the coordinates for the sample points
gives a good pseudo-random distribution of sample points. For performance reasons,
only 500 sample points are used. Because this leads to a very imprecise reconstruction of
the different compartments of the cell it is necessary to include the cell compartment
contour vertices of the original three dimensional cell object in the reconstruction as well.
Since the whole intersection mesh is rendered as one mesh with different colored vertices
the edges of the cell compartments are not sharp but gradually changing color from
one cell compartment to the other. Since the original intersection has sharp contours
the reconstruction would be closer to the original if the compartments were rendered
individually. But because it is necessary to have only one mesh for the force-directed
algorithm, all compartments are rendered as one mesh with different colored vertices.

5.2 Force Directed Algorithm For Scaling Compartments
The force-directed algorithm works well for the scaling of the single cell compartments.
It works by not only changing the length of the ideal spring length but also gradually
enlarging the repulsive force. This leads to a gradual resizing of the cell compartment.
A main issue was the problem of the contours becoming a zig-zag line instead of an
even circle when scaling. A solution to this is repeated application of the Delauney
triangulation (in the following re-meshing). The introduction of re-meshing after every
iteration improved the results significantly. It did however not solve the problem perfectly.
The middle cell compartment (blue) still has some vertices that stray too far off the
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5. Result

Figure 5.1: The sampled mesh with the force directed algorithm applied. All cell
compartments have their original size.

contour after scaling. This can be seen in figure 5.4 . A problem of the re-meshing
is that it leaves holes in cell compartments when vertices that belong to an outer cell
compartment are encased in another one. This issue is solved by checking for these holes
after the scaling is done and closing them. The closing is done by coloring these vertices
the same color as the cell part that encases them. A major issue of the force-directed
algorithm is the runtime. Since it runs in θ(n2) it gets really slow when dealing with a
larger number of vertices (100 or more). Therefore the prototype runs up to 20 minutes
when scaling cell compartments on the testing hardware. For testing a notebook with 8
GB RAM, an intel core i5 and a NVIDIA GTX950M was used.

Table 5.1 shows a comparison of runtimes and results. These data is for 251 iterations
where 40 are just the force directed algorithm without scaling and 211 are scaling the
inner cell part with a factor of 0.2 . As shown in figure 5.2 the result improves with a
higher number of sample points. Therefore reducing the sample points or the size of the
original cell model impairs the outcome. Since using more sample points also increases
the time until the determination of the algorithm it is important to use enough sample
points to get a sufficient result in reasonable time. For this reason 500 sample points are
a good setting to achieve a good result.

5.3 Positioning the Protein Graph
The positioning of the protein graph works by using boundaries to check if the proteins
are rendered in the right compartment. Since it uses the minimal and maximal position
of the vertices of a cell compartment as boundaries it is not very precise at the moment.
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5.3. Positioning the Protein Graph

Figure 5.2: Results of the performance comparison in table 5.1

Model Sample Points Mesh Vertices Time (mm:ss) Accuracy
Cell (scaled down) 500 141 05:48 low
Cell 250 185 10:26 low
Cell 500 241 18:15 average
Cell 750 395 28:31 average
Cell 1000 350 41:12 good

Table 5.1: Comparison of algorithm performance with different models and different
numbers of sample points. All of these options were tested on a notebook with 8 GB
RAM, an intel core i5 and a NVIDIA GTX950M.

A threshold helped to solve this issue. This threshold is applied to the boundaries before
checking if the protein is positioned correctly. Another issue is that even though the
proteins are placed correctly it may not look like it on the final cell. For long edges, the
gradual change of color from one cell part to another can be a problem if the protein is
placed too close to a contour. This problem could be improved by using more sample
points and therefore having shorter edges. Despite these issues the algorithm produces a
decent placement of the protein vertices.
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5. Result

Figure 5.3: The final result with the inner compartment of the cell scaled and the protein
graph applied.

5.4 Limitations

The program supports cells with up to four compartments right now. The reason for this
is that those are really suitable for testing since they have compartments enclosed in
other compartments but the performance is decent as well. This could be easily changed
in future work on this project by adding a method that counts the different colors that
are sampled and therefore concludes how many compartments there are.

Right now the scaling factor has to be set manually. This is done based on experimental
values. A future approach could be calculating the area of a compartment and then
calculate how many vertices of the protein graph would fit in that area. Based on that
the program could decide how much to scale a certain compartment in order for all
corresponding proteins to fit.
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5.4. Limitations

Another limitation is the size of the constant for the calculation of the repulsive force
c_rep. When it gets too big the algorithm gets unstable. Therefore it is important to
use small scaling factors for that constant. In the results shown in this thesis, c_rep
was multiplied with 1.01 every iteration. But the combination of scaling the ideal spring
length as well as c_rep makes sufficient scaling possible without the need of a huge
value for c_rep.

29



5. Result

Figure 5.4: The scaled cell compartments.
30



CHAPTER 6
Conclusion and Future Work

The following chapter will give a conclusion on the work presented in this thesis. Fur-
thermore it will explain future approaches that can be taken.

6.1 Conclusion
In this thesis, a prototype for visualizing protein positions in cells is introduced. The
methodology of the approach centers around the force-directed algorithm that enables
the scaling of single cell compartments. This is an important step when the original
size of the cell compartment is too small for its proteins to fit. The scaling ensures
that all proteins can be placed in their assigned compartment of the cell. For the force-
directed algorithm to work it is necessary to sample the cut surface of the cell. With the
coordinates and colors of the sample points it is possible to reconstruct the intersection
surface as one mesh. To this mesh the force direct algorithm is applied to scale cell
compartments. Then a protein graph is rendered and the proteins are placed in their
assigned cell compartments. This placement is implemented using the maximum and
minimum positions of the vertices of the intersection mesh inside that cell compartment.
The algorithm checks if the proteins are in their assigned part and if not it moves them.
Together the cutting planes, force-directed algorithm and placing of the protein graph
achieve the goal of the project to visualize protein interactions in their assigned cell
compartments.

6.2 Future Work
Since this project implements a basic version of the pipeline of this approach there are
many possibilities for future work. There is the possibility to apply this method to the
cellView[cel, 2019] framework. The framework visualizes large biomolecular data sets
like large viruses and bacterial organisms [Le Muzic et al., 2015]. Since the prototype
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6. Conclusion and Future Work

uses a very simplified cell model that only has four parts using this framework would
make the visualization more realistic.

Another possible approach in the future is to implement a more sophisticated force-
directed algorithm. Right now the project uses a simple spring embedder. This algorithm
is not optimal for large graphs. That’s why using an algorithm that works with larger
graphs, may improve the result significantly. The main issue is the performance of the
force-directed algorithm. Since it is very slow this should be a focus point in future work
to make the method more user-friendly. Another way of approaching the improvement of
the performance would be to keep the simple spring embedder but implementing it on
the GPU. Since right now it is implemented on the CPU the displacement of the vertices
is calculated one after another. By using, for example, a compute shader in OpenGL it
would be possible to calculate the displacement for all vertices at the same time. This
would lead to improved performance of the algorithm. When the performance improves it
is also possible to use more sample points and make the reconstruction of the intersection
more accurate.

The protein graph can be improved by using the contour of the cell compartment
as a boundary instead of the minimal and maximal position. Right now, the protein
graph is positioned by positioning the clusters within these boundaries. To make it
possible to use the contour of the cell compartments as boundaries, it would be necessary
to access the triangles of the intersection mesh to check for every triangle if the current
protein node is inside. An option for this is adding an algorithm that calculates the
triangles, as well as the edge positions and checks if a vertex is contained in the triangles.
Another option would be to change the implementation of the protein graph completely
and use CGAL for the generation, which would make the triangles accessible. Another
possibility that was tested for the positioning of the protein graph was the usage of
the same force-directed algorithm that was used for the scaling of the compartments of
the intersection mesh as well. The tests showed that it worked for the core, the middle
compartment as well as the outer layer. But the mitochondria was a problem since there
is no way to ensure that the force-directed algorithm will move the proteins to their
according cell compartments. If the displacement goes in a different direction than the
assigned cell compartment the proteins will never be placed there. This would make great
changes to the algorithm necessary to navigate the displacement in the direction of the
assigned cell compartments. For those reasons the simpler option of placing the clusters
by boundaries was chosen to show the placement of the proteins on the intersection
surface even though there are other options available.
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