Establishing Precision Rehabilitation with Visual Analytics

Georg Bernold, Kresimir Matkovic, M.Eduard Gröller, Renata G. Raidou

2

#.

Conventional Rehabilitation

Precision Rehabilitation

Challenges:

- Data
- Resources
- Users
- Tasks

Contribution

preha: a new approach to tackle the analysis of precision rehabilitation data.

Two main components:

- A detailed data-users-tasks analysis
- 2. A visual analytics dashboard approach within preha

6

Demographic			Medical				Therapy ¹
Age	Sex	Zip Code	Diagnosis	Insurance	$ScoreX^{2,3}$	ScoreY ^{2,3}	Therapy
67	male	1234	J44	Insurance A	170m	A-B	$\{a,b,c\}$
85	female	1235	I67	Insurance B	13.2 meter	_	$\{a,b,c,d\}$
47	female	1236	M17.9	Insurance A	_	C	$\{d,e,f\}$

large – heterogeneous – high-dimensional¹ – inconsistent² – missing³

Data-<u>Users</u>-Tasks Analysis

Data Analysts

8

Abstract Tasks

30-50 minutes semi-structured

typologies for each task

Eng1: Provide meaningful data partitions

Eng2: Prepare templates for patient assessment

Eng3: Prepare templates for clinical benchmarking

Eng4: Predict rehabilitation outcome

Exp1: Show rehabilitation outcome to patients

Exp2: Perform clinical benchmarking

Exp3: Explore clinical datasets

Exp4: Analyze data for clinical studies

Exp5: Intervention planning

Eng1: Provide meaningful data partitions

Eng2: Prepare templates for patient assessment

Eng3: Prepare templates for clinical benchmarking

Eng4: Predict rehabilitation outcome

Exp1: Show rehabilitation outcome to patients

Exp2: Perform clinical benchmarking

Exp3: Explore clinical datasets

Exp4: Analyze data for clinical studies

Exp5: Intervention planning

Eng4: Predict Rehabilitation Outcome

12

[inspired by Brehmer et al. 2013]

Typologies for All Tasks

15

Preprocessing

- Rule-based approach, done once: easy to introduce new rules
- Profiling: identification and communication of quality problems
 - Set of regular expressions/rules defined by the users
 - Whatever doesn't match these → "dirty"
- Wrangling: modifying structure to make it suitable for processing
 - Standardization of tables and scores
 - Each patient is assigned one (non-redundant) row in a data table
- Cleansing: correcting dirty data
 - We know how correct data should look like
 - Cleansing programs/rules to match this appearance

17

Visualization

Visualization

■ Flexible, reusable, adaptable, expressive

Kibana framework:

- All basic visualizations
- Extensible through d3.js
- Supports multiple linked views
- Interaction functionality
- Predictive analysis support

Eng4: Predict Rehabilitation Outcome

20

[inspired by Brehmer et al. 2013]

Dashboards for All Tasks

Pilot Study

■ Introduce preha to four potential users 💍 👼 💑 💑

Provide a set of small assignments to complete

Findings:

- (+) Flexibility, adaptability to own working style
- (-) Documentation/language, more digestible for domain experts

Conclusion and Future Work

- Design study for the workflow of precision rehabilitation
- Development of a dashboard-based strategy

- Extend evaluation to domain experts
- Predictive analytics extension
- Guided analytics incorporation

Thank You! Questions?

preha

Georg Bernold, Kresimir Matkovic, M.Eduard Gröller, Renata G. Raidou

