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Relaxing Dense Scatter Plots
with Pixel-Based Mappings
Renata G. Raidou, M. Eduard Gröller, and Martin Eisemann

Abstract—Scatter plots are the most commonly employed technique for the visualization of bivariate data. Despite their versatility and
expressiveness in showing data aspects, such as clusters, correlations, and outliers, scatter plots face a main problem. For large and
dense data, the representation suffers from clutter due to overplotting. This is often partially solved with the use of density plots. Yet, data
overlap may occur in certain regions of a scatter or density plot, while other regions may be partially, or even completely empty. Adequate
pixel-based techniques can be employed for effectively filling the plotting space, giving an additional notion of the numerosity of data
motifs or clusters. We propose the Pixel-Relaxed Scatter Plots, a new and simple variant, to improve the display of dense scatter plots,
using pixel-based, space-filling mappings. Our Pixel-Relaxed Scatter Plots make better use of the plotting canvas, while avoiding data
overplotting, and optimizing space coverage and insight in the presence and size of data motifs. We have employed different methods to
map scatter plot points to pixels and to visually present this mapping. We demonstrate our approach on several synthetic and realistic
datasets, and we discuss the suitability of our technique for different tasks. Our conducted user evaluation shows that our Pixel-Relaxed
Scatter Plots can be a useful enhancement to traditional scatter plots.

Index Terms—Scatter Plots, Overplotting, Pixel-Based Technique, Space-Filling Technique
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1 INTRODUCTION

Scatter plots are common in visualizing bivariate data [1]. The
traditional scatter plot is defined by a space of two continuous,
orthogonal dimensions used for the depiction of data points.
Scatter plots are simple and intuitive—yet, powerful and versatile—
representations, which have the ability of communicating signifi-
cant aspects of the data, such as clusters, correlations, or outliers.
Their advantages have led them to be vastly employed in a variety
of exploratory and presentation tasks [2], [3]. However, with an
increasing number of data points, they become less effective, due
to data overplotting.

Overplotting—also called overdrawing—describes a situation
where two or more data points overlap, and their marking points
are drawn on top of each other [2]. As the number of plotted
data points grows, the available plotting space decreases, and
the number of overlapping points increases. Therefore, it often
becomes difficult to perceive every single data point within the
dataset, and subsequently to explore and identify patterns, relations,
or outliers in the data—in particular, regarding their density or
numerosity. Several approaches have been proposed in the past,
to address overplotting in scatter plots. For example, transparency
is often employed when rendering data points, to facilitate the
identification of high density or high overlap areas [4]. Variants of
density plots and contours have also been used, to the same end
[2]. We will review even more advanced approaches and their

benefits and limitations in detail, in Section 2.
An additional issue with scatter plots is that they may come

with a lot of blank plotting space—depending on the represented
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martin.eisemann@th-koeln.de

dataset. In essence, the representation is not optimizing the use of
the available screen space. Some plotting regions are overused,
while others are unexploited. Pixel-based techniques that effectively
use the plotting space could be a solution to this problem, but have
not been investigated for scatter plots, yet. The main reason is that
pixel-based, space-filling techniques displace data points to fit the
new space, which might compromise clarity and readability.

In this work, we propose the Pixel-Relaxed Scatter Plot (PRSP),
a new and simple variant, which can be used in addition to the
traditional scatter plots. It uses pixel-based, space-filling mappings,
in order to improve the display of otherwise cluttered and dense
scatter plots, enhancing density and numerosity data information,
in particular. The contribution of our work is the introduction
of the concept of a PRSP as an extension that makes better use
of the plotting canvas, avoiding data overplotting and optimizing
space coverage. PRSPs are a useful supplement to the traditional
scatter plots, suitable for completing several tasks, such as cluster
detection, or density and numerosity estimation.

2 RELATED WORK

Overplotting is a common phenomenon that may hide important
information about the plotted data. Reducing overplotting is a
widely researched topic in Information Visualization—not only
with respect to scatter plots. It relates to the general topic of
quality and clutter reduction within Information Visualization
representations [3]. According to the taxonomy proposed by
Ellis and Dix [5], clutter reduction techniques are classified
into techniques that affect the appearance of the representation,
techniques that involve spatial distortion, and animation. In this
section, we focus on the first two categories, omitting animation.

Techniques affecting the appearance of the representation:
This category includes sampling, i.e., the random selection of
a subset of the data points [6], [7], [8], [9], and filtering [10], [11],
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[12], i.e., the selection of a subset of the available data points
that are interesting or fulfill specific requirements. Both filtering
and sampling, although straightforward, often come with a loss
of information. This category also includes methods based on
clustering of data points [13], which entail the limitation that
the entire method depends on the complexity and accuracy of
the employed algorithm. Changes in the appearance of the data
points [14], such as changes in the point size [15], [16], [17],
opacity [15], [18], [19], or focal blur [15], [20], [21] fall also
within this category. Still, for most, overplotting persists with a
highly increasing number of points. In the work of Micallef et
al. [4], the authors adapt the visual design of scatter plots based on
a cost function that combines aspects of the human visual system
and data aspects. Yet, the cost function requires a one-time careful
balancing of its terms by the designer.

Density plots can also be considered as an enhancement that
affects the appearance of scatter plots, whether these take the form
of grey-scale, colored, or kernel density estimation plots [22], [23],
[24], [25], contours [22], [25], [26], [27], hexagon bins [22], [25],
or variable bins [28]. All these techniques aggregate discrete data
points and do not plot them distinctively, dealing effectively with
overdrawing and reducing clutter in the representation. However,
they are often based on sensitive statistical models, such as
kernel density estimators [29], and do not show the original data
points. This might affect the accuracy and expressiveness of the
representation. In particular, contouring or binning are not good
for dense plots, as they create perceptually non-smooth regions
that become difficult to compare visually [24]. Visualizations using
kernel density estimation can be considered to be similar to a low
pass filtering of the scatter plot data. Hence, the result of such
approaches might not be necessarily unique.

Techniques involving spatial distortion of the representation:
This category covers techniques for displacement [15], [30], [31]—
even in the third dimension [27], [32]. Still, displacement has to
be used with care, as it might interfere with the perception of
patterns. Other techniques in this category employ distortion [33],
[34], [35], including approaches, such as zooming or Fish-eye
lenses [36]. Closer to our work, space-filling and pixel-plotting
approaches have also been proposed and can be included in the
spatial distortion category. Space filling can be described as a
non-overlapping way of rearranging representations in the screen
space [2], [5], [30], [37], [38]. This approach has been applied on
treemaps and sunburst visualizations, but there is some previous
work also in the domain of scatter plots, such as the generalized
scatter plots of Keim et al. [39] and the continuous scatter plots of
Bachthaler et al. [40]. They both take advantage of empty plotting
space and combine it with the benefits of density estimation.

Pixel plotting refers to a non-overlapping mapping of each data
point to a single pixel, in order to make better use of the available
screen space [5], [41], [42]. The main benefit of this approach is
that the representations can achieve a high resolution, which is
practically the same as the screen resolution. Some of the most well-
known examples of pixel-based techniques include the previous
work of Keim et al. [43] that follows a recursive pattern to visualize
large numbers of data points in pixel-based arrangements. This
has been successfully applied in bar charts to create pixel-based
extensions of the representation, which facilitate the visualization
of large amounts of data [44]. Concerning scatter plots, Fekete and
Plaisant [45] describe interactive pixel-based techniques to handle
a million data points, so that they remain visible and manageable.

3 THE PIXEL-RELAXED SCATTER PLOT (PRSP)
Requirements: Scatter plots are used for a variety of tasks, which
have been classified by Sarikaya et al. [2] and Behrisch et al. [3].
We will discuss in Section 4 which of the tasks from the taxonomy
of Sarikaya et al. [2] are tackled in our work. In our case, we do not
intend to replace scatter plots, but to provide a supplemental variant
that satisfies criteria for clutter reduction techniques, as described
by Ellis and Dix [5]. We focus on avoiding overlap in the display
of data points, avoiding loss of information. Additionally, we take
care of retaining the identification of the overlap density, i.e., the
amount of overplotting and the numerosity of data points in specific
motifs. Scalability to large datasets is also crucial for an increasing
number of data points. Moreover, we would like to preserve as
much as possible the spatial information of the data points, but in
case distortion cannot be avoided, it should at least be conveyed
to the user. Finally, it is necessary for our variant to link back to
the original representation. Given the previous requirements, we
aim at obtaining a result that does not obstruct the detection of
patterns and trends in the data—in particular, clusters. Additionally,
we aim at retaining the ability to compare features in the data, such
as correlations across, or numerosity and density within scatter
plots. In the next sections, we discuss how and to which extent our
proposed Pixel-Relaxed Scatter Plots (PRSPs) satisfy these points.

Overview of the Steps of our Proposed Technique: The design
of our proposed PRSP consists of three main steps. First, the scatter
plot data points are mapped to unique image pixels, in a way
that the previously mentioned criteria are satisfied. Secondly, the
relaxation of the data points, i.e., the introduced distortion of the
spatial information, is measured, encoded, and communicated to
the intended user. Thirdly, suitable visual encodings that ensure
linking to the original scatter plot representation are discussed. In
the following sections, we describe alternatives for each step.

3.1 Point-to-Pixel Mapping
The first step of the PRSP generation matches each data point from
the original scatter plot to a pixel in the output image, as presented
in Figure 1. Before the actual mapping, we conduct a preliminary
step for the computation of the required resolution in pixels of the
resulting PRSP canvas. For a scatter plot of N data points, each
data point has to be mapped to a unique pixel on the PRSP canvas.
The PRSP canvas consists of P = n×m pixels, where n = b

√
Nc

is the width of the resulting canvas and m = dN/ne the height. In
this way, we account also for non-square numbers of data points
and we always have P ≥ N. If P > N, the excess pixels will be
left unused (white) in the final image representation. Other aspect
ratios could be employed, but we prefer the 1 : 1 aspect, being the
most common and simplest. For example, in Figure 1, we depict a
simple example with N = 5 data points. In this case, we construct a
canvas of 2×3 pixels, where the first 5 pixels are filled and the last
is not. This is also shown with the intentionally-left white pixels,
at the right upper corners of the examples in Figures 4 and 5.

After the creation of the PRSP canvas, we determine an injective
function for the mapping of the data points to the canvas pixels. This
unique mapping will ensure that our data points avoid overlapping
onto each other. We want to distort the original scatter plot space
as little as possible, to preserve the identification of data patterns
and to convey the amount of overlap. To this end, we developed
two different point-to-pixel mapping techniques, with different
strengths and limitations, as described in the following sections. To
simplify our explanation, and without loss of generality, we assume
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Fig. 1. Schematic depiction of the two different approaches employed for the point-to-pixel mapping (Linear Sum Assignment and Median-Split
Mapping). This example uses a toy dataset with five data points for demonstration purposes, only.

in the following subsections that all datasets are bivariate. We
denote the horizontal and vertical dimension x and y, respectively.
Furthermore, we normalize each data point di, i ∈ 1 . . .N in the x
and y direction, to lie within the range of the output PRSP canvas
[0,n−1]× [0,m−1].

3.1.1 Linear Sum Assignment Point-to-Pixel Mapping
To minimize distortion of the spatial information and to preserve
as much as possible the coherence of the original scatter plot, we
pose the point-to-pixel mapping as an optimization problem. Our
goal is to minimize the pixel displacement of each data point from
its position in the scatter plot to the position in the PRSP. This can
be formulated as a linear sum assignment problem, which can be
summarized by the function min∑i ∑ j Ci, jXi, j, X being a boolean
matrix, where Xi, j = 1, if and only if data point di, with i ∈ 1 . . .N
is assigned to pixel p j, with j ∈ 1 . . .P. Otherwise, Xi, j = 0. We
denote as C the associated cost matrix of assigning data point di to
pixel p j. Subsequently, we create a second dataset using the pixel
position of N pixels in the output canvas. For simplicity reasons,
if N 6= P, we remove pixels from the last column until we have N
pixel positions. Given these two datasets, we fill the cost matrix
C with the Euclidean distance between each pair of the data point
di and the potential pixel position p j in the output. To this end,
we employ the Hungarian Method [46] to compute the optimal
assignment with minimal distortion with reference to the Euclidean
distance. However, this algorithm comes with a complexity of
O(N3), which makes it slow for a high number of data points.

3.1.2 Median-Split Point-to-Pixel Mapping
The median-split point-to-pixel mapping is a recursive mapping
method used as a fast, approximate alternative to the linear sum
assignment mapping. This mapping builds a left-balanced tree that
assigns data points to pixels. Starting with the entire dataset and
all pixels in the canvas, the algorithm first sets the y-axis to be the
splitting axis. Then, it sorts the data points and pixels along this
axis. Subsequently, we calculate the median pixel value along the
splitting axis. This value determines a splitting line, orthogonal
to the splitting axis. All k pixels with a position smaller than the
splitting axis are assigned to the left child-node. Similarly, the first

k data points are also assigned to the left child-node. Respectively,
all other pixels and data points are assigned to the right child-node.
The algorithm continues recursively, until we have a unique, one-
to-one mapping of data points to pixels. A rudimentary example
of the median-split is presented on the bottom half of Figure 1.
As we mentioned earlier, in the case of P > N, some pixels will
not be mapped. These pixels are simply left empty, but gather in
one corner of the image due to the left-balanced assignment. This
approach preserves most of the locality of the data points in the
resulting image, while being efficient to compute in O(N logN), as
opposed to O(N3) of the linear sum assignment.

3.2 Relaxation Mapping and Encoding

The point-to-pixel mapping techniques relax, i.e., displace the data
points from their original position in the scatter plot to a position
on the PRSP canvas. The second part of our approach requires the
calculation and encoding of this introduced displacement of the
data points. We propose two alternatives to convey the relaxation
in the PRSP in the following sections.

3.2.1 Using Normalized Euclidean Distance
The first approach calculates the relaxation of data points from
their original position in the scatter plot to the pixel position in
the PRSP, based on the Euclidean distance. Let di, i ∈ 1 . . .N be
the normalized position of the i-th data item on the PRPS canvas,
in the range [0,n− 1]× [0,m− 1], as described at the beginning
of Section 3.1. Let pi, i ∈ 1 . . .N be the pixel position assigned to
di from the point-to-pixel mapping. The relaxation value is given
by the Euclidean distance, as ||di− pi||. The calculated relaxation
value of each canvas pixel is color encoded to indicate the amount
of displacement of each pixel, relatively to the original position
within the scatter plot. We employ a perceptually uniform 1D
colormap for the encoding of the relaxation, as shown in the upper
part of Figure 2—in particular, the inverted magma colormap from
the matplotlib library, which covers a wide perceptual range in
brightness. The brighter segment of the colormap draws attention to
the non-displaced parts of the scatter plot, preserving the motifs in
the data and giving a notion of ”peaks and valleys” in the images.

https://matplotlib.org/users/colormaps.html
https://matplotlib.org/users/colormaps.html
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Fig. 2. Process for the calculation, encoding and visualization of the relaxation of the pixels in the PRSP representation, performed in two ways.

3.2.2 Using 2D Colormaps
A second approach to encode the relaxation of the data points with
respect to their position within the PRSP requires to color encode
the original data points. In this approach, we overlay a 2D colormap
over the original scatter plot space. Then, we assign to each data
point the color at its scatter plot position. The assigned color is,
subsequently, propagated to the respective pixel in the resulting
PRSP. In this way, the spatial information of the data points from
the original scatter plot is propagated to the pixels of the PRSP.
Different colormaps have been considered [47]. The 2D colormap
of Bremm et al. [48] was identified as the most appropriate one,
due to its localization and identification properties, as discussed in
the paper of Bernard et al. [47]. Still, the use of a 2D colormap
requires the presence of a legend. The use of 2D colormaps for
the encoding has two purposes. First, it represents the amount of
displacement of each data point from its original respective position
within the 2D colormap—and, consequently, the original scatter
plot space. Secondly, it serves as a link between the scatter plot and
the PRSP domain, enabling the discriminability, localization, and
traceability of data points. This is particularly important, given that
our PRSPs are an additional extension, not a replacement, of scatter
plots. An example of the use of 2D colormaps for the encoding of
relaxation is depicted in the lower part of Figure 2.

3.3 Visual Linking of the Two Spaces

From the proposed point-to-pixel mappings, the linear sum assign-
ment optimizes for minimal distortion of the space, but still does not
avoid it entirely. Also, linking of the PRSP variant to the original
scatter plot representation is required. To show the distortion and to
link PRSPs to scatter plots, we employ several visual encodings. In
Section 3.2, we introduced two visual encodings to either encode
the amount of displacement, or to create a visual link between
the PRSP and the position of the data points in the scatter plot.
In combination with the 2D colormap, we can employ additional
encodings in an enlarged PRSP to show explicitly the relaxation.
For example, we render a circular glyph at the center of each
pixel, where the relaxation—measured as the Euclidean distance
between the original scatter plot data points and the PRSP pixels—
is encoded in several ways, as inspired by the guidelines of Borgo
et al. [49]. The relaxation is mapped to the opacity or area of the

circular glyphs. Other encodings can also be used, such as the
density of hatching—or partial hatching—on top of each pixel, or
simple lines indicating the ”flow” of data points from the scatter
plot space to the pixel positions in the PRSP canvas. The lines can
also be drawn as arrows, but the additional arrow tips add clutter
to the view. However, some initial tests with an increasing number
of data points indicated that circular glyphs, hatching and arrows
are not performing well, as they either become small, or clutter the
view. Among the investigated alternatives, depicted in Figure 3, we
stick to the flow lines, as an intuitive metaphor for displacement.

4 RESULTS

In this section, we present the results of using the PRSP on two
different kinds of datasets. First, inspired by previous work [2],
[24], we tested the behavior, task support and performance of
the PRSPs on a number of synthetic cases with two-dimensional
data, containing predefined patterns and structures. Second, to
demonstrate a realistic usage scenario of our approach, we use
some well-established datasets from the XmdvTool [50], and other
datasets, more realistic in size and appearance than the synthetic
stimuli. We created the latter using the PCDC tool [51] for the
purposes of this work. In the final part of this section, we show how
to extend PRSPs for data with more than two dimensions within a
PRSP matrix, similar to a scatter plot matrix. With the examples of
the upcoming sections, we intend to provide a deeper understanding
into PRSPs, as well as their advantages and limitations.

4.1 Results with Synthetic Stimuli Data
The recent work of Sarikaya et al. [2] provided a taxonomy of
abstracted tasks that can be performed with scatter plots, as well
as some basic synthetic stimuli, i.e., sample distributions, which
have been used at large in previous literature. Figure 4 shows
our approach applied to these synthetic stimuli, together with
their corresponding scatter plots and density plots. Although the
employed stimuli have a limited number of data points (N = 300),
we can already observe some initial interesting facts.

The PRSP is a supplementary representation of the data, where
data point overlap is avoided. The linear sum assignment mapping
seems to perform better than the median-split mapping, in terms
of discernibility and readability of patterns, as well as for the
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Fig. 4. Results from the application of our approach to four synthetic stimuli, previously proposed by Sarikaya et al. [2]. For each one of the synthetic
datasets presented in this figure, we depict the original scatter plot (with reduced opacity), a density plot with the data points overlaid and the resulting
Pixel-Relaxed Scatter Plots, computed with the use of the two proposed point-to-pixel mappings and the two relaxation mappings.

minimization of introduced distortion, which is its intended purpose.
In the datasets of Figure 4, the linear trend, the three clusters and
the manifold motif in the data are preserved and clearly depicted in
the resulting PRSP. This becomes more obvious in the relaxation
encoding with the 1D colormap, but not so clearly with the 2D
colormap encoding—with the exception of the linear trend dataset
when the flow lines are used. In the dataset with the clusters, the
linear sum assignment mapping and the median-split mapping
are able to convey the presence of the three clusters. The former
can additionally give a visual indication of the density and the
numerosity of data points, i.e., how spread or tight data points
are positioned with respect to each other, and how much larger,
with respect to the number of data points, some clusters are. For
the cluster preservation, the 2D colormap encoding is particularly
helpful. The clusters are depicted as compact regions with similar
colors, which are separated with a strong color edge, if located
apart from each other. Although the median-split mapping seems
to perform well in most cases, it can reduce readability compared
to the linear sum assignment, e.g., in the dataset with the manifold.
Potentially, PRSPs can be adequate for the exploration of the level
of correlation in the represented data, as shown in the dataset with
the linear trend, in contrast to the random dataset.

To sum up, we have a first hypothesis that the PRSP variant
can be useful for searching for particular known motifs in the data,
for exploring the depicted datasets, for comparing the density

and numerosity in different regions of the representation and,
possibly, for characterizing distributions and determining the level
of correlation in datasets. Yet, it is not possible to understand
spatialization of the data due to the introduced distortions and it is
not always possible to read the motifs or patterns in all PRSPs.

4.2 Results with Realistic Data
In this section, we provide results of the application of our PRSPs
on more realistic datasets—containing a higher number of data
points and/or more realistic patterns. The obtained results are
depicted in Figures 5, 6 and 7, showing the behavior, characteristics
and task support of our introduced enhancement.

Figure 5 comprises eight datasets. Dataset A contains two of
the dimensions of the Cars dataset (x: horsepower, y: displace-
ment) [50], and has N = 392 data points. Datasets B and C have
been artificially created in the PCDC tool [51] for the purposes of
this work. Each of them contains N = 1,800 data points, out of
which 600 are positioned in the leftmost cluster and the remaining
1200 in the rightmost cluster. Dataset D has also been created by us
in the PCDC tool [51], and contains N = 1,850 data points, which
are strongly overlapping at the right top corner of the representation.
Dataset E and F contain two of the dimensions of the out5d dataset
(xE : potassium, yE : magnetics, xF : thorium, yF : magnetics) [50],
and have N = 16,834 data points each. Datasets G and H have
also been created in the PCDC tool [51]. The former contains
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Fig. 5. Results from the application of our approach to eight data sets, obtained from the XmdvTool [50] or created with the PCDC tool [51] for the
purposes of this work. For each of the datasets (A-H), we show the original scatter plot (with reduced opacity), a density plot with the original data
points overlaid, and our Pixel-Relaxed Scatter Plots, computed with the proposed Linear Sum Assignment Point-to-Pixel Mapping and two relaxation
mappings (1D colormap and 2D colormap combined with flow lines).
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Fig. 6. Results from the application of the PRSPs to nine synthetic stimuli, representing levels of correlation (ρ) ranging from −1 to 1. The PRSPs
have been computed with the Linear Sum Assignment mapping and the relaxation is encoded with the 1D inverted magma colormap.

N = 1,500 data points and the latter N = 20,000, with two clusters
and random data points in between to simulate noise in both.
All PRSPs in Figure 5 have been computed using the linear sum
assignment method for the point-to-pixel mapping.

For dataset A, we observed two interesting behaviors of our
approach. First of all, the correlation that the dataset exhibits in
the scatter plot domain is preserved also in the PRSP. This can
be seen both in the 1D colormap relaxation encoding, and in the
combined 2D colormap and flow lines representation. Secondly, a
strong outlier (annotated) with a high value in the y dimension is
also preserved and is discernible in the PRSP. In the case of dataset
B, where the number of data points is increasing drastically, we
see that the cluster at the bottom-left of the scatter plot is expanded
to the empty spaces of the plot, filling the entire PRSP canvas.
Also here, the two clusters are discernible, while their numerosity
(number of pixels) and density (amount of spread in PRSP space)
is also visible. Dataset C also contains two clusters with differing
numbers of data points. However, neither in the scatter plot, nor in
the density plot, the proportion between the number of data points
of the two clusters is visible. Actually, these two can even mislead
the user in determining the size of the clusters. On the contrary,
our PRSP is able to convey this information—especially, when the
2D colormap is providing a link to the original scatter plot.

For dataset D, the 1D colormap encoded PRSP indicates that
most of the data points follow a random pattern. Other data points
are concentrated at the right top corner of the representation
(annotated), which is visible with the smooth color gradient and the
sharp edge structures. Reading these motifs within the 1D colormap
encoded PRSP requires some effort and a degree of familiarization.
Yet, the 2D colormap alternative, in combination with the flow
lines can give us a clearer indication of the structure of the data,
indicated by the concentration of the flow lines in this position.
For datasets E and F, which contain almost 10 times more data
points than the previous three examples, we see that the PRSP
representation scales conveniently to larger data sets. In addition
to that, information about the overlap density is also conveyed to
the user. Both datasets are highly dense at the bottom left of the
representation, while dataset F shows also high density for high
values of x (annotated). The patterns are preserved and can be
identified in the PRSP. The flow lines create easily identifiable and
intuitive patterns, which become more informative and aesthetically
pleasing with an increasing number of data points. For datasets G
and H, we see that the introduction of additional noise in dataset
H does not disturb the pattern preservation in the PRSP plots. The
two clusters (annotated) are visible with the light yellow color in
the 1D colormap PRSP or with the flow lines in the 2D case.
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Fig. 7. Results from the application of the PRSPs to two datasets
generated with the PCDC tool [51], showing the suitability of our variant
for depicting the numerosity and density of clusters.

From these examples, we can build the hypothesis that our
variant indeed avoids overlap, while it also allows to identify
already known motifs, to compare the density and numerosity
of different motifs and, possibly, to explore and characterize
distributions after familiarization with the variant and the data
spatialization of the introduced distortion. With the examples of
Figures 6 and 7, we can also hypothesize the possibility of detecting
the level of correlation within a dataset, and the suitability of the
PRSPs as a way of representing density and numerosity of patterns.

4.3 Extending to More Than Two Dimensions
The benefits of our approach can be of particular significance with
an increasing number of dimensions, as well. For example, the
representation of datasets with more than two dimensions, using the
so-called Scatter Plot Matrices (SPLOMs) [52] or GPLOMs [53],
reduces significantly the screen space, available for plotting each
pair of dimensions. Our PRSPs, if used instead of the traditional
scatter plots, can visualize the data in a more readable and
aggregative manner, exploiting better the available screen space.
An example of our approach is presented in Figure 8 for the Cars
dataset [50]. In this example, we position above the diagonal the
1D colormap encoded PRSPs. Below the diagonal, we show the 2D
color encoded PRSPs with flow lines. This example is only given
for demonstration purposes, and SPLOMs are not investigated
further within this work.

5 EVALUATION

To assess our technique, we conducted an online evaluation with
25 volunteers. Prior to the formal evaluation, we conducted the
analysis of Section 4, for an initial insight on the focus of the study.

5.1 Evaluation Setup
We conducted an anonymous online evaluation, employing the
guidelines proposed in the paper of Lam et al. [54]. Initially, we
showed a short video to the participants, in which we explain
the basic concept behind our approach, without any details
concerning the implementation or benefits of the PRSPs. Before
the evaluation, we asked demographic questions, regarding the
age, vision, previous experience with scatter plots and background
of the participants. The main body of the evaluation consisted
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Fig. 8. Results from the application of our approach to the Cars
dataset [50], in a SPLOM configuration. Above the diagonal, we position
the PRSPs with the 1D colormap encoding. Below the diagonal, we
position the PRSPs with the 2D colormap encoding, with the additional
flow lines. The representations have been computed with the Linear Sum
Assignment Point-to-Pixel mapping.

of five parts, which were controlled user studies measuring user
performance (UP) [54] when using our PRSP variant. These five
parts were inspired by the tasks, proposed by Sarikaya et al. [2]. In
all cases, the participants had to observe static figures and document
in written their inputs in a descriptive form. No interaction with the
presented figures was required. Figures were shown in adequate
quality and size, and in randomized order. Given the limited
amount of participants, processing the results was possible with
conventional means.

In the first part (Task 1: Identification of known motif ), we
assess whether participants can accurately detect a known motif
in the data using PRSPs (H1). We provided users with three
datasets containing a known motif or pattern, e.g. a linear trend, or
clusters like in Figure 4, and asked them to identify it in different
PRSP variants displayed in randomized order (”In the following
representation, there are three clusters in the data. Are you able to
find them?”). In the second part (Task 2: Exploration of motifs), we
assess whether participants can accurately find if there is any motif
in PRSPs (H2). We provided users with three datasets containing a
pattern undisclosed to them, and asked them to identify it in PRSP
variants shown in randomized order (”Do you see a structure in
the data? If yes, which?”). In the third part (Task 3: Comparison
of correlations), we assess whether participants can accurately
compare the level of correlation between PRSPs (H3). We provided
users with three pairs from the datasets of Figure 6, and asked
them to identify the one with a higher correlation using three
PRSP alternatives in randomized order (”Which dataset displays
a higher level of correlation?”). The first three tasks did not
involve a comparison to conventional scatter or density plots, as we
expect from the analysis in Section 4 that scatter plots are already
performing well—even better than PRSPs—for these tasks. Still,
we need to verify that PRSPs are not hiding such information, due
to readability issues. Also, an indication of which PRSP variant is
more convenient for the user, is required. Specifically for the third
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task, we investigate only the comparison of correlations. We expect,
given indications from Section 4, that PRSPs are not suitable for
reading patterns—instead, only for detecting or comparing motifs.

In the fourth (Task 4: Cluster detection and density) and fifth
part (Task 5: Cluster numerosity), we assess whether participants
can more accurately compare the density of clusters in PRSPs than
in scatter or density plots (H4), and whether participants can more
accurately distinguish the numerosity of clusters in PRSPs than in
scatter or density plots (H5), correspondingly. Based on indications
from the analysis in Section 4, we expect that our variants may
perform better than scatter and density plots for these two tasks, and
we would like to confirm this hypothesis. We provided users with,
respectively, three and two datasets containing clusters. We asked
them to identify the clusters and the denser one, or the cluster with
the higher number of data points using PRSP variants, a traditional
scatter plot and a density plot in randomized order (”Do you see
any clusters in the data? If yes, which cluster contains a higher
number of data points?” and ”How much more data points does
the largest populated cluster contain?”, respectively).

In summary, the goal of our evaluation is bifold. First of all,
we want to show that PRSPs are applicable to the identification,
exploration and comparison of certain motifs, where scatter plots
and density plots already excel. Secondly, we aim to show that
PRSPs have an advantage in cluster detection, and density and
numerosity estimation, over traditional scatter and density plots.

5.2 Evaluation Results
We had 25 anonymous participants (gender: 18 men and 7 women,
vision: 19 corrected and 6 normal). All, except for five, are related
to Visualization and Computer Graphics. They were recruited
within our or other collaborating institutes. Most of them have a
medium level of experience with scatter plots (11), followed by a
high level of experience (8) and, then, novices (6). The participants
are between 22 and 45 years of age. They all anonymously
volunteered for the evaluation and were not paid for their services.
In the remainder of this section, we use the abbreviation PRSP1 for
the PRSP with the 1D colormap encoding, PRSP2 for the PRSP
with the 2D colormap encoding, PRSP2f for the PRSP with the
2D colormap encoding and the additional flow lines, SP for scatter
plots with 0.25 opacity and DP for density plots.

Task 1: Identification of known motif: Using the PRSP1, our
evaluation participants were all (25) able to see the predetermined
motifs in the data, whether it was the linear trend, the clusters or
the manifold shown in Figure 4. With the PRSP2, they were able
to identify the clusters, but not the other motifs. With the PRSP2f,
they were able to identify the linear trend and the clusters, but
not the manifold. Hence, PRSP1 is suitable for identifying known
motifs, while PRSP2 and PRSP2f perform well for clustering, but
not for other patterns. Although some noticed an improvement with
the flow lines, this was marginal. So, (H1) is accepted for PRSP1.

Task 2: Exploration of motifs: Using the PRSP1, our evaluation
participants were all (25) able to explore and identify the clusters
as shown in Figure 7 or the pattern in the dataset (i, j) = (0,3) of
the SPLOM in Figure 8. With the PRSP2, they were able to detect
the clusters in the first two cases, but not the pattern. Hence, PRSP1
is suitable for finding motifs, while PRSP2 and PRSP2f perform
well for clustering, but for other trends, readability is not possible.
Therefore, (H2) is accepted for PRSP1.

Task 3: Comparison of correlations: Using the PRSP1, our
evaluation participants were all (25) correct in comparing three

pairs of data from Figure 6 and determining which has the highest
level of correlation. With the PRSP2, we had between 9 and
13 correct answers out of 25, while with the PRSP2f, we had
between 0 and 1 correct answers. Hence, PRSP1 is suitable for
comparing correlations and finding the one with a higher degree
of correlation, but not the other two. With the introduction of flow
lines, the representation becomes more confusing, perhaps due to
the readability of colors, or even due to clutter in the screen. One
person even commented that PRSP2f are more confusing. So, (H3)
is accepted for PRSP1.

Task 4: Cluster detection and density: Using PRSP1, our
evaluation participants were all (25) able to detect the clusters
and the most dense cluster in the datasets B and D from Figure 5
and in dataset L from Figure 7. With the PRSP2, apart from three
participants who did not detect even the clusters for dataset D
and one who was wrong, 21 detected the clusters and their density
correctly. With the SP, for dataset B 23/25 were correct. For dataset
D three did not see the clusters at all, and most (21/25) were wrong
in their conclusions. For dataset L most participants were wrong
(22/25). With the DP, for dataset B only eight were correct, for
dataset D two did not see the clusters at all and the rest were wrong,
and for dataset L all participants were wrong. Hence, PRSP1 and
PRSP2 are suitable for density detection, while SP and DP present
high variations in success rate. So, (H4) is accepted for all PRSPs.

Task 5: Cluster numerosity: For dataset B of Figure 5, with
PRSP1 and PRSP2 16/25 participants were accurate in their
estimation, while another 5 were very close (only 16.7% under-
estimation). With SP, all (but one) participants were inaccurate,
with 21/25 underestimating by 50% and 1 overestimating by 50%.
Two participants even commented that the two clusters are equal in
numerosity. With DP, all participants were inaccurate, with 5/25
underestimating by 50%, 19/25 thinking that the clusters had same
numerosity, and one person not being able to answer. For dataset
L of Figure 7, with PRSP1 and PRSP2 participants were more
accurate in their estimation than SP and DP, with most people
slightly overestimating their prediction. SP and DP had larger
variations in the responses, with the participants overestimating the
numerosity—up to saying that the larger cluster is 20 times larger.
Also, 3 people for SP and 4 for DP could not give a conclusive
answer. Hence, SP and DP are inaccurate or inconclusive regarding
numerosity tasks, but with PRSP1 and PRSP2 we obtain a higher
accuracy and precision in responses than SP and DP. Thus, (H5) is
accepted for all PRSP variants.

6 DISCUSSION

Scatter plots excel at certain tasks related to data spatialization, such
as detecting patterns or clusters. Although in PRSPs, certain data
motifs—in particular clusters—can be identified, the representation
was not explicitly designed for this purpose or with the intention
of replacing traditional scatter plots. Instead, PRSPs should be
seen as an auxiliary data visualization technique, which acts
complementarily to traditional scatter or density plots, avoiding
overplotting through pixel-based, space-filling mechanisms. As
illustrated in Sections 4 and 5, PRSPs and, especially, PRSPs with
the 1D colormap, are primarily suitable for comparing correlations,
for cluster density identification and numerosity detection.

We confirmed in our evaluation, in Section 5, that PRSPs
provide a more accurate representation of the density of the datasets
than the traditional scatter plots—even with opacity—and their
respective density plots. In the design of the relaxation encoding,
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we chose color as a visual variable with strong selective and
associative properties [55]. This selection enables the identification
and localization of patterns, their densities and numerosities. It
helps to convey information about the size of structures and the
patterns. Initial analysis showed us that inverting the 1D colormap
to display the distortion, as shown in Figure 2, helps to better
display motifs and patterns. The user’s attention is more drawn
towards the brighter data items denoted with yellow, which are the
less displaced data items. This makes the technique particularly
suitable for data with strong distortions.

In Section 4.3, we arranged our PRSPs in a SPLOM configu-
ration to demonstrate applicability to more than two dimensions
in a proof-of-concept. In this case, our approach could be used as
an initial step for an extension towards scagnostics [56], or for the
design of novel, aggregative, abstracted views on the data, which
can be used to save screen space. This should take into account
approaches that focus both on automatic extraction of local and
global motifs within plots, such as the recent work of Matute [57]
and Shao [58]. It would also be interesting to take advantage of
algorithms from the field of image processing, for better motif or
pattern detection—possibly, through edge detection.

Scalability to larger datasets has been demonstrated in Sec-
tion 4.2. Cases, where the number of data items is larger than
the available screen pixels, requires downsampling and interaction
techniques to display the data and to provide exploratory means,
such as zooming and panning. Standard image downsampling
techniques that create an image pyramid, which is displayed at the
required level, should perform well in most cases. However, it can
be more beneficial to adjust the downsampling to the intended goal
of the analyst. For example, keeping at each downsampling step
the item that differs the most from the rest for the next coarser level
could be used to highlight outliers. If the goal is to preserve motifs
or cluster boundaries, then the vector median is a good choice. It
is important that the downsampling is performed before adding
glyphs, such as the flow lines, in order to avoid clutter. In these
cases, the flow lines will be computed once for each image region
of size a×a, where a can be a user-defined value. As flow lines
were considered in general confusing in the evaluation, a useful
improvement would be to use bundling [59] to reduce clutter. Other
techniques, such as Fish-eye lenses [36], could also be employed.

We demonstrated in Section 4.1 that our PRSPs remove clutter
due to overplotting by performing an optimal 1:1 mapping of the
point-to-pixel positions through a linear sum assignment. Due to its
long computation times, we also tested a median-split mapping, as a
fast alternative to the linear sum assignment. However, the recursive
subdivision at the median positions can become noticeable and
corrupt the motifs in the data, to some degree. Simple relaxation,
such as collision detection and repelling algorithms, as used in
cartogram-based distortion [60] are not suitable in our approach, as
the target domain is not unbounded and should be completely filled.
This would lead to long computation times, in our case. However,
approaches like the ones proposed by Gale and Shapley [61], or
Gusfield and Irving [62] would be interesting alternatives to the
linear sum assignment. Also, fast solvers of the linear assignment
problem are just becoming more widely available and could be
used to replace the median-split mapping, in the future.

Our evaluation focused on a comparison between the proposed
PRSP variants, and to some extent against scatter and density plots.
Yet, there are a lot of other techniques solving different aspects
within the overplotting topic, as mentioned in Section 2. In particu-
lar, in the latter work of Micallef et al. [4], the authors propose to

reduce overplotting in scatter plots through the construction of a
cost function. This function captures visual aspects, such as marker
size and opacity, aspect ratio, color, and rendering order, to optimize
the design of a scatter plot for a particular task. However, as also
remarked by the authors, balancing terms in the cost function needs
to be done carefully with respect to different tasks or data (e.g.,
large and opaque markers are beneficial for outlier detection and
class separation, respectively). On the positive side, this makes their
approach extensible to different kind of tasks, while PRSPs have
a more narrow task target. On the negative side, the optimization
can be challenging, while PRSPs do not require any particular fine-
tuning, apart from the mapping and encoding selection, being more
simple. Additionally, optimizing the visualization parameters [4]
mitigates overplotting and makes the visual design of scatter plots
more readable, but the inherent problem of overplotting cannot
be solved entirely by such approaches. Regarding correlation
detection, we only evaluated relative assessments for our PRSP.
Absolute correlation assessments are often of higher interest for
practical use. This should be further investigated following the
setup of Li et al. [63]. Finally, a more thorough comparison with
traditional scatter and density plots should be conducted, regarding
suitability for other data analysis tasks. This is out of scope for our
present work, but a thorough study with additional techniques—
in particular splatterplots [24], or perceptually optimized scatter
plots [4]—should be conducted, in the future.

Another potential shortcoming of the current evaluation is that
it was conducted with a limited amount of participants, who were
mostly knowledgeable about scatter plots. Basic knowledge in
visualization was desired, so that we could ensure familiarity with
basic representations such as scatter plots and density plots—as the
goal was to investigate if PRSPs provide benefits for certain tasks.
Therefore, the participants were all working, or used to work, in a
visualization or computer graphics environment, or were students
that already attended a visualization course. A crowdsourcing
evaluation approach [64] should be preferred in the future, in order
to include also a more general public, i.e., additional novice users,
and to render the results of the evaluation more significant.

The analysis of our results in Section 4 and the evaluation in
Section 5 have also exposed some limitations of our approach. To
begin with, spatialization of data points is the most effective visual
variable in scatter plots, according to Bertin [65]. In our case, we
are changing the spatial location making it potentially less useful.
However, by minimizing the displacement of pixels with respect
to their original position and carefully replacing the lost spatial
information with color, we were able to preserve discriminative
motifs within the data—in particular, clusters and especially with
the use of the PRSPs with the 1D color encoding. We recognize
that the PRSPs on their own are not as intuitive as scatter plots
and require some familiarization. Deriving the absolute position of
data points is fundamentally hard and error-prone to some degree;
hence, we propose to use PRSPs only as a supplement and not
as a replacement to traditional scatter plots. Nevertheless, if no
traditional scatter plot is available, experienced or familiarized
users might still be able to solve positional tasks. The 1D colormap
preserves motifs and cluster centers well, while smooth color
changes indicate similar origins.

Although it seldomly happened, the linear sum assignment may
create single outliers due to the Euclidean distance optimization.
To solve this, incorporating additional parameters in the objective
function might be useful, such as minimizing the maximal dis-
placement instead of the Euclidean distance. However, we have
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not evaluated this so far, and propose it as future work. Also, the
mapping from the scatter plot space to the PRSP space is not
bijective. Theoretically, the same PRSP could exist for different
data sets. However, this is only a theoretical problem and would
occur only in synthetic cases. Additionally, a minor issue is that
some pixels in the representation may be unused if N 6= n×m. This
might entail the limitation of losing screen space.

Additional point-to-pixel mapping and relaxation encoding
solutions were regarded, which we propose here as points for
future work. Quad-tree-based density ordering algorithms or k-
space filling algorithms that take data point density into account can
be surrogates, for the currently employed point-to-pixel mappings.
In the relaxation mapping, calculating the distance of each pixel to
the n-th nearest neighbor in the dataset might provide better insight
into clustered data structures. Using line integral convolution (LIC)
representations might also give a good notion of the relaxation
introduced in the resulting PRSPs [66]. Finally, the use of animation
to help the transition between the two spaces would provide the
user with a seamless, dynamic and efficient way of exploring the
data in both spaces, simultaneously. Other interactivity could also
prove helpful for pattern identification, structure density and cluster
size information retrieval—including new brushing approaches.

7 CONCLUSION

Scatter plots are simple, but powerful, visual representations
of two-dimensional data with the ability to communicate the
existence of data clusters, correlations, or outliers. However, with
an increasing number of data points, they become less effective, due
to commonly occurring overplotting. In this paper, we presented the
Pixel-Relaxed Scatter Plots (PRSPs), a pixel-based, space-filling
variant. Data points of the dataset are mapped uniquely to image
pixels, using different mapping solutions to avoid the overlap of
data points and different ways of calculating and encoding the
introduced relaxation. We demonstrated the results of our approach
with several synthetic and realistic datasets, and we discussed
the applicability and suitability of our variant to different cases
and tasks. We conducted a user evaluation with 25 participants,
to confirm the advantages and to identify the limitations of our
approach. The PRSP representation can be useful for searching
for particular known motifs in the data, for exploring the depicted
datasets, for comparing the density and numerosity in different
regions of the representation and, possibly, for characterizing
distributions and determining their level of correlation.
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