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Kurzfassung

Das Erstellen von Modellen für Computergraphik ist eine sehr arbeitsintensive Tätigkeit,
was die Größe von Projekten in dem Bereich stark limitiert. Prozedurale Modellierung
ist ein Forschungsfeld, welches versucht dieses Problem durch automatische Generierung
von Modellen, in unterschiedlichen Variationen und mit unterschiedlichem Detailgrad,
zu lösen. Innerhalb des Feldes der prozeduralen Modellierung gibt es unterschiedliche
Techniken, welche sich entweder auf das Generieren von Pflanzen, wie z.B. L-Systeme,
oder das Generieren von Gebäuden, wie z.B. Shape Grammatiken, spezialisieren. Diese
Arbeit hat zum Ziel einen möglichen Weg zur Verbesserung dieser Situation aufzuzei-
gen, indem eine Grammatik beschrieben wird, welche zur prozeduralen Modellierung
sowohl von organischen wie auch von künstlichen Objekten im 2D Raum geeignet ist.
Es wird der gesamte Enstehungsprozess, von der Konzeption, über die Implementierung
der Grammatik und unterstützender Software, bis hin zur Anwendung an ausgewählten
Problemen, beschrieben. Eine Graph-Grammatik mit dem gleichen Ziel wurde bereits
in Christiansen und Bærentzen [CB13] enigeführt, diese hatte aber eine andere Defi-
nition und gänzlich andere Charakteristika. Die vorgestellte Grammatik hat zum Ziel
das Modellieren mit ihr möglichst einfach und intuitiv zu gestalten. Um die Vielseitig-
keit der Grammatik darzustellen werden Beispielsproduktionen vorgestellt, welche eine
Koch-Schneeflocke, zirkuläre und quadratische Muster, eine Gebäudefassade und einen
Baum erstellen.
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Abstract

The creation of models for computer graphics is a very work intensive task, which places
severe limits on the size of projects. Procedural modelling is an ongoing field of research
which aims to alleviate this pressure by automatically generating multiple differing vari-
ations of models at multiple levels of detail. Within the realm of procedural model
generation, there are a number of techniques specializing in either modelling plants e.g.
L-Systems or in modelling buildings e.g. shape grammars or other such specialization.
The following paper aims to show a possibility of improving this situation, by describing
the conception and implementation of a graph grammar and support software, suitable
for procedural modelling of both artificial (e.g. buildings and furniture) and organic (e.g.
trees and flowers) objects in 2D space. A graph grammar with such aims was previously
introduced by Christiansen and Bærentzen [CB13], but with a different definition and
different characteristics. This work aims specifically to make using the introduced graph
grammar simple and improve intuitiveness. The proposed graph grammars versatility
is displayed through example production definitions creating a Koch snowflake, circular
and square patterns, a building façade schematic and a tree.
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CHAPTER 1
Introduction

Modelling of realistic objects is a subject that is growing in importance, especially within
the entertainment industry. Automated modelling techniques are a very promising ap-
proach to this problem, particularly because they offer a way of providing both detailed
and varied models in a shortened time-frame [FYA10].

Most procedural modelling schemes specialize on creating a specific type of objects, e.g.
plants or buildings. This work aims to devise a graph grammar which can be used
for general purpose geometric modelling, while not being so complex as to reduce its
potential user base to people with deep technical understanding of formal grammars.

First, an overview of different kinds of grammars used for automated modelling is given,
and a short introduction to the formal aspects of graph grammars is presented. Following
this, the research methodology applied in this work is presented in detail. Then, based
upon the previous study of existing approaches, a formal definition of a new graph
grammar for modelling is presented. This leads to a discussion of the implementation,
technical details and finally a demonstration of the new graph grammars capabilities
with a few selected example applications.

The implementation described in this work focuses on 2D space, so as to not exceed
the scope of this paper. However, the graph grammar is defined in such a manner, that
extending it to cover 3D space would be relatively easy.

Graph grammars boast applicability to a wide range of problem spaces. Regarding
modelling of objects, they have the potential to allow one to reason directly about the
2D or 3D models rather than working on unrelated concepts which then need to be
translated into meshes in a second step. This makes graph grammars well suited to
applications in the field of generative modelling in the author’s eyes.

The contributions this thesis makes are:
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1. Introduction

• The proposal of a single class of graph grammars, which is shown to be capable of
representing a wide variety of modelling tasks.

• A proposal to improve the ease-of-use when defining productions of a graph gram-
mar enriched with geometric information, by offering automatic calculation of new
vertex locations, taking into account the relative positioning of elements between
the left- and the right-hand-side of a production.

2



CHAPTER 2
Grammars for Procedural

Modelling

The first part of this section gives an introduction to various grammars which have
been successfully applied in procedural modelling. Based upon observations from this
section, a new graph grammar for modelling will be defined and implemented in the
later chapters. The last sub-section of this chapter starts with an introduction to the
formalisms of graph grammars, before giving an overview of previous applications of
graph grammars to procedural modelling. This serves to give the reader an overview
of different approaches to defining graph grammars and their effects on the designs of
productions.

The investigation of different approaches to procedural modelling based on grammars will
focus on L-systems as described in Prusinkiewicz and Lindenmayer [PL96], CGA shape
as defined in Müller et al. [Mül+06] and one recent work, which also aims to introduce
a graph grammar for the purpose of modelling, called Generic Graph Grammar [CB13].

2.1 L-Systems
The term L-system designates a class of different string-rewriting grammars, which
differentiate themselves from the formal grammars of the Chomsky hierarchy by us-
ing a parallel application of productions instead of a sequential application. Exam-
ples of different types of L-systems include deterministic, context-free L-systems (called
D0L-systems), stochastic, context-free L-systems (called stochastic 0L-system), context-
sensitive L-systems (called IL-systems), parametric L-systems and many more.

At the most basic level an L-system is a string rewriting system where one symbol is
replaced with any number of symbols by a production. In Prusinkiewicz and Linden-
mayer [PL96] it is shown, that while it is possible to model some plants with context-free
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2. Grammars for Procedural Modelling

L-systems, a lot more expressiveness can be gained by using parametric L-systems and
certain kinds of vegetation require context-sensitive, parametric L-systems. It is also
noted, that stochastic L-systems are necessary if one wants to model multiple plants
using the same L-system since the equality of the generated plants is otherwise very
noticeable.

Axiom: X
Production rules:
X -> F[+X][-X]FX
F -> FF

Figure 2.1: To the left are the rules of an L-system producing a simple 2D plant-like
structure. To the right is the result of this L-system. From [PL96]

An example of an L-system for a simple 2D plant-like structure can be found in Figure 2.1.
The left side shows the rules and the right side the result. To achieve said result, the set
of rules is repeatedly run in parallel, usually for a relatively low number of steps (seven
in this case) and then evaluated for display by a Logo-style turtle. The interpretations
would be: F moves the turtle forward, + makes it turn left, - makes it turn right, [
pushes the current position and direction onto the stack, and ] pops the last saved
position and direction from the stack. Each movement of the turtle draws a line over
its path. Many L-systems for generation of flora use an extended set of functionality,
such as a 3D space with operations to change pitch and yaw, changing the diameter, or
changing the colour of line segment.

The above focus on plants should, however, not lead to the impression that L-systems are
wholly unsuitable for other tasks, indeed Parish and Müller [PM01] used an L-System to
great effect for modelling an entire city, including both the street-map and the buildings.

2.2 Set, Shape and Split Grammars

Shape grammars where first introduced by Stiny et al. [Sti+71], as a system where
labelled lines or points where replaced by different lines and points. It was initially
difficult to efficiently apply such productions automatically, but later works found that
shape grammars could be simplified to set grammars [Mül+06]. This specific use of set
grammars is what most recent articles on procedural modelling mean when they speak
of shape grammars.

4



2.2. Set, Shape and Split Grammars

The modern shape grammars for the modelling of buildings and façades where developed
since the turn of the millennium, using what is called a split approach. It was introduced
in Wonka et al. [Won+03], inspired by L-Systems and the work done in Parish and
Müller [PM01], and has since then been improved and extended by multiple publications.
Examples include the addition of scopes in Müller et al. [Mül+06], extending the use of
non-terminal shapes in Krecklau, Pavic, and Kobbelt [KPK10], allowing for a shape’s
scope to be any convex polyhedra in Thaller et al. [Tha+13], allowing conditions on
geometric information within productions in Schwarz and Müller [SM15] and allowing
for layers and SVG1 code inside 2D shapes in Jesus, Coelho, and Sousa [JCS16].

The term split approach has come about because, for the procedural modelling of archi-
tecture, it has proven quite effective to start with a simple 2D or 3D object and then
continuously split it apart to add more details. For example, a rectangle of appropriate
dimensions could be used as the starting point for a façade or a polygon representing
a building plot, for modelling a complete house. This starting geometry is then refined
by splitting it apart, extruding or intruding specific shapes, and often by replacing a
shape with pre-defined geometric information from an external 3D modelling software.
Because of the significance of the split operation in this procedure, shape grammars
using this approach are at times referred to as split grammars.

A typical example of a production in a shape grammar, taken from CGA shape [Mül+06],
would be:

1: fac(h) : h > 9⇝ floor(h/3) floor(h/3) floor(h/3)

Where 1 is the ID of a rule taking a shape with the label fac for façade and an attribute
h for height and applying only if h is greater than nine. If it is applied, it splits
apart the shape fac into three shapes, each with the label floor and a height of one
third of the original shape. To produce an interesting façade additional functionality is
needed to control the productions. In [Mül+06] these are scopes, similar to L-system
scopes, a function to split along an axis, to scale along an axis, to repeat a shape as
long as there is space, and finally a function to split a scope into its components of
lesser dimension, e.g. split a 3D cube into 2D faces. Its productions are assigned a
priority and applied sequentially, in a way so that at first all rules of the highest priority
are executed, then those of the next lower one and so forth. Each production can be
assigned a probability, which determines how likely it is that the rule will be selected,
and a condition of application. Conditions of productions are logical expressions, which
can reference attributes of shapes as well as special functions like occlusion testing, which
have to evaluate to true for a production to be applied.

A different, but somewhat related approach to shape grammars is GML2 [HF11]. It
is a stack-based imperative programming language, mirroring the syntax of PostScript,

1Scalable Vector Graphics
2Generative Modeling Language
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2. Grammars for Procedural Modelling

which is well suited to implement typical context-free shape grammars. In addition to its
shape grammar like functionality, it also supports shape representations using pcB-Reps,
Convex Polyhedra and Volumetric Bitmaps.

2.3 Graph Grammars
The basic thought behind graph grammars is to apply the same scheme of productions
used for strings in grammars from the Chomsky Hierarchy on the more complicated, but
also more expressive, data-structure of a graph. It is a natural evolution of formal string
based grammars into more expressive types.

Graph grammars were invented in the late 60’s to solve pattern recognition, compiler
construction and data type specification problems [Roz97]. Since then its use has spread
to fields such as database design, logic programming, compiler construction, visual lan-
guages and also to applications outside the computer sciences such as chemistry, biology,
meteorology or geology. With respect to the applicability of graph grammars to procedu-
ral generation of 2D or 3D models, there have been a handful of works making attempts
in this direction, but the body of research is not comparable to L-Systems or shape
grammars and there is still a lot of room for further study.

Since this paper focuses primarily on the specification and practical application of a
graph grammar, rather than the theoretical properties of graph grammars in general,
the following theoretical sections are by necessity quite short. For more background
information, detailed and formal treatment of graph grammars, and information about
their theoretical properties consult the standard work in this field, the „Handbook of
Graph Grammars and Computing by Graph Transformation“ in three volumes [Roz97],
[Ehr+99a], [Ehr+99b]. Volume one deals with the theoretical underpinnings, the second
volume with applications and the third volume with implementation details of concur-
rency, parallelism and distribution of graph transformations. A detailed, specialized
treatment of double push out algebraic graph grammars can be found in Ehrig et al.
[Ehr+06]. A comparison between the double and the single push out approaches to
algebraic graph grammars can be found in [Par93].

2.3.1 Simple Example of a Graph Grammars Derivation

To introduce a reader unfamiliar with graph grammars to the topic, a very simple exam-
ple without any formal definitions is presented. This should improve understanding of
the following discussion of different kinds of graph grammars, their definitions and their
categorisations, and provides context for the formal underpinnings of graph grammars
provided later on.

One very basic graph grammar would for example take a node and replace it with two
nodes and an edge between them, while keeping existing connections intact. A sample
production of this kind and the two possible results of applying such a production three
times in a row are shown in Figure 2.2.

6



2.3. Graph Grammars

1

L

1

R Axiom
3 derivations

Intermediary Result 1

Intermediary Result 2

Figure 2.2: A simple example of a graph grammar. To the left is the production which
simply adds a new node and edge to an existing node. To the right is the axiom graph
and the two possible intemediary results after three derivations.

When applying a production to a graph, called the host graph H, the first step is finding
a part of H which matches the left hand side L of the production. In the presented case
this is very simple: Any node of H is a possible match for our rule. Secondly, a single
match must be selected from all possible matches for L in H. When applying our single
production to the axiom there is only one possibility; on the second step of our derivation
sequence there are two possible matches, but they each lead to the same resulting graph;
finally, on the third application, there are three possible matches with the two possible
results shown on the right of Figure 2.2. The usual approach of choosing a match out
of all possible matches is to choose one at random, but other solutions exist and have
their place.

When applying a production to a match, we need to have some form of correspondence
between elements of the left hand side L and elements on the right hand side R. If we
had no means of creating such a correspondence, then no newly added elements could
be connected to existing elements and all results would be disjoint. As this would put
a severe limit on the expressiveness of a grammar, it is usual to have some means of
connecting the newly added elements to the existing graph, for example by using gluing
or embedding, which will be discussed in greater detail later on. For this simple example,
I decided to uniquely map one node on the left hand side (marked by 1) to one node on
the right hand side (also marked by 1), and to have all edges connected to the matching
node transferred over to the corresponding node on the right hand side of the production.
This approach is an example of gluing.

Throughout this example derivation we have come across a number of places where graph
grammars can make divergent choices and differentiate themselves in their complexity,
their expressiveness and their properties. Firstly, the definition of what kind of graphs
are supported: directed graphs, undirected graphs, graphs with hyperedges, labeled
graphs, typed graphs, attributed graphs, etc.; there are many possibilities which have
been explored. Secondly, restrictions on the form of the left hand side of a production:

7



2. Grammars for Procedural Modelling

The usual options are allowing only nodes, only edges or allowing unrestricted graphs,
but depending on the use-case other restrictions might be of use. Third, the process by
which the new additions are added to an existing graph, which mainly separates into
the gluing and the embedding approaches. Fourth, whether productions are applied in
parallel or in sequence. And, last but not least, a host of smaller decisions, which often
serve to make the grammar easier to work with in specific situations, such as controlling
the order of application of productions, allowing for special conditional expressions on
graph elements, allowing for production wide conditionals, etc.

In addition to the above, there are other characteristics of graph grammars, which are of
interest during graph theoretical study of these grammars, and can be used to differen-
tiate between them, such as confluence. As far as applications to procedural modelling
are concerned, however, these qualities are of less import and therefore left out so as not
to breach the scope of this work.

2.3.2 Overview and Categorisation of Graph Grammars

The first work published on graph grammars was Pfaltz and Rosenfeld [PR69], which
does not formally define the grammar, instead describing productions in informal sen-
tences. The first formal definition of a graph grammar was Schneider [Sch70], defining
the grammar to be a tuple of a node label alphabet, a terminal node label alphabet,
a finite set of productions and an axiom graph. This basic structure has essentially
remained the same to this day, with differences between grammars mostly focusing on
the definition of a production.

From this starting point, a wide variety of different types of graph grammars where
described and used. A detailed treatment of the early history of graph grammars can
be found in Nagl [Nag79].

Many graph grammars work on labeled graphs, where every element of the graph is given
a label, allowing productions to query those labels in their matching and connecting
instructions. A typical example for how such a graph would be defined comes from
Engelfriet and Rozenberg [ER97], where a graph over the alphabet of node labels Σ and
the alphabet of edge labels Γ is defined as a tuple H = (V, E, λ), with V being a finite
set of nodes, E being a set of tuples {(v, γ, w)|v, w ∈ V, v ̸= w, γ ∈ Γ} describing the
edges of the graph and λ being the node labeling function assigning to each v ∈ V a
σ ∈ Σ. Of course there exist other possible definitions of graphs, such as graphs only
labeling nodes, but not edges, as in Pfaltz and Rosenfeld [PR69], or attributed graphs,
where, in addition to being labelled, graph elements can also have an arbitrary number
of attributes assigned to them as in Rudolf [Rud97].

The most common general categorization of graph grammars is along the limitations
placed on the left hand side of a production. Node replacement grammars limit the left
hand side to only contain a single node, which is replaced with a new graph on the right
hand side of the production during application. Edge replacement grammars allow only
for a single edge on the left hand side, and graph replacement grammars allow one to

8



2.3. Graph Grammars

replace arbitrary graphs on the left hand side with arbitrary graphs on the right hand
side.

A B

C

1

1

H

B

C

1

L
matching

isomorphism

A

D

2

R

Figure 2.3: Schema of matching a production p to a hostgraph H.

A second common characterisation of graph grammars is based on the mechanism used
to connect the right hand side of a production with the existing graph the production is
applied to. Formally, when you apply a production p with the left hand side L and the
right hand side R to a host graph H, the first step is to find a match HL of L in H, a
graph isomorphism from L to a subgraph of H as seen in Figure 2.3. Then those elements
of H which are part of the isomorphism are deleted, leaving us with H− = H \HL; in
this case the node with the Label A and the dangling edge with the label 1.

A A

D

2

1
2

D with connecting

A A

D

1

2

D with gluing

Figure 2.4: Result of applying p to H: on the left with the embedding instructions
{(1, A) 7→ {(1, D), (2, A)}}, on the right with gluing. Example adapted from Nagl
[Nag79].

The next step is where the connecting approach, also called embedding approach, differs
from the gluing approach. The connecting approach completely disallows dangling edges,
so edges which were going from H− to HL, are also deleted in H−, the result graph
D = H− ∪ R is formed and then new edges between H− and R are formed based on
instructions specified in what is called the embedding E. An example of a possible set

9



2. Grammars for Procedural Modelling

embedding instructions would be: {(1, A) 7→ {(1, D), (2, A)}}. The first part of the rule
decides if it is applied and to which elements of H− new connections (if any) are made.
So (1, A) specifies, that new edges are connected on one side to nodes with the label
A, which had an edge going to any element of HL. The right side of the rule states to
which nodes in R new edges are connected, and what label the new edges will have. In
this case any nodes with the label D will be connected with an edge labelled 1 and any
node labelled A will be connected with an edge labelled 2. The resulting graph of such
an application can be seen on the left in Figure 2.4.

When applying the gluing approach some dangling edges are not deleted but effectively
reconnected from HL, the parts of H mapped to L, to elements of R according to a
mapping between L and R specified within the production. Thus, a production takes
on the form p = (L, K, R) where L and R are as described above and K is the common
interface between L and R, the intersection between the two graphs K = L∩R. In this
case H− = H \ (L \K) and then D = H− ∪R so that the connections between elements
in K and elements in R are retained. One can essentially imagine removing all of L from
H adding all of R to it and then gluing all the dangling edges to the appropriate nodes
of R, hence the name. As an example, imagine that the node with label B in L and the
node with label A in R where the same (e.g. had the same unique node id) and therefore
part of K. The resulting derivation can be seen on the right of Figure 2.4. It is also
possible to define additional embedding relations for the gluing approach, which would
be applied after the procedure described above. Of course in a practical implementation
the details might be handled differently, such that the common interface might actually
be a partial mapping K : L 7→ R or the dangling edges may be deleted first only to be
re-created later on.

The connecting approach allows one to create new edges from and to nodes not matched
within the left hand side of the production, whereas the gluing approach without exten-
sions only allows for the creation of new edges between new elements or elements part
of the left hand side. This explains why the connection or embedding approach is com-
monly used with node replacement grammars, where you cannot have multiple elements
on the left hand side. Therefore, this approach significantly increases the expressiveness
of the grammar. The gluing approach on the other hand is these days heavily associated
with graph replacement grammars, since arbitrary graphs are allowed on the left hand
side of a production and therefore the slightly more complicated definitions of embed-
dings would often be unnecessary. It is however instructive to note that there is no law
demanding things be this way. After all the first formal graph grammar, specified in
Schneider [Sch70], was a graph replacement grammar using embeddings and the sim-
ple example of a derivation given in the preceding section was a production of a node
replacement grammar using gluing as the author considers its explanation to be simpler.

The connecting or embedding approach and the gluing approach also have a different set
of terms used to describe them, namely the algorithmic or set theoretic approach and
the algebraic approach respectively, though Engelfriet and Rozenberg [ER97] call this
choice „unfortunate“. The term algebraic, in particular, is used quite commonly to refer

10



2.3. Graph Grammars

not just to a grammar using gluing, but to any graph grammar allowing arbitrary graphs
on the left hand side of productions. This practice started with the first paper formally
introducing arbitrary graph replacement grammars with gluing, „Graph-grammars: an
algebraic approach“ Ehrig, Pfender, and Schneider [EPS73], and has continued since e.g.
[Cor+97], [Ehr+06]. Following this tradition, in this work the terms graph replacement
grammar and algebraic (approach) graph grammar are understood to be synonymous.

2.3.3 Algebraic or Graph Replacement Grammars

The following section takes a deeper look into the workings of algebraic graph gram-
mars, because these grammars are of particular interest when it comes to the subject of
procedural generation of geometric models. Allowing arbitrary graphs on the left hand
side of productions not only gives the grammar a high degree of expressiveness, but also
allows for a certain degree of geometric intuition to come into play when defining such
productions. The information and examples relayed in this section stem primarily from
Corradini et al. [Cor+97] and Ehrig et al. [Ehr+06].

1 2 3

L

1 3

R

4

1 2 3

H

5

1 3

D

5

4

p

m m′

p′

Figure 2.5: Example of a derivation step in an algebraic approach graph grammar. The
node 2 is deleted and the edge 4 is added while transfroming H to the result D. m is
the match from the left-hand-side to the host graph, a graph homomorphism, m′ is the
corresponding comatch, a homomorphism from the right-hand-side to the result. The
production p defines the correspondence of elements between L and R, with p′ doing the
same between H and D. Adapted from [Cor+97].

In algebraic graph grammars, a production is defined as p : L→ R, with L and R being
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2. Grammars for Procedural Modelling

called the left-hand side and right-hand side of the production. Given a host graph
H, a match m : L 7→ H is, in the general case, a graph homomorphism mapping all
edges and vertices from L to H. Applying a production p means deleting from H all
elements which exist in L but not in R, adding all elements that exist in R but not in L
and leaving all elements that exist in both L and R untouched. A visualization of this
process can be found in Figure 2.5. The upper left graph represents the left-hand side
L of the production p, the upper right the right-hand side R, the lower left graph is the
original graph H and the right hand side is the resulting graph D.

When allowing matches to be homomorphisms rather than isomorphisms, there are a
number of difficulties that can crop up if, for example, two nodes in L are matched to
the same node in H. If exactly one of these two nodes from L is present in R, then it
is unclear what should be done: Should the node in H be deleted or should it be left
as part of H? Another such situation occurs when a production p deletes a node which
is connected by an edge to another node in H. This would leave a dangling edge in
H after applying p. The main difference between the double push out (DPO) and the
single push out (SPO) approaches lies in how they deal with such special cases. Double
push out disallows the application of the production in such problematic circumstances
while single push out allows them and resolves the uncertainty by prioritizing deletion
[Cor+97].

L K R

G D H

Double-push-out Production

m

l

d

r

l∗ r∗

m∗

L R

G H

Single-push-out Production

m

p

p∗

m∗

Figure 2.6: Schema of a production in a DPO graph grammar to the left and in a SPO
graph grammar to the right. Adapted from [Cor+97].

In greater detail, the DPO approach defines a production as p : L
l←− K

r−→ R, with L
and R being total graph homomorphism from the common graph K called an interface
graph. As seen on the right of Figure 2.6, L is matched to G and then a so called context
graph D is created by deleting from G all elements that exist in L but not in K. This
operation could be described as inverse gluing. In the next step, the result graph H
is obtained from D by adding all elements that exist in R but not in K. In addition,
the match m must satisfy two constraints, together called the gluing conditions. First,
if a vertex v is deleted from G then the deletion of all edges connecting to v must also
be ordered. This is called the dangling condition. Second, the identification condition
states that any element that is to be deleted from G may only have one pre-image in L.
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2.3. Graph Grammars

The SPO approach defines a production as p : L
r−→ R, with r being a partial graph

homomorphism as seen on the right side of Figure 2.6. There is no gluing condition; the
match m can be any graph homomorphism. If a production specifies both the deletion
and the preservation of an element then the deletion takes precedence. If the deletion of
a vertex leaves behind a dangling edge the edge is deleted as well.

2.3.4 Generic Graph Grammar

Generic Graph Grammar (G3), as defined in Christiansen and Bærentzen [CB13], uses
a directed cyclic graph consisting of nodes, edges and faces, all without labels, called
primitives to represent its objects. Productions are applied in parallel to all primitives
of one kind (all edges, all nodes or all faces), making it a special combination of node
replacement and edge replacement as well as algebraic approach graph grammars, where
the left hand side of a production is limited to graphs that represent a single face. Every
production is given a tuple of parameters defining the radius, direction and length of
the produced primitive, it is also possible to specify variations for each of those values.
Further it is possible to assign conditions, which are Boolean expressions querying values
such as a random number, the age of the primitive, the number of neighbouring edges, the
position of a primitive, etc., to each production. The last part of G3 are the commands,
which are used to define the outcome of a production. Available commands are create
edge, create face, grow face, split edge and split face.

G3’s most notable point is that it does not use labels on its primitives which is a very
unusual approach to graph grammars. As is noted in Fahmy and Blostein [FB92] graph
grammars usually use labelled nodes and all grammars defined in Ehrig, Pfender, and
Schneider [EPS73] and Rozenberg [Roz97] follow this method. Another notable charac-
teristic of G3 is its focus on atomar parts of a 3D mesh rather then using some sort of
abstraction between the graph and the finished model. In comparison to other grammars
analysed above, G3 also severely restricts the number of attributes or parameters that
can be added to a primitive.

The lack of labels make it difficult to select a particular part of a graph for modification
by a production. Additionally, the limited options for left hand sides of productions
make it impossible to match specific relations between elements of a graph. For these
reasons the author considers the approach taken in G3 somewhat unsatisfactory and
sought a different solution.

What works well in this grammar is having productions work directly on 3D primitives,
without requiring a layer of abstraction between them. This makes it relatively easy to
visualize and predict what a production may change. Therefore, such a design direction
was included in the grammar presented in this paper.
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CHAPTER 3
Methodology

The aim of this work was to define and implement a graph grammar suitable for general
purpose procedural modelling of 2D shapes, more specifically of both natural and artifi-
cial objects. Additionally, the definition of the grammar should be easily extensible to
3D models, as the limitation to 2D was only made so as not to exceed the scope of this
work.

In order to gain an understanding of the problem space, a review of literature on suc-
cessful procedural modelling grammars was undertaken. Based on this review, a list of
features a grammar for procedural modelling would need was identified. The main re-
quirements where a good access to randomness, labels to allow for control of productions
and a system to allow the interpretation of productions in a geometric context.

In addition to these requirements, a set of example modelling tasks to test the suitability
of the newly developed grammar was devised. As the goal of the new grammar was to
have a single system suitable for a wide variety of tasks, specialities of both L-systems and
of shape grammars where considered, with the limitation that they had to be possible in
2D space. The tasks chosen where modelling of a Koch Snowflake and foliage, domains
where L-systems are very successful, a modelling of a building façade, a strength of
shape grammars, and the creation of both circular and rectangular patterns for added
diversity.

On this basis a first iteration of the formal definition of the new grammar was created
and afterwards implemented in Python. The implementation made apparent certain
weaknesses in the original definition of the grammar, which where then fixed in the
formal definition. The same process of iterative refinement of the grammar was then
applied during the implementation of the example modelling tasks.

While testing the first version of the implementation it became apparent that some form
of visualisation for the productions was necessary. At that point a visualisation inspired
by the typical diagrams for graph grammars in literature and the user interface of typical
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3D modelling tools was developed. However, since the user interface was not the focus
of this work, its development was stopped once a functionality adequate for the use case
was achieved.
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CHAPTER 4
Formal Definition of the Graph

Grammar

The grammar grammar &
axiom graph

is a tuple of the form (A, P ), where A is the axiom graph or starting
graph and P is a set of productions. A terminal state is implicitly encoded in a set of
productions: terminal stateIf there is no production which can be applied to a graph then the graph
is said to be in terminal form for this particular set P of productions. All graphs graphin the
grammar are attributed and by default undirected.

At its most basic, the productions productionof the grammar are of the form (M, p, D) where M
called the mother graph is the left-hand-side of the production; D, called the daughter
graph, is the right-hand-side of the production; and p, the partial graph morphism, is
a set of correspondences, a mapping from elements of M to elements of D describing
those elements which remain unchanged during application of the production.

The partial graph morphism partial graph
morphism

p is a morphism of some subgraph of M to D, i.e. S ⊂M ,
p : S → D. It is essentially a mapping of graph elements (e.g. nodes, edges, faces or
volumes) between the mother graph M and the daughter graph D. In addition to the
usual restrictions on a partial graph morphism found in literature, two constraints apply
in the presented grammar:

• The preimage of an element of D may only contain zero or one element, which is
to say that an element of D may be mapped to by at most one element of M .

• A graph element may only be mapped to another graph element of the same type,
which is to say a node may only be mapped to a node, an edge to an edge and so
on.

Figure 4.1 provides an example for a production and the partial graph morphism p
defined between M and D, indicated by the dotted arrows. The two nodes and one
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unchangedto remove to add

M D

p

Figure 4.1: Example of a production definition. The dotted arrows going from M to
D represent the partial graph morphism p. Elements which will be added are circled in
red, elements to be added in green and elements kept unchanded in blue.

edge which are matched by p, highlighted in blue, will be kept unchanged during the
application of this production. The node of M highlighted in red and the edge connecting
to it are not part of p. This means they will be deleted when applying the production.
The node of D highlighted in green and the two edges connected to it are also not part
of p, but since they are part of D they will be the elements added during production
application.

A derivation step, or an application of a production onto a hostgraph H, works by first
finding a subgraph isomorphism m : M → H. In the next step, for all elements of M
not part of the domain of the partial graph morphism dom(p), their counterparts in
H are deleted: R∗ = H \ {m(e)|e ∈ M ∧ e /∈ dom(p)}. Afterwards, all new elements,
those elements in D which are not part of the codomain codom(p), are added to H
and connected according to p, giving the result R = R∗ ∪ {n|n ∈ D ∧ n /∈ codom(p)}.
This process is outlined in Figure 4.2, which applies the production from Figure 4.1 to a
graph containing a square. At first a match from M to H is sought. One such possible
match m is indicated by the dashed arrows. Then one node and one edge is removed
from H, and two new edges as well as one new node are added, as described above.
The two newly added edges are connected to the existing elements of H by looking at
the elements matched by the partial graph morphism p. For this purpose, elements
d ∈ D ∧ d ∈ codom(p) are equated to their equivalent in H: m(p−1(d)). Newly added
elements connecting to such an element d in D are reconnected to m(p−1(d)). The partial
graph morphism p essentially defines which elements of H are deleted, which elements
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of D are merged together with elements of H, and which elements are added as new
additions.

M D

H R

p

match m

derivation
step

Figure 4.2: An example application of the rule from Figure 4.1. The dashed lines
show the match found between M and H. R shows the result graph of applying the
production.

A derivation derivationis a sequence of derivation steps, the first one applied onto the axiom graph
A, the following ones applied to the non-terminal graphs resulting from the previous
derivation step. A derivation ends and produces a terminal graph when none of the
productions in P can be applied, i.e. when there is no production p ∈ P for whose
right-hand side M exists a partial isomorphism from M to the host graph H. This
definition allows for the creation of infinite derivations. That is not seen as an issue
since, in practical applications, the number of derivation steps will always be bound by
factors such as computer memory or time constraints.

The above definition marks the introduced grammar as a graph replacement graph gram-
mar using the gluing approach to embedding, also called the algebraic approach in lit-
erature. Within the algebraic graph grammars it is a single push-out approach graph
grammar, using a mapping between the left and the right hand sides of the produc-
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4. Formal Definition of the Graph Grammar

tion, rather than a common interface graph. It also allows for the deletion step in the
derivation to leave dangling edges, which is a defining characteristic of single push-out
grammars [Ehr+06].

The implicit definition of a terminal form was chosen out of consideration for practicality:
A production in this graph grammar can be of such complicated form that any exhaustive
listing of properties is unrealistic, in a practical context, and would add unnecessary
tedium from a user interaction perspective.

4.1 Additional Extensions

To increase expressiveness and ease-of-use as a modelling tool, the grammar specified
above is extended in a number of ways, detailed in this section.

Priority of productions. The order in which productions are applied can be con-
trolled by setting a priority for each production. Those productions with the lowest
priority value are executed first. If there are multiple productions with the same prior-
ity, then the order of application between them is random.

Control of end of generation. In addition to defining a grammar in such a way that
it will eventually enter a terminal state (a state where no production can be applied), it
is possible to define a maximum number of derivation steps to execute. This can be done
globally, meaning the entire derivation will be stopped after x steps, or on a per-priority
level. These two modes can be combined. For example, consider a grammar with two
priorities of productions: 0 and 1. For priority 0 a limit of 100 production applications is
defined. In addition, a global limit of 500 production steps is set. Then first, productions
of priority 0 will be applied at most 100 times, following which productions of priority one
will be applied up to a limit of 500 total applications. But if the productions of priority
1 make changes which lead to a terminal graph with regards to priority 1 productions in,
say, 200 steps, then the derivation will stop, even if productions of priority 0 could still
be applied. Examples of grammars making use of this feature to control their derivations
are the Koch Snowflake from Section 7.1 and the tree models of Section 7.3.

Multiple D graphs for one M . To allow for control of the randomness when choosing
between multiple derivations with the same left-hand side M , the productions take the
form (M, {(p, D, w)}). M , p and D are as defined above and w stands for the weight
this particular daughter graph has, when selecting which one will actually be applied
amongst all possibilities. Thus, a mother graph has a set of possible daughter graphs,
each with their own partial graph morphism p. If n is the number of possible daughter
graphs of a given production, then the likelihood of a particular daughter graph Di

0 ≤ i ≤ n being chosen is wi/
∑n

j=0 wj .
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Multiple matches of the same production. By default, if a mother graph M has
multiple matches in a hostgraph H, one of the matches is chosen at random. It is
possible to change this on a per-production level, by setting an option to choose the
match with the oldest average element age. The age of an element referring to the
number of derivation steps the element has been part of the graph for.

Attributes of graph elements. Any graph element can contain an arbitrary amount
of attributes, which are tuples of (name, value) where name is a string identifying the
attribute and value can be any arbitrary value.

Conditional Productions. When a production is matched against a hostgraph, in
addition to finding a matching isomorphism m from M to H, it is also possible to define
matching conditions for any element e ∈ M on a per-element basis. These matching
conditions take the form of a function with access to all the attributes of m(e), the
elements potential match in the hostgraph H. If the all matching conditions in the form
of functions return true, then the match is accepted. If any of the functions returns false,
the potential match is discarded and another isomorphism is tested.

Calculation of new attribute values. In order to support the calculation of new
values for the attributes of graph elements, the value fields of attributes in the daughter
graph D can contain calculation instructions rather fixed values. These calculation
instructions can have access to any attribute values of any element matched in H, i.e.
to any element of the set {m(e)|e ∈M}.

Wildcard nodes in M . Edges in the mother graph M of a production may be con-
nected to wildcard nodes, which can be matched to any node in the host graph and are
left completely unchanged by a production application. This is merely syntactic sugar
simplifying the definition of productions; it has no effect on the expressiveness of the
grammar.

Saving vertex coordinates. To support a geometric interpretation of productions,
each vertex saves a x- and a y-coordinate in its attributes. These attributes function
like normal attributes: They can be queried in the mother graph and calculated in the
daughter graph, but, if no calculation function is supplied in the daughter graph, the
new values are calculated automatically. When using the grammar to model structural
relations these attributes can be ignored completely, but, when interpreting them as
replacements on geometric shapes, having access to the x/y-coordinates is very helpful.

Matching spatial relationships. To further support a geometric interpretation of
productions, it is possible to set an option on a per-production basis which requires that
any potential matches for the mother graph M in the host graph H respect the total
ordering which is defined by the elements position on the x and y axes. This option has
proven itself to be very helpful in providing intuitive results for productions.
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4. Formal Definition of the Graph Grammar

Optional directed Edges. Edges can optionally be interpreted as being directed.
This allows for additional expressiveness for some productions when used in a geometric
context. An example of such a grammar is the Koch Snowflake of Section 7.1.

This set-up allows for defining a graph grammar which not only has a high level of
expressiveness but also affords intuitive interaction with the system.

4.2 Sources of Randomness in the Grammar
Since randomness is an important source of expressiveness for the purpose of procedural
generation of 2D models, this sub-section will give a short summary on the different
means by which variation between results can be achieved in the proposed grammar.

There are two types of variation which can be differentiated. Structural variations,
which change the content and/or structure of the graph and parametric variations, which
are changes in the attributes of graph elements. The grammar offers a single way of
adding variations in the attributes of elements, namely by evaluating an arbitrary python
expression with access to the random library. In practice this offers a sufficient degree of
freedom for attributes, so that no additional means of adding randomness were necessary.

As for structural variations, there are multiple ways by which it can be achieved in the
proposed grammar. If there are multiple productions with the same priority, one of the
productions is chosen at random. If all these productions make changes to the graph,
which inhibit other productions of the same priority from being applied to the graph,
then this can be used to produce structural variation. In addition to this method, it
is possible to define a single mother graph with multiple daughters, each of which has
a weight attached. When such a production is chosen for application and the mother
graph successfully matched against the host graph, one of the daughter graphs is chosen
at random, with the weighting providing more control to the user. Lastly, it should
be noted that parametric variations can be used to lead to structural variations, in
consecutive derivation steps, by using the value of a randomly calculated attribute as an
application condition in multiple productions of lower priority.
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CHAPTER 5
Implementation

Regarding the practical implementation of this graph grammar, there are two distinct
parts, loosely coupled with each other. One side is the graph management and calculating
functions in the form of a library, and the other side is the GUI which is used to work
with the grammar in day to day operations.

5.1 Matching Algorithm

Finding subgraph isomorphisms of one graph within another is an NP-complete problem
[GJ79]. Therefore any algorithm, trying to speed this problem up, will try to prune the
search space early for common cases or employ heuristics, if finding all possible matches
is not a necessity.

In this particular application a simple and direct implementation of the matching algo-
rithm, testing an element in the mother graph of a production against every element of
the host graph and then looping on that was implemented; see Algorithm 5.1 for details.
In practical application this turned out to have acceptable runtimes for smaller mother
graphs of about five elements matching against moderate host graphs of about 1000
elements.

Further improvement, such as using a specialised graph matching algorithm like GraphQL
[HS08] or VF3 [Car+18], is certainly possible and even necessary for working with the
grammar on a greater scale, but outside the scope of the current work.

5.2 Replacement Algorithm

The replacement algorithm, displayed in Algorithm 5.2, uses, as stated before, a singe
push-out approach. To manage all the relations between different graphs and graph
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5. Implementation

Algorithm 5.1: Pseudo-code of the matching algorithm.
Input: mother graph M and host graph H and whether geometric ordering is

to be kept
Output: R is a list containing possible matchings.

1 All lower case m and h are graph elements (i.e. either edges or vertices) with
mx ∈M, ∀x and hx ∈ H, ∀x;

2 {x: y} defines a dictionary mapping x to y. T is a task list containing tuples of
(mapping, unmappend elements);

3 get starting element m0 from M ;
4 For h in H:
5 if h.matches(m0): then
6 add ({m0: h}, {unmapped neighbours of m0: m0}) to T ;
7 else
8 end
9 While exists t in T :

10 pop (mapping, unmapped elements) from list T ;
11 if mapping is complete then
12 add the complete mapping to R;
13 continue;
14 else
15 end
16 pop (mx, mx -parent) from unmapped elements;
17 map mx -parent to hx -parent according to mapping;
18 Create a list newmappings of possible new mappings;
19 For neighbours hx of hx -parent:
20 if hx is already mapped then
21 continue;
22 else
23 end
24 if mx is a directed Edge: then
25 check if hx matches the direction of mx, if not continue;
26 else
27 end
28 if hx does not match the matching functions defined by mx: then
29 continue;
30 else
31 end
32 if The already matched neighbours of hx and mx are incompatible: then
33 continue;
34 else
35 end
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5.2. Replacement Algorithm

35
36
37 if Geometric ordering in M should be kept by the match then
38 Test if ordering of hx is compatible with mx, if not continue;
39 else
40 end
41 We found a matching element hx for mx;
42 A new mapping including {mx: hx} to newmappings;
43 end
44 if The list newmappings is empty then
45 This branch has no possible mappings, discard it. continue;
46 else
47 end
48 Calculate the new unmapped elements dictionary;
49 new mapping in new mappings
50 add (new mapping, new unmapped elements) to task list T ;
51 end
52 end
53 return R;

elements, the implementations ends up using five graphs with mappings between them
to apply a production.

The usual explanation of a derivation process of applying a production p to a host graph
H encountered in literature takes the following actions:

1. Delete elements of H which need to be removed according to p.

2. Add the new elements that p defines need to be added.

3. Connect the existing elements of H to the new elements according to the instruc-
tions in p.

In the actual implementation some additional steps were necessary and two of the above
steps where collapsed into one, but it follows the same structure:

1. Calculate which elements to add, remove or change and for which elements new
attribute values need to be calculated. (Done when creating/loading the produc-
tion)

2. Delete any element marked for removal. (Lines 3 to 9 of Algorithm 5.2)
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3. Add the new elements, which will automatically connect them as necessary. (Lines
10 to 14 of Algorithm 5.2)

4. Calculate the new value of attributes, for those elements where this is necessary.
(Lines 15 to 18 of Algorithm 5.2)

Algorithm 5.2: Pseudo-code of the production application algorithm.
Input: host graph H, mother graph M , daughter graph D.
Output: The graph resulting from applying the production R.
Data: There are the following graphs and abbreviations:
- R : Result graph
- H : Host graph
- M : Mother graph
- D : Daughter graph
- C : Copy of daughter graph
With the starting relationships:
R <-> H : 1-to-1 copy
H <-> M : partial isomorphism
M <-> D : manual mapping
D <-> C : 1-to-1 copy

1 Copy H to R
2 Copy D to C
3 for edges e which get reconnected by the production do
4 remove the connection to the vertex which will be disconncted from e
5 remove e from the neightbourhood list of the vertex
6 end
7 for e in elements to remove (e part of R): do
8 remove e from R
9 end

10 for e in elements to add (e part of C): do
11 map connections of e from C to R
12 if the position of e needs to be calculated automatically do so
13 add e to R (This automatically connects elements as necessary)
14 end
15 Calculate the vectors which will help in calculating attribute values
16 for e in elements whose attributes need to be calculated (e part of R): do
17 change attributes of e according to attribute deffinitions in D
18 end
19 return R

For a sketch of the logic behind the application of a production see Algorithm 5.2. The
most difficult to understand part of the whole algorithm is the hierarchy of the five
different graphs and how they are mapped to each other. A graphical representation of
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the relationships can be found in Figure 5.1. M and D are the mother or left-hand-side
and daughter or right-hand-side graphs of the production, respectively. The mapping
between them is supplied by the user and decides whether an element is kept, deleted
or added to the result. The mother graph M is matched to the host graph H with a
subgraph isomorphism as described in Section 5.1. R and C are deep copies of H and
D respectively. Working with a copy of H as the basis of the result graph R allows one
to just delete old elements, add new elements and change some of the remaining ones,
while leaving the majority of elements within R untouched. Without creating this copy
first, one would have to create a copy of each individual graph element as needed and
then add them to a result graph, which would result in more complicated code. C, the
copy of the daughter graph, is also just a function of convenience. This allows one to
add the new elements to R by just changing the references to neighbours in elements of
C, without creating new elements in each individual case.

MH D

R C

copy copy

partial
isomorphism

mapping
by user

Figure 5.1: Overview of the hierarchy of graphs in a production application.

As stated before, which elements are kept, added or removed is decided by the mapping
between M and D supplied by the user. The rules, which are visualized in Figure 5.2,
are:

1. Elements of the host graph H not part of the partial isomorphism with M are kept
without changes, except for maybe losing connections to deleted elements.

2. Elements with a mapping from M to D in the production (blue in the figure)
are kept, but their attributes are recalculated according to instructions in the
corresponding element in D.

3. Elements of M without a mapping from M to D (red in the figure) are deleted.

4. Elements of D without a mapping from M to D (green in the figure) are added
to the result. References to elements from point 2 are translated to references to
elements in R, the copy of H.
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kept (attributes recalculated)to remove to add

M D

p

Figure 5.2: Visualisation of the effect of the partial graph morphism p. The dotted
arrows going from M to D represent the partial graph morphism p. Elements which will
be added are circled in red, elements to be added in green and elements kept unchanded
in blue.

5.3 Calculation of Attributes and Position of Elements

The attribute calculation instructions can be arbitrary python instructions, allowing, in
particular, for the use of the python library „random“ to add randomness to attribute
values. To ease the calculation of attributes which are of geometric nature, such as new
positions or lengths of vectors, a production can define vectors which will be available for
use in the argument calculation formulas. For examples see Section 7, and in particular
the Koch Snowflake production.

The automatic calculation of new positions currently calculates the barycentre of the
daughter graph D and the subgraph isomorphism of the mother graph in the host graph
HM . The delta between an element of the daughter graph and the barycentre of the
daughter graph is used to calculate the new position relative to the barycentre in the host
graph. To account for potential rotation of the match in the host graph, a „direction“
is calculated for both the mother graph and its matching subgraph in the host graph,
using total least squares. The difference in direction between the two directions is used
to rotate the newly calculated position. This new position is also scaled by the ratio of
the maximum extent of HM and D divided by the ratio of the maximum extent of M
to D. This scaling allows productions to extend or shrink objects, depending on what
subgraph of H they are matched to.
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M

D

production definition

H R

application to a graph

Figure 5.3: Example of the automatic calculation of positions. The production as
defined on the left of this diagram will double the distance of any two connected nodes
it is appied to. On the right is an example application of this production which shows
how the direction of the growth is taken into account.

5.4 Export
The derivation result of the grammar can be saved to a YAML1 file containing all in-
formation about the produced graph, or as an SVG file for purposes of visualization.
SVG was chosen as the visual export format because it has a simple structure and good
library support in python. Every element of the graph is exported into precisely one
SVG tag. By default a vertex is exported as a circle and an edge as a line, but this can
be changed and configured by setting special attributes on graph elements starting with
.svg_.

For example, a node can also define an attribute .svg_tag with the value path and
another attribute with the name .svg_d containing the SVG path information. This
would then be exported as an SVG <path d="x"> tag instead of a circle. The strength
of this system is that it allows productions to change the export settings, through cal-
culations based on the values of other attributes. This can be seen in full effect in the
creation of circular patterns in Section 7.

1YAML Ain’t Markup Language
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CHAPTER 6
User Interface

Early on in the project, when implementing the first example productions, it became
apparent that, although a graphical interface was not technically necessary to work
with graph grammars, a purely text-based interface was tedious and confusing to use.
Therefore a simple user interface, which would offer the basic functionality necessary to
view and edit productions and derivations, was implemented. The vehicle of a bachelors
thesis did not offer enough room to increase the scope to include a detailed study of
user interfaces for procedural generation; hence this section appears for the sake of
completeness, not because of major contributions to the field of user interface design.

It should be noted that graphical representations of graphs is not without its pitfalls.
Graphs are, after all, abstract data structures without any geometric relation between
the elements. The proposed graph grammar has the capability of supporting both such
pure graphs and graphs with added geometric information. A graphical representation
will, however, always suggest to the user a geometric relation, whether or not one exists.
This will, at times, suggest intuitive relations which do not hold and therefore produce
results surprising for the user. Nonetheless, even being aware of this caveat, it is the
author’s believe that graphical representations of graphs and of graph grammars are the
best and most intuitive means of interacting with them.

The graphical user interface is split apart into three tabs, each of which serve a different
purpose in the process of defining a grammar. First comes the host graph view, where
the user can create the starting graph for the grammar. Second, the production view,
where most of the users time is spent to create the rules of the grammar. And lastly,
the result view, where the user can inspect all graphs produced during a derivation and
export selected graphs to an SVG or YAML file.

The host graph view seen in Figure 6.1 allows one to see a list of available axiom graphs
for a grammar. The selected graph is visualized on the right side of the panel and can
be modified as necessary. Two buttons below the list allow one to add new and remove
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6. User Interface

Figure 6.1: Host graph view of the GUI

existing graphs from the list. Once an appropriate start graph has been prepared, it
can be selected as the active start-graph and will hence be used for any applications of
productions.

Having a separate view for start graphs was not strictly necessary, the grammar could
have been defined to always start with a graph containing only a single starting node
without losing any expressiveness. However, when considering this question from the
point of practicability, having the capability to apply a specific production to a more
complicated, hand crafted start-graph to see the results and to be able to switch between
them is a useful function. Without such a feature, actual development of a complex set
of productions could to become tedious, especially during bug-fixing.

Figure 6.2: Productions view of the GUI
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The left hand side of the interface remains quite similar for the production view depicted
in Figure 6.2, the only difference being that it has two columns: One naming the mother
graph, the other part differentiating between different daughter graphs of the same
mother graph. The graph display portion has some different features compared to the
start-graph and result-graph displays. The visualisation is split in half, the left side
representing the left-hand-side or mother graph of the production while the right side
represents the right-hand-side or daughter graph of the production. The partial graph
morphism p is depicted by arrows pointing from the elements in the mother graph to
the corresponding elements in the daughter graph.

This particular view also contains the contribution this paper makes to graph grammar
definition UIs: The automatic calculation of new positions depending on the relative
positions on elements in the mother and daughter graph. If two mapped points are closer
together in the daughter graph than in the mother graph, applying this production will
move them together, relative to the distance of the two points in the host graph. The
same process is available for increasing the distance of two points and for rotations. A
detailed description of how the calculations are done can be found in Section 5.3. The
author is not aware of any previous work proposing such a solution to ease the definition
of productions in a graph grammar.

Figure 6.3: Results view of the GUI

As for the result view shown in Figure 6.3, the basic UI elements are the same as with
the start-graph view, the only difference being that no changes to these graphs can be
made. To allow the user to retrace how a result came about, the result view shows all
intermediate derivations steps, not just the final result.
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CHAPTER 7
Results

This section reports the results of applying the new grammar proposed in this work to
a number of modelling tasks. The tasks where chosen to represent a variety of mod-
elling problems, in which either L-systems or shape grammars find the most successful
application.

The descriptions show the results of the SVG export, a diagram of the axiom graph and
details of the involved productions. For each production, there is a diagram showing the
mother graph, the daughter graph and the partial graph morphism between them, as well
as a separate table detailing the attributes of the elements of both graphs. For elements
of the mother graph those attributes are application conditions, while for elements of the
daughter graph these attributes are either constants or calculation instructions, which
define the way in which the new value will be derived. Furthermore, if the production
uses vectors to manually calculate new positions of vertices, then the definition of these
vectors are also listed in the aforementioned table.

7.1 Modelling of a Koch Snowflake
The Koch Snowflake or Koch curve was defined by the Swedish mathematician Helge
von Koch as splitting a line into three equally long parts, extending the middle part into
an equilateral triangle pointing outwards, and then removing the original centre part
[Koc06]. The traditional way of creating a whole snowflake based on this curve is to
apply this production rule to an equilateral triangle and let it grow from there.

Given the form of its definition, the Koch Snowflake lends itself to being implemented
with formal grammars. Indeed, looking at this definition, one could even say that Koch
essentially defined the curve based on an informal shape grammar, in the original mean-
ing of the term. The most common means of defining the snowflake in a grammar is a
set of L-System rules like the one below:
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7. Results

Alphabet: F, +, -
Axiom: F--F--F
Production rules:
F -> F+F--F+F

Which is then interpreted either by a Logo-style turtle as: F moves the turtle forward, +
turns the turtle 60° to the left and - turns the turtle 60° to the right; or by interpreting
it as vector graphics with each L-system symbol being associated with a fixed vector
displacement [ODA03].

A graph grammar implementation of the same process, which would also end up being
interpreted by turtle graphics to view the result, can be found in [Kni08]:

public void rules() [
Axiom ==> F(10) RU(120) F(10) RU(120) F(10);
F(x) ==> F(x/3) RU(-60) F(x/3) RU(120) F(x/3) RU(-60) F(x/3);

]

The production rules are essentially the same as for L-system, but now instead of pro-
ducing a string made up of ’F’, ’+’ and ’-’ characters, a graph daisy-chaining ’F(x)’ and
’Rotate(φ)’ nodes is created.
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Figure 7.1: Axiom graph of the Koch Snowflake derivation.

Element Attribute Value
0-2: .svg_stroke_width 0

3-5: .directed True
level_of_detail 0

Table 7.1: Attribute definitions of the Axiom Graph of the Koch Snowflake.
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7.1. Modelling of a Koch Snowflake

The graph grammar presented in this paper is capable of forming such a graph which
could be interpreted by a Logo-style turtle, but it is also capable of working on this
problem entirely with connected geometric primitives. This is the approach presented
here. It starts with a triangle as it’s axiom graph as seen in Figure 7.1. The Table 7.1
shows what attributes the elements of the axiom graph have. The nodes have an SVG
attribute, which makes them invisible in the output, since we are only interested in the
lines. All edges are given the .directed attribute to mark them as directed edges.
The direction in which they point is shown in the diagram by arrowheads.
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Figure 7.2: The single production of the Koch Snowflake derivation.

The solution’s sole production rule is shown in Figure 7.2, with Table 7.2 showing the
corresponding attribute definitions. It takes a straight line, splits it apart, and adds
the protruding spike on the outside of the snowflake. To determine which side is the
outside, directed edges are used, as shown by the arrows in the diagram. The newly
added vertices have their SVG stroke-width set to zero, as in the axiom graph, to
make them invisible in the export. Additionally, to assure that the Koch Snowflake is
correctly constructed, the new positions of added vertices are calculated by hand rather
than automatically. To simplify the position calculations two vectors are defined, as
specified in the bottom of Table 7.2. Vector A is a point vector at the position of node 3
and v1 is a directional vector going from node 3 to node 5. The function perp_left()
creates a perpendicular vector pointing to the left of the vector passed as an argument.
The option max_level_of_detail controls how often a single line will get subdivided,
ensuring that all lines will end up with the same length. It’s effect is equivalent to the
number of production application in an L-system, where a single application is applied
to all possible matches in parallel. The result of the derivation is found in Figure 7.3.
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Element Attribute Value

2: .directed True
level_of_detail attr < max_level_of_detail

4: .new_pos A + v1/2 + 1/3∗(perp_left(v1))
.svg_stroke_width 0

6: .svg_stroke_width 0
.new_pos A + v1 ∗ 2/3

7: .svg_stroke_width 0
.new_pos A + v1 ∗ 1/3

8-11: .directed True
level_of_detail edge.attr [ "level_of_detail" ] + 1

Vector Name Definition
A Point 3
v1 Line from 3 to 5

Table 7.2: Attribute and vector definitions of the Production of the Koch Snowflake.

Figure 7.3: Result of a Koch Snowflake derivation.
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7.2 Modelling of Patterns

Creation of patterns can be an interesting subject of study for grammars, because fre-
quent repetition and the symmetric nature of patterns lends itself well to being expressed
in grammars. In this subsection two different kinds of patterns are created by the pro-
posed grammar. One is an infinitely tiling square pattern, the other is a self-contained
circular pattern which is used to show the grammars capabilities for creating a varied set
of interesting outputs from the same set of productions using randomness in attribute
calculations.

7.2.1 A Tiling Square Pattern

Figure 7.4: To the left is the result of the tiling square pattern derivation discussed
in this chapter. To the right are different variations on this pattern generated with the
described grammar.

As an example of a deterministic generation of a tiling square pattern, the result from
Figure 7.4 is presented. The size of the result, and therefore the number of tiles, can be
decided by an attribute in the axiom graph displayed in Figure 7.5 and Table 7.3. The
length attribute is understood to be a length in centimetres for the purposes of the
svg export, where a single tile of the pattern will have a length varying between 1cm
and 2cm. If the length set in the axiom is greater than 2cm the resultant square will be
split apart into four smaller squares, each of them being filled with the square pattern.

Element Attribute Value
0: size 4

Table 7.3: Attribute definitions of the axiom graph of the square pattern.
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0

A

Figure 7.5: The axiom graph of the square pattern.

The detailed function of the productions is as follows. The production „Grow Square“,
shown in Figure 7.6 and Table 7.4, extends the single starting node into a square of the
appropriate length, as defined in the size attribute of the starting node.
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Figure 7.6: The production „Grow Square“ of the square pattern.

The „Subdivide Square“ production, Figure 7.7 and Table 7.5, is only applied if there is
a square of length greater or equal to four. If there is such a square than it is split apart
into four unconnected squares of equal length with some overlapping elements. This is
the reason why the diagram in Figure 7.7 shows multiple numbers for some elements.
There are in fact multiple edges and vertices on the same spot.

The production „Define Directions“, as displayed in Figure 7.7 and Table 7.6, makes the
same structural changes to the graph as the production „Subdivide Square“, but gives
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7.2. Modelling of Patterns

Element Attribute Value
0: size True

1: new_x −float(arg0.attr[ ’ size ’ ])/2
new_y −float(arg0.attr[ ’ size ’ ])/2

2: new_x float(arg0.attr [ ’ size ’ ])/2
new_y −float(arg0.attr[ ’ size ’ ])/2

3: new_x −float(arg0.attr[ ’ size ’ ])/2
new_y float(arg0.attr [ ’ size ’ ])/2

4: new_x float(arg0.attr [ ’ size ’ ])/2
new_y float(arg0.attr [ ’ size ’ ])/2

5-8: length arg0.attr [ ’ size ’ ]

Table 7.4: Attribute definitions of the production „Grow Square“.
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Figure 7.7: The productions „Subdivide Square“ and „Define Directions“ of the square
pattern. They both use the same graphs with different attributes.

the edges different attributes. In particular it sets the attribute label to define which
squares will be filled with a horizontal and which with a vertical pattern.

Now come the two production actually creating the information which gets exported to
the SVG file: the production „Vertical Pattern“, as seen in Figure 7.8, Table 7.7, and
the production „Horizontal Pattern“ in Figure 7.9, Table 7.8. They both define the
same attributes for the elements of the graph, only differentiating themselves with the
positioning of the newly added elements. Since there is no mapping from the left to the
right side of the production all elements matched to L are discarded, which is why it was
not necessary to set the lines or nodes used by the previous productions to be invisible
in the SVG export. In the completed derivation, only the elements added by these two
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Element Attribute Value
4-7: length float(attr)>=4
24-39: length float(arg0.attr [ ’length’ ])/2

Table 7.5: Attribute definitions of the Production „Subdivide Square“.

Element Attribute Value
4-7: length float(attr)>=2 and float(attr)<4

24-27: label ’ vertical ’
length float(arg0.attr [ ’length’ ])/2

28-35: label ’ horizontal ’
length float(arg0.attr [ ’length’ ])/2

36-39: label ’ vertical ’
length float(arg0.attr [ ’length’ ])/2

Table 7.6: Attribute definitions of the production „Define Directions“.

productions remain. Setting the attribute .svg_tag to none means that the element
in question will not be exported, setting it to rect produces a rectangle. The edges do
not require any special SVG configuration, as the default export settings already fit the
purpose.
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Figure 7.8: The production „Vertical Pattern“ of the square pattern.
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Element Attribute Value
4-7: label attr==’vertical’

8-11:

.svg_fill black

.svg_height 0.1

.svg_tag rect

.svg_width 0.1
12-19: .svg_tag none

Table 7.7: Attribute definitions of the production „Vertical Pattern“.
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Figure 7.9: The production „Horizontal Pattern“ of the square pattern.

Element Attribute Value
4-7: label attr==’horizontal’

8-11:

.svg_fill black

.svg_height 0.1

.svg_tag rect

.svg_width 0.1
12-19: .svg_tag none

Table 7.8: Attribute definitions of the production „Horizontal Pattern“.

7.2.2 Circular Patterns

To display the ability of this grammar to introduce randomness into the result of pro-
ductions and to show the flexibility gained by allowing the export of any SVG tags, nine
different results of the same set of circular pattern productions are shown in Figure 7.10.

The basic idea behind the construction of this set of productions is that, in the first step
we will calculate four variables which will control the look of the resulting pattern. Then,
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7. Results

Figure 7.10: Nine different results of deriving a circular pattern.
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one production adds a couple of edges, which will each represent a pair of curves going
from the centre of the circle to the circumference. Another production rotates those
edges around the centre of the circle, so that they are positioned at an equal distance
to each, and lastly a finishing production sets the SVG attributes necessary to draw the
curves.

0

A

Figure 7.11: Axiom graph of the circular pattern

Element Attribute Value

0:

.svg_fill #154360

.svg_r 3.1cm

.svg_stroke #154360
finished False
label center
num_leaves 0

Table 7.9: Attribute definitions of the axiom graph of the circular pattern.

In detail, the axiom graph from Figure 7.11, Table 7.9 defines the SVG attributes which
will create the blue background circle in the export. It also sets some attributes which will
be used to control the following productions such as the number of currently connected
edges, here called „leaves“.
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Figure 7.12: Production „Introduce Randomness“ of the circular pattern.
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Element Attribute Value

0: finished attr==False
label attr==’center’

1:

control_position random.uniform(0.05, 0.95)
control_degree random.uniform(0.01, 0.3)
finished True
max_leaves random.randint(5,15)

2:

.svg_fill ’#154360’

.svg_r ’3cm’

.svg_stroke ’white’

.svg_fill_opacity 0.0

.svg_stroke_opacity random.choice((0.0, 1.0))

Table 7.10: Attribute definitions of the production „Introduce Randomness“.

The first production to be executed, given the priority 0, is called „Introduce Random-
ness“, see Figure 7.12 and Table 7.10. This production introduces four different elements
of randomness. First, the opacity of the ring which can surround the leaves is chosen
between zero and one, in effect either making it visible or invisible. Then, the attributes
control_position and control_degree are calculated. These are used to position
the control point of the quadratic Bézier curve in the SVG export. Lastly the number
of leaves is randomly chosen between 5 and 15.
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Figure 7.13: Production „Add Leaves“ of the circular pattern.

The next production to be applied is „Add Leaves“, Figure 7.13 and Table 7.11. This
production does nothing more than adding an edge going from the centre to a point one
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Element Attribute Value

0: label attr==’center’
num_leaves int(attr) < int(attrs[ ’max_leaves’])

1: num_leaves int(arg0.attr [ ’num_leaves’])+1
2: positioned False

3: finished False
number int(arg0.attr [ ’num_leaves’])

Table 7.11: Attribute definitions of the production „Add Leaves“.

unit above the centre. No special calculations are taking place. This production is given
the priority 1.
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Figure 7.14: Production „Position Leaves“ of the circular pattern.

Element Attribute Value
0: label attr==’center’
1: positioned attr==False

4: .new_pos c + rotate(v1, 2 ∗ pi ∗ (int(leave . attr [ ’number’]) /
int(center . attr [ ’max_leaves’])), c)

positioned True

Table 7.12: Attribute definitions of the production „Position Leaves“.

Following the addition of all leaves, the production „Position Leaves“ (Figure 7.14, Table
7.12) is applied to position all edges in an equal distance to each other around the centre
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of the circle. Here in calculating the new position of the edge, the function rotate(v,
rad, c), which rotates the given vector v by an angle expressed in radians around a
centre point c, is used. This production could technically be given the same priority as
„Add Leaves“, but for debugging purposes it was more practical to give it the priority 2,
so that each production is exhaustively applied in sequence.
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Figure 7.15: Production „Configure Curves“ of the circular pattern.

To finish the derivation, the production „Configure Curves“ with priority 3, as seen in
Figure 7.15, Table 7.13, is applied. The important part is the calculation of the values
making up the SVG curve in the attribute .svg_d. It creates an SVG path made up of
two quadratic Bézier curves, one going from the centre to the outside edge of the circle,
and one going the other way, so that the two are a mirror of each other. The shape
of these curves is controlled by the attributes .control_degree, which defines how
far from the edge the control point is rotated away, and control_position, which
defines how close to or far from the centre of the circle the control point lies.
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Element Attribute Value
0: label attr==’center’
2: finished attr==False
4: .svg_tag ’none’

5:

.svg_d f ’M␣s.x∗35␣s.y∗35␣Q␣(s␣+␣rotate(v1,␣2∗
pi∗float(arg0.attr["control_degree"]),␣s)∗
float(arg0.attr [" control_position"]) ) .x
∗35␣(s␣+␣rotate(v1,␣2∗pi∗float(arg0.attr
[" control_degree"]) ,␣s)∗float (arg0.attr ["
control_position"]) ) .y∗35␣e.x∗35␣e.y∗35
␣Q␣(s␣+␣rotate(v1,␣−2∗pi∗float(arg0.attr
["control_degree"]),␣s)∗float(arg0.attr ["
control_position"]) ) .x∗35␣(s␣+␣rotate(v1,␣
−2∗pi∗float(arg0.attr["control_degree"]),␣s)∗
float (arg0.attr [" control_position"]) ) .y∗35␣s.
x∗35␣s.y∗35’

.svg_fill_opacity ’ 0.0 ’

.svg_stroke ’white’

.svg_stroke_width ’1mm’

.svg_tag ’path’
finished True

Table 7.13: Attribute definitions of the production „Configure Curves“.

7.3 Modelling of a Tree

As part of the effort to show the versatility of the graph grammar approach, the following
part will show how plants can be modelled easily and how the grammar can be used for
more artistic productions.

Figure 7.16 shows the result of the tree derivation in the same style as is using in
Prusinkiewicz and Lindenmayer [PL96], as a black and white tree skeleton. The pro-
ductions used to create these tree skeletons are explained in detail in the remainder of
this sub-section. The results from Figure 7.17 are obtained by adding two additional
productions which are run after the trees seen in Figure 7.16 are finished generating.
One production places brush strokes along the trunks and branches and the other places
brush strokes at the end of branches. Each brush stroke is a scaled and rotated grey-scale
image of a brush stroke, added as an SVG image element to the export. The differ-
ent colours are obtained by applying various feColorMatrix filters. This is another
display of how the versatility of SVG can be put to elegant use within proposed graph
grammar.

The productions used in creating these trees where inspired by and adapted from the
descriptions of trees by Honda [Hon71] as demonstrated in Prusinkiewicz and Linden-
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Figure 7.16: Four possible results of running the tree derivation.

Figure 7.17: Three possible results of the painted tree derivation.
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mayer [PL96]. It is a fairly simple set of two productions which grow the tree, while
decreasing the width and length of additional segments with each step.
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Figure 7.18: Axiom graph of the tree productions.

Element Attribute Value
0: .svg_tag None
1: .svg_tag None

2:

.directed True

.svg_stroke_width 10
label Trunk
section_height 1

Table 7.14: Attribute definitions of the axiom graph of the tree example.

The axiom graph, seen in Figure 7.18 and Table 7.14, defines the starting piece of a
tree-trunk and the starting width of the tree.

The production „Grow Trunk“ from Figure 7.19 and Table 7.15 is used to grow the tree
trunk in a vertical direction. Each step reduces the width and the length of the next
segment piece by a constant factor, while adding a new branch going out to the side at a
randomly calculated angle. The attribute segment_height, which is incremented for
each application of this production, is used to stop the vertical growth of the tree once
a particular point has been reached.

The production „Grow Branch“ from Figure 7.19, Table 7.16 is used to grow the branches
of the tree. The calculations done are almost the same as for the „Grow Trunk“ produc-
tion with the only differences being that it has no limit on the number of applications
and that it produces two new edges labeled as Branch rather than one Branch and
one Trunk edge.
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Figure 7.19: The productions „Grow Trunk“ and „Grow Branch“ of the tree generation
example. They both use the same graphs with different attributes.

Element Attribute Value

2:
.directed True
label attr==’Trunk’
section_height int(attr) < 11

3: .new_pos A
4: .new_pos B

5: .new_pos B + v1 ∗ 0.9
.svg_tag None

6: .new_pos B + Vec(vec1=A, vec2=rotate(B, pi/2 ∗
random.choice((−1,1))∗ (random.random()/ 3
+ 0.3), A))∗ 0.6

.svg_tag None
7: .svg_stroke_width trunk.attr [ ’ .svg_stroke_width’]

8:
.svg_stroke_width float(trunk.attr [ ’ .svg_stroke_width’])∗ 0.7
label ’Trunk’
section_height int(trunk.attr [ ’section_height’ ])+1

9: .svg_stroke_width float(trunk.attr [ ’ .svg_stroke_width’])∗ 0.7
label ’Branch’

Vector Name Definition
A Point 0
B Point 1
v1 Line from 0 to 1

Table 7.15: Attribute definitions of the production „Grow Trunk“ of the tree generation
example.

52



7.3. Modelling of a Tree

Element Attribute Value

2: .directed True
label attr==’Branch’

3: .new_pos A
4: .new_pos B

5: .svg_tag None
.new_pos B + v1 ∗ 0.9

6: .svg_tag None
.new_pos B + Vec(vec1=A, vec2=rotate(B, pi/2 ∗

random.choice((−1,1))∗ (random.random()/ 3
+ 0.3), A))∗ 0.6

7: .svg_stroke_width trunk.attr [ ’ .svg_stroke_width’]

8-9: label ’Branch’
.svg_stroke_width float(trunk.attr [ ’ .svg_stroke_width’])∗ 0.7

Vector Name Definition
A Point 0
B Point 1
v1 Line from 0 to 1

Table 7.16: Attribute definitions of the production „Grow Branch“ of the tree generation
example.
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7.4 Modelling of Façades
The modelling of building façades is a typical procedural modelling task for which shape
grammars appear to be the tool of choice. They lend themselves to a subdivision ap-
proach, where the surface of a building is continuously divided into smaller and smaller
parts until all important elements of a façade, such as windows, doors, ledges and the
like, are placed [Mül+06]. In the usual approach this subdivision does not result in
a finished 3D model, but rather in a „building plan“ of the façade, into which scaled
and rotated 3D models, created in external applications, are loaded at the appropriate
positions [JCS16].

Figure 7.20: Result of a very simple building façade generation.

The result of a simple example of using the proposed graph grammar to model a build-
ing’s façade, which will be discussed in detail in this sub-section, is shown in Figure 7.20.
It is a simplified, schematic view of a façade with two floors, the windows having blinds
which are placed at random states of unrolling. A slightly more detailed variation of
such a schematic façade is shown in Figure 7.21, containing window-sills and a randomly
placed door on the ground-floor. The starting point is a single node as shown in Figure
7.22, Table 7.17, containing within its attributes information on the length and height
of the façade.

The height attribute is interpreted first by the production „Grow House“ (Figure 7.23,
Table 7.18) to create an edge of appropriate length, and then by the follow-up production
„Split House to Floors“ (Figure 7.24, Table 7.19), which will split the edge with the label
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Figure 7.21: Result of a slightly more varied façade generation.
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Figure 7.22: Axiom graph of the façade example.
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Element Attribute Value

0:
height 25
label House
width 40

Table 7.17: Attribute definitions of the axiom graph of the façade example.

House into multiple edges with the label V-Floor, standing for vertical floor piece. The
resulting height of each floor piece lies between 10 and 20, with the remainder of the
division of the attribute height by 10 being spread equally amongst all created floors.
The exact calculation function for this can be seen in the definition of the attribute
.new_pos of element 4 and of the attribute height of element 7 in Table 7.19.

0

L

1

2

3

R

Figure 7.23: The production „Grow House“ of the façade example.

After this, the production „Grow Floor“ (Figure 7.25, Table 7.20) will extend the
V-Floor edge into a horizontal edge with the label H-Floor of appropriate length
and position. Following this the production „Add Features“ (Figure 7.26, Table 7.21)
will split the horizontal floor apart into equal length chunks of Feature edges, similar
to the „Split House to Floors“ production explained above. These features can the be
used to place visual elements in a regular distance to each other.

Since this is only a simple example of the capabilities of this grammar, the only feature
present is added in the production „Add Windows“ (Figure 7.27, Table 7.22). It will
simply add a Window node in the centre of the Feature edge.

The node with the label Window is then used by the production „Expand Window“
(Figure 7.28, Table 7.23) to create an actual visual representation of a Window. It will
replace the Window node and the two connected nodes with an unconnected subgraph
representing a Window, placed and sized appropriately, depending on the positioning
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Figure 7.24: The production „Split House to Floors“ of the façade example.
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Figure 7.25: The production „Grow Floor“ of the façade example.
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7. Results

Element Attribute Value
0: label attr==’House’

1: .new_pos A
.svg_tag None

2: .new_pos A + Vec(x1=0, y1=float(house.attr[’height’]))
.svg_tag None

3:

.svg_tag None
floors 0
height house.attr [ ’height’ ]
label ’House’
width house.attr [ ’width’]

Vector Name Definition
A Point 0

Table 7.18: Attribute definitions of the production „Grow House“.
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Figure 7.26: The production „Add Features“ of the façade example.

of the two nodes framing the Window node. The edges added by this production are
the first elements which will actually appear in the SVG output of the derivation. In
addition this production also calculates a random value between 0 and 1 and saves it in
the attribute blind_portion. This attribute will later be used to define how much of
the window is covered by a blind.

All windows extended by the production above will then be colored through the „Color
Windows“ production (Figure 7.29, Table 7.24). It will place a single new node in the
middle of the window with the SVG tag rect associated with it. Then the appropriate
width and height of the rectangle are calculated based on the positioning of the windows
vertices. In the SVG export this will result in a square of light blue colour filling the
window.

The production „Expand Floors“ (Figure 7.30, Table 7.25) has a very similar function to
that of the „Expand Window“ function, which is why they share a similar name. This
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Figure 7.27: The production „Add Windows“ of the façade example.
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Figure 7.28: The production „Expand Windows“ of the façade example.
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Figure 7.29: The production „Color Windows“ of the façade example.
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Element Attribute Value

2: height float(attr) >= 10
label attr==’House’

3: .new_pos A

4: .new_pos A + normalize(v1)∗ (10 + (float(house.attr [ ’height’ ]) %
10) / (float(house.attr [ ’height’ ]) // 10))

.svg_tag None
5: .new_pos B

6:

.svg_tag None
expanded False
floor house.attr [ ’ floors ’ ]
grown False
label ’V−Floor’
width house.attr [ ’width’]

7: floors int(old. attr [ ’ floors ’ ])+1
height float(old. attr [ ’height’ ]) − (10 + (float(old.attr [ ’height

’ ]) % 10) / (float(old. attr [ ’height’ ]) // 10))

Vector Name Definition
A Point 0
B Point 1
v1 Line from 0 to 1

Table 7.19: Attribute definitions of the production „Split House to Floors“.

production will create a square, drawn in the SVG output, surrounding the entire floor.
It does this by matching a floor by the four nodes which define the maximum extent of
the floor in the horizontal and vertical directions. The actual position of the newly added
elements is calculated automatically based on the positioning of the matched elements.

As a last step, blinds are added to the windows and then coloured in a beige tone.
This is done in the productions „Add Blinds“ (Figure 7.31, Table 7.26) and „Color
Blinds“ (Figure 7.32, Table 7.27). They are mostly equal to the productions adding and
colouring a widow described before. The difference is that the degree to which the blinds
cover the windows is random, based on the value blind_portion calculated in the
„Extend Window“ production. The exact calculations can be found in the calculation of
.new_pos in Table 7.26 for the elements 12 and 15.
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Figure 7.30: The production „Expand Floors“ of the façade example.

0

1 2

3

4

5

6

7

L

8

9 10

11

12

13 14

15

16

17

18

19

20

21

22

23

R

Figure 7.31: The production „Add Blinds“ of the façade example.
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Element Attribute Value

2: grown not attr
label attr==’V−Floor’

4: .svg_tag None
new_x −float(v_floor.attr[ ’width’]) / 2

5: .svg_tag None
new_x float(v_floor.attr [ ’width’]) / 2

7: grown True
8-11: .svg_tag None

12:

.svg_tag None
floor v_floor.attr [ ’ floor ’ ]
label ’H−Floor’
width v_floor.attr [ ’width’]

Vector Name Definition

Table 7.20: Attribute definitions of the production „Grow Floor“.

Element Attribute Value

2: label attr==’H−Floor’
width float(attr) >= 5

3: .new_pos A

4: .new_pos A
.svg_tag None

5: .new_pos A + normalize(v1)∗ (5 + float(h_floor.attr [ ’width’]) %
5)

.svg_tag None
7: .svg_tag None

8: .svg_tag None
label ’Feature’

9: width float(h_floor.attr [ ’width’]) − (5 + float(h_floor.attr[ ’
width’]) % 5)

Vector Name Definition
A Point 0
v1 Line from 0 to 1

Table 7.21: Attribute definitions of the production „Add Features“.
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Element Attribute Value
2: label attr==’Feature’

4: .svg_tag None
label ’Window’

6-7: .svg_tag None

Vector Name Definition

Table 7.22: Attribute definitions of the production „Add Windows“.

Element Attribute Value
1: label attr==’Window’
5-8: .svg_tag None
9: label ’Window’

10:

blind_portion random.random()
has_blind False
is_colored False
label ’Window’

11-12: label ’Window’

Vector Name Definition

Table 7.23: Attribute definitions of the production „Expand Windows“.

Element Attribute Value
4: label attr==’Window’

5: is_colored not attr
label attr==’Window’

6-7: label attr==’Window’

12:

.svg_fill ’#bbe5ff␣’

.svg_height norm(v1)

.svg_tag ’ rect ’

.svg_width norm(v2)
14: is_colored True

Vector Name Definition
v1 Line from 1 to 0
v2 Line from 1 to 2

Table 7.24: Attribute definitions of the production „Color Windows“.

63



7. Results

Element Attribute Value

4: expanded not attr
label attr==’V−Floor’

13-16: .svg_tag None
17: expanded True

Vector Name Definition

Table 7.25: Attribute definitions of the production „Expand Floors“.

Element Attribute Value
4: label attr==’Window’

5: has_blind not attr
label attr==’Window’

6-7: label attr==’Window’

12: .new_pos A + Vec(x1=0.2, y1=0)+ v1 ∗ float(top_edge.attr[’
blind_portion’])

.svg_tag None

13: .new_pos A + Vec(x1=0.2, y1=−0.05)
.svg_tag None

14: .new_pos B + Vec(x1=−0.2, y1=−0.05)
.svg_tag None

15: .new_pos B + Vec(x1=−0.2, y1=0)+ v2 ∗ float(top_edge.attr[’
blind_portion’])

.svg_tag None
17: has_blind True
20: label ’Blind’

21: label ’Blind’
is_colored False

22-23: label ’Blind’

Vector Name Definition
A Point 1
B Point 2
v1 Line from 1 to 0
v2 Line from 2 to 3

Table 7.26: Attribute definitions of the production „Add Blinds“.
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Figure 7.32: The production „Color Blinds“ of the façade example.

Element Attribute Value
4: label attr==’Blind’

5: label attr==’Blind’
is_colored not attr

6-7: label attr==’Blind’

12:

.svg_fill ’#f6feba␣’

.svg_height norm(v1)

.svg_tag ’ rect ’

.svg_width norm(v2)
14: is_colored True

Vector Name Definition
v1 Line from 1 to 0
v2 Line from 1 to 2

Table 7.27: Attribute definitions of the production „Color Blinds“.
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CHAPTER 8
Conclusion and Future Work

Given the level of expressiveness available to graph grammars and past works on spe-
cialised applications such as McDermott [McD13] for geometric objects and Kniemeyer
[Kni08] or Henke, Kniemeyer, and Kurth [HKK17] for plants, the ability of graph gram-
mars as a formalism to be used for general purpose procedural modelling was never
in question. What remained to be answered is whether or not a single class of graph
grammars could be an effective tool for all these purposes.

In this work it was shown that a single class of graph grammars can indeed cover dis-
parate types of procedural modelling tasks effectively. This has the potential to increase
the flexibility of modelling tools, no longer requiring the use of multiple separate tool-
chains to combine e.g. houses with foliage. Beyond that, a novel GUI for the creation
of production rules, specialized for procedural modelling was introduced. As far as the
author is aware, no other such GUI integrating the on-screen position of elements as
part of the production definition process, has been proposed.

Another contribution is the application of Logo-like rules directly on graphs which rep-
resent geometric information of objects. Previous works on emulating and extending the
functionality of L-systems with graph grammars focused on creating a graph containing
the same information as is encoded in the result string of an L-system. To produce
a visualisation, this graph would then have to be interpreted with methods similar to
L-systems, such as a Logo-style turtle. Contrary to the above approach, the solution in
this work has the visual and geometric information already present in the result graph,
without requiring additional interpretation. To set itself apart from a previous attempt
at the same goal in Christiansen and Bærentzen [CB13], the new graph grammar pro-
posed in this work also supports the use of semantic information during the derivation
process and the use of completely abstract graphs, whenever such an approach is found
to be more suitable.
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8. Conclusion and Future Work

The main limitations of the current implementation are the lack of optimization, which
limits the possibility of applying it to the creation of larger and more detailed models,
and the unpolished state of the UI. As the UI was neither the sole nor a major objective
of this work and the scope of a bachelor thesis has to be limited, a relatively simple GUI
was implemented. However, through working with the GUI on producing the examples,
the author has come to the believe that there is a lot of potential to ease the use of
graph grammars and improve their intuitiveness, by giving appropriate visual feedback.

This leads to a discussion of future work, where there are two main directions of inquiry.
The first is how the speed of the matching process can be improved to enable the gener-
ation of large scale models, such as entire cities within a reasonable time-frame. There
is much active research on the subject of efficient subgraph isomorphism algorithms, as
they find applicability in a wide variety of problems. For the subject of procedural mod-
elling, it would be of particular interest to investigate which types of graphs are typically
encountered and therefore which subgraph isomorphism algorithms are best suited for
this type of application. In addition to investigating general purpose algorithms, one
should also consider specialised approaches, such as defining regions within a graph,
which would act like boundaries for the matching algorithm. For example, one could
imagine that, when modelling an entire city, it would be sensible to restrict the matching
algorithm of a tree production to a single plot of land, where the tree will be grown. Such
an approach, if successful, could greatly reduce the search space of the graph matching
algorithm. The second direction of inquiry are further improvements to the functionality
of the graph grammar proposed in this work. Due to the limited scope, it only contains
the basic necessities and there are many extensions which promise interesting results
and new applications. A small list of possibilities the author has considered is:

• A 3rd dimension.

• Faces and volumes as graph elements. This could then allow for natural modelling
of clipping restrictions.

• A derivation hierarchy which could be queried within productions.

• Automatic level of detail control for distant models.
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