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(a) Circle with noise δ = r
2 (b) Multiple curves, plus outliers (c) Noisy depth image silhouette (d) Open curve

Figure 1: Our parameter-free method reconstructs open and closed curves from 2D samples with highly varying noise and outliers.

Abstract
We propose a parameter-free method to recover manifold connectivity in unstructured 2D point clouds with high noise in terms
of the local feature size. This enables us to capture the features which emerge out of the noise. To achieve this, we extend the
reconstruction algorithm HNN-CRUST, which connects samples to two (noise-free) neighbors and has been proven to output a
manifold for a relaxed sampling condition. Applying this condition to noisy samples by projecting their k-nearest neighborhoods
onto local circular fits leads to multiple candidate neighbor pairs and thus makes connecting them consistently an NP-hard
problem. To solve this efficiently, we design an algorithm that searches that solution space iteratively on different scales of
k. It achieves linear time complexity in terms of point count plus quadratic time in the size of noise clusters. Our algorithm
FITCONNECT extends HNN-CRUST seamlessly to connect both samples with and without noise, performs as local as the
recovered features and can output multiple open or closed piece-wise curves. Incidentally, our method simplifies the output
geometry by eliminating all but a representative point from noisy clusters. Since local neighborhood fits overlap consistently,
the resulting connectivity represents an ordering of the samples along a manifold. This permits us to simply blend the local
fits for denoising with the locally estimated noise extent. Aside from applications like reconstructing silhouettes of noisy sensed
data, this lays important groundwork to improve surface reconstruction in 3D. Our open-source algorithm is available online.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Reconstructing curves from noisy unstructured points in 2D is a
fundamental problem that has been studied extensively in com-
puter graphics and computational geometry and is an important
base for surface reconstruction. It has applications in reverse en-
gineering of geometric models, e.g., reconstructing object bound-
aries from sensed data, such as 2D slices of 3D data, or segmen-
tation from silhouettes of depth images, and as such is even im-
portant in 2D. However, the general approach of trying to recover
arbitrary geometry when not using priors is ill-posed. Boundaries
of physical objects are manifold by nature, but may be partially oc-

cluded, contrary to their projections a plane, which may then inter-
sect or contain T-junctions. Clustering points of similar depth from
depth images prevents this merging into non-manifold connectiv-
ity. Thus, we restrict the problem slightly, to recovering manifold
curves (open or closed), so that we can solve it by robustly com-
puting the local inside/outside of the curve. Further, we aspire to
recover all features which are not hidden by the extent of the noise.

Prior work manages to produce (smoothed) curves from noisy
point sets, but is often restricted, e.g. to outputting a single open
curve, to globally uniform noise, or does not recover the connectiv-
ity in a reproducible fashion. What is missing yet is a method which
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relates the reconstruction distance to the distance of noisy samples
from the ground truth and also has reasonable time complexity to
produce output within acceptable run-time.

As noisy samples are always based on the original undistorted
signal, it is imperative to relate them to the assumed boundary we
want to recover. It is also clear that only features of larger extent
than the local noise provide information to become extracted.

For a smooth curve, the extent of the noise can be expressed
in terms of the local feature size (lfs). We put forward the axiom
that those features for which the noise extent is small w.r.t. its lfs
can be recovered. Based on this axiom, we claim that the noise
is small everywhere, compared with the relevant (because recov-
erable) features. Clusters of noisy points can be approximated by
local manifolds, e.g. circular arcs, as long as their curvature inside
their neighborhood is small. However, since the extent of the local
noise is not known, the challenge remains to determine the cor-
rect neighborhood size for these fits, which cannot be done locally.
Since we assumed previously that the curve is a (bounded) man-
ifold, the locally fitted curves have to be consistent. By adjusting
the neighborhood size for the locally fitted curves such that they
match among each other, we can recover the manifold connectiv-
ity, its orientation and an ordering of the samples. The size of the
locally fitted neighborhoods and the location of their samples give
an estimate of the local noise, therefore we can use it for denoising
as a post-process.

Our major contribution is the algorithm FITCONNECT, which
robustly recovers manifold connectivity from arbitrarily noisy 2D
samples, that is features emerging over the noise extent. Applying
multi-scale to local searching is an approach we have not seen yet
in related work. It enables both reducing the combinatorial com-
plexity of the search space and parallel local computations.

The major features of FITCONNECT are:

• Seamless extension of HNN-CRUST to handle noisy samples.
• Detect noisy samples and the extent of local noise.
• Simplified output by representative points of noisy clusters.
• Consistently ordered local neighborhood fits create a manifold.
• Simple blending of local fits to approximate the original curve.
• Time complexity log-linear in the number of points and squared

in the size of noisy clusters.
• Robust – we provide open source to support this claim.

Our curve reconstruction lays important groundwork for surface
reconstruction since the geometric concepts used (sampling condi-
tion, circular fitting, local manifoldness) extend well into 3D.

2. Related Work

We first take a look previous work, for reconstruction of curves
from noise-free samples, noisy data sets and curve simplification.

Reconstruction from Noise-free Samples Ohrhallinger et
al. [OMW16] give a detailed overview of the evolution of
these reconstruction algorithms which are often based on sam-
pling assumptions. Starting by requiring uniform sampling den-
sity [EKS83, KR85, FMG94, Att97, DT14, DT15, Ste08, ST09],
Amenta et al. [ABE98] introduced the ε-sampling condition based

on the local feature size (lfs) which spurred further develop-
ment [Gol99, DK99, Alt01, Len06, PM16], extending it to handle
open curves [DMR99], sharp corners [DW02, FR01] and modify-
ing the sampling condition to get tighter bounds [OM13,OMW16].

Applications and Reconstruction from Noisy Samples Birkas
et al. [BBP16] show a system for retrieving objects from mobile
sensed data by segmenting them via clustering. From these point
clusters, (partially occluded) silhouettes can be extracted, which
are noisy due to sensor artifacts.

Compared to the well-structured problem of reconstruction from
noise-free samples, there is considerably less prior work for un-
structured noisy samples and none that directly applies to our stated
problem. DeGoes et al. [DGCSAD11] attempts to solve a larger
problem which also includes intersecting curves. They construct
the Delaunay triangulation of the point set, then greedily simplify
it to minimize transport cost. For the problem domain we consider,
it performs well for uniform noise, dense outliers and close curves
but fails to connect samples of variable density as a global pa-
rameter controls the amount of simplification. Consequently, our
experiments below show that its behavior is very sensitive to this
specified iteration count and that it has difficulties to reconstruct
manifold outputs for non-uniform sampling or high local noise. A
similar method [WYZ∗14] fails to reconstruct curves from moder-
ately sparse point sets as well, as can be seen in their Fig. 28. Our
algorithm handles such sparse point sets without noise well since
it behaves like HNN-CRUST, which it extends seamlessly, as can
be seen in the results [OMW16].

As mentioned in the introduction, we aim to solve the simpler
problem of extracting just manifold curves, which is also the most
interesting aspect. Mehra et al. [MTSM10] apply a visibility op-
erator using the convex hull to extract local connectivity which
then is combined globally in a weighted graph. They propose a fast
approximation algorithm to extract the maximum weight cycle. It
does not denoise and produces gaps even for low extents of noise.
The method of Lee [Lee00] is restricted to reconstructing a single
open curve. This is due to using the Euclidean Minimum Spanning
Tree to recover the connectivity. They further smoothen the recon-
structed manifold with Moving Least Squares and fit a spline curve.
Contrary to above work, our method can output open and closed,
as well as multiple connected curves and most importantly, handles
variable sampling density and/or noise extent well. Poisson recon-
struction [KH13] requires reliable normals for reconstructing noisy
point clouds [ACSTD07] while we consider unstructured samples.

Dey and Goswami [DG06] prove an existence result, for a pro-
posed noise model that restricts the noise to an unspecified frac-
tion of the local feature size. Another existence results is proven
by Cheng et al. [CFG∗05], for reconstructing a curve with prob-
ability as a function of sample noise w.r.t. the local feature size,
but impractical O(N3) time complexity. Their algorithm grows a
disk neighborhood around a sample until it fits a strip with rel-
atively small width. Then, samples are decimated and connected
using the noise-free reconstruction algorithm NN-CRUST [DK99].
Our method also assumes a noise model that expresses noise as a
function of the local feature size but delivers practical results within
reasonable runtime. On top of that, the recovered connectivity rep-
resented by locally overlapping fits captures the properties of the
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local noise. We simply blend these local fits, with already good re-
sults, but more effective denoising methods are available, e.g. Feis-
zli and Jones [FJ11] show how a manifold curve can be denoised
effectively by multiscale analysis and a corner detector.

The rest of the paper is organized as follows: In Section 3
we state some definitions in order to revisit the algorithm HNN-
CRUST and then derive the conditions for connecting samples con-
taminated by noise. Our algorithm for searching the solution space
efficiently is described in Section 4. We present results of the curve
reconstruction, evaluation w.r.t. to ground truth and further analysis
in Section 5. Section 6 concludes with an outlook to future work.

3. Definitions

We reproduce the following definitions [OMW16]:

C is a collection of smooth curves, which are (possibly bounded)
1-manifolds embedded in R2 and twice-differentiable everywhere
except at boundaries. C can thus consist of one or more connected
simple curves, i.e., loops and segments (bounded by two terminus
points), prohibiting T-junctions or crossings. Since the curves are
smooth, they cannot contain sharp angles.

Let ‖d‖ denote the Euclidean L2 norm. Each sample s ∈ S is
within Euclidean distance of a point p ∈ C such that ‖p,s‖ <
ε(p). We define the nearest neighbor s0 to a sample point s1 as
argmins j∈S\s1

‖s1,s j‖. Further, the half neighbor s2 is the clos-
est sample in the half-space H which is partitioned by the per-
pendicular bisector of the edge s0s1 and does not contain s0:
argmins j∈S\s1,s j∈H ‖s1,s j‖. Let ni be the i-th nearest sample to s1

by Euclidean distance. Let N(s) be the set of neighborhood points
of s, for an unspecified k such that it is equal to Nk(s), the set of
k-nearest neighbors of s, N0(s) = s.

We first revisit the algorithm HNN-CRUST [OMW16], which
reconstructs curves by interpolating samples (assumed to be noise-
free). Then we describe its properties and show how we can extend
it seamlessly to samples contaminated with noise.

3.1. HNN-CRUST revisited

HNN-CRUST connects each sample s ∈ S to its nearest neighbor
n0 and its half neighbor nh (in case s is not a terminus of the curve).
Let h be the perpendicular bisector of the nearest neighbor edge,
then nh lies in the half-space containing s (see Figure 2). This leads
to (see Figure 3a):

Condition 1 (Conformity): The distance between the two neigh-
bors d = ‖n0,nh‖ is larger than their respective distance to s:
d > ‖n0,s‖∧d > ‖nh,s‖.

Condition 1 permitted to prove that HNN-CRUST reconstructs
the curve under a very relaxed as well as close-to-tight sampling
condition (ρ < 0.9, equivalent to ε < 0.47) [OMW16]. For this
sampling condition, the reconstructed curve has to be a (bounded)
1-manifold that connects the samples si ∈ S in their order on C. That
means that for a sample si which is not a terminus, the point pair
(si−1,si+1) corresponds to (n0,nh), ordering notwithstanding. Let
T (s) be the tupel of two neighbors (or one, in case of a terminus)
for a sample s. Then it follows (see also Figure 3b):

Figure 2: HNN-CRUST reconstruction of an edge-pair for a sam-
ple s (image courtesy of [OMW16]). Edge e0 connects s to its near-
est neighbor n0. The other edge e1 is the shortest edge connecting s
with a vertex in halfspace H. Further, observe that this vertex (here
n3) must lie inside the white shaded area of H, since no sample
is closer to s than n0. This implies an angle ≥ 60◦ between both
edges and that both neighbors are further apart from each other
than from s.

(a) Conforming (interpolate) (b) Consistent (interpolate)

(c) Conforming (with noise) (d) Consistent (with noise)

Figure 3: Top row: The two conditions for ensuring consistency
between conforming neighbors for interpolating samples (HNN-
CRUST). c): Projections of the k-neighborhood Nk(si) onto its cir-
cular fit yields the representative neighbors for Condition 3 as those
farthest per half-space spanned by the line (si,

−→csi). d) Condition
4 requires a consistent ordering of these representative neighbors
within each Nk(si) for all Nk(s j) overlapping with it.

Condition 2 (Consistency): s j ∈ T (si) is a commutative operator,
and si ∈ T (s j) .

We will proceed to show how we can exploit these two condi-
tions in order to connect samples in the presence of noise, and ex-
tend them to formulate our proposed algorithm FITCONNECT.

3.2. Extension of HNN-CRUST conditions to noisy samples

We assume that the noise extent of the samples is unknown and can
vary locally. Therefore, we have to determine a local approximation
of the curve at a sample s. If the neighborhood N2(s) does not fulfill
Condition 1, we classify s as noisy w.r.t. its neighborhood and have
to extend Ns(s) to Nk(s) until the local approximation represents a
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feature emerging over the noise extent. Note that the three points in
N2(s) define a circle. For an increasing neighborhood Nk(s), we ap-
proximate the curve locally by fitting a circle such that the distances
to the samples are minimized in the least-squares sense. This circu-
lar fitting of curves (similar to a spherical fitting of surfaces) works
well, as has already been demonstrated here [GG07], by robustly
computing the local inside/outside of the curve.

For circular fitting, either geometric or algebraic methods can be
used. Geometric fitting results in a non-linear least squares prob-
lem, which can be approximated with iterative methods like Gauss-
Newton. While they are very accurate and correspond to the max-
imum likelihood estimation for the circle parameters, they are also
computationally expensive and may have bad convergence proper-
ties. For our circular fit we therefore choose an algebraic method,
because it can be formulated as a constrained optimization problem
and then solved as an Eigenvalue problem [CL05]. We select the
HYPER-FIT technique, which has zero essential bias and has been
shown to be even more precise then geometric methods [ASC∗09].

It yields the fitted circle Γs,k(c,r) for Nk(s), onto which we can
project all neighbor samples ni ∈ Nk(s) as n̂i = c + r−→cni/‖−→cni‖,
with c being the center of Γs,k and r its radius. For each half-space
spanned by the line (c, ŝ), ŝ= n̂0, we select the representative neigh-
bor t[0,1] = n̂i such that n̂i is farthest from ŝ (see Figure 3c). Now,
using T (s) = [t0, t1] we can reformulate Condition 1 for the local fit
of a noisy neighborhood of s as follows:

Condition 3 (Conformity): The distance d = ‖t0, t1‖ between the
two neighbors of s is larger than their respective distance to s: d >
‖t0,s‖∧d > ‖t1,s‖.

Applying Condition 2 directly to T (s) is not sufficient since
the neighborhoods now can contain other samples than the single
neighbor per side. A consistent ordering of these samples has to be
ensured to guarantee a manifold. We define an ordered set O(S,N)
that orders the subset S ⊆ Nk(si) over its containing neighborhood
Nk(si) conforming to Condition 3, such that it collects the points
sk ∈ S projected to Γsi,k as ŝk starting from t0, moving in the di-
rection of si to finish at t1. Then we can formulate this consistent
ordering as (see Figure 3d):

Condition 4 (Consistency): ∀s j ∈ N(si),S = N(si) ∩ N(s j) :
O(S,N(si)) = O(S,N(s j)), which is also commutative.

Note that incrementally growing orderings of commutative
subsets do not necessarily have to contain each other, as in
O(S,Nk(si)) ⊂ O(S,Nk+1(si)). We only require different adjacent
neighborhoods to be consistent, but not at a specific scale, since
we aim to find some valid ordering rather than to solve the NP-
hard problem. Our experiments show the determined solutions to
be close to optimal.

Since three samples define a circle (or two samples a line as de-
generate circle in case of a terminus), the Conditions 3 and 4 form a
superset of Conditions 1 and 2 respectively and thus extend HNN-
CRUST seamlessly to the locally fitted circles of noisy samples.

Condition 4 gives an important guarantee for the reconstructed
manifold w.r.t. the samples as it creates an ordering of these through
the locally consistent neighborhoods. This enables anistropic de-
noising, as shown later on, and might lead to more applications.

4. Algorithm FITCONNECT

The connectivity reconstruction for interpolating samples is
straightforward and of linear time complexity, since both neigh-
bors for each sample and the consistency between neighbors can
be determined very simply. However, as stated in the introduction,
varying noise cannot be detected just locally. Small neighborhoods
below the actual noise extent could be conforming to Condition 3,
but not to Condition 4, since inconsistent with their neighbors’ lo-
cal fits. Each sample s potentially has a number of conforming local
fits for Nk(s) of varying k. For each of these, the consistency among
all samples si ∈ S would have to be tested, in order to determine a
consistent manifold for those locally conforming fits. Since up to N
local fits per sample would have to be tested among N samples, an
exhaustive search of the solution space becomes an NP-hard prob-
lem. In order to search the solution space efficiently, we therefore
propose an iterative approach that turns out to work well. In short,
FITCONNECT differs from HNN-CRUST insofar as it first locally
estimates the feature size and then applies the connectivity condi-
tions of HNN-CRUST.

4.1. Efficiently Recovering Closed Manifold Connectivity

For easier understanding, we first start with the simplified assump-
tion that the samples represent a manifold without boundaries. Ba-
sically, Algorithm 1 starts for each sample with its k = 2 near-
est neighbors and iteratively increases k for each sample which is
not conforming (Condition 3) or consistent (Condition 4) with its
neighbors. This should let our algorithm converge quickly to a valid
– if not optimal – solution.

ALGEBRAICCIRCULARFIT constructs local manifolds quickly
for samples with no or little noise. We use the conforming fit (test-
ing Condition 3 in ISCONFORMINGFIT) of the samples with the
most k neighbors recorded while iterating to connect with consis-
tent neighbors (Condition 4). If there are several choices to con-
nect a neighbor s j to si, we select the one farthest on N̂(si) to si
in UPDATEFARTHESTCONSISTENTNEIGHBORS, which also mu-
tually updates si as neighbor of s j. Before assigning these new
neighbors, we have to remove the current ones, also reciprocally,
which is done in REMOVENEIGHBORSMUTUALLY. This maxi-
mizes the overlap and reduces complexity without losing topology,
since the fitted neighborhood represents only a single feature. See
Fig. 4 for an illustrative example of adding and removing edges to
the manifold.

However, the neighborhood of a sample which already overlaps
on one side with its neighbor may become much larger while trying
to locate a consistent neighbor on its other side, due to locally vary-
ing sampling density or noise extent. In our experimentations this
led to entirely covering and eliminating smaller neighborhoods, to-
gether with the features they represented, resulting in a valid but
suboptimal solution. To avoid that, we keep existing neighbor re-
lations, but require that all successively included neighbors of s in
each half-space of N(s) are also ordered in the same fashion on
N̂(s), as tested in CONSISTENTNEIGHBORHOOD (Condition 4).

INTERLEAVEDNEIGHBORS handles the rare case that neigh-
bor points cannot be consistently connected because projections
on their mutual neighborhood fits interleave, by simply removing
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(a) Iteration #1: p5, p1, p0, p2 conforming and consistent within N2,
while for p3, p4 their N2 is not conforming to Condition 2.

(b) Iteration #2: p3 becomes conforming, eliminates redundant p2

(c) Iteration #3: N4(p0) becomes (and p4 remains) not conforming

(d) Iteration #4: N5(p0) becomes conforming and p5 inconsistent

(e) Iteration #5: N3(p5) becomes conforming and consistent again

Figure 4: Illustrative example of iteratively converging to consis-
tent edges between conforming vertices: a) Each point considers its
two nearest neighbors N2. b) The not conforming p3, p4 invalidate
p0, and all three increase their neighborhood to N3 (three points).
c) The increased N4(p0) = {p1, p2, p3, p4} becomes not conform-
ing. d) Adding p5 to N5(p0) makes it conforming again but incon-
sistent with p5 since its end vertex p1 is eliminated. e) Increasing
to N3(p5) makes p5, p0 consistent again, resulting in a manifold.

one of these (close) points. Furthermore, points which are shared
between neighbors (as determined between new neighbors, or in
EDGEEXISTSIN) are considered redundant and eliminated, as they
project onto already constructed edges in the manifold and do not
contribute to features (Figure 5).

We expect the time complexity to be O(NlogN) due to the kd-
tree construction and squared in the sizes of fitted neighborhoods.

Algorithm 1 Reconstructing manifold connectivity in noisy points
Input: S . The set of samples
Output: P . Subset of connected output points P⊆ S
Output: T : P 7→ P×P . Neighbor tupels of P

1: P← S
2: T ←{}
3: N(p)← N1(p)
4: while ∃p ∈ P : |T (p)|< 2 do
5: N(p)← N|N(p)|(p) . Add next nearest neighbor
6: Γp← ALGEBRAICCIRCULARFIT(N(p))
7: Q←{} . Track points affected by updates
8: if ISCONFORMINGFIT(Γp) then
9: Q← Q∪T (p)

10: REMOVENEIGHBORSMUTUALLY(T, p)
11: UPDATEFARTHESTCONSISTENTNEIGHBORS(T, p)
12: Q← Q∪T (p)
13: for qi ∈ N(p)\T (p) & qi ∈ N(T (p))\ p do
14: P← P\qi . Eliminate redundant points
15: Q← Q∪qi
16: end for
17: if INTERLEAVEDNEIGHBORS(N(p), T (p)) then
18: P← P\ p . Eliminate obstacle point
19: Q← Q∪ p
20: end if
21: else
22: if EXISTSEDGEIN(N(p), T ) then
23: REMOVENEIGHBORSMUTUALLY(T, p)
24: P← P\ p . Eliminate redundant points
25: Q← Q∪ p
26: end if
27: end if
28: while Q 6= {} do . For all points affected by updates
29: Select a q from Q
30: Q← Q\q
31: Consistent← True
32: for ni ∈ P∧q ∈ N(ni) do . Test all referencing points
33: if CONSISTENTNEIGHBORHOOD(ni) = False then
34: Consistent← False
35: end if
36: end for
37: if Consistent = False then
38: REMOVENEIGHBORSMUTUALLY(T,q)
39: Q← Q∪q
40: end if
41: end while
42: end while
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(a) Samples (b) Iteration #1 (c) Iteration #3 (d) Iteration #15 (e) Final iteration #22

Figure 5: RECTANGLE: a) Samples of a rectangle (top boundary highly corrupted by noise). b) The first iteration connects samples’ nearest
two neighbors if they conform (blue circular fits for black points). c) Connectivity is extended by fitting noisy samples (noise extent of local
fits shaded light blue). d) Inconsistent local connectivity gets removed and partially replaced with larger fits. e) Final reconstructed manifold
connectivity (red edges connecting black points) leaves just a few points in the noisy cluster on the top, which have large neighborhoods.

4.2. Handling Manifolds with Boundaries

In order to also handle manifolds with boundaries, we have to de-
tect them using a suitable fitting criterion. There is no inherent dis-
tinction whether samples are just sparsely spaced or represent a
hole, so we have to introduce an artificial differentiating criterion
which gives acceptable results. We propose that a hole should not
be larger than a nearby feature. Thus we do not relate our crite-
rion of hole size just to relative sample density but to the captured
feature size, represented by the size of the local neighborhood fit.
We classify a sample s as a terminus of the curve if it only con-
tains points in one half-space of its fitted neighborhood. It has to
have two Nk(s) neighborhoods as follows: one with two successive
consistent points to avoid trivial solutions, and a larger size neigh-
borhood that is inconsistent with that feature (or k = N in the limit
for small examples without features). Examples for reconstructed
open curves are shown in Figures 8c and 17.

4.3. Handling Sharp Corners

Our sampling condition requires projected open angles of > 60◦

(Condition 3), which places a severe limitation on the input class.
Sharp corners would therefore be rounded off until our operator
detects a fit when the opening angle becomes large enough. In the
worst case, it would not reconstruct contrived cases such as a rhom-
bus with too small angles (see Figure 18a). To enable successful
reconstruction in these cases, we detect sharp corners by their in-
cident manifold neighborhood. Our sharp-corner detector consid-
ers the neighborhood of a point whose fit does not conform. If its
neighborhood disc contains exactly two curves which are open and
intersect the boundary of the disc at an angle of ≤ 60◦, we connect
these two open curves to the current point, provided that this creates
no self-intersections. Applying this sharp-corner detector success-
fully reconstructs the point configurations in Figures 7g and 18a.

4.4. Simple Blending to Approximate the Original Curve

The output of Algorithm 1 extended by the boundary handling is a
(possibly bounded, consisting of multiple connected components)
manifold M(P,T ) which connects a subset of output points P ⊆ S
by edges to their neighbor relations T . However, in case the sam-
ples are contaminated by noise, this interpolating piece-wise curve

(a) 100 samples (b) Connectivity (c) Blended local fits

Figure 6: CIRCLE: a) 100 samples with noise δ varying between
0 (top, bottom) and 0.5r (sides) of the circle. b) The reconstructed
connectivity oscillates for high noise extent. c) Blending the local
fits results in a much better approximation of the original curve.

may not be a good reconstruction of the original curve in terms of
geometric closeness. The neighborhoods of the local fits with size
|N(p)| > 2, p ∈ P indicate the presence of noise and the variance
of N(p) represents its extent. Therefore, we perform a simple post-
processing step by blending the circular fits of the neighborhoods
including p for each p classified as noisy.

To compute the blended point p′i for a pi ∈ P, we consider all
fitted circles Γ j of p j ∈ P, where pi ∈ N(p j), and whose arcs
a j(t̂0, t̂1) ⊂ Γ j intersect the normal of the local fit of pi. Due to
our Condition 4, all projections N̂(p j) of N(p j) onto their Γ j are
oriented consistently, even if they overlap with several successive
neighbors. Thus we can simply compute the centroid of all inter-
section points as follows:

xi j is the intersection of the line (pi,
−→ci pi) with a j(t′0, t

′
1) in the

half-space of N(p j) containing pi. In case of two solutions for
the line-circle-intersection, we choose the point closer to pi. Then
p′i = ∑pi∈N(p j),∃xi j

xi j
|Xi j| (see Figure 6 for an example). Note that

this introduces new point locations as the remaining samples used
as vertices are moved, and that we do not blend sharp corners (the
points detected as sharp corners and their neighbors) as we want to
preserve these features.
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(a) KEYBOARD (585 samples) (b) Reconstructed manifold

(c) MONITOR (915 samples) (d) Reconstructed manifold

(e) CUP (263 samples) (f) Reconstructed manifold

(g) MOUSE (h) Reconstructed manifold

Figure 7: Left: Samples representing noisy silhouettes from depth
images. Right: Reconstructed single closed manifold curves.

(a) Hole/Outlier (b) Noise varies (c) Noisy + open (d) Open curves

Figure 8: a) Multiply connected curve (object with hole), outliers
are not connected. b) Variable high noise: Blended RECTANGLE.
c) Noisy open curve. d) Two open curves, they do not get connected.

5. Results

We have run our algorithm successfully on a large num-
ber and wide variety of point sets to ensure its robustness:
e.g. segmented silhouettes of noisy sensed data [BBP16] (Fig-
ure 7), but also contrived shapes representing multiply connected
open/closed curves, also corrupted with high noise and outliers
(Figures 8, 9, 10, 11 and 14). Additionally, we show its improve-
ments on prior work. We provide open source code for this algo-
rithm that reproduces all result figures and tables of this paper.
https://github.com/stefango74/fitconnect.

Comparisons with related work We are aware of only two al-
gorithms in related work which are able to practically reconstruct
manifold curves from noisy point sets, Robust HPR [MTSM10] and
the method of Lee [Lee00], which is limited to open curves. Since
we cannot run tests with these algorithms, we refer to the papers
for figures for the following comparisons. We show the success-
ful closed manifold reconstruction of the original curve for all the
point sets which Robust HPR fails to close (Figure 6, center col-
umn, [MTSM10], manages to reconstruct a closed curve only for
the APPLE figure), in Figure 10. The following comparison (Fig-
ure 11, center column, [MTSM10]) implicitly demonstrates the su-
periority of our algorithm to Crust [ABE98], CC-Crust [DMR99]
and Gathan [DW02], which reconstruct a collection of small un-
connected curves instead of the expected closed manifold. Fig-
ure 11ab shows our reconstructed close manifold curves for two
point sets corrupted by uniformly distributed high noise [Lee00],
which are designed for their restriction to open curves. Note that
our algorithm closes these holes because they are smaller than
nearby features as to our condition in Subsection 4.2. Furthermore,
our algorithm handles features of varying size with similarly dis-
tributed but adaptive noise (δ = 1

3 lfs, see Figure 11c). Finally, Fig-
ure 13 shows that reconstruction with Optimal Transport [DGC-
SAD11] is extremely sensitive to the number of iterations. It does
not reconstruct a manifold output with any number of iterations for
these point sets. The reason why this algorithm fails where ours
succeeds (see 14a) is that it starts out with the edge set of a De-
launay triangulation and removes edges iteratively but does not en-
force the vertices to be manifold. This method [WYZ∗14] uses a
similar approach as [DGCSAD11], and we therefore expect it to
fail as well for the above-mentioned point sets, as it fails for vary-
ing sampling densities (see also Fig. 28 in that paper comparing the
two algorithms).

Noise tolerance We have also investigated for which noise ex-
tent our algorithm can still successfully reconstruct the topology
and features of the original curve. For simulating noise, we use this
noise model [MTSM10], which perturbs the original points by a
uniform variable in the range [0,δ] along a unit vector of uniformly
chosen random direction. Figure 9 shows that the topology of the
circle is reconstructed for noise of δ up to 100% of its radius.

As a more generic case, we have tested the BUNNY from Fig-
ure 14 with noise of extent δ = 1

3 lfs and successfully reconstructed
closed manifolds for the 95 samplings with ε = 0.005−0.1 in steps
of 0.001 (with number of samples varying from 407 to 2491).

In case of noise extent in absolute terms, small features (close
curve segments) are omitted from the final reconstruction (see Fig-
ure 12 for a more complicated example).
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(a) δ=0.1r (b) δ=0.25r (c) δ=0.5r (d) δ=0.75r (e) δ=r

Figure 9: 100 samples on a circle, perturbed with varying (sides: full, top/bottom: zero) noise extent up to δ of its radius.

(a) APPLE (b) BUTTERFLY

(c) CRAB (d) DOLPHIN

Figure 10: Successful single manifold reconstruction of point
sets [MTSM10] which Robust HPR – except APPLE – and other
algorithms fail to connect.

(a) FISH (b) BOTTLE (c) BUNNY

Figure 11: Left and center: Manifold reconstruction of high-noise
point clouds [Lee00]. Right: Bunny with similar noise distribution
(δ = 1

3 lfs), that additionally reconstructs fine features.

Figure 12: Noisy silhouette with 3330 points.

Noise as function of the local feature size In Figure 14 we test
increasing noise extent up to 0.5 lfs, for a sampling condition of
ρ = 0.43 (equivalent to ε = 0.3) as demonstrated in [OMW16]. In
Figure 15 we further experiment by sampling a curve with varying
densities of a point set while keeping the noise extent fixed at 1

3 lfs.
Our algorithm manages to reconstruct the curve for all the sampling
densities.

Detecting local noise extent Since the circular fits of adjacent
consistent neighborhoods approximate the original curve locally,
we can use the distance of the samples to that fit to estimate the
local noise according to our sampling condition: The sample in the
neighborhood with maximum distance shows the maximum extent
of the noise (see Figure 16), while mean and variance can be ex-
tracted from the entire set of samples. These metrics can be put in
relation with the radius of the circular fit, in order to bound the error
in terms of the local feature size.

Features emerging over noise extent In another experiment we
test whether our algorithm is able to reconstruct features emerg-
ing over the noise extent. Figure 17 shows a sine wave with fre-
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(a) 25 iterations (b) 30 iterations (c) 35 iterations

(d) 90 iterations (e) 100 iterations (f) 110 iterations

Figure 13: Reconstruction results with Optimal Transport [DGC-
SAD11] depend strongly on the specified iteration count. Top row:
Locally high noise (compare our result in Figure 8b). Bottom row:
Non-noisy non-uniform sampling (our result in Figure 14a).

(a) δ=0 (b) δ=0.1lfs

(c) δ= 1
3 lfs (d) δ=0.5lfs

Figure 14: 116 samples on BUNNY, sampled with ρ = 0.43 (equiv-
alent to ε = 0.3) [OMW16] and perturbed by a noise extent of δ lfs.

(a) ε=0.1, 464 samples (b) ε=0.2, 199 samples

(c) ε=0.3, 116 samples (d) ε=0.4, 76 samples

Figure 15: BUNNY sampled with varying ε and perturbed by a
noise extent of 1

3 lfs.

(a) δ=0.1r (b) δ=0.5r (c) δ=r

Figure 16: 100 samples on a circle, perturbed with varying (sides:
full, top/bottom: zero) noise extent up to δ of its radius. The arcs
represent the local circular fits and the green shaded areas their
respective maximum noise extent (not shaded = no noise detected).

(a) Sine wave with increasing amplitude up to 0.1 of x-extent

(b) Perturbed with noise of 1
2 max. amplitude

Figure 17: The features (peaks) of the sine wave exhibit linearly
increasing amplitudes in [0.01..0.1] (of x-extent). When the samples
are perturbed by noise of δ = 0.05, features are still reconstructed
for all amplitudes ≥ 0.02, significantly smaller than the extent of
noise which is 250% w.r.t. the feature with amplitude 0.02.
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quency=5 and linearly increasing amplitudes between 0 and 0.1
(of x-extent of the point set). Perturbing the samples with noise of
δ = 0.05 permits reconstructing all features with amplitude ≥ 0.02
in this case, that is an extent even below the average vertical dis-
placement (0.025) of the samples, or 250% of the feature size.

Figure/Noise Input Output # Iter Operations Complexity Runtime
CIRCLE 0.1r 100 95 3 440 1078 0.009
CIRCLE 0.25r 100 74 18 2008 2839 0.033
CIRCLE 0.5r 100 55 25 4247 4368 0.056
CIRCLE 0.75r 100 19 51 12450 10291 0.097
CIRCLE 1r 100 16 64 19268 11132 0.122
BUNNY 0 116 116 1 348 1044 0.007
BUNNY 0.1lfs 116 116 1 348 1044 0.007
BUNNY 1

3 lfs 116 116 2 368 1079 0.008
BUNNY 0.5lfs 116 115 2 388 1098 0.008
KEYBOARD 585 448 96 40196 27727 1.168
MONITOR 915 460 38 1191322 418198 13.523
CUP 263 136 304 131532 22660 0.871
MOUSE 157 103 2 3787 4012 0.076
APPLE 170 156 49 2576 2115 0.048
BUTTERFLY 164 154 14 1147 2057 0.028
CRAB 284 222 47 7777 8299 0.220
DOLPHIN 179 146 18 3092 3976 0.070
FISH 1000 46 461 1441983 677138 14.045
BOTTLE 1000 62 462 726360 314934 10.266
BUNNY 2512 263 261 1183601 626739 57.914

Table 1: We show how our algorithm simplifies the number of sam-
ples (input, to output), its time complexity by the number of itera-
tions, and the number of operations on points compared with ex-
pected complexity (each circular fit of size M counts as M opera-
tions). Runtime in seconds.

Noise max. In mean In RMS In max. Out mean Out RMS Out
δ = 0.1 0.076 0.016 0.023 0.073 0.013 0.020
δ = 0.25 0.183 0.039 0.059 0.109 0.024 0.034
δ = 0.5 0.367 0.079 0.117 0.126 0.041 0.053
δ = 0.75 0.553 0.118 0.175 0.188 0.053 0.069
δ = 1 0.741 0.155 0.230 0.233 0.079 0.098

Table 2: Comparison of input (noisy samples) and output (polygon)
Hausdorff distance from original circle, for varying noise as shown
in Figure 9a-e. All values are in terms of the circle radius.

Outliers Figure 8a shows some outlier points beside the re-
constructed curve. These points are correctly not connected to the
curve since they do not fulfill the consistency condition: while their
neighbors lie on the curve, those points do not have the outliers
reciprocally as neighbors, instead they are consistent with other
points on the curve.

Quantitative analysis of reconstruction error Table 2 shows
that our simple blending of local neighborhood fits approximates
the original curve quite well. All error metrics (maximum, mean
and root mean square error) are typically reduced by half or more
for the noisier sample sets. The reconstructed curve lies roughly
within one third of the noise extent from the original curve (maxi-
mum output vs. max. input error). We also determined the Haus-
dorff distance of the reconstructed curve w.r.t. the noisy points
from the original curve. For 100 unit circles tested with δ = 0.25,
the overall maximum error for the input is 0.249, for the output,
0.242, and the maximum ratio between output and input per circle
is 1.002. The distance of the reconstructed curve from the original
therefore seems to be limited in practice by the extent of the noise.

Time complexity and convergence The number of effected op-
erations matches the expected complexity O(∑P

pi
|N(pi)|2 for the

(a) Sharp corner reconstruction (angle <60◦) (b) T-junction fails

Figure 18: Handling of sharp corners and T-junctions.

output point set P and their fitted neighborhood sizes N(pi), pi ∈ P
roughly in the order of magnitude (see Table 1). Handling large
noisy clusters or boundaries therefore increases the runtime of
our non-optimized algorithm significantly. Algorithm 1 shows that
points will only ever be eliminated, never added from the original
point set of size N. Since the neighborhood of a point can grow at
most to size N, it would be marked as handled eventually as well
in that case, so the algorithm will always converge to a solution
in polynomial time. The numbers for the BUNNY sample sets let
us suspect that the complexity is linear as long as the extent of
the noise stays within 0.5 lfs. Robust HPR [MTSM10] takes 1–
2 seconds (for small point sets with little noise) while DeGoes et
al. [DGCSAD11] show timings similar to ours (range in seconds
up to a minute).

Limitations As shown in Figures 14, 15 and 16, our method man-
ages to reconstruct very strong noise up to the extent of the local
feature size. However, the less densely a feature is sampled, and the
more the local feature size varies between close curves, the closer
their noisy samples become, which might connect these samples
and thus merge their features. Limiting the noise extent to 1

3 of the
local feature size seems to work well for the general case (see Fig-
ure 15). Figure 10c shows that features which do not emerge over
the noise extent are oversmoothed (indentation of left pince).

T-junctions (see Figure 18b) do not represent a manifold curve,
and therefore our fitting operator does not handle these. Open
curves may not always be reconstructed to the farthest point, as
for example in Figure 8c, if our algorithm marks these points as
redundant, such as in Figures 17, 18. However, this could easily be
fixed by a post-processing step.

6. Conclusion and Future Work

We have presented an algorithm that solves the extensively stud-
ied problem of reconstructing simple curves from arbitrarily noisy
points, with applications e.g. in recovering silhouettes of 3D objects
in sensed data, but most importantly, providing groundwork for re-
constructing surfaces from highly noisy 3D data. Our reconstruc-
tion extends seamlessly from an existing algorithm, HNN-CRUST,
to handle samples polluted by high noise extents. Additionally, it
simplifies the output curve without losing features and denoises it.
The reconstructed curve is guaranteed to fulfill two conditions w.r.t
to the input points and analysis shows that it stays within the same
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distance to the original curve as the error of the noisy points. The
algorithm runs in reasonable time to be of practical use, with run-
time depending on the extent of noisy clusters in the data. The con-
vergence to a robust solution can be verified using the open source
available online.

Additionally to the boundary and sharp-corner detectors, we are
considering to extend the sharp-corner detector to T-junctions and
intersections, by considering more than two open curves in the
neighborhood disk of points. We also plan to incorporate statistical
noise models into the circular fits, e.g., with sensor-specific prop-
erties, to improve our denoising post-process because known noise
extents also permit to remove smaller extents which are not de-
tected by our algorithm. The consistent ordering along a manifold
guaranteed by our two conditions enables anisotropic denoising as
the curve is locally planar and can be deformed in function of the
neighborhood points. However, we currently work on extending the
algorithm to reconstructing surfaces in 3D, as we consider this to
be its most exciting potential.
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