
Visual Active Learning for News
Stream Classification

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Visual Computing

eingereicht von

Michael Mazurek, BSc
Matrikelnummer 01126483

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Univ.Ass. Dr.techn. Manuela Waldner, MSc

Wien, 10. Oktober 2019
Michael Mazurek Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Visual Active Learning for News
Stream Classification

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Visual Computing

by

Michael Mazurek, BSc
Registration Number 01126483

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Univ.Ass. Dr.techn. Manuela Waldner, MSc

Vienna, 10th October, 2019
Michael Mazurek Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Michael Mazurek, BSc
Flurschützstraße 36/12/45, 1120 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Oktober 2019
Michael Mazurek

v

Acknowledgements

I want to express my gratitude to my advisor Eduard Gröller and supervisor Manuela
Waldner. Thank you for the motivation, guidance, and support throughout the whole
Master’s thesis. This applied not only to theoretical questions in the area of visualization
but also to the software implementation that improved the quality of this work. Thanks
to you, I have very much enjoyed the process of researching.

This work was partially supported by the FFG Innovationsschek 864303, in cooperation
with PS Quant. I want to thank the PS Quant representatives Michael Pühringer and
Sebastian Schrey for their domain-specific knowledge and patient support during this
work.

Additionally, I would also like to thank Matthias Zeppelzauer for valuable discussions, as
well as Dea Čizmić and Martin Śmiech for their implementation of the UI/framework
that this work adapts.

My greatest thanks go to my parents that support me throughout every situation in
life. Without your support throughout school, I would not be able to make a small
contribution to the world of research. Thank you for being who you are.

vii

Kurzfassung

In vielen Bereichen nimmt die Menge an relevanten Textinformationen täglich zu. Viel
Zeit muss in diesen kontinuierlichen Strom an Information investiert werden, um sich auf
dem neuesten Stand zu halten. Deshalb haben wir ein visuelles Klassifizierungsinterface
für Text-Stream-Daten entwickelt. Das Interface lässt Benutzer Daten klassifizieren um
benutzerspezifische Themengebiete zu lernen.

Aktuelle Ansätze, die große Mengen an unstrukturierten Daten kategorisieren, verwenden
oft vortrainierte Modelle des Maschinellen Lernens zur Textklassifizierung. Diese Modelle
ordnen Textdokumente basierend auf deren Inhalt vordefinierten Kategorien zu. Jedoch,
abhängig vom Anwendungsfall, können die Interessen eines Anwenders nicht in den
vorgegebenen Kategorien vertreten sein. Des Weiteren sind vortrainierte Modelle nicht
in der Lage, sich an neue Terminologie anzupassen. Abgesehen von diesen Faktoren,
vertrauen Anwender solchen Modellen oft nicht, weil sie die Entscheidung des Modells
nicht nachvollziehen können.

Um dieses Problem zu lösen, lässt unsere Anwendung den Benutzer ein Klassifizierungs-
problem definieren und ein Modell des Maschinellen Lernens durch Interaktion mit einer
Star Coordinates Visualisierung trainieren. Das Konzept hinter unserer Anwendung ist
eine Variante des aktiven Lernens, welches aussagt, dass ein Modell des Maschinellen
Lernens eine höhere Genauigkeit mit weniger Trainingsdaten erreichen kann, wenn ein
Benutzer zielgerichtet Daten klassifiziert, von welchem es lernen kann. Diese Strategie
adaptieren wir für Text Stream Daten, indem wir die Zugehörigkeitswahrscheinlichkeit zu
einem Themengebiet des Modells visualisieren und Interaktionswerkzeuge zur Verfügung
stellen, welche es ermöglichen, das Modell iterativ zu verbessern.

Durch die Simulation von üblichen Selektionsstrategien des aktiven Lernens haben wir
gezeigt, dass unsere Strategien, welche auf der Visualisierung basieren, den klassischen
Strategien entsprechen. In unserer vorläufigen Nutzerstudie haben die von Anwender
trainierten Modelle so gut wie die besten simulierten Selektionsstrategien abgeschnitten.
Deshalb kommen wir zu dem Schluss, dass die Verbindung von aktiven Lernen mit
Informationsvisualisierung vorteilhaft ist.

ix

Abstract

In many domains, the sheer quantity of text documents that have to be parsed increases
daily. To keep up with this continuous text stream, a considerable amount of time
has to be invested. We developed a classification interface for text streams that learns
user-specific topics from the user’s labeling process and partitions the incoming data into
these topics.

Current approaches that try to derive content categorization from a vast number of
unstructured text documents use pre-trained learning models to perform text classification.
These models assign predefined categories to the text according to its content. Depending
on the use case, a user’s interests might not coincide with the given categories. The model
cannot adapt to changing terminology that was not present during training. Besides
these factors, users often do not trust pre-trained models as they are a black box for
them.

To solve this problem, our application lets users define a classification problem and
train a learning model through interaction with a Star Coordinates visualization. The
approach that makes this interaction efficient is a variant of active learning. This active
learning variant states that a learning model can achieve greater accuracy with fewer
labeled training instances, if a user provides data purposefully from which it learns. We
adapted this strategy for text stream classification by visualizing the topic affiliation
probabilities of the learning model and providing novel interaction tools to enhance the
model’s performance iteratively.

By simulating different selection strategies common in active learning, we found that
our visual selection strategies correspond closely to the classic active learning selection
strategies. Further, users performed on par with the best simulated selection strategies
in the results from our preliminary user study. Our evaluation concludes that there are
benefits from incorporating information visualization into the active learning process.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Requirements . 3
1.4 Method Overview . 4
1.5 Contribution . 6

2 Topic Modeling and Text Classification 7
2.1 Machine Learning . 7
2.2 Natural Language Features . 9
2.3 Supervised Learning / Text Classification 15
2.4 Unsupervised Learning / Topic Modeling 17
2.5 Active Learning . 20

3 Related Work 23
3.1 Text Stream Visualization . 23
3.2 Visualizing Document Similarities . 25
3.3 Steerable Model Visualization . 29

4 Visual Active Learning 35
4.1 Overview . 35
4.2 Data Acquisition . 37
4.3 Feature Engineering . 38
4.4 Classification Model . 38
4.5 Augmented Star Coordinates . 40
4.6 Active Learning with Star Coordinates 46
4.7 Model Update . 48
4.8 Dashboard . 52

xiii

5 Implementation 55
5.1 Server . 56
5.2 Client . 58
5.3 Simulation Server . 61

6 Experiments 63
6.1 Datasets . 63
6.2 Procedure . 64
6.3 Measures . 66
6.4 Parameter Tuning . 68
6.5 Active Learning Strategy Evaluation 72

7 Evaluation 79
7.1 List Condition . 79
7.2 Hypotheses . 80
7.3 Study Design . 81
7.4 Analysis . 82
7.5 Results . 84
7.6 Limitations . 87

8 Discussion 89
8.1 Discussion of Hypotheses . 89
8.2 Qualitative Observations . 91

9 Conclusions and Future Work 93
9.1 Conclusion . 93
9.2 Future Work . 94

List of Figures 99

List of Tables 101

Bibliography 103

CHAPTER 1
Introduction

1.1 Motivation

In many domains, it is crucial to analyze a large amount of relevant news material. For
instance, in the financial domain, trend analysts interpret current events to be able
to foresee financial developments. Each analyst has a portfolio that holds assets for
which the analyst makes business recommendations. According to our collaborators
from the financial software development domain, trend analysts gather information by
browsing various sources daily to give the best advice. They examine stocks, databases,
and statistics to develop their predictions. Besides those information sources, daily
publications like the Wall Street Journal, The New York Times, and The Economist
can provide supplementary information as they cover the latest economic information.
These newspapers can even contain relevant news in sections not strictly dedicated to
financial news. An analyst might look for political and world news when investigating
macroeconomics, which revolves around how aggregate economies behave. On the other
hand, also opinion pieces can have an impact on the financial world when examined from
the microeconomics side, where analysts consider the impact of singular individuals or
businesses. The sheer number of potentially relevant news appears overwhelming, even
when only examining single news sources.

According to an article by The Atlantic [Mey16], a newspaper like the Washington
Post produces about 500 stories per day. This number, however, only includes stories
written by the editorial staff. The overall number is closer to 1200. Newspaper websites
provide sections, which group articles. When examining the sections, seven out of eleven
categories seem relevant to the financial domain. Assuming a uniform distribution of
news among categories, this still amounts to 750 articles published a day from a single
newspaper. And besides keeping up with daily news, also manual filtering of financial
reports is time-consuming, as information can be overlooked in a large set of textual

1

1. Introduction

information. It should be obvious that much time is spent on such analysis tasks to keep
up with changes in the field.

1.2 Problem Statement

With the ever-increasing amount of news and textual content in the form of news streams,
a need for new tools arise. These tools should be able to pre-process, analyze, and
classify raw text to enable more efficient interaction with textual data. Typical features
of such tools are entity recognition, sentiment analysis, syntactic analysis, and content
classification. As this trend is now existing for a long time, there are many solutions in
the form of natural language processing (NLP) APIs available, which are computational
techniques for the automatic analysis and representation of human language [YHPC18].
A vast number of companies offer APIs due to the easy availability and flexibility that
cloud-based applications provide. In this set of companies, the major players of the
software world, as well as smaller companies, are represented. To name a few APIs,
Amazon Comprehend [Ama], Google Cloud [Goo], IBM Watson [IBM], and Microsoft
Project Entity linking [Mic] are the products of the major companies. Smaller companies
like Ambiverse [Amb], Geneea [Gen], Open Calais [Ope], and TextRazor [Tex] provide
similar features for NLP while being more flexible and specialized. Besides the mentioned
APIs, there are many more providers that deal with NLP. Robert Dale gives a thorough
overview of the current market [Dal18a] [Dal18b].

As the motivation from Section 1.1 suggests, the problem, which we set out to address,
is the sheer volume of news and documents that financial analysts are confronted with
daily. We chose to solve this problem by semi-automatically categorizing the data, so
analysts can focus on a subset of categories, which reduces the amount of data that has
to be assessed for relevancy. One NLP approach that provides a direct solution is text
classification, which is the process of assigning predefined categories to text according
to its content. In our use case, every analyst might have diverse interests, given by
their portfolios. These interests can be utilized as the categories of the classification,
making the categorization itself user-specific. Besides the user-specific categorization,
the changing terminology associated with these categories must be taken into account.
News concerning a certain financial asset may introduce new terminology over time that
was not present during training. For instance, in 2015 the emission scandal around the
Volkswagen brand introduced the term "Dieselgate". Text classification can be adapted
to deal with such changing feature spaces.

The previously introduced APIs implement text classification together with the other
mentioned features as pre-trained learning models (see Section 2.1). Training models
with available data beforehand, so they can subsequently predict new unseen data, is
the state-of-the-art approach to solving text analysis tasks. These machine learning
approaches generalize well on data not used in the training process. Due to the learning
approach, pre-trained learning models have predefined classes and predefined feature
spaces. For our use-case, we want to incorporate the personal interest of the users

2

1.3. Requirements

(e.g., specialized assets) into the classification process and be able to adapt the feature
space over time so that it can add new features. Another shortcoming of classic machine
learning techniques is that users often do not trust pre-trained models as they are a black
box, only providing a label as feedback.

1.3 Requirements
In consultation with our collaborators from the financial software development domain,
it became clear that an interactive approach would be beneficial to classify the news
streams that financial experts face daily. The categorization should be personalized to
the financial analyst’s portfolio and dynamic concerning the changing nature of news.
Our collaborators provided the additional requirements of minimal effort to the users
and transparency of information. It is essential for them that the additional expense of
training a model is not overly complex and does not outweigh the benefits of a personalized
and dynamic categorization. The application should communicate its results as clearly
as possible, so the process of categorization is transparent to the users. We put these
requirements into concrete terms in the following list:

• R1: Incorporating the users’ prior knowledge and interests into the classification
process should be possible.

• R2: As relevant aspects can change over time, the application needs to incorporate
mechanisms to keep the classification relevant through incremental improvement
procedures to the underlying model.

• R3: With sufficient training of the classifier, the application should enable users to
determine for which of their defined classes (i.e., assets or topics) the document is
most relevant.

• R4: Fine-tuning of machine learning models is complex. It is necessary to design
interactions intuitively so that non-specialists can perform basic tasks and under-
stand their impact. The users should have an understanding of the effects of the
training and be able to quickly asses the state of the model.

3

1. Introduction

1.4 Method Overview
To meet these requirements, we compared unsupervised and supervised learning approaches
(see Sections 2.3 and 2.4) with respect to the given task. Unsupervised learning is a
common approach to solve NLP problems as those methods provide general solutions
without the need for interaction with the process of learning. We decided against the
unsupervised approach of topic modeling (see Section 2.4) due to multiple drawbacks.
One of these disadvantages is the representation of topics in topic modeling, which is in
the form of a weighted list of terms. These lists reflect which terms found in the text
are frequent in the same context and thus depict the common understanding of a topic
in a simplified form. To derive descriptive topics from those lists, further interpretation
and annotation is needed. Topic modeling is inherently unsupervised, therefore, limited
guidance can be applied to skew the results into a direction of interest.

Figure 1.1: Comparison between clustering and classification. In this example, the black
and white circles represent user-labeled samples, while dotted circles remain unlabeled.
By utilizing this information, classification can find a subtle pattern that is indicated by
users. Without the guidance of labels, a clustering algorithm might ignore this solution
due to finding a more pronounced pattern.

Classification is a better fit to our personalization requirement (R1). It provides the
possibility for users to incorporate their knowledge and interests. The financial analysts
adequately define their interests through their assets, which do not have to necessarily
align with patterns in the data that topic modeling picks up (see Figure 1.1). In this sense,
the task is closer to grouping texts into predetermined groups than general exploration.
By applying classification, the users’ efforts shift to the start of the process.

Since iterative fine-tuning of a learning model is not feasible when working with a text
stream, we decided to design a system, which can "tune itself" through minimal user inter-
actions. Users can train the model with minimal interaction, incorporating their interests
(R1), and the effects are communicated back to them through visualization. Therefore,
we implemented a supervised text classification application, which learns incrementally
by incorporating an active learning strategy into a visualization (see Section 2.5), similar

4

1.4. Method Overview

to user-based active learning by Seifert and Granitzer [SG10]. The model initializes the
users’ categories with sample documents and improves the representation by retraining
iteratively. To keep the usability of the application high, we incorporated a visualization
with a novel interaction design into the interface, which serves multiple purposes: First,
the visualization encodes the model’s results together with the confidence of each predic-
tion, so the users can see how the model performs as a whole (R3, R4). Second, users
can interact with single documents through the visualization (R2). By interpreting the
interaction, the application derives a label for the document, which is used to improve the
learning model’s decision. With this approach, we aim to improve the current model’s
accuracy and keep the classification updated for continuous streams of text data and
evolving user interests.

Our evaluation focuses on investigating the process of visual active learning, which is the
process of applying active learning strategies iteratively with the help of our visualization
to tune a learning model for a text stream. In Chapter 6, we compare our approach to
classic active learning strategies (see Section 2.5) by using an evaluation tool that can
simulate these strategies and their visual counterparts. We also examine how real users
perform with this tool in a preliminary user study (see Chapter 7) to assess the benefits
of incorporating them into the process. In these chapters, the following hypotheses are
investigated:

• H1: Both classic and visual active learning strategies outperform a random strategy
in training.

• H2: The visualization of document assignments to classes helps users to decide
whether a news item is interesting for a particular class.

• H3: The direct interaction with the visualization is more efficient and effective for
active learning than a classic interface.

• H4: Users outperform active learning strategies by adapting their strategy based
on the learning model state.

5

1. Introduction

1.5 Contribution
We implemented a web application for organizing streaming documents into multiple
categories through interaction with a visual summary. The difference to already existing
approaches is the visualization bundled with the interaction design that gives users an
overview on the corpus, lets them see results of the classification, and - most importantly -
enables interactive improvement of classification through interaction. The web application
is accessible from every device that has a modern browser while shifting computationally
expensive operations to a server. To evaluate the application, our tests examined the
visualization’s capability to support classic active learning strategies. We also conducted
a preliminary user study comparing the visualization user interface to a list interface.
The contributions of this thesis are summarized in the following list:

• An interactive visualization that facilitates efficient model training through visual ac-
tive learning, and can be updated in an incremental learning fashion (see Chapter 4).

• The results of an evaluation of visual active learning strategies compared to classic
active learning approaches and random selection through simulation (see Chapter 6)
and the results of a preliminary user study showing that visual active learning can
simulate classic active learning strategies (see Chapter 7).

6

CHAPTER 2
Topic Modeling and Text

Classification

This chapter provides definitions and explanations from the field of machine learning that
are necessary to understand the following contributions and implementation details. In
particular, an overview of machine learning techniques is given at the beginning, which
describes how algorithms learn to solve problems from data. Subsequently, explanations
for feature engineering and classifiers follow, as these parts of the machine learning
architecture play an essential role in the iterative classification process and the contribution
of our application. Besides classification, the visualization community often applies topic
modeling to similar problems. Therefore, topic modeling is introduced in this background
chapter and compared to our classification-based approach. The chapter finishes with an
introduction to active learning due to its central role in our application.

2.1 Machine Learning
A central aspect of the problem defined in Chapter 1 is the amount of data parsed daily.
This is a good prerequisite for machine learning since these procedures benefit from
big datasets [Bis06]. As so much data is available, our approach arranges data into
useful groupings, so users have fewer documents to manually parse. The task of mapping
input data to a set of categorical output variables is called classification [Mur12]. In
this task, a rule is defined based on the present features to group the data. This rule
is called the learning model or model and can be defined in different ways. One main
criteria models can be categorized into is whether they are parametric or non-parametric.
Shortly introduced, parametric models, like linear models [NKNW96], the perceptron
[Ros58], or neural networks [MP43], define a finite number of parameters beforehand to
fix the model complexity. On the contrary, non-parametric models grow in complexity
with the available data. Examples include k-nearest neighbors (k-NN) [FHJ51], decision

7

2. Topic Modeling and Text Classification

trees [Bre17], and support vector machines [BGV92]. Due to the mentioned benefits, we
chose to apply a parametric model in our application. These learning models define a
parametric function on how to transform the present features in the dataset into a class
prediction. At the initialization, the model only knows the family of parametric functions
from which it selects a concrete function by estimating coefficients. During the learning
process, the model learns the parameters of the particular function through the training
set, which is a set of labeled data. This is accomplished through step-wise minimization
of a loss function (i.e., cost function), which is a measure of loss incurred in choosing any
of the available models [Bis06]. Finding the minimum of a function can be accomplished,
for instance, by using the gradient descent algorithm [KW52]. This minimum defines
the solution for the problem in the form of a parametric function. Subsequently, this
parametric function is used to predict the class of new unseen data, usually called the
test set.

When examining this process of finding a solution, it becomes apparent that the features
present in the data are central. After training, the parametric model divides the feature
space into distinct regions that represent the model’s different choices. The features
present in the data have a direct impact on the decision of the model. One might think
that using as many features as possible is the right approach, so the model has all
information available to find the correct answer. However, the curse of dimensionality,
coined by Richard Bellman [Bel66] states: "As the dimensionality of the feature space
increases, the number of configurations grows exponentially, and thus the number of
configurations covered by an observation decreases."

Figure 2.1: With increasing number of dimensions the amount of data needed to cover
20% of the feature space grows exponentially (Adapted from [Spr]).

Adding dimensions makes the present data fill less and less of the feature space as the
data samples move apart along the new dimensions (see Figure 2.1). To maintain an exact
representation of the underlying problem, the amount of data has to grow exponentially
[Bis06]. This is important, as the model searches for a solution that separates the feature
space perfectly. Due to the increasing sparsity, placing the decision boundary becomes

8

2.2. Natural Language Features

easier in higher dimensions (see Figure 2.2). A high-dimensional model will be able to
fit a complex decision boundary on the data that separates the classes perfectly. This
phenomenon is called overfitting. Such a model fits a hyperplane so well that it picks
up exceptions that are specific to the training data and do not generalize well on new
observations. There are many aspects to the architecture of a machine learning algorithm
that can alleviate overfitting problems. In particular, this background overview will focus
on feature selection techniques and choosing a learning model within the scope of text
classification.

Figure 2.2: Adding dimensions increases the likelihood of separating classes successfully.
Simple hyperplanes in high-dimensional spaces project to more complex hyperplanes in
feature spaces with less dimensions (Adapted from [Ihl]).

2.2 Natural Language Features
It is necessary to reduce the number of features into a more manageable set for processing,
to combat the curse of dimensionality. The task of finding informative and non-redundant
features falls under the term feature engineering. Commonly, features are constructed
manually by experts based on empirical tests and knowledge. Conventionally, machine
learning approaches used sets of hand-crafted features as early algorithms did not
implement procedures to automatically extract meaningful features [LBH15]. Besides
feature engineering, also automatic techniques found application in the task of reducing
the number of features. The approach of these dimensionality-reduction techniques is
to project higher dimensional spaces into lower dimensions, while preserving structures
present in the data. With the emergence of deep learning, the features themselves are
learned alongside the machine learning model, by chaining two models after each other.
These approaches encode additional information about the features into the architecture
of the first model, the feature extractor, and connect it to a simple model to solve the
problem with the features the feature extractor produced [Kim14].

9

2. Topic Modeling and Text Classification

Defining features in a hand-crafted manner is still a strategy widely practiced in text
classification and text visualization [MP18]. Especially in cases where the available data
is scarce, handcrafted features are advantageous as their quality is not as dependent
on the dataset size as trained features [ZZL15]. A simple and efficient solution for text
classification is to represent documents as bag-of-words [Har54]. This approach represents
each sample of the dataset (i.e., document in the corpus) by a separate feature vector.
Each of those vectors holds a set of predefined features (i.e., word frequencies) that
are present in the document. This results in a word frequency vector whose length
corresponds to the number of unique words present in the corpus (see Figure 2.3). These
vectors, together with a label of the documents category, can then be used to train a
model in a supervised fashion. Often, these methods are referred to as traditional methods,
as these methods use handcrafted feature extractors. There are many different variants of
neural networks that employ this technique [SPW+13, KGB14, Kim14, ZLR16, HQZ17].

Figure 2.3: The bag-of-words procedure creates for each document a document-term
vector, where all term-frequencies are saved.

Before text is transformed into a bag-of-words representation, text normalization op-
erations are applied to transform all text into a standard format, so that texts from
different sources can be compared consistently. The normalization process starts with
the tokenization step, a step where the text is segmented into words. Usually, stop word
removal follows after tokenization to reduce the dimensionality of the feature space, so
the dataset populates the space densely. Stop word removal (see Figure 2.4) removes all
words that are found in a lookup table. Typically, these lookup tables contain function
words like articles, pronouns, prepositions, conjunctions, determiners, and lexical particles
[JM14]. This approach is very effective as common words are removed that hold very
limited semantic meaning for a topic. As the bag-of-words method disregards the order
of words in a document, some major syntactic categories, like adjectives and adverbs, lose
most of their semantics as it is not possible to determine what they refer to. Figure 2.3
highlights this problem. In the document-term vector representation of the document

10

2.2. Natural Language Features

it is not clear to which term an adjective refers to. An approach, therefore, can be to
expand the removal process, so that not meaningful feature dimensions are removed as
well. Part-of-speech (pos) Selection deals with these words by tagging each word of a text
with the correspondent lexical category and keeping only words from those categories
that preserve semantics well, e.g., nouns [Chu08].

Figure 2.4: During this example of stopword removal, determiners and prepositions are
removed from the text.

Another rather simple approach, that is included in the text normalization process,
is to map semantically similar features into one. Multiple methods exploit different
relationships between words to find such mappings. A very simple method of this kind
is stemming [Por80]. It reduces the feature dimensionality by stripping words from
their suffixes using simple rules. These rules primarily deal with conjugation rules of
languages, reducing words to the word stem (see Figure 2.5). However, these word stems
are not complete words and the procedure does not work with irregularities. To receive
complete words, there is also an approach called lemmatization, which aims to map
words to their lemma (i.e., the base form of the word) [JM14]. This process is more
complex as it involves determining the part-of-speech of a word, and based on the lexical
category, different normalization rules have to be applied. In comparison to stemming,
lemmatization can grasp more information about the word being normalized, enabling
it to more accurately apply normalization rules. Due to the sensitivity of the approach
upon obtaining the correct lexical category, the benefits of using this approach over
stemming is limited [BYRN99].

11

2. Topic Modeling and Text Classification

Figure 2.5: Examples of words that reduce to the same word stem by the stemming
approach.

Besides text normalization itself, also the feature (i.e., word frequencies) in the bag-of-
words approach can be adapted to improve performance. For instance, it is possible to
incorporate term-weighting as not all words in texts contribute equally to the semantics.
One popular weighting scheme is the tf-idf score by Spärk Jones [SJ72], which tries to
reflect how important a word is. The score, formally:

tf ∗ idf(w, d,D) = tf(w, d) ∗ log n

|{d ∈ D : w ∈ d}| , (2.1)

weights a term w from a document d by multiplying its term-frequency tf(w, d) with
the inverse document frequency, a measure that determines how much information a
word provides dependent on the corpus D (|D| = n). This weighting considers words as
important if they are common in a text and also specific to it. The motivation behind
this choice is that words that are frequent in a document but nowhere else hold relevant
information for the document that is not available in the remainder of the corpus.

As transforming texts into word frequency vectors discards word order, it is possible to
encode more complex text structures into feature vectors. An approach to preserve some
of the textual order is to encode all occurring sequences of two words, called bi-grams
[JM14], into a feature vector. Preserving the textual order of adjacent words might
seem limited, however, it is potent enough to expand the range of lexical categories,
which hold semantic meaning for the task. As adjectives and adverbs are found generally
before or after the term they refer to, they can be incorporated more efficiently into the
classification. The process of encoding sequences of words can also be expanded to longer
sequences. These sequences are then called n-grams (see Figure 2.6).

12

2.2. Natural Language Features

Figure 2.6: Unigram, bigram and trigram presentations generated from the same sentence.

This concept of capturing relations between words can be further expanded into the
concept of information extraction by incorporating grammatical knowledge to derive
structured information from the text. Information extraction turns unstructured informa-
tion found in texts into a structured form. One central task in information extraction is
named entity recognition, which revolves around finding all mentioned entities in a text by
recognizing proper names and assigning them to a preselected group of categories. Gener-
ally, standard algorithms for named entity recognition start with labeling noun-phrases in
the document with the inside-outside-beginning (IOB) format. In this chunking process,
terms are grouped together into noun-phrases (see Figure 2.7). Noun-phrases are useful as
they specify their entity more accurately than the noun on its own. These noun-phrases
then can be tagged with specific types like person, organization, location to create named
entities. In further steps, named entities can be utilized for relation extraction, which
gives the relation between entities a structured form as an entity relation. There are
multiple approaches to perform the labeling and classification found in these tasks [NS07].
These approaches can be split into learning algorithms [LBS+16] and rule/list-based
approaches [CLR13]. Both, named entities and their entity relations, are a structured
form of information that can be used to specify feature vectors for text classification.

13

2. Topic Modeling and Text Classification

Figure 2.7: Depiction of the generated IOB structure that represents the present noun-
phrases for an example sentence. The IOB tags that correspond to the drawn tree
structure can be found under the part-of-speech tags.

The representation used in the bag-of-words approach has multiple drawbacks. It is
invariant to word order, which leads to loss of relations between words. Representing a
document by a word frequency vector creates a feature space where documents are only
similar if they have a certain overlap in words. Encoding into such vector spaces provides
limited information regarding relationships that may be present between individual
documents [JM14]. To overcome some of these obstacles, a vector space model can be
trained to provide a feature space. Vector space models represent text documents in a
continuous vector space where semantically similar documents are mapped to nearby
points. These techniques depend on the distributional hypothesis, which states that words
appearing in the same contexts share semantic meaning [Har54], [RG65]. A commonly
used vector space model is the vector space generated by topic modeling (see Section 2.4),
where document association to topics is computed based on underlying structures in a
collection of texts.

Predictive models try to directly estimate vectors called word-embeddings, where the
weights in a word vector are set to maximize the probability of the contexts in which
the word is observed [BDK14]. Such commonly used models are the word2vec models by
Mikolov et al. [MSC+13, MCCD13] (see Figure 2.8) and the GloVe model by Pennington
et al. [PSM14]. These models can be extended to go beyond the word-level to achieve a
sentence-level or document-level representation. For instance, a document vector can be
derived from all word vectors by weighted averaging or by combining word vectors in an
order given by a sentence parse tree [SLMN11]. However, both of these approaches have
their respective weaknesses. A more sophisticated approach of representing documents
are the doc2vec models of Le and Mikolov [LM14]. In their work, they adapted word2vec
to an algorithm that learns feature vectors, which are trained to predict words present in
the document.

14

2.3. Supervised Learning / Text Classification

Figure 2.8: Depiction of a word2vec example space. In this example, similar terms lie
in proximity of each other and similar associations are connected through the similar
vectors (Adapted from [MSC+13]).

2.3 Supervised Learning / Text Classification
Besides feature engineering, we want to give a basic overview of the classifiers, which
are the learning models used in text classification. For a broad overview, classifiers
can be grouped into the following categories [AZ12], [MP18]: neural network classifiers,
regression-based classifiers, and Bayesian (generative) classifiers that are parametric and
decision trees, support vector machine (svm) classifiers, and proximity-based classifiers
that are non-parametric. These categories of classifiers encompass a large part of classifiers
in general, as text can be modeled as quantitative data with word frequencies or weighted
word frequencies. Therefore, most classification methods for quantitative data can be
applied directly to the text. For this overview, we will distinguish classifier in the broader
categories of traditional methods and deep learning methods. In general, traditional
methods differ from deep learning approaches based on how the feature engineering
for classification is conducted. Traditional methods process data before classification
so the learning algorithm receives a vector representation in which it can recognize
important patterns. Deep learning methods contain additional network layers instead
that learn to perform feature engineering themselves. Traditional methods outperform
deep learning based approaches if only little data is available and the samples themselves
are short [ZZL15]. In practice, traditional methods like support vector machines, logistic
regression, and variants of naive Bayes classifiers are often used as baseline methods for
text classification [WM12].

15

2. Topic Modeling and Text Classification

An early example of a traditional text classification method is the system presented
by Joachims [Joa98]. Joachims used a basic variant of bag-of-words that normalizes
for document length as a feature extractor and introduces the support vector machine
as the classifier for this task. This work is a simple and efficient baseline for sentence
classification. More recently, Joulin et al. [JGBM16] explored how to adapt traditional
models to be on par with deep learning classifiers in terms of accuracy while speeding
up the training time. They were able to decrease the training time by many orders of
magnitude, through incorporating a hierarchical classifier and a low-dimensional text
representation. The text representation they use is a combination of bag-of-words and
bag-of-n-grams to alleviate the word order loss efficiently.

Besides traditional models, deep learning approaches, like the convolutional neural
networks (CNN) by Kim [Kim14], have also shown competitive performances. This
work demonstrates that CNNs with pre-trained word embeddings [MCCD13] can achieve
excellent performance with little hyperparameter tuning. Another example is the recurrent
CNN presented by Lai et al. [LXLZ15] that captures contextual information more
efficiently than conventional CNNs. These two approaches from the Deep Learning field
use basic linear regression for classification, as the features derived by these methods
simplify the classification problem in their respective feature spaces. However, it should
be noted that these models need large labeled datasets to perform best (see Table 2.1).

Model AG Sogou DBP Yelp P. Yelp F. Yah. A. Amz. F. Amz. P.

Traditional Models:
bag-of-words [ZZL15] 88.8 92.9 96.6 92.2 58.0 68.9 54.6 90.4
n-grams tf-idf [ZZL15] 92.4 97.2 98.7 95.4 54.8 68.5 52.4 91.5
fastText [JGBM16] 92.5 96.8 98.6 95.7 63.9 72.3 60.2 94.6

Deep Learning Models:
char-CNN [ZL15] 87.2 95.1 98.3 94.7 62.0 71.2 59.5 94.5
char-CRNN [XC16] 91.4 95.2 98.6 94.5 61.8 71.7 59.2 94.1
VDCNN [CSBL16] 91.3 96.8 98.7 95.7 64.7 73.4 63.0 95.7

Table 2.1: Accuracy comparison on sentiment datasets [ZZL15] from Joulin et al.
[JGBM16]. In this comparison, datasets are ordered ascending in size from left to
right, where the first half has a scale of several hundred thousand and the latter half
goes to the scale of several million samples. This comparison illustrates how performance
between both feature approaches varies based on training set size.

In our application, we chose to use a traditional model, by applying a handcrafted
feature extractor together with a multinomial naive Bayes classifier (mnb). Shortly
introduced, this probabilistic Bayes classifier works based on the bag-of-words model that
uses Bayesian inference to transform known probabilities based on the present corpus
and classes into the probability that a certain document belongs to a class [JM14]. Its
formulation can be derived by following the Bayes rule (see Equation 2.2) that states
how to factor a conditional probability P (x|y) into three other probabilities:

16

2.4. Unsupervised Learning / Topic Modeling

P (x|y) = P (y|x)P (x)
P (y) . (2.2)

The naive Bayes classifier uses a simplified equation (see Equation 2.3) derived from the
Bayes rule to calculate the estimate for the correct class ĉ based on the present training
data. Compared to the Bayes rule, this classifier definition omits the denominator P (y)
as it does not change between classes. In the equation that models the classifier’s decision,
the likelihood P (d|c) of document d being from class c is calculated as the product of the
likelihoods P (wi|c) of the document’s terms wi. In practice, the likelihoods P (wi|c) are
computed as the fractions of times the term wi appears among all terms in all documents
of a class c. Similarly, the prior P (c) is computed as the fraction of documents of class c
in the corpus:

ĉ = argmax
c∈C

P (d|c)P (c) . (2.3)

To compute these probabilities directly from the corpus as described, two simplifying
assumptions must be made: First, the bag-of-words assumption is made, which states that
the position of a term or feature in the document does not matter. Thus, the conditions
of the probability only encode term identity. Second, the naive Bayes assumption is
added, which states that the probabilities P (wi|c) are independent given the class and
can be multiplied together. Therefore, the most probable class given a document can be
computed by choosing the class with the highest product of the prior probability of the
class and the likelihood of the document. This results in a simple linear classifier with
solid performance, if the calculations are transformed into log space:

cNB = argmax
c∈C

P (c) +
∑

i

logP (wi|c) . (2.4)

2.4 Unsupervised Learning / Topic Modeling
Besides classification, simplifying the process of sifting through corpora that expand
regularly can also be addressed through clustering. In this section, we will explore
the alternative solution of topic modeling, which is a widely used approach in the text
visualization field. Rather than relying on users to tell the model what they are interested
in, the model shows users the underlying structures found in the corpus. Topic modeling
can supply this underlying information in the form of found topics, and users can then
focus on particular parts of interest.

17

2. Topic Modeling and Text Classification

As shortly mentioned, topic modeling algorithms are a class of unsupervised machine
learning algorithms, which categorize document collections based on an underlying
distribution of topics discovered within [AA15]. In practice, these algorithms usually
expect the data in the form of a document-term matrix X ∈ Rnxm together with a
certain number of topics k. Related to representations mentioned in Section 2.2, this
document-term matrix corresponds to a set of feature vectors constructed with the
bag-of-words model. Upon finishing, they return the underlying distribution of topics in
the form of two smaller matrices. The first being a document-topic matrix H ∈ Rnxk that
holds for each document a row hi, which contains the soft assignment through weights to
each topic. In the second output, the topic-term matrix W ∈ Rkxm characterizes each
topic in a separate row wi through term weights that signal how associated the word is
with the topic.

There are two main classes of topic models: probabilistic models and non-probabilistic
models. This list of presented algorithms is not exhaustive; there are multiple surveys
[DLZM10], [AA15], [SLL+16], [JWY+17] for specific domains that offer a more complete
overview.

Probabilistic models are more prominent as their statistical foundation gives them benefi-
cial properties that make them simpler to interpret. Specifically, probabilistic frameworks
produce representations for documents and topics that are all non-negative and sum up
to one. From the class of probabilistic models, the probabilistic latent semantic analysis
(p-LSA) [Hof99] and the latent Dirichlet allocation (LDA) [BNJ03] are the two models
with the widest use. They use a generative model that returns the desired representation,
and train the model with data from the document-term matrix through expectation
maximization [Ble12]. Compared to each other, the p-LSA algorithm models a simpler
generative process and therefore runs faster, while the LDA is a more complex model as it
takes the priors for its parameters into account, which lends itself to better generalization.
Probabilistic approaches suffer from several practical shortcomings in terms of consistency
of outcome over multiple runs and empirical convergence [CLRP13].

From the group of non-probabilistic models, two factorization based approaches, the latent
semantic analysis (LSA) [DDF+90] and the non-negative matrix factorization (NMF)
[LS99], are the most prominent ones. Both approaches factorize the document-term
matrix X ∈ Rnxm into the smaller matrices W ∈ Rkxm and H ∈ Rnxk (see Figure 2.9).
The NMF factorization is often formulated in terms of the Frobenius norm, where the
distance between the initial document-term matrix and the factorization is minimized. In
the LSA approach, a singular value decomposition is used to compute the factorization,
which introduces a third matrix Σ. This matrix is a diagonal matrix whose values encode
the strength of the correspondent topics in the corpus. In practice, NMF is more widely
used as its non-negative constraint gives the approach many benefits of probabilistic
topic models without introducing their shortcomings.

18

2.4. Unsupervised Learning / Topic Modeling

Figure 2.9: Depiction of the underlying topic representations in the form of smaller
matrices generated during non-negative matrix factorization.

In the comparison between topic modeling and classification, multiple resemblances
can be found. For this comparison, the process of topic modeling is generalized to
clustering, as its process generates soft clusters of documents and terms concerning a
latent variable called topic. In essence, Classification and clustering are both processes
that follow the same goal of grouping input elements. The big difference between these
methods is that classification is supervised. Clustering is an unsupervised approach.
Classification needs a definition of the grouping it has to produce, which typically users
provide through class examples. Therefore, it must be known beforehand how to group
the data, making the classification process very dependent on a suitable definition.
Clustering circumvents the problem by defining its grouping from the data, which can be
advantageous. However, it leaves the process dependent on the given data features instead.
In this sense, the suitability of these processes depends on user strategies or interactions
to solve the given task. While classification corresponds to a more goal-oriented approach,
clustering operates better in a data exploration setting. With respect to our application,
incorporating the users’ prior knowledge, as stated in R1 (see Section 1.3), corresponds
more closely to classification.

19

2. Topic Modeling and Text Classification

2.5 Active Learning

Commonly, in machine learning problems, training data is treated as a fixed and given
part of the problem definition. In practice, it is frequently the case that abundant data
that can be easily obtained is unlabeled. However, labels must be explicitly produced,
which can be time-consuming. In this situation, where a large pool of unlabeled data
is available, active learning is a possible solution. The term active learning refers to a
method where the model itself has a role in determining what data it will be trained with
[Coh17]. Active learning is often used in settings where the obtaining of labeled data is
expensive and time-consuming. As this setting corresponds to our problem statement,
we adapted active learning techniques as a central method of our application.

The idea behind these methods is to select training examples sequentially that enable the
model to minimize its loss on future test cases (see Figure 2.10). By incorporating the
model into the selection process, the model can make use of initial information to discard
parts of the solution space that are sufficiently represented and focus data acquisition on
uncertain regions. Active learning aims to greatly reduce the number of training samples
needed and the computational effort required to achieve good generalization.

Figure 2.10: The sequential process of active learning (Adapted from [Set09]).

To incorporate active learning, a sequential selection process has to be established between
the learning model and the oracle. Oracle refers in this case to the mechanism that
provides labels for the selected data, which is usually manual labeling by a human. This
sequential selection process between the model and the oracle is a loop, where the model
selects a sample based on a strategy and updates itself upon receiving the label. Multiple
active learning strategies define how to select a sample from the pool of unlabeled data.
The earliest active learning work [RD89] relies on version space partitioning, which
selects samples by computing explicit model hypotheses and choosing samples that are
in maximal disagreement with these models. Query by committee [SOS92] relies on a

20

2.5. Active Learning

disagreement score from an ensemble of models. This strategy selects samples where the
disagreement between models is maximal, as the disagreement signals an undetermined
space in the training data. Besides these strategies, there is a selection of strategies based
on statistics. Uncertainty sampling [LG94] is such a statistical strategy. For this strategy,
the learning model maintains an explicit model of uncertainty from which it picks samples
of least confidence. In case of particularly noisy data, the loss minimization strategy
[CGJ96] is preferable. This strategy is suitable for active learning as it computes also
the effect of the samples on the future uncertainty, besides the current learning model’s
uncertainty. However, this strategy is only feasible for models where this uncertainty can
be computed explicitly.

Applying active learning sampling strategies, directly influences the data distribution
the learning model is training on. So these approaches bear the risk that the dataset no
longer reflects the underlying data distribution. However, the process of active learning
has great potential to improve the generalization capabilities of learning models, while
minimizing the computational effort. Multiple works from the field of active learning
theory [Das17] illustrate these benefits for specific cases through a statistical analysis
of active learning methods. In the general case, there is no clear answer on how much
is gained through applying active learning methods, as the theoretical aspects of active
learning are still mostly unexplored.

21

CHAPTER 3
Related Work

The core of this work is an interactive visualization interface for streaming text data. To
get an overview of existing text visualization techniques, the Text Visualization Browser,
which was developed alongside a text visualization survey by Kucher and Kerren [KK15],
is a great place to start. For our overview, we adopt the coarser taxonomy of Cao and Cui
[CC16], which partition existing text visualization techniques based on text data scope
and analysis task groups. Existing text visualization techniques were mostly designed to
deal with three major forms of text data: documents, corpus, or text streams. Based
on these data types, most visualizations focus on particular analysis tasks they support
in a distinct application domain. These analysis tasks can be grouped into showing
similarity, showing content, showing opinions and emotions, and exploring the corpus.
In the sense of this taxonomy, our visualization is a text stream based technique that
visualizes document similarities.

3.1 Text Stream Visualization
Following the description from Babcock et al. [BBD+02], text stream data is continuous
data potentially unbounded in size that arrives uncontrollably over time in no particular
order. On arrival, this data has to be processed and incorporated, as the data has no
particular starting point or end. Our discussion on text stream visualization focuses
on how visualizations display a text corpus and capture its content in a manner that
incorporates new information while preserving the connection to the previous state. Due
to our application tasks, we confine this overview to visualizations that visualize the
documents themselves. This excludes alternative approaches that illustrate temporal
content of an entire corpus, like dynamic word clouds [CWL+10], as the contribution of
particular documents is unclear.

23

3. Related Work

Streamit by Alsakran et al. [ACZ+11] is a real-time text stream visualization that
represents text streams as particle systems in a force-directed layout. In their layout, the
position of a document particle is determined by a layout force based on pairwise keyword
similarities between documents (see Figure 3.1). A two-dimensional particle-based
visualization has many benefits for visualizing text stream data. It is straightforward
to add particles for arriving data. Also, changes from the update can be incorporated
by moving particles to their new position through an animation without any occlusion
issues. To compute the similarity-based particle positioning, they adapt the cosine
similarity (see Section 3.2) to dynamically change the text stream. In their adaptation of
the cosine similarity, keywords are weighted with a dynamically computed importance
that emphasizes frequent keywords and keywords with prolonged use. That way, they
can incorporate additional temporal information, improving the layout for text stream
visualization.

Figure 3.1: The Streamit visualization by Alsakran et al. [ACZ+11] utilizes a particle-
based visualization based on keyword similarities to show how the content of a text
stream evolves. In the visualization, greyscale is used to indicate the age of a document,
and colored pies represent tracked keywords.

Gansner et al. [GHN13] designed a dynamic visualization that uses a node-link diagram
to organize documents based on similarity and cluster them with an overlayed color-
coded "country"-metaphor (see Figure 3.2). In this visualization, the similarity is defined
with the cosine similarity of document tf-idf vectors (see Section 2.4) and applying
multidimensional scaling (see Section 3.2). Additionally, modularity clustering [New06]
based on graph edge weights is computed. It is used for cluster highlighting by color.
To dynamically adapt to new data, their system includes strategies that locally apply
multidimensional scaling to preserve the users’ mental map of the data. To keep the
unused space minimal, a packing algorithm is also utilized.

24

3.2. Visualizing Document Similarities

Figure 3.2: Gansner et al. [GHN13] developed a dynamic maps visualization to simplify
analyzing information from text streams. They adapted node-link diagrams by overlaying
cluster boundaries and developed algorithms to preserve the layout between updates.

In comparison to the discussed approaches, our application uses a similar visualization
technique to capture the content of a text stream. As the text stream can add documents
anytime, the discussed applications define visualizations that can be updated without
losing the connection to the previous state. We also came to the conclusion that a point-
based two-dimensional visualization handles this aspect well. However, our visualization
captures the content of the stream by relating it to user-defined topics. As visualizing
similarity between documents is an essential factor in our application, the following
sections will explore concepts in this direction.

3.2 Visualizing Document Similarities
When visualizing a corpus based on document similarities, the generated visualization
may contain clusters that represent given topics. This section explores similarity measures
and dimensionality-reduction algorithms used to compute spaces where proximity encodes
similarity. In particular, we will discuss radial visualizations, force-based visualizations,
visualizations based on similarity measures, and visualizations based on machine learning.

25

3. Related Work

There are multiple approaches to compute a radial visualization that juxtaposes multiple
dimensions of a high-dimensional feature vector a = (f1,a, f2,a, ..., fn,a). One such visual-
ization are Star Coordinates by Kandogan [Kan00] (see Figure 3.3). Star Coordinates
are a radial visualization, which contain equiangular radial axes for each dimension of
the data. The embedding, which places the data as points is computed by a linear
combination of radial axes i and the corresponding feature values fi,a (see Section 4.5).
Another algebraic approach is to normalize the n-dimensional vector representation and
place documents in a regular n-sided polygon using an extension of the barycentric
coordinates [HF06]. A variant of the TopicAssembly visualization by Riehmann et al.
[RKKF18] uses this approach to convert their term vectors produced by LDA (see Section
2.4) into a visualization.

Figure 3.3: A comparison between the layout algorithms of Star Coordinates [Kan00]
and RadViz [HGM+97] from a comparative study by Rubio-Sanchez et al. [RSRDS16].
Despite the different approaches both visualizations lead to a similar visual result.

Utilizing a force directed layout is another approach to create a two dimensional visualiza-
tion from high-dimensional data a = (f1,a, f2,a, ..., fn,a). Force-directed layouts simulate
different kinds of forces to generate visualizations that utilize the given space efficiently.
If the data itself is taken to specify a combination of repulsive and attractive forces, the
layout can reveal inherent properties found in the data. An example to create a space
where proximity between documents encodes similarity is the RadViz visualization by
Hoffmann et al. [HGM+97] (see Figure 3.3). This visualization implements a physical
spring model metaphor. Similarly to the Star Coordinates visualization [Kan00], the n
dimensions of the data are placed as radial axes equiangularly around a circle. Each
document position p in the circle is determined by the equilibrium of n spring forces that
connect the document’s point representation to the radial axes. The equilibrium point of
each document is dependent on its features fi,a, as the spring’s stiffness is dependent on
the feature values.

26

3.2. Visualizing Document Similarities

Another option frequently used is to utilize similarity measures to compute pairwise
similarities between all samples of a dataset and compute a similarity preserving space.
Due to the popularity of the vector space model (see Section 2.2) the cosine similarity
[MRS10] is the most popular measure, formally:

cos(θ) = a • b
||a|| ||b|| =

∑N
i=1 fi,afi,b√∑N

i=1 f
2
i,a

√∑N
i=1 f

2
i,b

, (3.1)

where the cosine of the angle between two feature vectors a = (f1,a, f2,a, ..., fn,a) and
b = (f1,b, f2,b, ..., fn,b) is computed. Both applications, covered in Section 3.1 [ACZ+11,
GHN13], are examples that use a form of cosine similarity. Another measure that can be
utilized is the Jaccard index that is defined as:

J(a,b) = |a ∩ b|
|a ∪ b| =

∑N
i=1 min(fi,a, fi,b)∑N
i=1 max(fi,a, fi,b)

, (3.2)

where the intersection divided by the union between two feature vectors
a = (w1,a, w2,a, ..., wn,a) and b = (w1,b, w2,b, ..., wn,b) is computed. Dependent on the
space in which similarity is measured, even ordinary distance measures like L1 or L2

distances can define similarities.

To utilize pairwise similarities for visualization, a dimensionality-reduction technique is
needed to define a 2D or 3D projection that preserves the computed similarities. The
standard techniques encompass a principal component analysis (PCA) [Jol11], multidimen-
sional scaling [Kru64], and the t-distributed stochastic neigborhood embedding (t-SNE)
[MH08]. From this selection of techniques, t-SNE is commonly used for visualization due
to its capabilities in revealing implicit groupings [CLRP13, PSPM15, KKP+17, LCL+19].
The algorithm works by calculating probabilities for similarities between documents in
the high-dimensional input space and low-dimensional target space. The low-dimensional
representation is found by minimizing the difference between both sets of probabilities.
One notable work that utilizes a constrained version of t-SNE to contextualize uncertain
instances is the instance visualization from Liu et al. [LCL+19] (see Figure 3.4). This
visualization is a cicular-based constraint layout, with the outer arcs representing the
classes while the instances are placed inside the circle. In their instance visualization,
they enable users to improve annotations of uncertain cases by encoding the assignments
of annotators in uncertainty glyphs and displaying them alongside the rest of the dataset
that is encoded with simple dots. By examining the uncertainty glyphs and the surround-
ing instances in this space, users can resolve complex cases through comparison to similar
examples.

27

3. Related Work

Figure 3.4: The instance visualization from Liu et al. [LCL+19] uses a constrained t-SNE
algorithm to compute a layout for showing cases that need annotation in the context to
the whole dataset.

Alternatively, machine learning approaches like topic modeling and classification can be
an option to derive a low-dimensional representation of a corpus. Sections 2.3 and 2.4
introduced a selection of techniques from these fields that can be applied for this task.
Dependent on the output dimensionality these learning models provide, they can also
be combined with the previously mentioned dimensionality-reduction techniques or the
radial embeddings to generate visualizations.

Compared to the above-mentioned techniques, our approach reduces the dimensionality
of our high-dimensional corpus data by a user-specified classification. Since a focus lies on
displaying the data in reference to this classification, we chose an encoding that is flexible
with respect to the number of classes and can display all the dimensions at the same
time. Therefore, we chose the Star Coordinates visualization, as it treats all of the classes
equally. However, to generate a layout, where each document’s position is relative to the
users’ interests, the classes have to be trained sufficiently. We decided to incorporate the
model training into the visualization through direct interactions. Consequently, the next
section will discuss visualizations, which interactively facilitate model training.

28

3.3. Steerable Model Visualization

3.3 Steerable Model Visualization
Beyond interpreting a machine learning model, visualizations can be also used to steer a
model to reflect user interests. Users can benefit from such interaction, as interacting
with a visualization with which they are familiar may be simpler than performing formal
updates to the model [EFN12]. In this section, we will take a closer look at approaches
that explore how to design interaction tools for visualizations enabling users to change
unsupervised and supervised models. Besides the mentioned focus on changing the
learning model, there are multiple other techniques employed in the visual analytics field
that integrate machine learning approaches. An overview of these techniques can be
found in several survey papers [SZS+16, ERT+17, LGH+17, LWC+18].

An intuitive option to influence the results of unsupervised learning models is to change
their parameters. In machine learning, commonly the parameter space of the learning
model is searched to maximize performance in a process called parameter tuning. Brown
et al. [BLBC12] adapted this process for the k-nearest neighbor algorithm. They
developed an interactive node-link visualization for observing which instances of a dataset
are considered to be similar based on a distance metric. They included functionality
to directly manipulate the visualization to redefine similarities (see Figure 3.5). The
user interest model from the StarSpire visualization [WBD+18] follows a similar idea.
This model stores for each document an interest level that is computed as the sum
of the weighted term-frequency vector-elements. While interacting with the node-link
visualization, the user interest model updates the visualization through thresholding the
visible documents based on the given interest level. The list of interpreted interactions
includes opening, moving, pinning, overlapping, minimizing, and removing documents on
the document level and searching, annotating, and highlighting text on the text level.

Figure 3.5: Example of an interaction that changes the similarity metric from Brown et
al.’s Dis-Function visualization [BLBC12]. Dragging the blue documents closer to the
red documents, causes the similarity metric to group both document sets closer together.
In the updated metric both document sets are outlined with their corresponding colors.

29

3. Related Work

Cavallo and Demiralp [CD18] provide another visual approach to improve exploratory
data analysis of dimensionality-reduced data. The core of their work is forward and
backward projection. These techniques enable to reason about the model by direct
interaction with the input or output. On interaction, the modifications made to one set
are projected onto the other one while respecting the dimensionality-reduction model
between them. To facilitate the effective use of these interaction tools, they developed two
visualization techniques that are used in combination with a scatter plot (see Figure 3.6).
Forward projections enable users to interactively change feature values of a data sample
and observe how these hypothesized changes in the data modify the current projected
position of the sample. For an overview of forward projection, prolines show forward
projection paths, which illustrate the path the sample would take if a certain feature
dimension is adjusted. Forward projecting by changing the parameter in regular steps
creates these prolines. By combining multiple prolines, a directional coordinate system
based on original features is projected into the dimensionality-reduced space. Backward
projection is a complementary interaction that enables the manipulation of the output,
which in turn modifies the input of the dimensionality-reduction. During this projection,
multiple points in the initial multidimensional space can project to the same position.
Therefore, it makes sense to constrain backward projection, so users get tools to regulate
the reverse mapping into the high-dimensional input space. The feasibility map is an
area-based visualization that shows regions where the constraints are broken. This gives
an overview which positions in the dimensionality-reduced space satisfy the desired
constraints.

Figure 3.6: Example from the interaction framework by Cavallo and Demiralp [CD18].
Adding prolines to the dimensionality-reduced scatter plot provides a coordinate system
in terms of the original features. The feasibility map shows where a document point could
be placed by the dimensionality-reduction technique without breaking a set constraint.

30

3.3. Steerable Model Visualization

To enable even more user interactions with topic models, some approaches interfere with
the loss function (see Section 2.1) of the learning model directly. Choo et al. [CLRP13]
developed such an approach that adapts NMF (see Section 2.4) for topic modeling into a
semi-supervised variant. By adding some terms reminiscent of regularization terms in a
minimization problem, the solution can be shifted so it takes the users’ input into account
while still approximating the input matrix X. They utilize a semi-supervised NMF
(SS-NMF) in an adapted node-link visualization (see Figure 3.7), and animate explicit
topic cluster changes when users change the underlying model. The SS-NMF algorithm
enables multiple interaction tools that provide the functionality of refining topic keywords,
merging and splitting topics, inducing new topics through documents, and inducing new
topics through keywords. Similarly, El-Assady et al. [EASS+18] add interaction tools
into topic modeling approaches by applying reinforcement learning to an LDA model.
Their reinforcement learning approach includes users into the learning process through
an organized task structure that ends with a relevance feedback mechanism. There, users
can decide to reward or punish the model by moving documents towards or away from
certain topics.

(a) The initial visualization (b) Document-induced topic creation

Figure 3.7: An example of document-induced topic creation from Choo et al.’s [CLRP13]
UTOPIAN framework, enabled by a semi-supervised variant of the NMF.

31

3. Related Work

Some supervised learning models include interaction tools for data exploration that are
specific to them. One such technique that can be adapted to be interactive is active
learning, in which classifiers are trained with user annotated data (see Section 2.5).
Heimerl et al. [HKBE12] designed an interactive training framework based on active
learning for binary classifiers. Their main view is a scatter plot, which depicts how the
corpus relates to the decision boundary in terms of uncertainty (see Figure 3.8). This
view provides interaction mechanisms for selecting documents, which can subsequently
be classified in the labeling control view, updating the whole system. More recently,
Huang et al. [HMdCM17] investigated the same concept by developing an interactive
labeling interface that also uses active learning for binary classifiers. Their system
provides node-link diagrams that create a layout where proximity encodes similarity and
a chord diagram that shows how strongly a document is connected to both classes. These
visualizations help users in the selection of documents to classify.

Figure 3.8: Heimerl et al.’s [HKBE12] scatter plot visualization that depicts the corpus
in relation to the decision boundary based on uncertainty. The colored regions of the
scatter plot split the dataset between both classes. Between the regions, the decision
boundary is depicted as the white separation. Documents encode their uncertainty based
on the distance to this decision boundary.

An approach that goes beyond binary classification is presented by Seifert and Granitzer
[SG10]. They developed a radial visualization, which can be used to select and classify
samples in an active learning approach. Their system includes a RadViz visualization
[HGM+97], which projects unlabeled examples based on the classifier’s a-posteriori output
probabilities (see Figure 3.9). Paiva et al.’s [PSPM15] visual classification methodology
is a more recent active learning approach, which focuses on the efficient application and
rebuilding of the model. Beyond model updates, their methodology also supports model
creation and classifier tuning. They integrate a neighbor-joining tree into the classification
pipeline to support control over the whole classification pipeline. The neighbor-joining
tree visualization preserves many of the benefits of the other point-based techniques
mentioned, while depicting similarity relations more clearly through its tree structure.

32

3.3. Steerable Model Visualization

Figure 3.9: The RadViz visualization of a-posteriori classifier probabilities by Seifert and
Granitzer [SG10].

As our learning model is supervised, we decided to implement an active learning approach
in our application. Therefore, our application has many similarities to the supervised
interactive frameworks that utilize active learning. Our augmented Star Coordinates
visualization (see Section 4.5) bears some similarities with the visualization approach by
Seifert and Granitzer [SG10]. However, our visualization focuses on supporting the classi-
fication process iteratively for text stream classification, emphasizing the changes in the
test and training set through animation. In the sense of iterative model improvements, our
application resembles Paiva et al.’s [PSPM15] visual classification methodology that aims
to aid the whole classification process. In contrast to Seifert and Granitzer’s visualization,
we also show documents from the training set in our visualization for reclassification and
reference purposes. Also, our application implements tools to manipulate the test set
beyond classification for a model update. Our application implements basic addition
and removal functionality for both test and training set, so the classification model can
be updated over time and applied to text streams. This implementation allowed us to
perform a first pilot study with actual users to get first evidence about the usefulness of
such an approach.

33

CHAPTER 4
Visual Active Learning

This chapter describes our application with our visualization and its technical functionality.
In the course of the chapter, the design of the classification model, the visualization,
and the interaction design will be discussed. We will start by giving an overview of the
application in Section 4.1 and going into detail in the following sections.

4.1 Overview
The requirements from Section 1.3 define a customizable classification pipeline that is
dynamic in regard to incoming text streams. Our application defines a classification task
during initialization that can be updated by users and the text stream during runtime.
Figure 4.1 depicts crucial points in the application pipeline that will serve as a guideline
for the following discussion. Additionally, these points are labeled with the respective
section number. In the following paragraphs, we provide an overview of these pipeline
sections and clarify how they relate to the requirements from Section 1.3.

Initially, our explanation revolves around the definition and initialization of the system. In
principle, the application classifies text data, so the pipeline includes feature engineering
(Section 4.3), a learning model (Section 4.4), and the Star Coordinates visualization
to display results (Section 4.5). According to R1, users should be able to incorporate
their knowledge into the classification. Therefore, during initialization users define the
classification problem (Section 4.2). In this step, examples have to be provided on which
the learning model can train to distinguish between different classes, which we refer to as
topics. After the model training and prediction finishes, the Star Coordinates mapping
for the visualization is finalized by optimizing the topic order with the help of a heuristic
(see Section 4.5). The initialization finishes after the initial model training, when the
visualization of the topics based on the classification definition is shown. This workflow
is depicted on the left side of Figure 4.1, in the initialization column.

35

4. Visual Active Learning

Figure 4.1: Overview of the application pipeline, emphasizing the definition and initial-
ization of the method (4.2-4.5) in the left column and displaying the incremental update
capabilities (4.6, 4.7) in the right column.

Following the initialization, documents are added from a text stream to perform classifi-
cation during runtime. In a process similar to the initialization, documents pass through
feature engineering (Section 4.3). The resulting document data is then passed to the
learning model for prediction (see Section 4.4) and visualized in the Star Coordinates
visualization (see Section 4.5). This process is depicted on the right side of Figure 4.1, in
the runtime column.

36

4.2. Data Acquisition

Following R2 and R4, our application needs an understandable mechanism to incremen-
tally improve the learning model. To meet those requirements, our visualization is a
direct manipulation tool (Section 4.6). Users can drag document points to a label, which
triggers an iterative model retraining process (Section 4.7). On training completion, the
model incorporates the new document and updates its prediction for all unlabeled docu-
ments, which subsequently triggers an update in the visualization. This means the model
update is visualized through the updated document point positions. Our visualization
provides a clear mechanism for improvement by letting both user and model communicate
through changing document placements. Beyond incremental improvements, R3 states
that with sufficient training, the application shows whether a document is relevant for
the user-defined topics. We fulfill this requirement through the visualization, where the
mapping places documents with similar predictions close to each other. The distance of
the document point to a topic point encodes the relative relevance for that particular
topic. Together, these features create the customizable classification system described in
the requirements. How the interactive functionality integrates into the system is depicted
by the dotted lines in Figure 4.1. Moving a document in the visualization (Section 4.6)
triggers a model update (Section 4.7) and a visualization update, forming an interaction
loop.

4.2 Data Acquisition
Our application needs two types of text documents to define a classification task: labeled
documents and documents to predict. In machine learning terms, the labeled documents
that describe the topics are the training set and the documents in need of classification
form the test set. First, users have to specify topics, which the application utilizes as the
classes of the classification. These topics have to be defined by a set of labeled surrogate
documents. As the goal of these surrogates is to create distinct term vectors for the
topics, they can have multiple forms. These documents can be short textual descriptions
or even keyword lists of the topic. In our tests, we constructed these document surrogates
by selecting paragraphs from Wikipedia that describe the corresponding topic. Also,
documents from the corpus could be used to initialize a topic of the classifier.

The second set contains text documents that need classification (i.e., the actual news
items). These documents define the test set for classification. Our application simulates
a text stream from different data sources (see Section 6.1) to mimic how news becomes
available under realistic conditions. After the initial learning model has been created,
the visualization displays the predictions concerning these documents.

37

4. Visual Active Learning

4.3 Feature Engineering

After the users provide textual data, the application proceeds to a document processing
step. To classify text data, they have to be transformed into a feature representation,
which the classifier understands. Each document is represented by a term vector, where
the features are terms that are present in the document. For our approach, we chose to
create a traditional feature extractor (see Section 2.2). Our feature extractor operates by
using bag-of-words to transform raw document data into a vector representation. An
example is depicted in Figure 4.2. Feature extraction starts with processing text by using
a tokenizer to break down documents into term vectors and labeling the term vectors
with their correspondent part-of-speech. Subsequently, the part-of-speech tagged terms
combine into composite tokens in a process called chunking. Applying only part-of-speech
tags to determine how to combine tokens correctly is not always sufficient [BKL09]. In
our application, a machine learning model creates chunks from the tokens. Those tokens
are then passed to a classifier, which is trained to identify named entities. The named
entities mark the end of our feature extraction process and are utilized as features for
our learning model. To finalize the feature engineering step, the extracted term vectors
are combined into document-term matrices that are passed to the classification model.

As the goal of this application is to provide classification by training on small size datasets
with a few hundred documents, we decided to use a traditional model. We base this
decision on multiple empirical comparisons between text classification models, which
indicate that traditional models perform better on such training set scales [ZZL15, WM12].
During our active learning procedure, users increase the feature space iteratively by
adding new documents, which in turn can grow the feature space rapidly. To mitigate
the problems introduced by big feature spaces (see Section 2.1), we restrict it to a set of
very distinct and descriptive features - namely, named entities.

4.4 Classification Model

After feature extraction, a multinomial naive Bayes classifier (see Section 2.3) uses the
derived features to learn to discriminate between the defined topics. In this context, we
refer to the classes of the classification as topics, as this corresponds to the anticipated
task for the application to solve. However, this concept can be applied to a broad range of
classification tasks as well. Therefore, besides the topic-labeling task, our topics can also
represent other class types to perform tasks like sentiment analysis, language detection,
and intent detection.

To start the training process, data is passed in the form of two document-term matrices:
the topic document-term matrix holding the training set and the input document-term
matrix holding the test set. Elements in these matrices indicate how often a certain term
wi is present in a document di or topic tpi respectively. The classifier trains to predict
the topic affiliation based on the observed data, using the observed terms of the training
set. To predict the test set, the terms of the test set are aligned to the training set terms

38

4.4. Classification Model

Figure 4.2: All steps of our feature extrac-
tion process demonstrated on a sentence.

Abbreviation Meaning

DT determiner
IN preposition
JJ adjective
NN noun singular
NNP proper noun singular
VBD verb past tense
NP noun-phrase
PERS person entity
di document i
wi term i

Table 4.1: Abbreviations of Figure 4.2.

(see Figure 4.3). Subsequently, the trained model computes topic affiliation probabilities
for the current test set. We designed this procedure so our system can perform the
classifier training and prediction step multiple times in an efficient manner. This choice
is directly tied to the incremental model improvement approach of our system, as these
operations are repeated, when users classify test set documents to improve performance
gradually (see Section 4.7).

We decided for the multinomial naive Bayes classifier based on multiple factors. In the
field of text classification, naive Bayes classifiers are particularly popular in commercial
and open-source spam filters [MAP06, FSZ+16]. Generally, naive Bayes classifiers
perform very well in comparison to other machine learning models despite their simplicity
[NJ02, WM12, ZZL15]. Besides performance, the classifier has multiple properties
benefiting our incremental improvement approach, where after each interaction, the
system has to train a slightly adapted model. Naive Bayes classifiers can be trained quickly,

39

4. Visual Active Learning

Figure 4.3: Depiction of the document-term matrix alignment process: Initially, the input
document-term matrix (bottom) has different terms than the topic document-term matrix
(top). During the allignment process, the input document-term matrix is changed by
adding missing terms (w2) and removing terms not present in the topic document-term
matrix.

as they need very little explicit training compared to other classification methods. An
update is performed by recomputing parameters for the features’ probability distributions.
During the interaction, users may add documents to the training set and thus features
to the model, resulting in additional feature dimensions. Naive Bayes classifiers employ
linear decision functions, which prevent them from overfitting to training data in high-
dimensional spaces. In a system where the feature space is iteratively expanded upon,
triggering a recomputation of the model every time, fast training times and linear decision
functions are very beneficial.

4.5 Augmented Star Coordinates
Before the process of incremental improvement starts, our system needs a way of commu-
nicating classification results and the state of the model. Both of these tasks fall under
the responsibility of our visualization, a variant of the Star Coordinates visualization
(see Section 3.2) by Kandogan [Kan00].

In our application, Star Coordinates visualize topic affiliation probabilities for each
document provided by the classifier (see Section 4.4). To represent the topic associations
of the documents graphically, the Star Coordinates generate a linear mapping from the
n-dimensional affiliation space onto a two-dimensional space. In this space, the documents
are then placed as points, where the positions of the points encode the topic affiliations.

40

4.5. Augmented Star Coordinates

For the purpose of computing document placements, the mapping places n vectors with
a common origin that represent radial axes. Each vector vi is associated with the i-th
affiliation probability pi (see Figure 4.4). At the endpoints of the axis vectors vi, topic
points with topic labels are placed to label these axes with the user-assigned name. The
two-dimensional embedding x ∈ R2 of the document’s topic affiliation p = (p1, p2, ..., pn)
can be computed by a linear combination of the vectors vi, where the linear coefficients
correspond to the single affiliation probabilities of p, formally:

x = p1v1 + p2v2 + ...+ pnvn . (4.1)

Figure 4.4: Document placement x in the visualization is determined by a linear com-
bination of axis vectors v that are weighted by topic affiliations pi (see Equation 4.1)
(Adapted from Rubio-Sanchez et al. [RSRDS16]).

The resulting visualization communicates both, classification results and information
about the model state to the users. This paragraph introduces a selection of patterns
to demonstrate what information about the model is visible in the visualization and
how it can be used to improve the model. For instance, a well-tuned model creates a
visual pattern as depicted in Figure 4.5(a). In this result, every unclassified and incoming
document is close to one of the topic points, indicating a clear topic affiliation. The
pattern depicted in Figure 4.5(b) is in contrast to such a model. Here, all documents are
placed in the center of the visualization where uncertain documents lie. Such patterns
emerge, if data is in the system that does not fit to the model’s decision criteria. In
this case, either the data does not fit the user-defined topics or the model’s decision
criteria must be improved. If faced with this pattern, users have to investigate which
of the two scenarios is present by browsing the data in the middle of the visualization.
Subsequently, they can remove irrelevant data from the system, and uncertain documents
can be classified.

41

4. Visual Active Learning

Beyond signaling the certainty in classification, the visualization also can indicate con-
nected topics through patterns (see Figure 4.5(c)). Similar topics can have an overlap in
terms. In this case, the affiliation probabilities of both topics are high. The embedding
places those documents between two topics, often connecting them in the process. Our
implementation of Star Coordinates conveys topic similarities only implicitly through
these patterns as the distance between topics is fixed. In comparison, multidimensional
scaling techniques can encode similarity through topic distance. However, moving topic
points introduces ambiguities, either documents moved due to a topic moving or because
their topic affiliation changed. We decided against such a solution, as the emphasis of our
visualization is on displaying affiliation to topics rather than topic similarities. Another
interesting pattern is created, if the model’s topics are imbalanced (see Figure 4.5(d)).
The cause is an unbalance in either the corpus or the training data. If confronted with
such patterns, users can react by changing the topics or re-balancing the training data
with manual classification.

(a) Good Separation (b) Bad Separation

(c) Similar/Connected Topics (d) Imbalanced Topics

Figure 4.5: Various patterns conveying the condition of the underlying model through
separation between topics and overall distribution of document points.

42

4.5. Augmented Star Coordinates

Making these patterns visible is dependent on multiple factors. Essential factors include
the number of present axis vectors and their order. The arrangement of topics is crucial as
the expressiveness of the visualization is dependent on the order of the axis vectors. Not
all axis vectors can be mutually adjacent, if mapping models with four topic affiliation
dimensions and more. Also, opposing axis vectors cancel each other out in this mapping
(see Figure 4.6). Choosing opposing axis vectors for topics that positively correlate to
each other, signals nonexistent classification uncertainty. This property is exemplified by
document points with high topic affiliations for topics that are placed opposing each other.
Instead of signaling that the documents are a mixture of both topics the document points
are placed in the middle of the visualization where uncertain documents are expected.
With increasing numbers, it gets harder to arrange topics that have relations to each
other in a meaningful manner.

Figure 4.6: Ambiguities introduced by the Star Coordinates embedding: The Star
Coordinates mapping algorithm can place different topic affiliation vectors onto the same
point in the visualization. In this example, the topic associations pi that lead to the
ambiguity are displayed at their respective topic points.

Kandogan resolved this problem by visualizing the axis vectors and enabling user interac-
tion to define the ordering by hand. In our application, an ordering is computed once at
the start from the topic descriptions. We compared two automated solutions to generate
an ordering that minimizes ambiguities. The first approach revolves around mapping the
term vectors of the topic descriptions with multidimensional scaling [Kru64], based on
Euclidean distance, into a two-dimensional space. In this mapping, a radial order of topic
centroids from the overall center of centroids is computed with vector computations. We
compare this approach against a circular barycentric heuristic approach [MS05], based
on adjacencies derived from Jaccard-score similarities of documents in the corpus. The
barycentric heuristic for circular layouts is an iterative technique that orders points by

43

4. Visual Active Learning

computing average angles based on a given adjacency matrix of points. Multiple steps are
necessary to correctly compute the average angle θi avg of a topic i in a wrapping circular
layout. Similar to the Star Coordinates mapping, the heuristic computes a vector ni for
each topic that starts at the center of the visualization and points towards the direction
of the corresponding topic point. Then, each vector is summed up with all vectors ni adj

of adjacent topics. The angle between the summed-up vectors and the x-axis vector x
defines the average angle θi avg, which is computed for each topic and sorted iteratively.
This approach results in the formula:

θi avg = (ni +
∑

nj∈ni adj

nj) · x , (4.2)

where the angle between the vectors is computed by the dot product. Ordering perfor-
mance of the barycentric heuristic is strongly dependent on the definition of adjacency.
In our system, adjacency is defined by computing the Jaccard similarity between topic
descriptions, which are represented in a document-term matrix. As the results of this
computation are continuous, and a binary decision for adjacency is needed, we apply an
above-average similarity threshold, where average similarity is computed on a topic basis.
This thresholding ensures that only topics with an above-average similarity score are
treated by the barycentric heuristic as adjacent. In our testing, we observed that the
barycentric heuristic creates more consistent orderings than the ordering based on multi-
dimensional scaling, placing similar topics adjacent to each other. Figure 4.7 illustrates
the difference between the ordering strategies derived from the same data. However, the
performance of both approaches is very dependent on the initial topic description.

(a) Multidimensional scaling (b) Barycentric heuristic

Figure 4.7: Comparison of ordering strategies, using the New York Times study dataset
(see Section 6.1): (a) mapping produced by multidimensional scaling of topic description
term vectors; (b) ordering produced by a barycentric heuristic using the Jaccard similarity
between topic descriptions for adjacency.

44

4.5. Augmented Star Coordinates

(a) Transparency (b) Force-Directed Layout

Figure 4.8: Comparison of overlap prevention strategies, on our New York Times study
dataset (see Section 6.1).

As our application is supposed to support comparing neighboring documents, users should
be able to directly interact with every document (e.g., click on it, hover it, drag it).
With a large number of documents, a strategy for handling overlapping is needed. There
are multiple viable strategies to resolve the overlap problem, from which we explored
two options during development. Initially, transparency was added to document points
to indicate positions where points accumulated (see Figure 4.8(a)). This technique
enables users to see whether points have accumulated at a position. However, it does not
encode accurately how many points overlap and does not enable unambiguous selection.
This technique would require sophisticated selection tools to enable the selection of all
documents in a pile. Instead, our visualization resolves overlaps by augmenting the
mapping with force-directed layout techniques. A force-directed layout based on Verlet
integration applies a collision force to all document points, which pushes them apart to
resolve overlaps. To preserve the Star Coordinates mapping, an additional force keeps
points near their original position. This force is defined as an α-scalable velocity vector
ov that pulls a point n from its current position n to its original position o. Further, a
noise vector ε is added to the original position o, resulting in the formula:

ov = ((o± ε)− n) ∗ α . (4.3)

45

4. Visual Active Learning

This is necessary as, without such a noise vector, overlapping points tend to align
along a straight line instead of a pile. Together these forces create a visualization that
approximately preserves the Star Coordinates mapping, while all document points are
accessible (see Figure 4.8(b)).

Due to the involved mapping process, Star Coordinates do not unambiguously convey
the classifier’s decision. Figure 4.9 shows this phenomenon, where not all points in the
center cluster closest to the business topic are associated with that topic. As these
transition areas are populated with documents that have small affiliation probabilities,
this property is tolerable. To unambiguously communicate the classifier’s decision, the
visualization implements a topic filter. This filter can be accessed by hovering or clicking
the topic labels. It has the effect of conveying the topic assignment through opacity in the
visualization and removing documents from other topics temporarily from the document
list (see Section 4.8). The filter has beneficial properties for one-against-all classification
as documents that change topic affiliation are highlighted through an opacity change.
Setting a filter for a topic of interest and observing the opacity changes can help to keep
track of which documents that change topic affiliation.

Figure 4.9: By clicking the topic label, users can filter the visualization. The filter
mechanism highlights documents that are affiliated with the topic by increasing the
opacity of their points in the visualization.

4.6 Active Learning with Star Coordinates
The application initialization part finishes with visualizing the first predictions. Beyond
this static classification process, our application supports an incremental improvement
process of the classifier through interaction with the visualization. This section describes
in detail the interaction implementation, how to translate the user’s interactions for the
classifier, and how to accurately convey specifics of the underlying model to the user.

46

4.6. Active Learning with Star Coordinates

As described in the previous section, the document position in the visualization encodes
topic associations. Our visualization supports the training of the classifier as a direct
drag-interaction. Users can assign a single label to a document (see Figure 4.10) by
dragging the corresponding document point into the vicinity of a topic label. After such
an interaction occurs, the document’s position has to be converted correctly into a topic
affiliation. This topic affiliation has to be a concrete label for one of the available topics
to add the moved document into the training set. More specifically, the classifier expects
one label per training sample. Our application computes the distances li between all
topic points in the visualization and the moved document’s new position (see Figure 4.10)
to derive a label for the classifier. The shortest distance defines the document’s label.

Figure 4.10: The updated label of a new document is determined by the nearest topic
point. In this depiction, as the distance vector l2 is the shortest, the moved document is
assigned to Topic 2.

The described process leads to the challenge of communicating how the label is computed
concretely. There is a discrepancy between the visualization and the interaction, as the
visualization depicts a continuous space of topic affiliation probabilities, but the learning
model does not take probabilities into account. Therefore, the interaction design adopts
multiple measures to counteract misunderstandings that stem from this discrepancy.
First, while users drag a document point, the nearest topic label is highlighted to convey
the binary label decision more clearly. Second, if users are not able to clearly identify a
topic affiliation, the document point can be hovered to highlight the corresponding topic
point. To covey the training set more clearly, the classified document point is colored in
black after the interaction. Marking manually labeled documents improves the user’s
perception of the model as it removes them visually from the test set documents that are
marked as blue (see Figure 4.11).

47

4. Visual Active Learning

Figure 4.11: Documents that were labeled by users are colored in black. This distinguishes
labeled documents from the test set that is marked in blue, while displaying how the
labeled data for each topic relates to each other.

Indicating the connection between the user’s input and the response of the classifier is
also vital for understanding the impact of the interaction. To provide this connection,
we decided to animate the classifier changes. Transitions help to track the changes on
documents of interest. Likewise, animations highlight connections between points that
were established by the classifier, as connected documents move into proximity of the
user-labeled document during the update animation. As interactions and updates take a
few seconds to compute, an update symbol is added to the visualization together with a
notification system that keeps the user informed about ongoing processes.

4.7 Model Update
Our tool implements visual active learning, which is a variant of user-based active learning
[SG10] for text stream data. User-based active learning expands on the concept of active
learning by giving users agency over which documents to classify. In an interaction
loop, the users act as an oracle and classify documents, which are subsequently added
to the models training set to improve the prediction process. Our approach revolves
around initializing a model with topic descriptions and applying an improvement process
iteratively. Initially, the model is expected to perform poorly as a single document per
topic is insufficient to describe it adequately. Over time the model should be able to
increase its prediction performance with the user’s help. After being trained, the model
can still be further updated to adapt to changes in a text stream.

48

4.7. Model Update

The process of incorporating users for classification to extend the training set is called
active learning (see Section 2.5). Our application expands on the interactions possible
within this concept of giving users access to the training set to change the model’s
classification hypothesis. It also supports reclassification and removal interaction. In
the context of text stream data, concepts like topics can change over time. Documents
that have fitted a concept earlier can become irrelevant. Further, within an explorative
application, it makes sense to reverse earlier interactions. Our visual active learning
approach supports interaction with the test set in addition to the user-based active
learning interactions.

Our application supports the following selection of interactions:

• Interactions that manipulate the training set (user-based active learning interac-
tions):

– labeling, moving a test sample to the training set with a specified label,
– reclassification, changing a label on a training sample, and
– removal, removing a training sample.

• Interactions that manipulate the test set:

– addition, adding a new test sample and
– removal, removing a test sample.

Core to the active learning procedure is the labeling interaction, where documents are
labeled to update the model. In the labeling interaction, an unlabeled document do

from the test set enters the training set (see Figure 4.12). This process is implemented
by manipulating both document-term matrices that represent the training and test
set respectively. Here, a term vector do from the term vectors d1, ..., do of the input
document-term matrix is moved to the term vectors tp1, ..., tpk that comprise the topic
document-term matrix. New terms from a user labeled document are added to the topic
document-term matrix to facilitate the learning process. To extend the feature space
of the training set the complete term vectors of all documents are preserved during
feature extraction (see Section 4.3) so terms that are exclusive to the new document
can be added for the model training (see Section 4.4). Adding a new term wn to the
topic document-term matrix is accomplished by adding a zero column, which encodes
a non-occurrence in the current dataset. After the feature space update, the new term
vector do is added through concatenation to the topic document-term matrix. As terms
are used as features in our application, it is necessary to train a new model, so the new
features can be added to the architecture. A new prediction of the test set also takes
place due to the changes in the model.

49

4. Visual Active Learning

Figure 4.12: Labeling of document do. The document do is moved from the test set to
the training set by adding its new term wn to the training set and concatenating the
document’s vector to the topic document-term matrix.

In comparison, the reclassification interaction just changes the label of a document do (see
Figure 4.13). As document do is already in the training set, the feature set of the model
does not change through this interaction. Nonetheless, this change demands training
a new model (retraining) as the label, which the previous model has trained on has
changed. Therefore, also a reclassification entails retraining of the underlying model and
new predictions for the test set.

Figure 4.13: Reclassification of document do. The label in the topic document-term
matrix is changed to reflect the updated label.

50

4.7. Model Update

Lastly, our application implements a removal interaction (see Figure 4.14). This inter-
action is essential as it enables users to remove documents that do not fit into their
task. If document do has to be removed from the training set, both retraining and new
predictions are needed. In the training set document-term matrix, the removed document
might contain a terms that are exclusive to it. If this is the case, this term wn is removed
from the document-term matrix to simplify the training process. Even if the document
do does not contain exclusive terms, retraining is necessary, as the model should not
incorporate information from document do into its decisions.

Figure 4.14: Removal of document do. Alongside the document vector do, also terms,
unique to this document, are removed from the topic document-term matrix. In this
example term wn is removed.

Besides active learning interactions, our application supports adding and removing
documents from the test set. If dealing with streams of text data, the model has to
add new documents to the data structure. Removing uninteresting or old documents is
useful as well. These interactions change the initial input document-term matrix before
the alignment process. Just like the addition and removal from the training set, these
changes trigger the same operations on the test set instead, which is represented by the
input document-term matrix. Subsequently, documents added to the test set are treated
as the rest of the test set, by fitting their term vector to match the model’s features (see
Figure 4.3). These operations require no retraining of the learning model as the training
set data is not affected. Adding new documents only requires a prediction for the labels
of new documents.

Learning concepts from new data through additional features is one central requirement
our active learning routine has to satisfy. However, as our classifier is based on bag-of-
words features, this requirement comes with a price. If a document introduces a new
feature, the architecture of the learning model has to change to accommodate it. This in
turn excludes more efficient online learning approaches as they cannot change the set of
features after the initial training. Therefore, our approach retrains the model on each

51

4. Visual Active Learning

interaction that changes the feature space. Rebuilding the models gives the flexibility of
changing the feature space and avoids catastrophic interference problems, which is due
to the tendency of online learning models to forget previously learned information upon
learning new information [MC89].

4.8 Dashboard
The visual active learning process is central to the presented application. Therefore, our
dashboard reserves almost half of the screen space for the visualization that includes the
interaction tool for the visual active learning process (see Figure 4.15 (a)). Most of the
remaining part of the screen is occupied by a scrollable list, called document list (see
Figure 4.15 (b)), that provides document details.

The document list holds a document card for each document sorted from newest at the
top to oldest at the bottom. Additionally, the list supports pinning one selected item to
the top. Selecting documents is a linked interaction between the list and the visualization.
The interaction can be triggered by clicking the document in either representation. A
blue border around the document card, marks the pinned document in the list. In the
visualization, a black ring around the correspondent document point is placed. This
interaction serves two purposes. It keeps the focus on a single item, when switching
between the list and the visual depiction of the data and enables easier comparisons
between documents, which are not adjacent in the list. The described functionality is
also available through hovering in both representations, which has the same effect as
a click temporarily. If a document is hovered in the visualization, a tool-tip with the
document’s title is displayed alongside the document point, so users do not have to
consult the document list.

Details of documents are accessible through the list’s document cards (see Figure 4.15
(b)). A card holds typical text information such as the documents title and a short
description. The full text of the document card expands into a pop up over the base
interface. Further, the document cards provide the possibility of removing documents
from the application and learning model by clicking the close button on the correspondent
card. As a whole, the document list with its cards provides the core functionality of a
document viewer, so users can browse documents in a familiar manner.

The document list and visualization are linked together, so users can look at document
details, while keeping an overview. In particular, users can hover and click documents in
either representation, which causes an analog interaction in the other component. The
visualization is fixed in place, decoupled from the document list on the right side that
can be scrolled through. This interaction is designed to let users keep the overview in
sight, while moving through the list. To supply initial topic documents, some space below
the visualization is available to place the document loader and options (see Figure 4.15
(c) and (d)). The dashboard also supports updates of the document structure. Adding
new documents, displays them as red document points in the visualization and includes
document cards with red borders at the top of the document list (see Figure 4.15 (e)).

52

4.8. Dashboard

Figure 4.15: The dashboard of our application: (a) the Star Coordinates visualization to
illustrate prediction results and classify data; (b) the document list to inspect document
details; (c) the file loader card to input topics and text stream data; (d) the options card
to change term weights of the model; (e) new document, highlighted in red.

53

CHAPTER 5
Implementation

Our application is a customizable classification pipeline for text streams with a dashboard
that is integrated into the framework by Čizmić [Ciz18] and Śmiech [Smi18]. The sections
below discuss the software structure, the frameworks and libraries, and further task-
specific details of the server and the client our application is split into. In the closing
section of the chapter, we will also discuss the simulation server that replaces the client
in automated tests (see Chapter 6).

During the design stage, we decided to split the application into a client-server architecture.
This decision was made to outsource expensive classification tasks from the client, which
is dependent on the user’s browser and system. Therefore, the client’s tasks encompass
parsing user input and computing the visualization, leaving the expensive machine
learning tasks to the server. The server tasks include natural language processing, active
learning, and classification. This distribution of tasks leads to a data structure with
two distinct parts (see Figure 5.1), which is called the application state and is passed
between server and client. The server’s part of the data structure includes the current
operation (state) and the corpus (test set, training set). In the application state, the
corpus is represented as three arrays of documents, where each document contains the
textual content as a string together with further organizational information. As the server
implements our active learning procedure, the data structure contains the operation
(state) and the documents on which it should be applied (changed set). In the client’s
part of the application state, document and topic points are included. These two sets of
points are the data structure of the visualization that holds the topic affiliations for each
document and the order of the topics respectively. A document point primarily stores
topic affiliations, which is defined by users or the result of the learning model prediction.
The topic points encode the order of topics through their order in the array.

55

5. Implementation

Figure 5.1: The data structure that is passed between the client and the server. It holds
the raw text data for the server’s classification task as well as the topic affiliations for
each document and the topic order for the Star Coordinates visualization of the client.

5.1 Server

The Flask-based [Fla] server backend is programmed in Python [Pyt] and implements the
custom classification functionality of the application. Flask is a micro web-framework
that simplifies the set up of a server’s routing functionality. As most of the server’s
computations deal with transforming document-term matrices, Numpy [Num] is especially
useful with its efficient processing of large, multi-dimensional arrays and matrices. The
server’s functionality is realized as a modular pipeline, where individual components
are easily replaceable and reusable. Each of the components solves one of the server’s
four tasks (see Figure 5.2): 1) the feature extraction of documents, 2) the classification
of documents, 3) the visual active learning interactions, and 4) the visualization order
optimization. The functionality of the feature extractor and classifier is based on nltk
[Nat], Python’s natural language toolkit and scikit-learn [PVG+11], a Python library for
data mining and data analysis. All these tasks define separate components, which are
chained sequentially to implement the visual active learning interactions described in
Section 4.7.

Nltk provides the functionality for the server’s feature extraction component. Feature
extraction starts with the conversion of the test set and training set from text to word
tokens with nltk.word_tokenize() that splits on punctuation in the text. This process
yields an array of tokens on which the NLP functions of the application are applied. Our
application includes the following NLP functions that can be added into the pipeline:
stemming (nltk.PorterStemmer()), lemmatization (nltk.WordNetLemmatizer()), ngram
computation (nltk.ngrams()), pos selection (nltk.pos_tag()), and named entity recognition
(nltk.ne_chunk() and spaCy.nlp()). In summary, our feature extraction pipeline takes
a set of documents, creates tokens, and computes named entities with nltk.ne_chunk().
The resulting tokens are then transformed into a term vector that is combined with the
term vectors of other documents to form a document-term matrix. Using this process,
both input and topic document-term matrix are generated from the test and training set
respectively and subsequently utilized for classification. The resulting matrices are saved
in the form of a numpy.matrix. Due to the iterative training procedure, the input and
topic document-term matrix have deliberately different features (see Section 4.4).

56

5.1. Server

Figure 5.2: The application’s server implements feature extraction, active learning,
classification, and order optimization that are chained sequentially.

In our application, the active learning component (see Section 4.7) is placed before the
classifier. The visual active learning interactions affect the classification by moving
documents between the test and training set. A detailed description of all interactions
can be found in Section 4.7. We chose to implement these changes on the document-term
matrix level, as Numpy provides tools to efficiently manipulate matrices. For instance,
during the add_document() operation Numpy is utilized to add new features to the
training set. To add a new feature, the operation inserts a column at the appropriate
position into the document-term matrix with the function numpy.hstack(). When the
feature dimensions match between the current document-term matrix and the new
document, it is added as a new row with the numpy.vstack() function. In a similar
manner, the remove_document() operation deletes entries by applying column and row
operations. For deletion, the numpy.delete() function can remove documents by removing
the corresponding row. The same Numpy function can also remove a column, which
corresponds to removing a term from the model. After a document is removed, the server
checks for features to remove by computing all column sums of the document-term matrix
with the numpy.sum() function. Subsequently, the application removes all columns that
sum to zero.

57

5. Implementation

Following the transformations caused by active learning, the document-term matrices
are passed to the classification component, which is based on sklearn.MultinomialNB(), a
multinomial naive Bayes model from the scikit-learn library. Besides this model, the server
also can apply different models for test purposes. Our classification component also imple-
ments the following models: support vector machine (sklearn.SVC()), k-nearest neighbors
(sklearn.KNeighborsClassifier()), multilayer perceptron (sklearn.MLPClassifier()) and
complement naive Bayes (sklearn.ComplementNB()). For classifier training and predic-
tion, the feature dimensions of the training and test sets have to match. First, the model
is trained by passing the input document-term matrix to the fit() function. Subsequently,
the pipeline aligns the input document-term matrix to the topic document-term matrix
(see Section 4.4). After training, the model predicts the test set. For this functionality,
the predict_proba() function from the naive Bayes classifier is used. This function returns
the topic affiliations, which are based on Bayesian inference and are computed during
predictions (see Section 2.3).

After the model classifies all documents in the test set, the predictions are passed to
the order optimization component. To create an expressive display of the results, the
visualization needs a meaningful topic order. This order is computed by applying the
barycentric heuristic from Makinen and Siirtola [MS05] (see Section 4.5), which is utilized
to sort the topic affiliations in the application state data structure. The resulting order
together with the sorted topic affiliation data is subsequently passed to the client.

5.2 Client
The client contains all interaction and visualization functionalities in the form of a
dashboard. The implementation is written with TypeScript [Typ], a typed superset of
JavaScript. Within the client, the UI is based on Angular [Ang], Bootstrap [Boo], jQuery
[jQu], and d3 [Bos]. The Angular framework enforces an architecture that separates
views and related logic. Beyond architectural restrictions, the framework provides a
collection of libraries and features that simplifies an asynchronous programming approach.
Boostrap adds a streamlined collection of UI elements to the application that follow
general design principles to create appealing user interfaces. In particular, Boostrap
offers grid-based alignment systems to create responsive and resolution independent user
interfaces that can be displayed on different devices. To manipulate basic HTML elements
and send data through POST requests, jQuery is utilized, as it simplifies interacting
with these concepts. The client’s responsibilities can be split up into three tasks: 1) the
translation of user interactions into server operations, 2) the visualization computation
(see Figure 5.3), and 3) the management of asynchronous actors.

58

5.2. Client

Figure 5.3: A representation of the clients architecture. The client is mainly concerned
with tasks of user input processing, operation execution and visualizing the server’s
classification results, which define the split into the different components.

Translating user interactions is concerned with utilizing EventListeners and updating data
structures within the application’s controller component accordingly. RxJS is the library
included in the Angular framework that enables a reactive and asynchronous design of the
application’s client. Central to the asynchronous design are the rxjs.Observables wrapping
the application’s data structures, which provide different components with access to the
data through a subscriber model. The Observables notify subscribed components, when
data structures change, so they can subsequently perform operations on the new data.
By subscribing to the other components of the client and providing Observables of its
own, the controller component manages the client’s input and the communication to the
server.

To explain how the controller component processes user interactions, we take the interac-
tion of labeling as an example. When users drag a document point in the d3 -based [Bos]
visualization, the movement triggers the d3 EventListener of the corresponding Scalable
Vector Graphics (SVG) circle in the separate visualization component. The EventListener
triggers an algorithm to interpret the user’s classification confidence (see Section 4.6)
and the visualization component changes the label in the underlying Observable. These
changes in the underlying data structure trigger the subscribed controller component to
queue a visual active learning interaction, preparing data structures to be sent to the
server, which leads to an update of the underlying model based on the user’s interaction.
Similarly, when the model passes the results back, the controller component incorporates
the changes into its data structure. These can include changes in the topic affiliations
of certain documents and the order of topics. Subsequently, the controller component
triggers the visualization component to compute a transition of the visualization into the

59

5. Implementation

new state. In case of an update, the changed topic affiliations are utilized to compute
new positions for the document points, which are then displayed to users through a
d3.transition() from the old position to the new one.

To test our applications update functionality for text stream data, continuous updates
from a text stream were simulated. For this purpose, the controller component implements
an automatic mode that is based on Timer Observables provided by the RxJS library.
These Observables space out the updates of the text stream. Configuration files are
used that hold the information for the timing between iterations and the contents of
the updates. As all learning model related operations are handled by the function
queue component, the automatic mode can simulate all other basic interactions with the
application as well.

Our application has to handle two actors that can trigger changes. Besides the obvious
actor (i.e., the user), the text stream itself represents the second actor that interacts with
the application. It is necessary to manage the asynchronous interactions of both actors,
so the applications shared data structure, the application state (see Figure 5.1), is kept
consistent. For this purpose, our application implements the function queue component,
that receives all asynchronous operations from the actors and stores them together in
a sequential queue structure. The component wraps the operations of the application,
together with their context and own callbacks, in a function and chains the exterior
functions through callbacks together. After an operation with its callbacks finishes, the
exterior function wrapping it is executed that triggers the function queue component to
process the next operation in the queue. In this manner, the queue is stringed together
and resolves itself sequentially. This way, users can interact with the client without
having to wait for the server to finish the operation first and without interruptions from
updates of the text stream.

The Star Coordinates visualization (see Section 4.5) that presents results and enables
interactions is computed in the visualization component. This visualization is implemented
as an interactive, scalable vector graphic (SVG) with the help of the d3.js library. D3.js
enables a data-focused approach in the process of creating interactive visualizations,
through selection and data join operations. In principle, the Star Coordinates visualization
is implemented as a set of SVG circles that are dynamically updated based on their
correspondent documents. Through enter and exit selections, the displayed SVG circles
are appended to or removed from the SVG. Similarily, selections attach EventListeners
onto HTML elements that are used to create various interactions in our application.
EventListeners are also utilized to add hover, click, and drag interactions to the document
points that correspond to selecting a document temporarily, selecting it until deselection,
and labeling a document respectively. In the same manner, the filter interactions of the
topic labels are implemented. Animations, like our update animations, are created by
using the d3.transtion() interface that interpolates the data smoothly from the old state
to the current one.

60

5.3. Simulation Server

5.3 Simulation Server
For the tests in Chapter 6, our client side is replaced by the Node.js-based [Nod] simulation
server that can perform automated tests on datasets while simulating selection strategies.
The set of selection strategies includes strategies based on classic active learning as well
as strategies that are based on our Star Coordinates visualization. The simulation server
automates multiple tasks needed for cross-validation based evaluation, which is a form
of evaluation for assessing how the results of a statistical analysis will generalize to an
independent dataset. These tasks include: 1) cross-validation dataset preparation, 2)
execution of cross-validation tests, 3) simulation of active learning selection strategies, 4)
runtime estimation, 5) the computation of evaluation measures, and 6) computing Star
Coordinates visualization (see Figure 5.4).

Regarding cross-validation, the controller component of the simulation server can prepare
datasets in multiple ways. The controller component can split the available data into
multiple sets of the same size or create a test and training set split. These splits can
be saved and loaded so additional tests can be run under the same conditions. With a
specific split, the simulation server then can perform an automated test where it initializes
a new learning model for each split in the dataset following a preset selection strategy.
In total, the simulation server has five different selection strategies that it can simulate,
which are explained in Section 6.2. Besides these strategies, the simulation server can
also simulate how a learning model performs with only the initialization data and with
all documents available from a specific split. The last two strategies are especially helpful
for hyperparameter tuning, which is the process of finding the optimal hyperparameters
for a learning model. After each interaction between the simulation server and the
server, multiple measures can be computed (see Section 6.3). In summary, the simulation
server can compute accuracy, precision, recall, the receiver operating characteristic curve
(ROC) curve. To provide an overview of how the model develops over iterations, the
simulation server includes a simplified visualization component that can compute the Star
Coordinates visualization of the current learning model. As some tests can be extensive
and run for long periods, the simulation server also implements runtime estimation, in a
separate timer component, to give an overview of the progress. To estimate the runtime
the component computes for each split an average time and uses the estimation to project
to the whole runtime.

61

5. Implementation

Figure 5.4: The structure of the simulation server. This server provides multiple tools
automating processes performed in cross-validation based evaluation.

62

CHAPTER 6
Experiments

This chapter presents the results of several experiments simulating the active learning
process for news streams. These experiments were performed to evaluate choices made
during the development process and the final application. There are two sets of tests
discussed in this chapter. First, tests are presented that were performed during develop-
ment for tuning the learning models’ hyperparameters. Second, we compared our visual
active learning approach to classic active learning strategies. In the second set of tests,
the goal is to find evidence that visual active learning strategies are comparable to their
classic active learning counterparts.

6.1 Datasets

We chose to conduct our experiments on a self-generated dataset, called NYT dataset.
This dataset is generated from news articles from the New York Times [The] that were
extracted from a selection of their RSS feeds. The RSS feeds were parsed on seven days
in the timespan between December 2018 and February 2019. Besides using the data
provided in the RSS feeds (title, description) the dataset also contains the full articles
found on the corresponding website. From the selection of RSS feeds, we chose a subset of
categories that would minimize news article overlap between the categories. In particular,
we chose the categories: world, technology, science, health, and business. For testing
purposes, we removed all duplicates, which are articles associated with multiple categories
from the dataset, which results in a total of 607 documents with an average length of
6378 characters (see Table 6.1). There are multiple reasons we decided to generate a
dataset ourselves. To fit the use case, the dataset for testing should resemble real news
articles. In our case, the real data consists of financial reports, which are documents
that usually are longer than the snippets and descriptions provided in open datasets.
Further, we chose to use the dataset dealing with basic news categories, as it makes it
easier for non-experts to engage with the data. This argument was a decisive factor in the

63

6. Experiments

dataset choice, as we intended to conduct a preliminary user study after the experiments
(see Section 7). Another important aspect is the possibility to generate a dataset for
cross-validation that is reasonably balanced. For our testing, we used a balanced subset
of the NYT dataset for three times cross-validation, where we picked 60 documents per
category in a random fashion (see Section 6.2).

To compare the classification capabilities of our system, we also ran some tests on the
Reuters R8 dataset [Reu]. Following Debole and Sebastini’s convention [DS05], this
dataset is a subset of the Reuters-21578 dataset where only ten classes with the highest
number of training documents were considered. Subsequently, the dataset was also
filtered to contain only documents with a single label, which reduced the set to eight
classes. The final set contains 7674 documents with an average length of 892 characters,
which is split into predefined training and test set called Mod Apté (see Table 6.2).

NYT
Class total # docs

world 230
technology 78
science 64
health 80
business 155

Total 607

Table 6.1: NYT dataset.

Reuters R8
Class # train docs # test docs total # docs

acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51
interest 190 81 271
money-fx 206 87 293
ship 108 36 144
trade 251 75 326

Total 5485 2189 7674

Table 6.2: Reuters R8 dataset.

6.2 Procedure
To evaluate our approach, we set up multiple tests and simulated active learning proce-
dures. In this procedure, each run of a test was initialized with the same selection of
initialization documents. After initialization, the learning model was trained by labeling
and adding one document from the test set at a time to the training set. How the
document is chosen is dependent on the selection strategy that mimics an active learning
strategy (see Section 2.5). After a document is selected and labeled, the model is retrained
and the test set is reclassified. This procedure was repeated until the whole test set is
added to the training set. After each iteration, we evaluate the state of the model on a
separate validation set. To avoid random biases due to initialization or within different
selection strategies, we use k-fold cross-validation (k=3) where it is feasible. In k-fold
cross-validation the data is partitioned into k subsets, performing model training on
k − 1 of the subsets (training set) and withholding one subset (test set) to evaluate the
performance. This procedure is repeated k times while switching the subset used for
evaluation. By averaging the results of all iterations, cross-validation derives a more
accurate estimate of the model’s prediction performance.

64

6.2. Procedure

The selection strategies are core to our evaluation. Our initial evaluation aims to
find evidence that strategies based on visual measures correspond directly to classic
active learning strategies. It is necessary to examine the correspondence, as our Star
Coordinate mapping can create ambiguities in the process of displaying topic affiliations
(see Figure 4.6).

We formulated a hypothesis to test this property of our application: H1: Both classic
and visual active learning strategies outperform a random strategy in training.
We assume that our visual active learning strategies should perform similarly to their
classic counterparts when run on the same data. The crucial difference between both
strategies is that in the visual measure is dependent on the Star Coordinates mapping. To
evaluate H1, we compared how the strategies influence the performance of the classifier
over time. We examine the accuracy in particular as it gives some insight into performance
while being a straightforward measure to visualize over time.

To evaluate this hypothesis, we implement strategies for comparison in their classic form
and visual form based on our Star Coordinate mapping. In particular, our evaluation
incorporates two classic strategies [Coh17]: uncertainty sampling [LG94], and query
by committee [SOS92] (see Section 2.5). For clarity, Figure 6.1 illustrates all selection
strategies in a small example case.

As our learning model inherently keeps track of the certainty of classification in the
form of the topic affiliation, we use this measure to implement the uncertainty sampling
strategy. Our uncertainty sampling strategy thus picks the first document with the
lowest maximum association probability that decided the association of a document.
The corresponding visual uncertainty sampling strategy uses the distance between the
center of our visualization to each document point. As uncertain points are placed in
the middle of the Star Coordinates visualization (see document A in Figure 6.1), this
measure corresponds closely to the classic uncertainty sampling strategy. This strategy
also relates to a real-life scenario where users examine documents with uncertain labels
and decide these cases.

Secondly, we implemented a strategy we call correction that corresponds to the query by
committee strategy. The query by committee strategy tries to find underdetermined spaces
in the training data by using an ensemble of learning models and choosing documents
with the highest disagreement between the models. As we have the ground truth for the
data, our correction strategy follows the same goal as the query by committee strategy
by searching for the document with the highest confidence (i.e., topic affiliation) which is
classified incorrectly (see document C in Figure 6.1). The corresponding visual correction
strategy uses the distance between the topic points and document points instead of the
topic affiliation. There is also a corresponding real-life scenario for this strategy. In this
scenario, users hover the title of documents trying to find incorrect labels which they
then correct.

65

6. Experiments

Figure 6.1: Example demonstrating how all described selection strategies and their visual
counterparts are computed. For the visual strategies (visual uncertainty sampling and
visual correction) the deciding distances are drawn in the Star Coordinates visualization
as colored lines. The deciding probabilities for the classic strategies (uncertainty sampling
and correction) are colored in the probability table.

6.3 Measures

Many measures used in the evaluation of a classification are defined for a binary classifi-
cation. To apply them to our application, these measures must be adapted for multi-class
classification. Usually, to accomplish this adaptation, the binary measures are combined
across labels. For averaging binary measures, two techniques that can be applied are
micro-averaging and macro-averaging [VA13]. The micro-average aggregates the contri-
butions of all classes to compute the average metric, treating each document equally. In
comparison, macro-averaging works in reverse, by computing the metric independently
for each class and then taking the average, treating classes equally in the process.

In our evaluations, we used accuracy as our basic evaluation metric to compare different
variables over the active learning process. This measure is defined as the fraction of
documents correctly classified as positive (true positive rate). We decided to compute
multi-class accuracy through micro-averaging as this approach captures class imbalances
more adequately. The micro-averaged score Accmicro, formally:

Accmicro = tprmicro =
∑

c∈C tposc∑
c∈C dc

, (6.1)

can be computed based on the classified documents d with the fraction of correctly labeled
documents tpos across all classes c ∈ C. Accordingly, the definition of the macro-averaged
score Accmacro is very similar, formally:

66

6.3. Measures

Accmacro = tprmacro =
∑

c∈C
tpc

sc

|C|
, (6.2)

where the fraction of correctly labeled documents tpos is computed independently per
class c ∈ C and averaged afterward.

Beyond accuracy, our evaluation also utilizes the receiver operating characteristic (ROC)
curve, for evaluation. This graphical plot illustrates the performance of a binary classifier
as its discrimination threshold varies (see Figure 6.2). For classifiers that return class
probabilities, this discrimination threshold determines how high the probability has to
be so that the document is assigned to the class. In this manner, the graph shows
the model’s trade-off between the true positive rate and false positive rate. These two
measures answer the question, how likely the model is to identify documents correctly
or incorrectly that are actually belonging to a certain topic. Depending on the task,
one of these measures might be more critical. By plotting the changes between true
positive rate and false positive rate along the discrimination threshold, the model can be
tuned to the desired trade-off. The ROC curve provides a very simple graphical view
of the possible trade-offs [BD06]. These factors make the ROC curve a good measure
for comparing multiple classifier models. Models can be compared by interpreting each
model’s capability to separate classes and choosing discrimination thresholds for specific
tasks. The plot is created by plotting the true positive rate tpr against the false positive
rate fpr at various discrimination threshold settings. The false positive rate fpr for both
averaging techniques is defined in the following manner:

fprmicro =
∑

c∈C fposc∑
c∈C sc

, (6.3)

fprmacro =
∑

c∈C
fposc

sc

|C|
, (6.4)

where the fraction of incorrectly labeled documents fpos is either computed across all
classes c ∈ C or independently per class c ∈ C and averaged afterward. To compute the
ROC curve, we use the micro-averaging approach.

67

6. Experiments

Figure 6.2: Simplified example of a ROC curve, displaying how different classifier
performances look on the curve. The orange straight line is often displayed in ROC
curves as it represents the performance of a classifier that is equal to selection by chance.
Preferably, a classifier should be able to achieve a high true positive rate without many
false positives. In this simplified, example the green curve exemplifies such a classifier.
By comparison, the violet curve shows a classifier with bad performance. Lowering the
discrimination threshold on this classifier adds many false positives to the result.

6.4 Parameter Tuning
During development, we performed multiple tests to tune our classification pipeline (see
Section 4.3) to the problem. In these tests, we simulate active learning strategies, as
introduced in Section 6.2, to compare different variants of the pipeline. This hyperpa-
rameter tuning was performed on our NYT dataset (see Section 6.1) in a three-fold
cross-validation procedure. Table 6.3 summarizes, which dimensions of the parameter
space are examined during the tuning process. The search strategy applied in the tests
was grid search. However, due to parameters performing similarly (e.g., part of speech
and named entities with part of speech combined), some parameter combinations were
skipped.

Test Parameter Space

Features pos ne (nltk) ne (spaCy) ne (nltk) + pos
Model mlp svm mnb cnb
Stage 0 200

Table 6.3: Overview of the set of hyperparameters examined in
the parameter tuning tests.

Abbreviation Meaning

pos part-of-speech
ne named entities
mlp multilayer perceptron
svm support vector machine
mnb multinomial naive Bayes
cnb complement naive Bayes

Table 6.4: Parameter space abbreviations.

68

6.4. Parameter Tuning

The first test deals with comparing part-of-speech (pos) and named entity (ne) features
(see Section 2.2) that are available for classification. Regarding part-of-speech features,
only terms that belong to the major part-of-speech classes [JM14], i.e., nouns, verbs,
adjectives or adverbs, were utilized as features. For this feature comparison test, we
compare the following sets of features: only part-of-speech features, only named entities
from nltk, only named entities from spaCy - another NLP library [spa] - and part-of-speech
with nltk named entities combined.

Figure 6.3 compares the ROC curves of classifiers based on the features mentioned above.
Most noteworthy is the clear separation between part-of-speech trained and named entity
based classifiers. This separation is present in both the initialization stage as well as
after 200 labeled documents were added to the learning models. We hypothesize that
this separation comes from the low number of features the named entity based classifiers
have at this stage.

(a): Model at initialization stage. (b): Model trained with 200 documents.

Figure 6.3: Comparison of all features with mnb model between stage 0 (a) and 200 (b).
Tests run on the NYT dataset, using a three fold cross-validation procedure.

To investigate this hypothesis we picked two representative conditions, the nltk named
entities and the nltk named entities with part-of-speech combined, and computed feature
density and cross-document occurrence for both conditions. Feature density is the percent
of terms that are chosen as features (see Table 6.5). The measured feature density
shows that the combined feature set has more than twice the density compared to nltk
named entities. Also, the feature density gets lower during training, indicating that
each document introduces more new terms than named entities. Probably, the features
representing the classes occur so infrequently that very few model features are present
in the test data, complicating classification. We inspected how frequent features are

69

6. Experiments

present in more than one document, which we denoted as the cross-document occurrence.
The results show drastic differences between both feature variants (see Table 6.5). In
this comparison, the combined feature set has occurrences of shared features between
documents that are higher by a factor of ten.

NYT Feature Test
Dataset Features Feature Density Cross-Document Occurrence

Initial ne (nltk) 16.545% 6.224%
Initial ne (nltk) + pos 39.848% 76.493%
Full ne (nltk) 8.140% 6.643%
Full ne (nltk) + pos 23.538% 76.824%

Table 6.5: Comparison between feature sets at different model training stages based on
feature density and cross-document occurrence. Feature density denotes the percent of
terms in the documents that are utilized as features. The cross-document occurrence
stands for the percent of features that are present in more than one document.

Due to concerns for large feature spaces, caused by a choice for part-of-speech features,
we continued to investigate the discrimination performance during the active learning
process. A performance comparison in the final stages of active learning can be seen
in Figure 6.3(b). Interestingly, the performance ranking is similar to the initialization
stage test, even when the number of features is substantially bigger. Multiple causes can
lead to a better performance of part-of-speech features compared to the named entity
approach. One factor could be the size of the dataset and thus the limited number of
part-of-speech features present in the data. It seems that the testing dataset is not big
enough to run into problems of big feature spaces. Another cause might be the sparseness
in the named entity features (see Table 6.5), which might also cause an underperformance
of this feature set.

As our visual active learning procedure is flexible regarding the classifier used, we compared
a selection of classifiers with two variants of model features: named entities from nltk and
part-of-speech with nltk named entities combined. In the test, we compared two variants
of naive Bayes classifiers (multinomial naive Bayes (mnb), complement naive Bayes (cnb))
with a multilayer perceptron (mlp) and a support vector machine (svm). Figure 6.4
shows the results of both tests with different features at the classifier initialization stage.
As already mentioned in the last test, it seems that the small number of named entity
features is not descriptive enough for a effective classification. Figure 6.4(a) exemplifies
this problem. All models perform similarly with performances that are close to classifying
by chance, except for the support vector machine that performs even worse than chance.
The test with features based on part-of-speech and named entities combined showed
quite different behaviors (see Figure 6.4(b)). With the larger feature set, the naive Bayes
methods perform significantly better, with complement naive Bayes outperforming the
multinomial variant.

70

6.4. Parameter Tuning

(a): Models based on named entities. (b): Models based on named entities and
part-of-speech.

Figure 6.4: Comparison of all classifiers during the initialization stage between (a) ne
and (b) ne + pos. Tests were run on the NYT dataset, using a three fold cross-validation
procedure.

Figure 6.5 explores the discrimination capabilities of the different models with 200
documents classified. This comparison shows that the performance between the models
is stable concerning features and iterations. With the combined feature setting (ne +
pos) (see Figure 6.4(b)), the naive Bayes models perform significantly better. In this
test case, it can be noticed that the separation between the naive Bayes models and the
other models is larger than the confidence intervals. From the parameter tuning tests
we conclude that a combination of named entities and part-of-speech (ne + pos) with a
complement naive Bayes (cnb) classifier yields the best classification performance for our
data characteristics.

71

6. Experiments

(a): Models based on named entities. (b): Models based on named entities and
part-of-speech.

Figure 6.5: Comparison of all classifiers during stage 200 between ne (a) and ne + pos
(b). Tests were run on the NYT dataset, using a three fold cross-validation procedure.

6.5 Active Learning Strategy Evaluation
Our application needs to represent different active learning strategies visually. To
evaluate this functionality, we compared our visual active learning strategies approach
to classic active learning strategies by simulating the process. We performed these
experiments on our balanced NYT dataset and the R8 subset of the Reuters-21578
dataset (see Section 6.1).

Figure 6.6 shows the accuracy multiple labeling iterations on our NYT dataset. In
general, if the confidence intervals are taken into account, no single strategy outperforms
any other significantly. This observation fits very well with the observation made by
Seifert and Granitzer [SG10] and Settles [Set09]. For a clearer comparison between
corresponding strategies, Figure 6.7 shows the strategies on separate graphs. In Figure
6.6, it is noteworthy that the correction strategies perform worse the random strategy
at the start of the active learning process. The reason for this is an initial imbalance
of classes. The selection strategies create a big imbalance of classes in the first twenty
iterations.

72

6.5. Active Learning Strategy Evaluation

Figure 6.6: Comparison of labeling strategies in terms of accuracy over iterations.
Simulated strategies were tested by using a three fold cross-validation procedure on the
balanced NYT dataset (see Section 6.1).

We performed this test also on the Reuter R8 dataset. The results of this test are depicted
in Figure 6.8. Due to the size of the dataset, this test was run in a fixed training/test
set configuration. Nonetheless, the results indicate some interesting connection between
visual and classic strategies. Between iteration 1500 and 3000, both correction strategies
show the same oscillation artifact, which is for both strategies the point where they
reach their peak accuracy. In comparison, the uncertainty strategies can steadily increase
their performance longer than the correction strategies up to iteration 3500, where both
strategies drop similarly in performance. These two artifacts give some evidence that
the visual approaches select documents in a similar manner to the classic active learning
strategies.

73

6. Experiments

(a) Uncertainty strategy comparison.

(b) Correction strategy comparison.

Figure 6.7: Comparison of corresponding visual and active learning strategies in terms
of accuracy over iterations. The simulated strategies were tested by using a three fold
cross-validation procedure on the balanced NYT dataset (see Section 6.1).

Due to the high number of iterations, the performance of the strategies in the early phases
of the experiment is obstructed. Therefore, we plotted the starting section separately
in Figure 6.9. This figure highlights an interesting aspect of active learning, as it is
visible that the random strategy outperforms the selection strategies in the first hundred
iterations. Due to the targeted selection strategies, the early training sets have the
potential to get very unbalanced, which does not happen with a random selection. With
an increasing number of classified documents, this effect gets smaller as the imbalances
become proportionally smaller. The results from the tests with the R8 dataset support
our hypothesis H1. In this comparison, the uncertainty and correction strategies were
able to outperform a random labeling strategy in both their visual and classic variants.

74

6.5. Active Learning Strategy Evaluation

Figure 6.8: Comparison of learning strategies in terms of accuracy over iterations.
Simulated strategies were tested by using a training/test set split on the Reuters R8
dataset (see Section 6.1).

Figure 6.9: Starting section of the comparison of learning strategies in terms of accuracy
over iterations on the R8 dataset (see Section 6.1).

75

6. Experiments

We also investigated the performance of the different strategies on the NYT dataset based
on the ROC curve measure. As the ROC curve is already a two-dimensional feature, we
chose to plot all strategies side by side in Figure 6.10. Each of these figures shows the
development of a strategy at discrete iterations. In this comparison, the random strategy
performs worse than all other strategies. All strategies besides the random strategy reach
peak performance before the last iteration and drop to the random performance when the
whole training set is used. This performance change might signal overfitting. It seems
plausible that the increasing feature set can lead to such problems.

76

6.5. Active Learning Strategy Evaluation

(a) random strategy

(b) uncertainty (classic) strategy (c) correction (classic) strategy

(d) uncertainty (visual) strategy (e) correction (visual) strategy

Figure 6.10: Comparison of different learning strategies in terms of discriminatory
capabilities (ROC curve) over iterations. The simulated strategies were tested by using a
three fold cross-validation procedure on the balanced NYT dataset (see Section 6.1).

77

CHAPTER 7
Evaluation

We conducted a preliminary user study to evaluate the benefits and limitations of
incorporating users into the active learning process through visualization. For this
preliminary study, we recruited four participants (one female, three males, age 25 to 28)
with different backgrounds, including one computer scientist, but all experienced in
using computers. We used the NYT dataset, introduced in Section 6.1, for the study
and initialized the classes of the dataset with snippets of fitting Wikipedia articles.
The choice for the custom NYT dataset is motivated through multiple factors. As the
dataset’s samples are current full articles from the New York Times, they are moderately
simple to classify for the participants. Further, the categorization offered by newspapers
is a classification that is comprehensible for participants as well. To compare the
visualization’s advantages, we implemented the list condition as a baseline.

7.1 List Condition

The list condition moves the functionality of the visualization into the document list. In
particular, the classification, topic filtering, and indication of new items are performed
by interacting with the document list. To enable classification, a set of buttons (see
Figure 7.1(a)), where each button represents a topic, is added to each document card in
the document list. Through this approach, the document cards can express their topic
affiliation and enable classification, as the button of the current affiliation has a different
style. For filtering, a set of topic buttons (see Figure 7.1(b)) is also added to the header
of the application. Similarly to the classification buttons, these buttons also change style
if active, filtering the document list beneath. Finally, new documents are added at the
top of the list and are marked with a red border so users can track the application’s
actions better.

79

7. Evaluation

Figure 7.1: In the list view the documents can be classified with (a) the topic buttons.
To filter documents, (b) filter buttons are added to the view in the top right.

7.2 Hypotheses
In this evaluation, we focus primarily on the benefits and limitations of the visual
active learning approach of our application compared to a simpler learning approach
of assigning class labels to documents. Particularly, we investigate the benefits of the
visualization concerning the training process of the learning model. Our assumption
has been that visualizing the model’s prediction beyond showing the final label can
have multiple benefits. Displaying the classification probability based on the model can
be interpreted as the confidence of the classifier. In this probability space, documents
are placed in proximity to each other if they are similar with regard to the model’s
decision boundary. By visualizing this space, users can find similar documents, interpret
the decision boundary of the model by exploring the proximity of documents and how
the model’s classification reacts to change. We, therefore, formulated three additional
hypotheses:

Our assumption has been that the visual information improves the user’s ability to identify
a particular class, even if the classification is not perfect. H2: The visualization of
document assignments to classes helps users to decide, whether a news item is interesting
or not for a particular class.
We expect that at a certain accuracy of the underlying model, users can find relevant
news more efficiently. As documents enter the visualization, they move in the direction
of their classification. Then users can disregard a subset of entering documents, which do
not move to the class of interest, as they signal that they are not relevant for the category
of interest. Therefore, we hypothesize that users select fewer irrelevant news items, which
leads to a higher selection precision (H2.1). Also, filtering documents from the list of
documents to parse, should accelerate the process of finding relevant documents, i.e.,
increase the selection recall (H2.2).

80

7.3. Study Design

H3: The direct interaction with the visualization is more efficient and effective for active
learning than a classic interface.
Due to the more informative arrangement of the documents in the two-dimensional
visualization, we expect users to improve the classifier with fewer re-classifications to a
useful accuracy than with the list condition (H3.1). Encoding additional information in a
visualization yields multiple benefits for the classifier training task. Changes in the model
are more apparent with the visualization during training, as users can track changes of
document classifications over the whole dataset by following the movement during an
update. Further, if documents move together, this indicates that they contain the same
features that were deciding the classification. Through investigation of these subsets
of documents, users can more easily interpret the decision boundary of the model and
adjust it to their interests. These factors should influence the effectiveness of the training
as well, which lets us expect that the overall accuracy will increase more consistently
over multiple reclassifications than with the list condition (H3.2).

For the final hypothesis, we inspect the users’ performance in relation to the simulated
learning strategies examined in Chapter 6. H4: Users outperform active learning
strategies by adapting their strategy based on the learning model state.
Compared to the simulated strategies, users are more flexible in the selection of their
labeling. We expect users to interpret the current state of the learning model and to adapt
their strategy based on their observations. Therefore, the user-based training models
should outperform the simulated learning strategies as well as the random strategies in
terms of accuracy over iterations (H4.1).

7.3 Study Design
For this study, we employed a within-subjects design with the visualization as the
independent variable. We designed study so the independent variable has two conditions.
The first condition contains the interface with the visualization (see Section 4.8) and is
called visualization condition. The second condition is called list condition, which uses
the interface without the visualization (see Section 7.1). Our study comprises of two
time-limited tasks, one document selection task to verify H2 and a second model-training
task to verify H3 and H4. Due to the within-subjects design, users performed each task
once per variable, resulting in four counterbalanced tasks. We split our NYT dataset
(see Section 6.1) into four subsets for the evaluation. All subsets have similar size and
distribution of classes as can be seen in Table 7.1. The study was conducted in the
Google Chrome web browser on a 32” monitor.

81

7. Evaluation

NYT dataset split
Class # set 1 # set 2 # set 3 # set 4

business 34 27 25 31
health 19 18 18 15
science 26 24 20 9
technology 13 13 15 29
world 40 36 36 43
Total 132 118 114 127

Table 7.1: Sizes of the NYT subsets, used for the preliminary user study.

Initially, participants filled out a consent form and a short demographics questionnaire.
During the study, each task was preceded by a task description (see Table 7.2) in the
browser together with a test task using a test dataset. When the participants felt
comfortable with the task, the study proceeded to the measured study task. Both tasks
were limited in time to five minutes, where users started with thirty documents and
the application added documents periodically during this time. In the selection task,
participants had to identify incoming documents of a particular class and select them.
During this task, the learning model was not trained beyond the initialization. For
the training task, participants trained the model to increase the model’s classification
accuracy.

Study Tasks

Select Your task is to forward any health-related news to the fictional
management by pressing the button "select" in the user interface.

Classify

Your task is to improve the systems classification process by classifying
examples that fit the systems categories yourself. Keep in mind that
you can classify every document shown in the interface to every category.
You don’t have to focus on one category.

Table 7.2: Every task in the study was proceeded by a website containing a scenario,
task description, and explanations to the user interface utilized in the task. This table
contains the task description shown on that website.

7.4 Analysis

To evaluate our hypotheses, multiple scores were measured during the study. For
hypothesis H.2, we investigated whether the visualization benefits users in selecting
relevant documents for the task. The number of selected documents should show whether
the visualization helps to find documents faster. Beyond the sheer quantity, we were also
interested in the visualization’s capability to guide users to relevant documents. In the

82

7.4. Analysis

context of selecting health-related documents, a document d from corpus D is relevant
if the ground truth coincides with the selection of the user for the given document.
Formally:

d ∈ Gh ∧ d ∈ Sh , (7.1)

where the Gh is the set of health-related documents according to the ground truth
G = {Gb, Gh, Gs, Gt, Gw} and Sh is the set of health-related documents from the users
entire selection S = {Sb, Sh, Ss, St, Sw}. Based on this relevancy definition we evaluated
the precision and recall for hypothesis H.2. In particular, precision gives insight into the
fraction of relevant documents that were retrieved by the participant, resulting in the
formula:

precision = |Sh ∩Gh|
|S|

. (7.2)

Recall measures the fraction of relevant documents that were successfully found by the
participant, which leads to this formula:

recall = |Sh ∩Gh|
|Gh|

. (7.3)

We evaluated hypotheses H.3 and H.4 by measuring the model’s accuracy over itera-
tions on an independent test set. The accuracy measure gives a basic overview of the
visualization’s capability to guide users to documents that improve the classification
efficiently. As with the measures introduced in Section 6.3, we have to adapt accuracy for
multi-class classification. We chose to use micro-averaging in this instance as well, so that
the measure can capture class imbalances [VA13]. Adapting accuracy to micro-average
over the classes leads to the following formula:

accuracy =
∑

i |Pi ∩Gi|
|D|

, (7.4)

where Pi and Gi are the model’s prediction and the ground truth for a certain topic i
respectively.

83

7. Evaluation

7.5 Results
We evaluated hypothesis H2 by examining the distribution of the measured precision and
recall. In general, participants selected slightly more documents, on average, with the
visualization condition (eight documents on average) than with the list condition (seven
documents on average). To test hypothesis H2.1, we compared the recall measured
during the selection task. This measure is taken at the end of each task from the
participant’s final models. Using the visualization, the participants’ fraction of relevant
documents found is slightly less than with the list condition (see Figure 7.2(a)). In both
conditions, users were only able to identify around half of the health-related items during
the study.

For hypothesis H2.2, we calculated the precision of both conditions from the final models
of the selection task data. Similarily to the recall, the precision of the visualization
condition is slightly less than the list condition (see Figure 7.2(b)). Using the list
condition, three out of four participants picked solely health-related items, while the
visualization condition only reaches an average recall of 90%. We inspected the seven
selections from other classes (see Table 7.3). From this set of documents, four documents
are health-related despite being labeled as belonging to another class in the ground truth.
On closer examination, the remaining three documents are not related. However, the list
condition still outperforms the visualization condition slightly. This disproves hypothesis
H2: In the tested circumstances, the visualization of document assignments to classes
does not help users to decide the relevance of a news item for a particular class.

(a) Recall (b) Precision

Figure 7.2: Precision and recall of the participants’ final models from the study displayed
in a kernel density estimation (KDE) plot. The KDE plot estimates the probability
density function of both measures by smoothing the observations that are displayed on
the y-axis with a gaussian kernel.

84

7.5. Results

Selected Documents

Vis

Aaron Klug, 92, Dies; His 3-D Images of Bodily Molecules Won a Nobel
In China, Gene-Edited Babies Are the Latest
in a String of Ethical Dilemmas
New Diet Guidelines to Benefit People and the Planet:
More Greens for All, Less Meat for Some
New Popeye Videos Show What 90 Years of Spinach Can Do for a Guy
April Bloomfield Closes Her Los Angeles Restaurant Hearth & Hound

Base Retiring: If You Do Medicare Sign-Up Wrong, It Will Cost You
Wealth Matters: Taxing the Wealthy Sounds Easy. It’s Not.

Table 7.3: Table showing the titles of the non-health related documents that were selected
by the participants.

To verify hypothesis H3, we look again at the clearly defined sub-hypotheses H3.1 -
H3.2. Hypothesis H3.1 involved investigating the final accuracy of the participants’
models during the model-training task. In this task, the visualization condition performed
slightly better than the list condition (see Figure 7.3). Additionally, we compared the
accuracy of the participants models over iterations to evaluate hypothesis H3.2. As with
the final model, a similar trend is visible along all iterations: the visualization condition
outperforms the list condition slightly (see Figure 7.4). We therefore confirm partially
hypothesis H.3: The direct interaction with the visualization is slightly more efficient for
active learning than a classic interface.

Figure 7.3: Accuracy of the participants final models from the study displayed in a KDE
plot.

85

7. Evaluation

Figure 7.4: Comparison user accuracy between test conditions.

As our experiments in Chapter 6 applied some of the same measures, we also created a
comparison between users and the automated techniques and defined Hypothesis H4.
For this test, the study participant’s choices and all automated learning variants were
simulated again with a consistent test set so the results are comparable. Figure 7.5
shows this comparison, which is run on the NYT dataset with a fixed training/test set
configuration (70% training, 30% test).

To get a better insight into the early perfomance, Figure 7.5 shows the first 100 iterations
separately. In this figure, it becomes apparent that the user-trained models perform
comparably to the best performing automated strategies. Especially the visual condition
performs quite well. The model reaches the classification accuracy of 51% in 24 iterations,
which is not outperformed until the random strategy reaches its 37th iteration. In this
test, the user-trained model outperformed the other strategies with 35% - 48% less
data, which indicates that involving further human decisions into the learning process is
beneficial. However, the participants’ data does only cover the initial twenty iterations
due to the time constraint of the test. Therefore, we cannot confirm the hypothesis H4:
The initial iterations of the visual active learning strategy indicate performance on par
with the best performing strategies in the test. However, the visual active learning strategy
does not outperform other strategies. Also, the data just covers the initial learning stage,
to confirm the hypothesis models need to be trained over a longer period.

86

7.6. Limitations

Figure 7.5: Comparison between users and automated strategies on same independent
test set.

7.6 Limitations
There are multiple limitations present in our study. It is important to consider that
this was a pilot study, no real conclusions can be drawn from the results. Due to the
small sample size, it was not possible to show significant differences between conditions.
However, the pilot study was helpful to test the design of the study to determine which
aspects work and what could be improved. Besides the low number of participants, the
time limit proved to be too restrictive for the task. In both conditions, study participants
defaulted to only reading article headlines to maximize the number of documents they
inspect for classification and selection. This strategy proved very efficient, as the classes
in our study are based on simple news categories. For a follow-up study, it might
be beneficial to increase the time limit and define harder tasks for the users, so that
they have to engage beyond headlines with the application. Another limitation that
became apparent after the study is the limited benefits the visualization provides at the
initialization stage. In this configuration, the affiliations to topics and proximity to other
news documents did not encode helpful information. This might be the explanation for
the worse recall and precision observed in the selection task. To test the efficiency of
selecting relevant documents, the model has to be sufficiently trained so the visualization
can provide actual benefits. For future studies, it is necessary to pre-train a model or
redesign the classification task so participants can train a model and select documents.

87

CHAPTER 8
Discussion

With the simulated experiments and the pilot study, there are multiple insights found
within the studies results. Therefore, this chapter will mainly focus on investigating the
hypotheses defined in Section 1.4. Subsequently, we will discuss qualitative observations
that were made during the conduction of the study.

8.1 Discussion of Hypotheses
The results from the investigation of H1 in Section 6.5, already indicated some promising
aspects about how the classic active learning strategies compared to their visual counter-
parts. While in our tests there was no clear strategy that outperformed the others, there
were some noteworthy trends. The results of the accuracy comparison on the Reuters R8
dataset (see Figure 6.8) indicates that the visual active learning strategies correspond
very closely to their classic active learning counterparts as they exhibit very similar
patterns in performance. With increasing iterations, all active learning strategies were
able to perform similarly or better than the random strategy on average. One crucial
observation we have made from these results is that the other strategies outperform the
random strategy after an initial phase of rapid improvement in the active learning process
(see Figure 6.9). In our testing, that phase encompasses crudely the first two-hundred
labeled documents in a classification task with five to eight classes. Based on these
observations, we speculate that it is necessary to label at least twenty documents per
class to start getting benefits from the active learning process. Therefore, in our use case
of a personalized classifier, the benefits of using such an application may not show after
a single use of our application.

89

8. Discussion

Multiple aspects may shorten this initial phase, improving the usability of the appli-
cation. The initial performance of the learning model could be negatively affected by
the imbalances the active learning strategies cause. Often, learning models are not
incentivized enough to optimize for underrepresented classes, as these classes have a very
low impact on the loss that is minimized. One possible solution to this problem is to make
imbalances in the visualization more salient. We therefore color-coded the documents
that are in the training set as black in the visualization. A recommender system could
be added to the application, which marks documents that it deems to be representative
of an underrepresented class. This could shift the users’ attention towards labeling these
documents. Improving the learning models’ features might also be an option to find a
suitable solution for the classification problem faster. Descriptive, high-level features
could improve the training of the learning model drastically as they simplify the feature
space in which a solution is searched. In the tests that were run for this hypothesis,
named entities were utilized, which on closer inspection turned out to be very sparse. It
might be more reliable to improve on the named entity algorithm used or to fall back to
simpler features such as n-grams or a set of descriptive lexical categories.

Inspecting the results of hypothesis H2 highlighted flaws in our study design and usability
problems in our application. The results (see Figure 7.2) show a considerable difference
between the conditions in both measures. Also, the recall in both conditions was generally
low. We suspect that these results are strongly influenced by the study design. Due
to the restrictive time frame, the average number of selection per user is with around
seven documents very low. In our case, single mislabeled items caused this considerable
difference between conditions. This is exemplified in Figure 8.1(b), where the difference
in precision across participants shrinks significantly by only changing a few ground truth
labels. Similarly, the low recall is mostly caused due to a flaw in the study design.
The task was designed in a manner so that users had not enough time to check every
document in the dataset during the test. We expected that the grouping and overview the
visualization provides in an initialized state, would let users prioritize relevant documents,
thus making the task easier within the time frame. However, we overestimated the
visualizations’ capabilities to guide users to documents, when the learning model is just
initialized. In addition to this misjudgment, users struggled with the size of the tooltip
present in the visualization, making exploring the data even harder.

Following the study, we increased the size of the document points as well as the tooltip
to improve the direct interaction design of the visualization. To improve upon the study
design for the following studies, it is crucial to improve the initial training set of the
topics for the selection task beforehand, so that the benefits of the application can be
captured more accurately. Further, the selection task would benefit from a longer task
time with a bigger dataset so that the time limit of the task is preserved. In this manner,
users would still be time-constrained as in the original design. However, the longer test
time would result in a greater average number of selections the participant can make,
potentially showing the differences between the conditions more clearly.

90

8.2. Qualitative Observations

(a) Recall (b) Precision

Figure 8.1: Precision and recall of the participants final models, if documents from other
classes that are health-related are taken into account.

Similarly to the observation made previously, the limited scope of the study limited the
insights gained in the classification task for both hypotheses H3 and H4. Our earlier
tests on this dataset indicate that the learning model needs around two hundred iterations
to reach a state where the iterative improvements slow down. In the study’s time limit of
five minutes, users were not able to label this amount of documents. Giving users access
to the software to use it over multiple sessions or designing a task that runs over one
longer session might yield more insightful results. To evaluate if the participants learning
strategies outperform the classic active learning strategies, more iterations are needed so
they could potentially reach their performance ceiling.

8.2 Qualitative Observations
In summary, the results indicate that visual active learning has some advantages over
the classic counterpart. However, as participants were not able to sufficiently train
a learning model in the time constraint of the study the results are not conclusive.
We, therefore, examined the participants’ strategies individually and will discuss the
qualitative observations made. Besides the measured results, the preliminary study was
able to show how slightly trained users interact with both conditions.

91

8. Discussion

In the visualization condition, participants tended to explore in a region of choice rather
than following updates. During the selection task, one participant found that many of
the relevant documents were positioned in the center of the visualization and decided to
focus on this region. As the learning model was only initialized, this proved to be an
efficient strategy. Further, during the classification task, participants tended towards
starting by classifying documents positioned in the center of the visualization and moving
on to classifying and correcting, when a prominent bigger cluster formed around a topic.
It seems that the pattern of one prominent bigger cluster that forms if the model or
the dataset is imbalanced captures the participants’ attention. By exploring the bigger
cluster, participants move from an uncertainty based strategy in the start to a correction
strategy, which is a behavioral pattern very beneficial for the model. On the other
hand, some participants did not notice the imbalance pattern of the visualization during
classification, leading to poor results. The visualization could benefit from a mechanism
that enables users’ to get an initial assessment of the model’s classification results without
interaction with the points.

Compared to the visualization condition, users interacted with the document list in a
very different way. In general, participants tended towards examining the list from top
to bottom or vice versa. When they reached the bottom of the document list, they
moved towards the top and investigated the latest update. Due to this process, multiple
participants missed multiple updates as they happened while they were working through
entries down the list.

The interactions of the participants with the list made two drawbacks of this approach
very apparent. First, users tend to miss changes, if they are not directly on the screen
when they happen. To remedy this flaw, it would be necessary to encode changes in a
document in a permanent manner until users interact with it. Second, the list itself does
not inherently promote any selection strategy. To support active learning it would be
necessary to order elements in a way that promotes a certain selection strategy. This way,
users that are working through the list from top to bottom can follow a more efficient
strategy than random selection.

92

CHAPTER 9
Conclusions and Future Work

This final chapter summarizes our contribution to classification supported by active
learning. Additionally, we address the current limitations of our application with options
to improve these factors in the context of future work.

9.1 Conclusion
We presented a new active learning interface for the classification of news streams,
providing guidance for labeling, by visualizing the topic affiliation probabilities of the
learning model and providing novel interaction tools to enhance the model’s performance
sequentially. Our approach adapts the active learning approach by extending the users’
involvement in the process by letting them decide on the selection strategy. Selecting
samples is aided by our visualization of topic affiliation probabilities, that gives the users
an overview of the whole dataset. In this visualization, users can interactively explore
the classification results and deduce which terms in the samples are deciding for the
learning model by comparing nearby samples. Besides conveying the learning model’s
result and decision boundaries, the visualization also serves as a direct interaction tool
for classification and reclassification. These interactions initiate an update of the learning
model, which in turn updates the visualization, creating an interaction loop. Further,
our application contains interaction tools to add and remove samples, which allow for
incrementally training on text streams or curating a dataset in general.

From the evaluation of our hypotheses, we conclude that the selection strategies present
in our visual representation closely resemble classic active learning strategies. Our active
learning strategies performed similarly or better than classic active learning strategies and
showed very similar performance patterns to their corresponding strategies in our selection
strategy comparisons. Further, our pilot study indicates that users perform better with
the visual representation than greedy active learning strategies. The experiments on
different datasets show a varying performance of the strategies indicating that the benefit

93

9. Conclusions and Future Work

of a certain strategy is dependent on the dataset and the model state. It seems that
adopting the selection strategy to the current model state is very important in the active
learning process. Finally, testing on our dataset has shown that the learning model of
our application needs more data to achieve sufficient accuracy. Initially, we anticipated
that the application would show its benefits after an initial set of around twenty labeled
documents. After evaluation, the results indicate that beneficial performance is reached
with around twenty documents per model class. This number could increase if content
characteristics change over time. Based on these observations, we conclude that this form
of visual active learning has potential to enable users to determine whether a document is
relevant for any of their defined classes (i.e., assets or topics). Beyond text classification,
the concept of visual active learning can also be applied to a broad range of classification
tasks. These include text related classification problems like sentiment analysis, language
detection, and intent detection and even classification tasks on different data types, like
image classification.

9.2 Future Work
Multiple of the following ideas come from observations made and feedback gathered
during our preliminary study. There are multiple aspects that users struggled with
when employing our application that can be improved upon. Our collaborators from the
financial domain also provided valuable feedback and suggestions to us, which shows that
there is interest in this type of classification tool.

The results of our evaluation have outlined multiple aspects, our learning model could be
improved upon. In our examination of feature density and cross-document occurrence
(see Table 6.5), it became apparent that the named entities utilized in our tests are
quite sparse and often occur only in singular documents. Based on this observation
the learning model would greatly benefit from improving on the utilized features. The
performance could be improved by incorporating other NLP features such as a selection
of descriptive lexical categories, n-grams, named entity relations, or pre-trained word
embeddings. Another possibility is to change the learning model to a model like the
CNN [Kim14] that can learn representative features.

Examining the design of the application, there is a mismatch between the encoding of
the visualization and the interpretations of the users’ classification interaction. When the
model is updated, the documents points are placed in proximity to topics points based on
the model’s certainty that a document is affiliated with a topic. Classification is included
in the visualization as a direct interaction tool. Ideally, the classification interaction
would capture proximity information to the topic points as well, to incorporate additional
information into the classification. However, the multi-class learning models used are not
able to utilize additional information beyond a singular label. Therefore, the classification
interaction signals users a singular label by highlighting the corresponding topic point
during classification.

94

9.2. Future Work

During development, we explored solutions to translate the document placement into
assignment probabilities. Concerning document placement, in the case of this visual-
ization, the class labels form a convex planar polygon in which documents are placed
(see Figure 9.1). One solution to translate the distance relations between the document
point and the labels is to compute a coordinate based on the class labels. Hormann
and Floater [HF06] present such a solution by extending the concept of the barycentric
coordinates to arbitrary polygons in a plane. These coordinates can provide relations
between each class label and a position. However, these mean value coordinates may not
reflect the intentions of a user. Users may not take the distances of all labels to the point
they are manipulating into account.

Figure 9.1: The mean value coordinates from Hormann and Floater [HF06] can be utilized
to interpret a documents probability from the position of a document. Here, the space in
the Star Coordinates visualization is mapped onto the convex polygon that is produced
by connecting all topic points. The mean value coordinates provide a representation of
the document in relation to all topics.

A more appropriate approach could be to apply barycentric coordinates for triangles.
By placing a triangle through the center point and the nearest two class labels and
computing the coordinates based on this triangle, the resulting probabilities may fit closer
to the interpretation of a user (see Figure 9.2). Here, the coordinate corresponding to
the center of the visualization holds the users’ certainty while the other two coordinates
hold information for multi-class documents.

95

9. Conclusions and Future Work

Figure 9.2: Barycentric coordinates can provide another solution for translating a
document’s position into a probability. For this approach, a triangle is placed in the
Star Coordinates visualization between the nearest two topic points and the center. The
resulting probabilities represent the document as a mixture between the nearest two
topics while also encoding a sense of user certainty based on the distance to the center of
the visualization.

With probability-based labels, there is still a need for a learning model that can utilize
the information. Multiple learning models can accept labels in other forms than a hard
assignment to a certain class. The field of multi-label classification is concerned with
developing classifiers for problems where the given label is in the form of affiliation
probabilities to all classes. Often, the multi-label problem is transformed into multiple
single-label problems. One such popular approach is binary relevance [ZLLG18], where
an ensemble of single-label binary classifiers that has one classifier per class is trained.
The union of all classes that were predicted is taken as multi-label output. However, this
method is not able to take dependencies between labels into account. The label-powerset
[TK07] method can take dependencies between labels into account by expanding the
number of single-label classifiers with a selection of possible combinations of labels. Adding
the probabilistic information that reflects the users’ confidence to their classification
is another way how our additional information could be used. Nguyen et al. [NVH11]
approached this problem of learning binary classification models from soft labels by
replacing the probability assessments with the pairwise ordering of data samples in the
training data. These pairwise orderings are computed from the probabilistic soft labels,
which are then used to train a classifier.

96

9.2. Future Work

In general, utilizing the Star Coordinates visualization to generate topic affiliation
probabilities has the potential to simplify multi-label classification. Using the described
procedure to generate labels is beneficial as it limits the size of the label powerset to the
neighboring classes found in the visualization. However, to generate a useful simplification
of the classification, the reduced label powerset still has to capture the major correlations
between class labels. This approach is therefore very sensitive to the topic order.

Another aspect that could be improved is the application’s ability to signal the state of
the model and the result of the classification itself. Through the restrictive time frame of
the preliminary study, it became apparent that users struggle to identify documents that
are relevant for a topic. This is the result of hiding the titles of the documents, when the
document points are not interacted with. In a similar matter, it is hard to assess whether
the learning model in the background has captured a meaningful representation, as this
judgement also needs interaction with the document points. Our current application
only enables users to asses the model indirectly by comparing the terms of documents
that are placed in the same region of the Star Coordinates visualization. A solution for
both of these problems could be achieved by utilizing more information from the learning
model itself. In case of our naive Bayes classifier, the empirical probabilities of features
given for a class are very useful information, that could be utilized.

The empirical posterior probabilities are a basis on which our application can extend
its functionality on the term level. These probabilities can be displayed in lists for each
class separately with a filtering mechanism, so only term probabilities are shown that
are very high or low. In this manner, users could assess how the model’s understanding
of a particular topic is evolving in time, based on the terms it deems as informative.
Adding manual filtering for term probabilities would enable further exploration of the
learning model. With more insight into how terms are utilized in the learning model, an
interaction tool for manipulating individual terms becomes more valuable. Therefore,
the application’s term-weighting capabilities could be enhanced, so that the weights of
the terms can be changed sequentially throughout the learning process. Finally, with
available term probabilities, the highlighting of features based on probabilities in the
documents is another use of this data that is very beneficial to the task of model training
and assessing documents. By highlighting terms that are deemed decisive for the model,
users can find phrases in documents that contain these terms. This guides users to parts
of the document that might hold relevant information. As the meaning of longer text
snippets is easier to interpret than single words, this information might help users refine
the set of terms that is decisive for the classifier.

97

9. Conclusions and Future Work

Besides a basic display, the term probabilities can be incorporated into a visualization.
A visualization like a word cloud [CF01] for the term probabilities, where the font size
encodes the probability, might ease the exploration of terms. Dynamic changes within
the word cloud could give a helpful overview of how the classifier’s understanding of a
topic changes through an update. Incorporating the terms into our Star Coordinates
visualization could improve its capability to convey the result of the classification without
requiring interaction. Similarly to the FacetAtlas by Cao et al. [CSL+10], our visualization
could incorporate a density map of terms that contains high-class probabilities or terms
derived from a topic modeling approach. In this manner, the visualization could convey
where certain content is placed within the visual depiction, allowing for a fast initial
assessment of the results.

This overview of future work shows that visual active learning still has many open
questions to be investigated in the future. Our work provided the first evidence that
visual active learning through direct interaction has the potential to efficiently classify
text stream data. We, therefore, believe that it will be worthwhile to address the open
questions in the future.

98

List of Figures

1.1 Comparison between clustering and classification 4

2.1 Curse of dimensionality . 8
2.2 Separability in higher dimensions . 9
2.3 Bag-of-words . 10
2.4 Stopword removal . 11
2.5 Stemming . 12
2.6 N-grams . 13
2.7 Inside-outside-beginning format . 14
2.8 Word2vec . 15
2.9 Non-negative matrix factorization . 19
2.10 Active learning . 20

3.1 Streamit . 24
3.2 Dynamic maps . 25
3.3 Comparison between Star Coordinates and RadViz 26
3.4 Instance visualization . 28
3.5 Dis-Funcion . 29
3.6 Prolines and feasability map . 30
3.7 UTOPIAN . 31
3.8 Scatter plot visualization of binary decision boundary 32
3.9 RadViz visualization of classifier probabilities 33

4.1 Application pipeline . 36
4.2 Feature extraction process . 39
4.3 Document-term matrix alignment . 40
4.4 Star Coordinates embedding . 41
4.5 Patterns in classifier probability visualization 42
4.6 Ambiguities in the Star Coordinates embedding 43
4.7 Comparison of ordering strategies . 44
4.8 Comparison of overlap prevention strategies 45
4.9 Filtering mechanism . 46
4.10 Label determination . 47
4.11 Labeling color encoding . 48

99

4.12 Depiction of model update for labeling interaction 50
4.13 Depiction of model update for relabeling interaction 50
4.14 Depiction of model update for removal interaction 51
4.15 Application dashboard overview . 53

5.1 Application Data Structure . 56
5.2 Server Structure . 57
5.3 Client Structure . 59
5.4 Simulation Structure . 62

6.1 Computation of selection strategies . 66
6.2 ROC curve simplified example . 68
6.3 Comparison of model features . 69
6.4 Comparison of classifiers at initialization stage 71
6.5 Comparison of classifiers after 200 iterations 72
6.6 Comparison of labeling strategies on NYT dataset 73
6.7 Comparison of corresponding labeling strategies on NYT dataset 74
6.8 Comparison of learning strategies on Reuters R8 dataset 75
6.9 Comparison of labeling strategies on Reuters R8 dataset (first 1000 iterations) 75
6.10 ROC curve comparison of different learning strategies at different iterations 77

7.1 Dashboard of list view . 80
7.2 Study results: precision and recall . 84
7.3 Study results: accuracy of final models . 85
7.4 Study results: accuracy over iterations . 86
7.5 Study results: participant and simulated accuracy 87

8.1 Study results: corrected precision and recall 91

9.1 Label determination based on mean value coordinates 95
9.2 Label determination based on barycentric coordinates 96

100

List of Tables

2.1 Comparison of model accuracy on different datasets 16

4.1 Feature extraction abbrevations . 39

6.1 NYT dataset . 64
6.2 Reuters R8 dataset . 64
6.3 Overview of hyperparameter space in parameter tuning 68
6.4 Parameter space abbreviations . 68
6.5 Comparison of feature density and cross-document occurrence 70

7.1 NYT subsets for user study . 82
7.2 Tasks of the user study . 82
7.3 Overview of participant’s false selections 85

101

Bibliography

[AA15] Rubayyi Alghamdi and Khalid Alfalqi. A survey of topic modeling in
text mining. International Journal of Advanced Computer Science and
Applications (IJACSA), 6(1), 2015.

[ACZ+11] Jamal Alsakran, Yang Chen, Ye Zhao, Jing Yang, and Dongning Luo.
Streamit: Dynamic visualization and interactive exploration of text streams.
In 2011 IEEE Pacific Visualization Symposium (PacificVis), pages 131–138.
IEEE, 2011.

[Ama] Amazon Comprehend. https://aws.amazon.com/de/comprehend/.
[Accessed 7-October-2019].

[Amb] Ambiverse, Text to Knowledge. https://www.ambiverse.com. [Ac-
cessed 7-October-2019].

[Ang] Angular. https://angular.io. [Accessed 7-October-2019].

[AZ12] Charu C. Aggarwal and ChengXiang Zhai. A survey of text classification
algorithms. In Mining text data, pages 163–222. Springer, 2012.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 1–16. ACM, 2002.

[BD06] Christopher D. Brown and Herbert T. Davis. Receiver operating character-
istics curves and related decision measures: A tutorial. Chemometrics and
Intelligent Laboratory Systems, 80(1):24–38, 2006.

[BDK14] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count,
predict! a systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 238–247, 2014.

[Bel66] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

103

https://aws.amazon.com/de/comprehend/
https://www.ambiverse.com
https://angular.io

[BGV92] Bernhard E. Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152. ACM, 1992.

[Bis06] Christopher M. Bishop. Pattern recognition and machine learning. Springer,
2006.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing
with Python: analyzing text with the natural language toolkit. O’Reilly
Media, Inc., 2009.

[BLBC12] Eli T. Brown, Jingjing Liu, Carla E. Brodley, and Remco Chang. Dis-
function: Learning distance functions interactively. In Proceedings of the
2012 IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 83–92. IEEE, 2012.

[Ble12] David M. Blei. Probabilistic topic models. Communications of the ACM,
55(4):77–84, April 2012.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet
allocation. Journal of Machine Learning Research, 3(Jan):993–1022, 2003.

[Boo] Bootstrap. https://getbootstrap.com. [Accessed 7-October-2019].

[Bos] Mike Bostock. D3.js, Data-Driven Documents. https://d3js.org.
[Accessed 7-October-2019].

[Bre17] Leo Breiman. Classification and regression trees. Routledge, 2017.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information
retrieval, volume 463. ACM, 1999.

[CC16] Nan Cao and Weiwei Cui. Introduction to text visualization. Springer, 2016.

[CD18] Marco Cavallo and Çağatay Demiralp. A visual interaction framework for
dimensionality reduction based data exploration. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, page 635. ACM,
2018.

[CF01] Douglas Coupland and Jefferson Faye. Microserfs. The American Review
of Canadian Studies, 31(3):501, 2001.

[CGJ96] David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning
with statistical models. Journal of Artificial Intelligence Research, 4:129–
145, 1996.

[Chu08] Stephanie Chua. The role of parts-of-speech in feature selection. In Pro-
ceedings of the International MultiConference of Engineers and Computer
Scientists, volume 1, 2008.

104

https://getbootstrap.com
https://d3js.org

[Ciz18] Dea Cizmic. Exploratory data visualization dashboard for technical analysis
of commodity market indicators. Bachelor’s thesis, Institute of Computer
Graphics and Algorithms, Vienna University of Technology, April 2018.

[CLR13] Laura Chiticariu, Yunyao Li, and Frederick R. Reiss. Rule-based information
extraction is dead! long live rule-based information extraction systems!
In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 827–832, 2013.

[CLRP13] Jaegul Choo, Changhyun Lee, Chandan K. Reddy, and Haesun Park.
Utopian: User-driven topic modeling based on interactive nonnegative
matrix factorization. IEEE Transactions on Visualization and Computer
Graphics, 19(12):1992–2001, 2013.

[Coh17] David Cohn. Active learning. Encyclopedia of Machine Learning and Data
Mining, pages 9–14, 2017.

[CSBL16] Alexis Conneau, Holger Schwenk, Loıc Barrault, and Yann Lecun. Very
deep convolutional networks for natural language processing. arXiv preprint
arXiv:1606.01781, 2, 2016.

[CSL+10] Nan Cao, Jimeng Sun, Yu-Ru Lin, David Gotz, Shixia Liu, and Huamin
Qu. FacetAtlas: Multifaceted visualization for rich text corpora. IEEE
Transactions on Visualization and Computer Graphics, 16(6):1172–1181,
2010.

[CWL+10] Weiwei Cui, Yingcai Wu, Shixia Liu, Furu Wei, Michelle X. Zhou, and
Huamin Qu. Context preserving dynamic word cloud visualization. In 2010
IEEE Pacific Visualization Symposium (PacificVis), pages 121–128. IEEE,
2010.

[Dal18a] Robert Dale. Text analytics apis, part 1: The bigger players. Natural
Language Engineering, 24(2):317–324, 2018.

[Dal18b] Robert Dale. Text analytics apis, part 2: The smaller players. Natural
Language Engineering, 24(5):797–803, 2018.

[Das17] Sanjoy Dasgupta. Active Learning Theory, pages 14–19. Springer, 2017.

[DDF+90] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis. Journal
of the American Society for Information Science and Technology, 41(6):391–
407, 1990.

[DLZM10] Ali Daud, Juanzi Li, Lizhu Zhou, and Faqir Muhammad. Knowledge
discovery through directed probabilistic topic models: a survey. Frontiers
of Computer Science, 4(2):280–301, 2010.

105

[DS05] Franca Debole and Fabrizio Sebastiani. An analysis of the relative hardness
of Reuters-21578 subsets. Journal of the American Society for Information
Science and Technology, 56(6):584–596, 2005.

[EASS+18] Mennatallah El-Assady, Rita Sevastjanova, Fabian Sperrle, Daniel Keim,
and Christopher Collins. Progressive learning of topic modeling parameters:
a visual analytics framework. IEEE Transactions on Visualization and
Computer Graphics, 24(1):382–391, 2018.

[EFN12] Alex Endert, Patrick Fiaux, and Chris North. Semantic interaction for
visual text analytics. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 473–482. ACM, 2012.

[ERT+17] Alex Endert, William Ribarsky, Cagatay Turkay, William Wong, Ian Nab-
ney, I Díaz Blanco, and Fabrice Rossi. The state of the art in integrating
machine learning into visual analytics. In Computer Graphics Forum,
volume 36, pages 458–486. Wiley Online Library, 2017.

[FHJ51] Evelyn Fix and Joseph Hodges Jr. Discriminatory analysis-nonparametric
discrimination: consistency properties. Technical report, University of
California Berkeley, 1951.

[Fla] Flask | The Pallet Projects. https://palletsprojects.com/p/
flask/. [Accessed 7-October-2019].

[FSZ+16] Weimiao Feng, Jianguo Sun, Liguo Zhang, Cuiling Cao, and Qing Yang. A
support vector machine based naive Bayes algorithm for spam filtering. In
2016 IEEE 35th International Performance Computing and Communica-
tions Conference (IPCCC), pages 1–8. IEEE, 2016.

[Gen] Geneea, Intelligent Interpretation. https://www.geneea.com. [Ac-
cessed 7-October-2019].

[GHN13] Emden R. Gansner, Yifan Hu, and Stephen C. North. Interactive visu-
alization of streaming text data with dynamic maps. Journal of Graph
Algorithms and Applications, 17(4):515–540, 2013.

[Goo] Google Cloud, Natural Language. https://cloud.google.com/
natural-language/. [Accessed 7-October-2019].

[Har54] Zellig S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[HF06] Kai Hormann and Michael S. Floater. Mean value coordinates for arbitrary
planar polygons. ACM Transactions on Graphics (TOG), 25(4):1424–1441,
2006.

106

https://palletsprojects.com/p/flask/
https://palletsprojects.com/p/flask/
https://www.geneea.com
https://cloud.google.com/natural-language/
https://cloud.google.com/natural-language/

[HGM+97] Patrick Hoffman, Georges Grinstein, Kenneth Marx, Ivo Grosse, and Eugene
Stanley. Dna visual and analytic data mining. In Proceedings. Visualiza-
tion’97, pages 437–441. IEEE, 1997.

[HKBE12] Florian Heimerl, Steffen Koch, Harald Bosch, and Thomas Ertl. Visual
classifier training for text document retrieval. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2839–2848, 2012.

[HMdCM17] Lulu Huang, Stan Matwin, Eder J. de Carvalho, and Rosane Minghim.
Active learning with visualization for text data. In Proceedings of the
2017 ACM Workshop on Exploratory Search and Interactive Data Analytics,
pages 69–74. ACM, 2017.

[Hof99] Thomas Hofmann. Probabilistic latent semantic analysis. In Proceedings
of the Fifteenth conference on Uncertainty in artificial intelligence, pages
289–296. Morgan Kaufmann Publishers Inc., 1999.

[HQZ17] Minlie Huang, Qiao Qian, and Xiaoyan Zhu. Encoding syntactic knowledge
in neural networks for sentiment classification. ACM Transactions on
Information Systems (TOIS), 35(3):26, 2017.

[IBM] IBM Watson, Natural Language Understanding. https://www.ibm.
com/watson/services/natural-language-understanding/.
[Accessed 7-October-2019].

[Ihl] Alexander Ihler. Support Vector Machines (3): Kernels. https://www.
youtube.com/watch?v=OmTu0fqUsQk. [Accessed 7-October-2019].

[JGBM16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag
of tricks for efficient text classification. arXiv preprint arXiv:1607.01759,
2016.

[JM14] Dan Jurafsky and James H Martin. Speech and language processing, vol-
ume 3. Pearson London, 2014.

[Joa98] Thorsten Joachims. Text categorization with support vector machines:
Learning with many relevant features. In Machine Learning: ECML-98,
pages 137–142. Springer, 1998.

[Jol11] Ian Jolliffe. Principal component analysis. Springer, 2011.

[jQu] jQuery. https://jquery.com. [Accessed 7-October-2019].

[JWY+17] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao
Li, and Liang Zhao. Latent Dirichlet Allocation (lda) and topic modeling:
models, applications, a survey. Multimedia Tools and Applications, pages
1–43, 2017.

107

https://www.ibm.com/watson/services/natural-language-understanding/
https://www.ibm.com/watson/services/natural-language-understanding/
https://www.youtube.com/watch?v=OmTu0fqUsQk
https://www.youtube.com/watch?v=OmTu0fqUsQk
https://jquery.com

[Kan00] Eser Kandogan. Star coordinates: A multi-dimensional visualization tech-
nique with uniform treatment of dimensions. In Proceedings of the IEEE
Information Visualization Symposium, volume 650, page 22. Citeseer, 2000.

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional
neural network for modelling sentences. arXiv preprint arXiv:1404.2188,
2014.

[Kim14] Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

[KK15] Kostiantyn Kucher and Andreas Kerren. Text visualization techniques:
Taxonomy, visual survey, and community insights. In 2015 IEEE Pacific
Visualization Symposium (PacificVis), pages 117–121. IEEE, 2015.

[KKP+17] Minjeong Kim, Kyeongpil Kang, Deokgun Park, Jaegul Choo, and Niklas
Elmqvist. Topiclens: Efficient multi-level visual topic exploration of large-
scale document collections. IEEE Transactions on Visualization and Com-
puter Graphics, 23(1):151–160, 2017.

[Kru64] Joseph B. Kruskal. Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[KW52] Jack Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of
a regression function. The Annals of Mathematical Statistics, 23(3):462–466,
1952.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436, 2015.

[LBS+16] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya
Kawakami, and Chris Dyer. Neural architectures for named entity recogni-
tion. arXiv preprint arXiv:1603.01360, 2016.

[LCL+19] Shixia Liu, Changjian Chen, Yafeng Lu, Fangxin Ouyang, and Bin Wang.
An interactive method to improve crowdsourced annotations. IEEE Trans-
actions on Visualization and Computer Graphics, 25(1):235–245, 2019.

[LG94] David D. Lewis and William A. Gale. A sequential algorithm for training
text classifiers. In SIGIR’94, pages 3–12. Springer, 1994.

[LGH+17] Yafeng Lu, Rolando Garcia, Brett Hansen, Michael Gleicher, and Ross
Maciejewski. The state-of-the-art in predictive visual analytics. In Computer
Graphics Forum, volume 36, pages 539–562. Wiley Online Library, 2017.

[LM14] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference on Machine
Learning - Volume 32, pages 1188–1196, 2014.

108

[LS99] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788, 1999.

[LWC+18] Shixia Liu, Xiting Wang, Christopher Collins, Wenwen Dou, Fangxin
Ouyang, Mennatallah El-Assady, Liu Jiang, and Daniel Keim. Bridging
text visualization and mining: A task-driven survey. IEEE Transactions
on Visualization and Computer Graphics, 25(7):2482–2504, 2018.

[LXLZ15] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional
neural networks for text classification. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[MAP06] Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. Spam
filtering with naive Bayes-which naive Bayes? In CEAS 2006 - The Third
Conference on Email and Anti-Spam, July 27-28, 2006, Mountain View,
California, USA, volume 17, pages 28–69. Mountain View, CA, 2006.

[MC89] Michael McCloskey and Neal J. Cohen. Catastrophic interference in con-
nectionist networks: The sequential learning problem. In Psychology of
learning and motivation, volume 24, pages 109–165. Elsevier, 1989.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. arXiv preprint arXiv:1301.3781,
2013.

[Mey16] Robinson Meyer. How Many Stories Do Newspapers Publish Per Day?
https://www.theatlantic.com/technology/archive/2016/
05/how-many-stories-do-newspapers-publish-per-day/
483845/, 2016. [Accessed 7-October-2019].

[MH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[Mic] Microsoft, Project Entity Linking. https://labs.cognitive.
microsoft.com/en-us/project-entity-linking. [Accessed 7-
October-2019].

[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biology, 5(4):115–
133, 1943.

[MP18] Marcin M. Mirończuk and Jarosław Protasiewicz. A recent overview of
the state-of-the-art elements of text classification. Expert Systems with
Applications, 106:36–54, 2018.

[MRS10] Christopher Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to information retrieval. Natural Language Engineering, 16(1):100–103,
2010.

109

https://www.theatlantic.com/technology/archive/2016/05/how-many-stories-do-newspapers-publish-per-day/483845/
https://www.theatlantic.com/technology/archive/2016/05/how-many-stories-do-newspapers-publish-per-day/483845/
https://www.theatlantic.com/technology/archive/2016/05/how-many-stories-do-newspapers-publish-per-day/483845/
https://labs.cognitive.microsoft.com/en-us/project-entity-linking
https://labs.cognitive.microsoft.com/en-us/project-entity-linking

[MS05] Erkki Makinen and Harri Siirtola. The barycenter heuristic and the re-
orderable matrix. Informatica, 29(3):357–364, 2005.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in Neural Information Processing Systems 26, pages 3111–3119,
2013.

[Mur12] Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[Nat] Natural Language Toolkit. https://www.nltk.org/
#natural-language-toolkit. [Accessed 7-October-2019].

[New06] Mark E.J. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[NJ02] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative
classifiers: A comparison of logistic regression and naive Bayes. In Advances
in Neural Information Processing Systems, pages 841–848, 2002.

[NKNW96] John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William
Wasserman. Applied linear statistical models, volume 4. Irwin Chicago,
1996.

[Nod] Node.js. https://nodejs.org/en/. [Accessed 7-October-2019].

[NS07] David Nadeau and Satoshi Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30(1):3–26, 2007.

[Num] NumPy: a fundamental package for scientific computing with Python.
https://www.numpy.org. [Accessed 7-October-2019].

[NVH11] Quang Nguyen, Hamed Valizadegan, and Milos Hauskrecht. Learning
classification with auxiliary probabilistic information. In 2011 IEEE 11th
International Conference on Data Mining, pages 477–486. IEEE, 2011.

[Ope] Thomson Reuters, Open Calais. http://www.opencalais.com. [Ac-
cessed 7-October-2019].

[Por80] Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

110

https://www.nltk.org/#natural-language-toolkit
https://www.nltk.org/#natural-language-toolkit
https://nodejs.org/en/
https://www.numpy.org
http://www.opencalais.com

[PSPM15] Jose Gustavo Paiva, William Robson Schwartz, Helio Pedrini, and Rosane
Minghim. An approach to supporting incremental visual data classification.
IEEE Transactions on Visualization and Computer Graphics, 21(1):4–17,
2015.

[PVG+11] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Eduard Duchesnay.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[Pyt] Python Software Foundation. Python programming language. https:
//www.python.org. [Accessed 7-October-2019].

[RD89] Ritchey A. Ruff and Thomas G. Dietterich. What good are experiments?
In Proceedings of the sixth international workshop on Machine learning,
pages 109–112. Elsevier, 1989.

[Reu] Reuters-21578 Text Categorization Collection. https://www.cs.
umb.edu/~smimarog/textmining/datasets/. [Accessed 7-October-
2019].

[RG65] Herbert Rubenstein and John B. Goodenough. Contextual correlates of
synonymy. Communications of the ACM, 8(10):627–633, 1965.

[RKKF18] Patrick Riehmann, Dora Kiesel, Martin Kohlhaas, and Bernd Froehlich. Vi-
sualizing a thinker’s life. IEEE Transactions on Visualization and Computer
Graphics, 25(4):1803–1816, 2018.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386, 1958.

[RSRDS16] Manuel Rubio-Sánchez, Laura Raya, Francisco Diaz, and Alberto Sanchez. A
comparative study between radviz and star coordinates. IEEE Transactions
on Visualization and Computer Graphics, 22(1):619–628, 2016.

[Set09] Burr Settles. Active learning literature survey. Technical report, Department
of Computer Sciences, University of Wisconsin-Madison, 2009.

[SG10] Christin Seifert and Michael Granitzer. User-based active learning. In 2010
IEEE International Conference on Data Mining Workshops, pages 418–425.
IEEE, 2010.

[SJ72] Karen Spärk Jones. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation, 28(1):11–21, 1972.

111

https://www.python.org
https://www.python.org
https://www.cs.umb.edu/~smimarog/textmining/datasets/
https://www.cs.umb.edu/~smimarog/textmining/datasets/

[SLL+16] Xiaobing Sun, Xiangyue Liu, Bin Li, Yucong Duan, Hui Yang, and Jiajun
Hu. Exploring topic models in software engineering data analysis: A
survey. In 2016 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pages 357–362. IEEE, 2016.

[SLMN11] Richard Socher, Cliff C. Lin, Chris Manning, and Andrew Y. Ng. Parsing
natural scenes and natural language with recursive neural networks. In
Proceedings of the 28th International Conference on Machine Learning,
pages 129–136, 2011.

[Smi18] Martin Smiech. Configurable text exploration interface with NLP for
decision support. Bachelor’s thesis, Institute of Computer Graphics and
Algorithms, Vienna University of Technology, April 2018.

[SOS92] Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by com-
mittee. In Proceedings of the fifth annual workshop on Computational
learning theory, pages 287–294. ACM, 1992.

[spa] spaCy, Industrial-strength Natural Language Processing in Python. https:
//spacy.io. [Accessed 7-October-2019].

[Spr] Vincent Spruyt. The Curse of Dimensionality in clas-
sification. https://www.visiondummy.com/2014/04/
curse-dimensionality-affect-classification/. [Accessed
7-October-2019].

[SPW+13] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D.
Manning, Andrew Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In Proceedings of the
2013 Conference on Empirical Methods in Natural Language Processing,
pages 1631–1642, 2013.

[SZS+16] Dominik Sacha, Leishi Zhang, Michael Sedlmair, John A. Lee, Jaakko
Peltonen, Daniel Weiskopf, Stephen C. North, and Daniel A. Keim. Visual
interaction with dimensionality reduction: A structured literature analysis.
IEEE Transactions on Visualization and Computer Graphics, 23(1):241–250,
2016.

[Tex] TextRazor, The Natural Language Processing API. https://www.
textrazor.com. [Accessed 7-October-2019].

[The] The New York Times. https://www.nytimes.com. [Accessed 7-
October-2019].

[TK07] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining (IJDWM),
3(3):1–13, 2007.

112

https://spacy.io
https://spacy.io
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
https://www.textrazor.com
https://www.textrazor.com
https://www.nytimes.com

[Typ] TypeScript, JavaScript that scales. https://www.typescriptlang.
org. [Accessed 7-October-2019].

[VA13] Vincent Van Asch. Macro-and micro-averaged evaluation measures. Belgium:
CLiPS, pages 1–27, 2013.

[WBD+18] John Wenskovitch, Lauren Bradel, Michelle Dowling, Leanna House, and
Chris North. The effect of semantic interaction on foraging in text analysis.
2018 IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 13–24, 2018.

[WM12] Sida Wang and Christopher D. Manning. Baselines and bigrams: Simple,
good sentiment and topic classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short Papers-
Volume 2, pages 90–94. Association for Computational Linguistics, 2012.

[XC16] Yijun Xiao and Kyunghyun Cho. Efficient character-level document clas-
sification by combining convolution and recurrent layers. arXiv preprint
arXiv:1602.00367, 2016.

[YHPC18] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria.
Recent trends in deep learning based natural language processing. IEEE
Computational Intelligence Magazine, 13(3):55–75, 2018.

[ZL15] Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv
preprint arXiv:1502.01710, 2015.

[ZLLG18] Min-Ling Zhang, Yu-Kun Li, Xu-Ying Liu, and Xin Geng. Binary relevance
for multi-label learning: an overview. Frontiers of Computer Science,
12(2):191–202, 2018.

[ZLR16] Rui Zhang, Honglak Lee, and Dragomir Radev. Dependency sensitive
convolutional neural networks for modeling sentences and documents. arXiv
preprint arXiv:1611.02361, 2016.

[ZZL15] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolu-
tional networks for text classification. In Advances in Neural Information
Processing Systems 28, pages 649–657, 2015.

113

https://www.typescriptlang.org
https://www.typescriptlang.org

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Requirements
	Method Overview
	Contribution

	Topic Modeling and Text Classification
	Machine Learning
	Natural Language Features
	Supervised Learning / Text Classification
	Unsupervised Learning / Topic Modeling
	Active Learning

	Related Work
	Text Stream Visualization
	Visualizing Document Similarities
	Steerable Model Visualization

	Visual Active Learning
	Overview
	Data Acquisition
	Feature Engineering
	Classification Model
	Augmented Star Coordinates
	Active Learning with Star Coordinates
	Model Update
	Dashboard

	Implementation
	Server
	Client
	Simulation Server

	Experiments
	Datasets
	Procedure
	Measures
	Parameter Tuning
	Active Learning Strategy Evaluation

	Evaluation
	List Condition
	Hypotheses
	Study Design
	Analysis
	Results
	Limitations

	Discussion
	Discussion of Hypotheses
	Qualitative Observations

	Conclusions and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	Bibliography

