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Kurzfassung

3D mesh unfolding ist der Prozess der Transformation eines 3D Netze in ein 2D Netze.
Diese Technik kann verwendet werden, um Papercraft-Modelle zu erstellen, dabei wer-
den 3D-Objekte mit einem Papier oder papierähnlichem Material rekonstruiert. Da die
Rekonstruktion von Modellen schwer sein kann, benötigen Anwender Indikatoren, welche
Flächen miteinander verklebt werden sollen. In dieser Arbeit werden sogenannte Gluetags
vorgestellt, die Anwendern Platz geben, um Klebstoff aufzutragen, um die Rekonstruktion
zu erleichtern. Das Hinzufügen dieser Gluetags erhöht die Schwierigkeit überlappungsfreie
Entfaltungen zu finden, die aus einem einzigen Stück Papier ausgeschnitten werden kön-
nen. Dabei erhöht sich die Anzahl der möglichen Entfaltungen, während der Lösungsraum
schrumpft. Ein Minimum Spanning Tree Ansatz wird verwendet, um mögliche Entfaltun-
gen zu berechnen, während simuliertes Glühen verwendet wird, um die Entfaltung zu
optimieren und eine Lösung ohne Überlappungen zu finden. Quantitative Experimente
deuten darauf hin, dass der vorgeschlagene Ansatz schnelle Ergebnisse für kleinere Netze.
Für größere Netze werden Ergebnisse innerhalb eines größeren Zeitrahmens geliefert, bei
diesen zeigen aber auch eindeutige zeitliche Beschränkungen auf.
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Abstract

3D Mesh Unfolding is the process of transforming a 3D mesh into a 2D planar patch. This
technique can be used to create papercraft models, where 3D objects get reconstructed
from planar paper or paper-like material. As the reconstruction of unfolded models
can be very hard, users need indicators of which faces have to be glued together. In
this thesis, Gluetags are introduced to give users extra space to apply glue to ease
the reconstruction. The addition of these Gluetags increases the difficulty of finding
overlap-free unfoldings that can be cut out of a single piece of paper to reconstruct the
model. The amount of possible unfoldings increases while the solution space shrinks when
Gluetags are added. A minimum spanning tree approach is used to compute possible
unfoldings, whereas simulated annealing is used to find an unfolding with no overlaps.
Quantitative experiments suggest that the proposed method can yield fast results for
smaller meshes. Results for larger meshes are achievable within an increased timeframe,
but they also show time limitations for this approach.
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CHAPTER 1
Introduction

This chapter gives a brief overview of what papercraft is, and insights into the background
of this work. Furthermore, it explains the motivation and goals of this thesis. Lastly, it
discusses shortly the results and describes how the remainder of this thesis structured.

1.1 Background

Papercraft is a widely popular art of creating two or three-dimensional objects from
cardboard or paper, as seen in figure 1.1. The models that are created range from simple
ones, like paper aeroplanes, to elaborate models of buildings or districts for city planning.

Figure 1.1: Two papercraft models.
.
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1. Introduction

Further, it can be used in combination with self-folding materials to form structures after
printing the planar patch. In order to build papercraft models a 3D mesh representing the
object needs to be unfolded into a single 2D patch or multiple 2D patches. Takahashi et
al. [TWS+11] found that unfolding into a single 2D patch avoids the problem of seeking
the correspondences between the boundary edges of different patches when merging them.
The resulting mesh can, for example, be printed onto paper and then reconstructed into
the 3D model. Due to two main problems occurring during the process of unfolding this
task is highly complex. Distortion of the model, as well as faces overlapping each other,
are problems that occur when unfolding a 3D mesh whereas both should be avoided to
allow authentic reconstruction.

1.2 Motivation

The reconstruction of a model can be very hard, even with indicators that show which
faces should be glued together, like the solution presented by Takahashi et al. [TWS+11].
Glueing the faces together if they are tiny is still a hard task, because there is almost
no space to apply glue to. This thesis introduces Gluetags to make the reconstruction
of models easier. These Gluetags add small faces on edges that are cut and give users
space to apply glue. Adding Gluetags, which can improve the reconstruction experience,
has not been well explored as most of the previous work focused on finding ways to get
highly qualitative unfoldings. The inclusion of Gluetags makes the problem more difficult
as the solution space for an unfolding without overlaps shrinks, whereas the search space
of possible unfoldings and possible Gluetag positions increases.

1.3 Goal

The goal of this thesis is to explore the addition of Gluetags to cut edges. This thesis
proposes the addition of Gluetags in advance to the 3D-Model before the unfolding
process starts. During the unfolding Gluetags are treated as part of the original mesh.
Hence the same unfolding algorithms can be used without further changes. Steps of the
process are visualised and allow users to interact with both the 3D-Model and the final
planar patch.

1.4 Results

The suggested approach generates results in a limited amount of time. Experiments
strongly suggest that the time frame for finding unfoldings increases as meshes increase
in size. Additionally the layout of faces influences the time to find unfoldings. Meshes
with less than 200 triangles are unfolded consistently without any overlaps remaining,
whereas meshes with up to 400 triangles can be unfolded within an increased timeframe.
Meshes over 700 faces cannot be consistently resolved. Another factor impacting the
time to solution and quality of the result is the size of Gluetags. An increased Gluetag
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1.5. Structure

size makes finding overlap free unfolding less likely. The size of Gluetags can be adjusted
to counteract the increase in time needed for unfolding meshes with a higher face count.

1.5 Structure
The remainder of this thesis is structured as follows. In chapter 2, we provide an
overview of previous findings related to 3D Mesh Unfolding and highlights differences to
the proposed approach in this thesis. It also discusses the theoretical background and
related work for simulated annealing, that optimises the search for unfoldings. Chapter 3
describes the concepts of dual graphs and minimum spanning trees, and further describes
the data structure for the suggested approach. The next chapter, 4, gives an overview
of the processing pipeline, that computes an unfolding and describes necessary steps in
detail. Chapter 5 brings insight into the implementation of the previously explained
approach and focuses on the simulated annealing process. Chapter 6 shows the results
of the implemented approach and evaluates its performance and limitations. Finally,
chapter 7 summarises the findings and provides an outlook on future work.
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CHAPTER 2
Related Work

This chapter focuses on previous work done on the topic of optimising the unfolding of
3D Meshes but also points out the key differences to the approach proposed in this thesis.
Furthermore, it presents the optimisation technique of simulated annealing.

2.1 Optimised Unfolding of 3D Meshes
Mesh Unfolding has different applications, like creating papercraft models [TWS+11,
SP11] and the creation of models from self-folding materials [FTS+13, Tib14]. Many
different unfolding techniques have been explored. Theoretical approaches for unfolding
meshes have been intensively explored [She75], while other authors focus on different
kind of meshes, for example, orthogonal polyhedra [XKKL16, DFO07, DDF14].

Takahashi et al. [TWS+11] use a genetic-based algorithm to find unfoldings. They unfold
3D Meshes based on polyhedron models into a single patch, which is still a well-known
open problem. Their heuristic approach tries to find distortion-free unfoldings. The key
concept is to use topological surgery to construct models by stitching together boundary
edges of the unfolded mesh.

This thesis, on the other hand, uses the meta-heuristic simulated annealing approach
to find unfoldings. Furthermore, the key concept of the proposed approach is to find
unfoldings based on minimum spanning trees that can be calculated from the dual graph
of the mesh.

Straub et al. [SP11] explored the unfolding and adding Gluetags to an unfolded mesh.
They also explore the removal of overlaps by introducing new subdivisions to the mesh.
As in the previously mentioned paper, a heuristic approach is used to calculate possible
unfoldings. They use a greedy algorithm to optimise the cutout and to resolve overlaps.
Gluetags that have been added to an unfolding are optimised, i.e. changed in size to fit
and non-overlap, after an unfolding is found.
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2. Related Work

In this thesis, the proposed algorithm computes all possible Gluetags beforehand and
unfolds them together with the original mesh. Only necessary Gluetags are considered
for each unfolding. Furthermore, the Gluetags are not treated special, but as part of the
mesh and they are therefore not post-processed and changed.

Mitani and Suzuki [MS04] propose a different approach. In their paper, they describe the
production of unfoldings by using strip-based approximation. They propose to segment
meshes into parts of easily reconstructible segments. This is achieved using feature
extraction. They add internal cut lines whenever a feature, like a dent in the mesh, is
detected on a triangle strip, to make it reconstructible. Due to this simplification, they
produce a rather large error compared to other simplification methods. Their solution
mostly focuses on large mesh models where they merge regions between 60 and 250
triangles.

In this thesis, we suggest an authentic reconstruction of the original model. Therefore no
mesh simplification methods are used and the reconstructed model is authentical to the
original model.

In contrary to Chang et al. [CY17], where the introduction of additional cuts into the
polyhedra is proposed, the suggested approach in this thesis only cuts along edges that are
later glued together again, therefore the original model is not changed during unfolding.

2.2 Optimisation Techniques

As the unfolding of 3D Meshes is considered an NP-complete problem[HE12] optimisation
techniques are necessary to minimise the time needed to find a solution. Many optimisation
techniques are well explored, like greedy algorithms[DT96] or heuristic optimisation
techniques[LES08]. This thesis proposes to use simulated annealing as the optimisation
technique for the problem of finding optimal unfoldings. Compared to hill climbers,
simulated annealing is less likely to get stuck in local optimums, which often appear
in problems akin to 3D Mesh Unfolding. Furthermore, simulated annealing is easy to
implement and very configurable, as later explained in this section.

Simulated annealing is a well-known optimisation process [KGJV83] that is widely
applicable in problems found in computer science [GFR94] [DA91] [BM95] and other
scientific fields [PBARCC90] [SDJ95]. This process tries to emulate the annealing of
metal that is being processed.

The main goal is to find an minimum value of a function, which is called the cost function,
which has many independent variables. A typical example that simulated annealing
is used is the travelling salesman problem [MGPO89], where the most effective route
between different cities has to be found.

Simulated annealing is an iterative process that starts with a system and its configuration
P . For this configuration, the cost function calculates a value, which is called the
energy of the configuration E. In each iteration, the configuration P is rearranged to

6



2.2. Optimisation Techniques

a configuration P ′, for which the cost function calculates the value E′. Let E′ ≤ E be
true, then the new configuration P ′ replaces P as the base configuration, from which
new configurations are arranged. This iteration repeats until a temperature T reaches a
defined minimum temperature Tmin, as T cools down in each iteration. When T reaches
Tmin the value E of configuration P is assumed to be minimal.

The process has to be extended by another step to counteract the problem of deadlocking,
which happens when a configuration P reaches a local minimum, instead of the global
one. To avoid such situations, let ∆E = E − E′ be the difference between the energy
of the old configuration and the energy of the new configuration. If ∆E ≤ 0 holds true
the new configuration is accepted, otherwise if ∆E > 0 the new configuration is treated
probabilistic, where the chance of accepting it is (∆E) = exp(−∆E/kBT ), where kB is
the Boltzmann constant. If R < P (∆E) then the new configuration is accepted, where
R is a uniformly distributed random number within the range of [0, 1]. Otherwise, it
discards the new configuration. As T decreases over time, it gets less likely to accept
worse configurations and the algorithm execution comes to an end.

To summarise, simulated annealing consists of four essential components. First, a concise
description of the configuration of a system is required. Second, a generator, which
generates random moves, that changes the configuration of a system is needed. A
quantitative function that evaluates the trade-offs for each iteration needs to be defined.
Last but not least, the system can only evolve with an annealing schedule of temperatures
and length of time. This includes a cooling-rate used to stop the process, which tries to
emulate the cooling down of metal which it can only be formed while it is hot.

7





CHAPTER 3
Definition of Data and

Key Concepts

This chapter describes the properties of the data that is processed in the proposed
implementation. It also provides definitions for the key concepts used in this thesis.

3.1 Data Representation of the 3D Mesh Model
The original mesh data has to meet the following requirements to be applicable for the
suggested approach.

• Mesh data is in the Object File Format (.off)

• Mesh data is triangulated

• No duplicated vertices, edges or zero-area faces

• Mesh has no holes

• All faces are connected

The data is read from a file and saved into the CGAL [The19] data structure Polyhedron_3.
A Polyhedron_3 object consists of vertices, edges and facets and an incidence relation on
them, as shown in Figure 3.1. An halfedge and an opposite halfedge, that points into the
opposite direction, represent each edge of the mesh. These halfedges consist of vertex
pairs that can be accessed. The opposite halfedge links each face to its neighbouring face,
also the halfedges are linked together, therefore enabling iterating through all halfedges
of a face. With this data structure, all information is available enabling the application
of the approach suggested in this thesis.
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3. Definition of Data and
Key Concepts

opposite halfedge

halfedge

next halfedge
prev.

halfedge
incident vertex

incident facet

Figure 3.1: CGAL Polyhedron_3 datastructure visualised. Adapted from the CGAL
user manual [The19].

3.2 Dual Graph
Let GM be the graph representation of a mesh, which is defined by its vertices V and
undirected edges E between the vertices. GMd

= (Vd, Ed) is called the dual graph of
a graph GMd

= (V, E), which can be obtained by calculating a dual vertex Vd in each
enclosed facet and an dual-edge Ed for every two facets separated by an edge in E [GY04],
as seen in Figure 3.2.

The dual graph can then be used to find an unfolding, as a dual-edge connects each
neighbouring facets. These dual-edges can either represent an edge that is cut or an edge
that is used for bending, which means the dual graph contains all edges, whether they
are cut or bent, of the mesh model. A graph has only one dual graph, and the calculation
of it can be done very efficiently, which makes it a very compelling data structure to use
for 3D mesh unfolding.

3.3 Cut- and Bend Edges
In this thesis, each edge of the dual graph can represent a cut edge or a bend edge. A cut
edge is an edge that is cut to be able to unfold the mesh and can be glued back together
later. Contrary to that, a bend edge is not cut but bent in the process of reconstruction.

3.4 Minimum Spanning Tree
Let G = (V, E) be a connected undirected graph with |V | = n vertices and |E| = m edges.
Given a value c(v, w) for each edge (v, w) ∈ E, a spanning tree T = (V, E′), E′ ⊆ E such
that

∑
{v,w}∈E′ c(v, w) is minimal [CT76]. An option to compute a minimum spanning

tree is to first sort the edges by their weight and then one edge after another is added
to the minimum spanning tree. If an edge makes the graph cyclic, this edge is removed
again. After this process, the minimum spanning tree is defined by the edges that are

10



3.4. Minimum Spanning Tree

Figure 3.2: (black) Shows a graph with undirected edges. (green solid and dotted) Shows
the graphs complete dual graph. (green solid) Shows a minimum spanning tree of the
dual graph.

not discarded. Many simple algorithms for computing minimum spanning trees are
available [Kru56, AMOT90]. A minimum spanning tree is therefore acyclic by definition
and can be used to find an unfolding, as an unfolding must not contain cycles as well.

If the minimum spanning tree is calculated from the dual graph, the edges that are
part of the minimum spanning tree are bend edges. All other edges, which are not in
the minimum spanning tree, are cut edges. Therefore, due to its simple calculation, a
minimum spanning tree in combination with the dual graph is a good tool to calculate
possible unfoldings.

A weighted graph, where no edges have the same weight, has exactly one minimum
spanning tree. This is a problem since the dual graph does not inherently have weights
assigned to edges. Weights need to be assigned to each edge of the dual graph. However,
the weights cannot be constant values, as it is done for the travelling salesman problem,
because not all minimum spanning trees will yield an unfolding without any overlaps. As
initial weights, this thesis proposed to random values between (0, 1).

11



3. Definition of Data and
Key Concepts
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Figure 3.3: Exemplary trapezoid Gluetag (green) attached to its source triangle edge
(blue) and the triangle it will be glued to (red).

3.5 Gluetag

A Gluetag is a space that users can use to apply glue. It can have different forms, for
example, the shape of a trapezoid, as shown in figure 3.3. As seen in figure 3.3, for
each Gluetag exists one source and one destination edge. As a result there exist two
valid positions for each that can be swapped to point into the other direction, therefore
switching the source and target edge. In this thesis, we propose trapezoid-shaped Gluetags
which are put on one side of a cut edge at most. Another advantage of the trapezoid
shape is that the Gluetags are treated the same way as the triangles of the original mesh,
since each trapezoid consists of two triangles.

3.6 Unfolding

An unfolding is defined as the 2D representation of the 3D Model, after unfolding. It is
created by unfolding faces after each other, according to the minimum spanning tree. The
exact order of which face is unfolded first can be neglected as the minimum spanning tree
defines exactly one unfolding. The quality of an unfolding is defined by the overlapping
area in this thesis, since distortion cannot appear due to the used algorithm. In this
thesis, an optimal or correct unfolding is therefore defined as an unfolding without
distortion of faces and no overlapping areas. The approach suggested in this thesis avoids
distorting faces to make an accurate reconstruction possible. Additionally it is necessary

12



3.6. Unfolding

to guarantee that areas do not overlap to enable the creation of a cut-out using a single
piece of paper.
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CHAPTER 4
Methodology

Figure 4.1 gives an overview of the solution proposed in this thesis. It shows each step
from loading a 3D Model to visualising the resulting unfolded model. After loading a
mesh, its dual graph is calculated as a first step, as seen in Figure 4.1, as it is necessary
for all later calculations. After that for each edge, two Gluetags are calculated, each
targeting one facet of the edge and having its source on the other facet, see Figure 3.3.
Then the simulated annealing process starts. Each iteration calculates and unfolds a new
minimum spanning tree. Afterwards overlaps are calculated, if overlaps are found a new
minimum spanning tree is calculated. If no overlaps are found, the process ends, as an
overlap-free solution has been found. In the following sub-chapters, each step is described
in more detail, whereas the simulated annealing process is the focus of chapter 5.

Load 3D Model

Calculate
Dualgraph (4.1)

Calculate
Gluetags (4.2)

Calculate
MSP (4.3)

Unfold (4.4) Detect Over-
laps (4.5)

Visualize
Unfolded Model No Overlaps Found

Overlaps Found

Simulated Annealing Loop (5.2)

Figure 4.1: Overview of the 3D Mesh-Unfolding Process.
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4. Methodology

4.1 Calculating the Dualgraph
As the dual graph, described in chapter 3, is calculated from the original mesh, which
does not change during the unfolding process, the dual graph is calculated only once in
the beginning, as shown in Figure 4.1. The neighbourhood relation of the facets can be
derived from the half edges connecting the mesh vertices.

The dual graph is calculated by iterating through all facets of the mesh. For each facet, we
need to iterate through the half edges, where the opposite half-edges are used to identify
the neighbouring face. These two facets are saved as an edge and can be initialised with
a weight. In this thesis, the weight is initialised and changed throughout the algorithm
using a random number to be able to utilise the random walk approach of simulated
annealing.

4.2 Calculating the Gluetags
The second step in the pipeline shown in Figure 4.1 is to calculate Gluetags. For each
edge of the dual graph, a Gluetag is calculated for both facets connected by this edge.
The endpoints of an edge are the base of a Gluetag. As Gluetags, an example shown in
Figure 3.3, can vary in shape and size, this thesis proposes Gluetags in the shape of a
trapezoid as it brings a few advantages.

Two triangles define a trapezoid. Therefore algorithms that are applied to triangles of the
mesh can be applied to the Gluetags without altering them. As the top of the trapezoid
is smaller than the base, Gluetags that are placed next to each other are less likely to
overlap compared to rectangular Gluetags. The algorithm calculates the height of the
Gluetag depending on the targeted facet so that it takes up a maximum of 20 percent of
the targeted facets space. The height of the Gluetag is an experimental value, as well as
the shape, to provide users enough extra space, while not shrinking the solution space
further than necessary.

Gluetags are calculated once after the dual graph was calculated, as the edges they are
linked to do not change. The algorithm chooses the Gluetags based on the calculated
minimum spanning tree.

4.3 Calculating a Minimum Spanning Tree
In the first step, as shown in Figure 4.1, the algorithm calculates a minimum spanning
tree from the dual graph. This is done using Kruskal’s Algorithm [Kru56] to find the
shortest spanning subtree.

For this, the edges are sorted by their weight in ascending order. Then the algorithm
iterates through all edges and adds each edge to an adjacency list. This list is used to
check if the recently added edge causes the graph to be cyclic. If this is the case, the
edge last added is removed and inserted into a list containing the cut edges. Otherwise,
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4.4. Unfolding the 3D Mesh using the Minimum Spanning Tree of its Dual Graph

x

y

z
A

B / A

C / B

C

(a) 3D Mesh of a box.

x

y

a b / a

c / b c1c2

(b) Unfolding of the first two triangles.

Figure 4.2: 3D model of a box and the unfolding of the first two triangles.

the edge is added to a list containing the bend edges. Furthermore, for each iteration,
we save the information which face is discovered, so we can assure that the graph is a
connected graph besides being acyclic, which is necessary. As a result, the adjacency list
defines a minimum spanning tree.

To be able to calculate different minimum spanning trees, the weights of an edge is
changed on each iteration, which is part of the simulated annealing process. Fur further
details see chapter 5.

4.4 Unfolding the 3D Mesh using the Minimum Spanning
Tree of its Dual Graph

Following the calculation of the minimum spanning tree, as shown in Figure 4.1, an
unfolding of the mesh is calculated. The adjacency list of the last step can be used to
determine the order of the faces for unfolding.

Let T = (A, B, C) be a triangle defined by three vertices A(xA, yA, zA), B(xB, yB, zB)
and C(xC , yC , zC), where xN , yN and zN , with N ∈ {A, B, C}, are the coordinates of
each vertex. Let Tp = (a, b, c) be the planar representation of the given triangle, defined
by a(xa, ya), b(xb, yb) and c(xc, yc), where again xn, yn, with n ∈ {a, b, c}, are the defining
coordinates of each vertex.

The first face, which is on index zero of the adjacency list, the green triangle (A, B, C) in
figure 4.2, that is unfolded is treated as a particular case, as the later triangles depend on
the position of the vertices of the first triangle. Let A be the vertices of the first triangle,
and it is set to (0, 0) disregarding the position of A as it is not relevant. The algorithm
calculates b by calculating the distance AB as it is equal to ab, which can be calculated
as AB = ab =

√
(xA − xB)2 + (yA − yB)2 + (zA − zB)2.
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4. Methodology

Now b can be set to (AB, 0), with y being set to 0 as the original orientation of the
triangle does not need to be retained. The last vertices c is again a particular case. Two
solutions are possible for c, as it can be placed on either side of the edge (a− b).

s = ‖(B −A)× (C −A)‖
(AB)2

d = (B −A) · (C −A)
(AB)2

cx = ax + d(bx − ax)− s(by − ay)
cy = ay + d(by − ay) + s(bx − ax)

(4.1)

The first candidate solution for c1 = (cx, cy) is defined by the formulas 4.1. The second
candidate solution for c2 can be calculated by the formulas 4.2.

cx = ax + d(bx − ax) + s(by − ay)
cy = ay + d(by − ay)− s(bx − ax)

(4.2)

For the first triangle, either c1 or c2 can be chosen, as it only changes in which direction
the other vertices are unfolded. For all other triangles a check needs to be performed, so
that c is not on the same side as it is for the previous triangle.

Now let cprev = (axprev , ayprev ) be the vertex of the previous triangle that it does not
share with the current triangle, as seen in figure 4.2. To calculate the side on which the
vertex c has to be put can be determined by the formula 4.3.

f = (cx − ax) ∗ (by − ay)− (cy − ay) ∗ (bx − ax) (4.3)

In theory these formulas can yield three different results f < 0 for one side, f > 0 for the
other side and f = 0 if it is on the line. But as we do not have any degenerate triangles in
our mesh there are two cases. f needs to be calculated for cprev and for the two solutions
of the previous formula c1 and c2. Now we are left with two possibilities, if fprev < 0
and fc1 > 0 or if fprev > 0 and fc1 < 0 then we set c = c1, otherwise c = c2. In case of
figure 4.2 the previous vertices that is not shared is left of the shared edge, therefore the
vertices c is set on the right side.

The unfolding of Gluetags works in the same way, as the Gluetag consists of two triangles.

4.5 Detecting Overlaps
The last step of the simulated annealing loop, as shown in figure 4.1, is to determine
the quality of the unfolding. As a measurement for the quality, merely the sum of the

18



4.5. Detecting Overlaps
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(a) Two triangles T = (A, B, C) and
S = (P, Q, R) overlapping each other.

P
Q

A

B

(b) AB and PQ intersecting each other.

Figure 4.3: Overlaps of triangles resulting in different overlapping areas.

(a) Two triangles overlap each other,
resulting in a triangle describing the
red overlap area.

(b) Two triangles overlap each other,
resulting in a polygon describing the
red overlap area.

Figure 4.4: Overlaps of triangles resulting in different overlapping areas.

overlapping areas is used. Overlaps, as seen in Figure 4.4, can happen between triangles,
triangles and Gluetags or between Gluetags.

The detection is a two-step process. First, only the triangles are checked if they overlap
each other. In the second step, if no triangles overlap each other, the Gluetags are
checked if they overlap each other or a triangle. The algorithm checks if any of their lines
intersect with each other to find out if triangles overlap.

Let T = (A, B, C) and S = (P, Q, R) be two triangles in figure 4.3 that might be
overlapping each other, defined by their points A, B, C, P , Q, R. Therefore we check
the lines AB and PQ, as seen in figure 4.3b, if they intersect with each other. For two
line segments, we define a general case for overlaps and a special case. In general the
lines intersect only if the points (A, B, P ) (dotted green line) and (A, B, Q) (solid green
line) have different orientations as well as (P, Q, A) (dotted red line) and (P, Q, B) (solid
red line) have different orientations. In figure 4.3, it can be seen that the green lines have
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(a) Two triangles T = (A, B, C) and
S = (P, Q, R) not overlapping each
other.
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(b) AB and PQ not intersecting each
other.

Figure 4.5: Overlaps of triangles resulting in different overlapping areas.
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(a) Two triangles T = (A, B, C) and
S = (P, Q, R) overlapping each other.

A B PQ

(b) AB and PQ are colinear and inter-
sect each other.

Figure 4.6: Two triangles overlapping each other, due to colinear lines.

different orientations and red lines too. Therefore the lines intersect, which means that
the triangles overlap each other. This test is repeated for every pair of lines.

Figure 4.5 shows two triangles that do not intersect each other, as (A, B, Q) and (A, B, P )
have different orientations, but (P, Q, A) and (P, Q, B) have the same orientation, there-
fore the triangles do not intersect.

For the special case, the lines intersect, if all four point-triplets are co-linear and the
x-projections of (A, B) and (P, Q) intersect and the y-projections of (A, B) and (P, Q)
intersect as well, which can be seen in figure 4.6.

The proposed solution calculates for every pair of lines of the two triangles if they intersect.
If at least one pair of lines intersect with each other, it means that the triangles intersect.
The overlap detection does not need to be done with the child of another triangle as they
share an edge and therefore cannot overlap, as the child is unfolded onto the other side
of the shared edge, as explained in section 4.4.

After detecting that an overlap occurs, the algorithm calculates the area of the polygon,
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Algorithm 4.1: Sutherland-Hodgman pseudo algorithm. Adapted from [Wik19].
Data: Clipping Polygon, Subject Polygon
Result: List of vertices of the intersection polygon

1 List output = Subject Polygon Vertices;
2 while Edge clipedge in Clipping Polygon do
3 List input = output;
4 clear output;
5 Point S = input.last();
6 while Point E in inputlist do
7 if E inside clipedge then
8 if S not inside clipedge then
9 output.add(ComputeIntersection(S,E,clipedge));

10 end
11 add E to output;
12 else
13 if S inside clipedge then
14 output.add(ComputeIntersection(S,E,clipedge));
15 end
16 S = E;
17 end
18 end
19 end
20 return output;

which describes the overlap, to determine quality of the current configuration, the overlap-
ping area is calculated using the Sutherland-Hodgman Clipping algorithm [SH74]. This
algorithm finds the vertices of the intersection polygon created by the two triangles. The
overlap can be described as a polygon, and it can be either be defined at least as a triangle,
see Figure 4.4a, or a polygon with a degree, see Figure 4.4b, depending on how the triangles
overlap each other. Algorithm 4.1 shows the pseudo-code for the Sutherland-Hodgman
Clipping algorithm, where the input is two polygons, in our case, the two triangles that in-
tersect. The vertices list resulting from this algorithm can be used to calculate the area us-
ing the shoelace formula [ŠVV17] Area = 1

2

∣∣∣∑P−1
i=0 xiyi+1 + xny1 −

∑n−1
i=1 xi+1yi − x1yn

∣∣∣
where xi and yi are the coordinates of the i-th point in P. It is a mathematical algorithm
to calculate the area of a simple polygon, that is described by ordered points P in a
plane.
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CHAPTER 5
Implementation

This chapter specifies on which computer system the proposed approach is developed as
well as the libraries that are used. Further, the implementation details of the simulated
annealing process are explained.

5.1 Specifications
The system is implemented on a laptop with an Intel Core i7 CPU (4 cores @ 3.3 GHz,
4MB Cache) and 8GB RAM. The source code is written in C++17, and the OpenGL
4.5 library is used for the visualisation of the algorithms step as well as the results.
The CGAL 4.13 library is used to read in off-Files and to provide the underlying data
structure. The Graphical User Interface (GUI) is developed using the Qt Library 5.13.
CMake 3.14 is used to manage the build process, and it compiles on an Ubuntu 18.04.02
LTS operating system.

5.2 Simulated Annealing
The four important components required to use a simulated annealing process explained
in section 2.2, are defined as:

• System Description The system configuration P is described as a list of edges
that will be bent and the complementary list of edges that are cut. Furthermore,
the facets attached to the edges, as well as the Gluetags attached to some of the
cut edges.

• Random Move To alter the configuration P randomly to configuration P ′, a
random edge of the full edge list has its weight changed, therefore the minimum
spanning tree that is calculated changes.
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• Quantitative Function To evaluate the system configuration E(P ), the sum of
the overlapping areas is used.

• Annealing Schedule The temperature T is set to 50.000 as a standard but can
be configured, and the cooling rate is set to 1.0. Therefore the temperature equals
the number of iterations.

After reading in the mesh into the Polyhedron_3 data structure preparations are necessary
to be able to apply simulated annealing. First as described in chapter 4, the algorithm
calculates a dual graph and Gluetags, for each edge of the dual graph, as each edge
could be a possible cut edge. Furthermore, it sets the temperature, and the cooling rate
to 100.000 and 1.0 per iteration, as experimental values, defining the run-time of the
annealing process.

The algorithm assigns each edge of the dual graph a random weight and then sorts the list.
Then it calculates an initial spanning tree using the edge list. Glue tags are calculated
for all edges that will be cut, which are the edges not present in the minimum spanning
tree. The algorithm iterates through all pre-calculated Gluetags and chooses a Gluetag if
they fulfil the following conditions:

• The edge the Gluetag is attached to is a cut edge

• The opposite Gluetag was not already added to this edge

• The number of cut edges, that have no Gluetag yet is higher than 1, or neither the
source face for the Gluetag nor the face the Gluetag targets has a Gluetag yet

The algorithm discards all Gluetags that do not fulfil these conditions, as they are not
needed for this unfolding. These conditions ensure that the reconstructed model will be
stable when glued together without faces being loose, but they also minimise the number
of Gluetags to reduce time and effort on reconstruction.

After these steps, the algorithm starts unfolding the triangles and the Gluetags alike, as
seen in figure 5.1. It calculates the area of triangle-triangle overlaps, Gluetag-triangle
overlaps, and Gluetag-Gluetag overlaps. This approach proposes to weigh triangle-triangle
overlaps with a factor of 100, so the algorithm prefers to unfold triangles without overlaps
first and afterwards solving Gluetag related overlaps. This step is used to optimise the
calculation time as well as to influence the evolving graph. This prioritisation is applied
since a configuration that does not have any Gluetag overlaps, but still has triangle
overlaps is less optimal than the other way around. If no triangle-triangle overlaps occur
in a configuration and only Gluetags overlap are left, these have a chance to be resolved
for example by changing which Gluetags are used or by post-processing the size of the
Gluetags.

The calculated area is then used as the energy of the graph, which we try to minimise
in this process. This initial configuration is saved as the best configuration P , as seen
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5.2. Simulated Annealing

Unfold P
Init P and T

Calculate E(P )

Calculate E(P ′)

Unfold P ′
Generate P ′ from

P ; decrease T

E(P ′) ≤ E(P ) rand(0, 1) > 1 −
e−(T +E(P ′)/(Tmax)

E(P ′) ≤ 0
or T ≤ 0

Set P = P ′

Finish

true

false true

false

false

true

Figure 5.1: Overview of the simulated annealing process.
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in figure 5.1. For each following iteration before these steps are repeated. A random
edge will be chosen and assigned a new random weight, which possibly changes the next
calculated minimum spanning tree and generates the configuration P ′.

First, the algorithm unfolds the triangles and evaluates the energy of the graph based
on the sum of the overlapping area. If and only if the triangles are unfolded without
overlaps, it unfolds the Gluetags next. This approach saves computation time, as if the
triangles do not unfold without overlaps, no solution is found.

If the energy of the new configuration P ′ is smaller or equal to the energy of the previous
configuration P , P will be set to P ′. If not the configuration is treated probabilistically.
If a uniformly distributed random number is smaller than P (∆E) = 1− e−(T +E)/(Tmax)

the new configuration will be accepted as the best configuration. This condition should
ensure that the algorithm does not get stuck in a local minimum, which would mean that
it would not find an optimal global solution.

At the end of every iteration, if a new best configuration was found the new configuration
will be visualised using OpenGL, which means that it only changes and impacts calculation
time of each iteration if a better configuration was found.

The annealing process ends if it does not find any overlaps in configuration P ′ or if
the temperature reaches the minimum of 0, which means that it ends without finding
a solution for this problem. Advantages and disadvantages using this random walk
approach will be discussed in section 6.3.

5.3 Parameterisation of the System
The algorithm is adjustable by changing multiple parameters without changing the
approach itself.

Gluetag size is the most influential parameter that can be changed. Depending on the
size of the Gluetag, the solution space is widened or made smaller if the Gluetags area
increases. The default value is for it to be one fifth of the height of the face it targets.

Probabilistic treatment of worse iterations can also be changed to either favour
taking a worse iteration more or less often. If the probability is too high to take a worse
iteration, the algorithm will not find a solution and might not even get close to a solution
if the probability is too low, the chance of getting stuck in local minimums increases.

Number of iteration can be controlled by changing the cooling down rate as well as
the maximum and minimum temperature, therefore changing the time the algorithm has
to find a solution. The default number of iterations is 100.000.

By tuning these parameters, the results can be influenced to get better performance or
make finding an even unfolding possible.
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CHAPTER 6
Results and Evaluation of the

System

In this chapter experimental results are presented and their specifics are discussed. A
quantitative performance analysis is also presented, analysing the time it takes to unfold
various models. Furthermore, the limitations of the suggested approach are presented.

6.1 Results
This thesis proposes a simple spanning tree approach to find unfoldings of a mesh. A
simulated annealing process is optimising the search for an overlap free unfolding by
finding an optimal global layout.

The following figures show the resulting unfolding of the implementation. The Gluetags
are visualised in the 3D-Model and the unfolding, furthermore, the minimum spanning
tree (green lines) and cut-edges (red lines) are visualised in the 3D-Model.

Figure 6.1 and 6.2 are sphere-like objects with a low count of faces, which is optimal for
the proposed algorithm, as a solution can be found fast. For figure 6.1 three different
unfoldings were generated, each having a different shape while it was reached in a different
amount of time. This is due to the non-determinism of the algorithm, as well as the
random walk when searching an unfolding.

Contrary to the previous two figures figure 6.3 and 6.4 are star-like objects with 6.3
having a higher amount of faces. Both of them are harder to solve as they lose their
spherical properties, which make unfolding easier. Figure 6.4 also shows the stretching
of the unfolding that happens due to the structure of the model, which can also be
observed in figure 6.7. It has very steep angles, which increases the likelihood to produce
overlapping faces when unfolded more compact. This makes it harder to compute an
unfolding, as the random walk takes more time to stretch out the unfolding.
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(a) 3D model of a star. (b) Unfolding of the model in 31 seconds.

(c) Unfolding of the model in 18 seconds. (d) Unfolding of the model in 77 seconds.

Figure 6.1: 3D Model with 72 faces and three possible unfoldings.
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6.1. Results

Figure 6.2: 3D Model of a star with 96 faces and the corresponding unfolding.

Figure 6.3: 3D Model of a star with 216 faces and the corresponding unfolding.
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Figure 6.4: 3D Model of a star with 96 faces and the corresponding unfolding.

Figure 6.5: 3D Model of a tiger head with 112 faces and the corresponding unfolding.

Figures 6.5 to 6.11 are organic-like meshes with an increasing face count. The average
time to find an unfolding increases, as can be seen in table 6.1, but still results are
produced. Most of the higher face-count models produce stretched-out unfoldings, as the
Gluetags make compact solutions less likely due to their need for space between faces.
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6.1. Results

Figure 6.6: 3D Model of a dragon with 344 faces and the corresponding unfolding.

Figure 6.7: 3D Model of a horse with 312 faces and the corresponding unfolding.
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Figure 6.8: 3D Model of a hand with 336 faces and the corresponding unfolding.

Figure 6.9: 3D Model of an armadillo with 386 faces and the corresponding unfolding.
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Figure 6.10: 3D Model of Winnie Pooh with 392 faces and the corresponding unfolding.

Figure 6.11: 3D Model of an cat with 392 faces and the corresponding unfolding.
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6.2 Performance

To evaluate the algorithm and its implementation experiments were run with a variety
of models. The results in table 6.1 were observed using a Gluetag that is defined as a
trapezoid with the base being the edge of the to-glue triangles and the top being one half
of the base with a maximum height of one-fifth of the size of the triangle being targeted
by the Gluetag. The default parameters have been used for these experiments.

Time to Time to
Model Vertices Faces Edges Unfold (s) Bruteforce (s)
Octa 6 8 12 0 0
Icosa 12 20 30 0 0
Star 14 24 36 8 19
Star-Sqrt3 (Fig. 6.1) 38 72 108 31 >60000
Star-4Split 50 96 144 435 -
Star-Loop (Fig. 6.2) 50 96 144 137 -
Star-Butterfly (Fig. 6.4) 50 96 144 1047 -
Tiger (Fig. 6.5) 58 112 168 65 -
Kitten 64 122 184 48 -
Moneybox-128 64 128 190 160 -
Bunny-128 66 128 192 103 -
Moneybox-196 98 196 292 324 -
Star-PNsplit (Fig. 6.3) 110 216 324 625 -
Snail-286 145 286 429 1315 -
Horse (Fig. 6.7) 152 302 452 946 -
Hand (Fig. 6.8) 170 336 504 1377 -
Dragon (Fig. 6.6) 172 344 514 1292 -
Bunny-348 176 348 522 976 -
Luigi 180 356 534 686 -
Armadillo (Fig. 6.9) 195 386 579 730 -
Pooh (Fig. 6.10) 198 392 588 957 -
Moneybox-392 (Fig. 6.11) 196 392 586 2200 -
Meister (Fig. 6.12) 200 394 592 3900 -
Gear 256 508 762 - -
Cat 353 702 1053 - -
Fish 477 950 1425 - -
Mannequin 690 1376 2064 - -

Table 6.1: Table showing the unfolding performance for different models

Performance is not only influenced by the number of faces, but also by the size of Gluetags.
The bigger the Gluetags are, the more iterations are necessary to find an unfolding, or
an unfolding might no longer be possible. Due to the random walk, the time to find an
unfolding is not depending on the number of faces. Table 6.1 shows that not only the
number of faces influence the time it takes to find a solution, but it also depends on how
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Figure 6.12: 3D Model of the Meister with 400 faces with the failed unfolding after
100000 iterations. Overlapping Gluetags are coloured red.

and which edges are changed. For models marked with a - in the table 6.1 no unfolding
was found within 100000 iterations. Using a bruteforce algorithm solutions for small
models is possible, but as the number of faces grows the calculation using bruteforce is
not feasible anymore.

6.3 Limitations

Multiple factors limit the suggested approach. The target of the approach is to solve the
problem only considering the global optimum, disregarding local overlaps. Therefore the
latter are hard to resolve, as they are not explicitly targeted.

Another limitation is that the Gluetags that are necessary cannot be calculated beforehand.
Neither the amount nor the position of the Gluetags can be calculated, without using a
heuristic approach or brute force, whereas brute force is not feasible as the performance
even with small models is abysmal. This can be seen in the performance table 6.1, where
even for small models the amount of time necessary for a brute force algorithm to find a
solution is too high even for small models.

Another limitation that does not have only negative consequences is the random-walk
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Figure 6.13: (left) Unfolding of the proposed approach. (right) Unfolding with the
algorithm proposed by Takahashi et al.[TWS+11]

approach used in the simulated annealing. A random edge is chosen and changed in
each iteration, which might not change the minimum spanning tree that is generated. It
can happen that an edge that is causing an overlap does not change for many iterations.
Figure 6.12 shows an unfolding proposed after 100,000 iterations that failed to generate
an overlap-free solution. When the iteration cap was lifted, an unfolding could be found,
as seen in figure 6.13, after around 130,000 iterations. The figure also shows a comparison
between the approach suggested in this thesis and the algorithm proposed by Takahashi
et al.[TWS+11]. The unfolding of their approach can be more since no Gluetags are
restricting the space used.

36



CHAPTER 7
Conclusion

In this chapter a short summary of the results is provided and future work is presented.

7.1 Summary
Calculating an unfolding using a minimum spanning tree approach is possible and can
yield excellent performance for smaller meshes. As meshes have increased numbers of faces
and Gluetags increase in size, the worse the algorithm is performing. The reconstruction
is almost impossible without any visual cues on which edges should be folded or glued
first, but this factor can be disregarded as it can be added using this approach by a more
significant setback is that the unfolding is more or less random and structures of the
3D-Model might not be well conserved into the unfolding. All in all, the approach is
simple to implement as no sophisticated algorithms are needed, and it yields results in
an acceptable amount of time for models with less than 200 faces.

7.2 Future Work
The quality of the unfolding could be improved, by not only measuring the unfolding qual-
ity using the overlap area but also considering other factors, like maintaining structures
of the mesh together to assist users in the reconstruction of the models.

Another possible improvement would be to ensure efficient use of paper space. This
mainly requires the avoidance of stretched out unfoldings as seen in Figure 6.4. To
achieve this, the quality metric of the unfolding can be evaluated not only using the
overlapping area but also a value that describes how stretched out the unfolding is.

Performance can be improved, if Gluetags are post-processed to change their shape if
the overlap area is rather small. With this improvement, the computation time can
be reduced significantly, without impacting other parts of the approach. To compute
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7. Conclusion

necessary modifications to the Gluetag the intersection points of the Gluetag and the
triangle can be taken as new vertices of the Gluetag.

Once an unfolding with Gluetags for a model is found, a greedy algorithm could be used
to minimise the number of Gluetags necessary. Currently, the amount of Gluetags is
determined by the order in which the Gluetags are added. Therefore it can result in
using more Gluetags than necessary for the particular unfolding.

To avoid manual adjustment of the maximum number of iterations required to find
unfoldings for large models, the number of required iterations might be calculated using
an exponential function using the number of faces of the mesh.
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