
Simulation of Diabetic Macular Edema in Virtual

Reality

Thomas Koch, 01526232

Abstract

Simulation of diabetic macular edema (DME) [1] is implemented in a virtual
reality simulation using Unreal Engine 4 [6, 7, 8]. Common symptoms of DME
are blurry vision, loss of contrast, floaters and distorted vision. We use different
computer graphics techniques to create effects which resemble such symptoms.
An eye tracker from Pupil Labs [2] is used in order to make effects gaze depen-
dent. The implementation of these effects is discussed and adjustable parameters
of the effects are explained.

Introduction

Common symptoms of DME are shown in Figure 1. In the following the im-
plementation as well as the parameters of the effects are discussed. A variety
of parameters are exposed in order to allow for greater flexibility. This also
simplifies reusing certain effects for the simulation of other eye diseases.

Figure 1: From [3]. c©2015 by The Angiogenesis Foundation, Inc., All Rights
Reserved. Symptoms of DME: Blurry vision, loss of contrast, floaters and dis-
torted vision.

1



Distorted Vision

One of the effects, implemented in this project, is a circular distortion and
can be parameterized to resemble either an inward or outward bulge. This
is implemented using blueprints and is used in the PP DiabeticMacularEdema

blueprint. The idea is to distort the texture coordinates which are then used to
sample the scene texture in a post processing stage. To reduce code duplication a
material function (MF Distortion) is created and has five parameters to control
the effect:

• Radius: The radius of the circular distortion.

• Center: The radius of the undistorted center. Must be smaller than the
radius.

• Position: The position where the distortion is placed on the screen.

• Strength: Controls the strength of the distortion. A number greater than
zero results in an outward bulge (convex) while a number lower than zero
results in an inward bulge (concave).

• In: The texture coordinates that are distorted.

The core of the effect is a simple smoothstep function which causes the distor-
tion.

Note: Multiple distortion effects can be overlapped by using the output of
one distortion as the input of the In parameter of another distortion.

Figure 2 shows two distortion effects of different strength.

Figure 2: Distortions are applied around the center and the top right of the
image.

2



Floaters

In the case of DME, floaters are small dark spots appearing in the field of vision
caused by bleeding [4]. The typical behavior is that floaters drift away when
trying to look at them.

A set of textures is used, each containing blurry black spots. The floaters
move with the movement of the eye and have an offset relative to the gaze point.

The contiuous update of the position each frame is handled on the CPU in
BP Pawn. The rendering of the floaters is handled on the GPU in the material
PP DiabeticMacularEdema. The relative movement speed of the floaters is
stored in the FloaterVelocities array and the relative position is stored and
continuously updated in the material parameter collection (MPC) MPC Floaters.
Due to a limitation of Unreal Engine 4.20.3, it is not possible to send an array
to the GPU to be accessed in a material. Therefore it was necessary to employ
an alternative solution using a MPC to store parameter values of floaters that
should also be accessible in a post processing material in order to render them.
Another idea would be to store those parameters in a texture which is updated
on the CPU and sent to the GPU each frame.

At the time of writing, the parameter values for floaters are generated ran-
domly in BP Pawn. Repeatedly pressing the Diabetic Macular Edema button in
the UI generates new, random floaters.

Figure 3 shows four floaters of different scale and opacity.

Figure 3: Four floaters of different scale and opacity can be seen.

MPC Floaters

The parameter collection contains three parameters for each floater. <i> has to
be replaced by an index with the first floater starting at 0. This associates the

3



i-th floater with its parameter values. This allows accessing and iterating over
the MPC entries live over an array, from inside a material. The MPC contains
the following parameters for each floater:

• PositionEye<i>: Stores the two-dimensional position of the i-th floater
in the xy-coordinate. The index of the eye (0 or 1), the floater should be
visible for, is stored in the z-coordinate. This parameter represents the
start position of the i-th floater.

• ScaleOpacityTexture<i>: A texture that stores a uniform scaling fac-
tor of the floater texture in its x-coordinate, an opacity value in its y-
coordinate and a texture index, which specifies the floater texture to be
used, in its z-coordinate.

• Offset<i>: Stores the two dimensional offset relative to the gaze point as
xy-coordinate.

The MPC contains the PositionEye<i> and ScaleOpacityTexture<i> param-
eter interleaved and the Offset<i> parameter at the end. For two floaters the
MPC should be structured as follows:

• PositionEye0

• ScaleOpacityTexture0

• PositionEye1

• ScaleOpacityTexture1

• Offset0

• Offset1

Parameters cannot be added to a MPC via code and therefore have to be added
by hand.

Note: The number of floaters is stored in the variable NumFloaters in the
blueprint BP Pawn and has to be set correctly.

Floater textures

The texture resources have to use the naming scheme T Floater<k>. The tex-
ture index specified in the ScaleOpacityTexture<i> parameter is the number
k.

Usage in the material

The MPC is accessed and the floaters are rendered using the custom shader
node Floaters in the PP DiabeticMacularEdema material. The shader node
has the following parameters:

4



• ViewportUV: UV coordinates used to sample the floater textures.

• FloaterTex<i>: The floater textures where <i> has to match the <i>

in the name of the texture resource (T Floater<i>) which is connected
to it. Example: Texture T Floater3 should be connected to the input
parameter FloaterTex3.

• Dummy: A dummy input that is never used. However, the MPC has to
be connected with the shader as input parameter even though the input
parameter is never used. Otherwise the MPC will not be accessible in
the shader. The MPC is accessed via the variable MaterialCollection0

which does not have to be specified as input parameter but allows to access
the MPC like an array.

• NumFloaters: The number of floaters. This variable has to be set in the
BP Pawn blueprint.

Contrast Loss and Blurry Vision

In the work of Thompson et. al. [9] a method is described which handles contrast
loss depending on the frequencies appearing in the image by using a contrast
sensitivity function (CSF) [5]. A CSF specifies the lowest contrast level for
each spatial frequency one can detect. This method yields believable results,
however, it is not suited to be implemented as is in an application requiring
interactive frame rates, due to the use of computationally expensive operations.
Therefore, a simpler method is implemented which gives visually comparable
results and runs in real-time, but needs more tuning via parameters to get the
desired effect.

The idea is that areas with fine detail should be blurred much more than
strong lines with a good contrast to their background. This is implemented in
code as HLSL shader (EdgeBlur) and is used in the PP DiabeticMacularEdema

blueprint. The shader takes four parameters:

• SceneTexture: The texture the shader modifies.

• BlurRadius and BlurSigma: Control the strength of the blur. These are
used directly as parameters for the Gaussian blur that’s used for blurring.

• UV: Viewport UV coordinates.

• BlurFineDetail and EdgeThreshold: If BlurFineDetail is set to 1,
EdgeThreshold is used to include weak edges, meaning that a low thresh-
old (e.g. 0.01) blurs edges with weak contrast (i.e. fine detail). Raising the
threshold will blur more and more strong edges as well. On the other hand,
if BlurFineDetail is 0, the lower the threshold the blurrier the overall
image, the higher the threshold the smaller the number of weak edges that
are blurred. Thus, a high threshold (e.g. 0.15) will only blur strong edges.

5



Essentially, the boolean BlurFineDetail determines, if weak or strong
edges should be blurred more.

At its core, the shader works as follows: First, edges are detected by calcu-
lating partial derivatives. The edge detection is relatively fast and simple,
using the HLSL function fwidth, which is the same as writing abs(ddx(x))

+ abs(ddy(x)). The output of the shader is the linear interpolation between
SceneTexture and a blurred version of SceneTexture using the blurred edge
response as interpolation value. The edge image is blurred in order to smoothen
transitions as seen in Figure 4.

Figure 4: Left: Partially blurry vision without blurring the edge image. Sharp
outlines around objects can be seen. Right: Partially blurry vision with the
edge image blurred. Artifacts but also the strength of the effect is reduced.

6



Conclusion and Results

Common symptoms of diabetic macular edema (DME) such as floaters and dis-
torted and blurry vision have been implemented. A variety of parameters is
exposed which can be adjusted to get the desired effect. This also simplifies
reusing certain effects for other eye diseases. For instance, reusing the floaters
effect for other eye diseases or even other symptoms is simple since the ap-
pearance only depends on textures and the behavior can easily be adjusted. A
combination of all implemented effects can be seen in Figure 5.

Figure 5: All implemented effects are shown: Floaters and distored and blurred
vision.

Future Work

Future work involves adding more types of distortion which can also be combined
to allow for greater flexibility. One type of distortion could be a wave-like
distortion affecting the whole image. The strength as well as the direction of
the waves would be parameters that can be exposed.

Furthermore, reworking the way the floaters are implemented is part of fu-
ture work. The material parameter collection holding parameter values for each
floater could be replaced by a texture or a simple array as soon as Unreal Engine
allows to make arrays accessible in materials.

Also, exploring more sophisticated approaches for the contrast reduction
effect that incorporate contrast sensitivity function can be explored in the future.

7



References

[1] https://nei.nih.gov/health/diabetic/retinopathy. Accessed 24.08.2019.

[2] https://pupil-labs.com/. Accessed 24.08.2019.

[3] https://www.noweyeknow.ca/dme/symptoms/. Accessed 24.08.2019.

[4] https://www.mayoclinic.org/diseases-conditions/eye-floaters/symptoms-
causes/syc-20372346. Accessed 24.08.2019.

[5] https://www.allaboutvision.com/eye-exam/contrast-sensitivity.htm/. Ac-
cessed 24.08.2019.

[6] Katharina Krösl. [DC] Computational Design of Smart Lighting Systems for
Visually Impaired People, using VR and AR Simulations. In Proceedings of
the 2018 IEEE International Symposium on Mixed and Augmented Reality
(ISMAR-Adjunct). IEEE, October 2018.

[7] Katharina Krösl, Dominik Bauer, Michael Schwärzler, Henry Fuchs, Michael
Wimmer, and Georg Suter. A VR-based user study on the effects of vision
impairments on recognition distances of escape-route signs in buildings. The
Visual Computer, 34(6-8):911–923, April 2018.

[8] Katharina Krösl, Carmine Elvezio, Matthias Hürbe, Sonja Karst, Michael
Wimmer, and Steven Feiner. ICthroughVR: Illuminating Cataracts through
Virtual Reality. In To appear in 2019 IEEE Virtual Reality (VR), March
2019.

[9] William B. Thompson, Gordon E. Legge, Daniel J. Kersten, Robert A.
Shakespeare, and Quan Lei. Simulating visibility under reduced acuity and
contrast sensitivity. J. Opt. Soc. Am. A, 34(4):583–593, Apr 2017.

8


