
Pacific Graphics 2019
C. Theobalt, J. Lee, and G. Wetzstein
(Guest Editors)

Volume 38 (2019), Number 7

Parallel Generation and Visualization
of Bacterial Genome Structures

T. Klein1 P. Mindek1 L. Autin2 D. S. Goodsell2,3 A. J. Olson2 E. M. Gröller1,4 I. Viola5

1 TU Wien, Austria 2 The Scripps Research Institute, USA 3 RCSB Protein Data Bank, Rutgers State University of New Jersey, USA
4 VRVis Research Center, Austria 5 KAUST, Kingdom of Saudi Arabia

Figure 1: Atomistic DNA rendering of the Sorangium cellulosum bacterium enclosed in a rod-shaped lipid membrane. The DNA structure is
generated instantaneously using our new parallel modeling approach. Sorangium cellulosum currently holds the record for the largest known
bacterial genome consisting of about 13 million base pairs.

Abstract
Visualization of biological mesoscale models provides a glimpse at the inner workings of living cells. One of the most complex
components of these models is DNA, which is of fundamental importance for all forms of life. Modeling the 3D structure of
genomes has previously only been attempted by sequential approaches. We present the first parallel approach for the instant
construction of DNA structures. Traditionally, such structures are generated with algorithms like random walk, which have
inherent sequential constraints. These algorithms result in the desired structure, are easy to control, and simple to formulate.
Their execution, however, is very time-consuming, as they are not designed to exploit parallelism. We propose an approach to
parallelize the process, facilitating an implementation on the GPU.

1. Introduction

Visualization and computer graphics have shown much success in
procedural modeling of nature, mostly through simulating images of
objects at familiar, everyday scales. Non-biological natural phenom-
ena, such as mountains, rock types, oceans, gases, clouds, or plasma,
have been procedurally modeled for several decades [HRRG08].
Organic phenomena like vegetation, large forests [DN04], or dense
jungles are modeled by procedural approaches and provide rich
detail down to a single tree, or even leaves. The procedural genera-

tion of man-made structures is another example. A procedure can
direct the generation of single room interior arrangements and can
be scaled up to entire urban landscapes [SKK*14a; SKK*14b].

While in computer graphics, the goal is to generate and render
visually plausible sceneries, in scientific visualization, the model
generation and visualization has to be scientifically accurate, pre-
serving key properties of the studied phenomenon. In biology, the
generation and rendering of models of the biological mesoscale
(the level between the nanoscale of atoms and the microscale of

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-9455-7587
https://orcid.org/0000-0002-9434-5952
https://orcid.org/0000-0002-2197-191X
https://orcid.org/0000-0002-5932-2130
https://orcid.org/0000-0003-0558-4618
https://orcid.org/0000-0002-8569-4149
https://orcid.org/0000-0003-4248-6574

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

cells) turned out to be a particular challenge. Such models are highly
complex and heterogenous, and nanoscale objects cannot be directly
observed.

The process of modelling mesoscale phenomena starts with un-
derstanding the hierarchical structure of living systems. At the finest
level, atoms are specifically bonded to form large molecules, such
as proteins and nucleic acids. They have characteristic structures
and properties, and perform specific tasks. These molecules then in-
teract and associate to form the microscale ultrastructure of the cell,
which includes membrane-bounded compartments, and a variety
of molecular infrastructure for regulation, support, transport, and
communication. Reproducing the distinct shapes and interactions of
these components, at scale ranges from nanometers to microns, is
essential for creating accurate models of the structure and function
of microorganisms.

Deoxyribonucleic acid (DNA) plays a central role in this hierarchy
of structure and function. It is one of the most omnipresent structures
representing and enabling life. DNA is a long polymer of four
types of nucleotides, which carries the genetic information in the
specific sequence of the nucleotides. Diverse experimental studies
reveal many aspects of the DNA structure. This includes the detailed
genetic sequence, topology and packing of the DNA into cells, and
its interaction with the other molecular machinery of the cell. These
results are making it possible to generate data-driven models of
whole bacterial genomes, as shown in Figure 1.

Previous approaches generate such structures sequentially often
by concatenating building blocks in many iterations. The main draw-
back of such procedures is the computation time, requiring minutes
to hours to generate models of large-scale bacterial genomes. This
limits the applicability for many visualization purposes, where pa-
rameters or constraints of the DNA structure are computed on the
fly. Furthermore, biological studies that require numerous instances
of such structures are limited to coarse-grained models, where the
building blocks consist of several thousands of nucleotides. Our
approach overcomes these limitations by generating DNA models
instantaneously in a parallel fashion, similar to most real-time con-
tent generation procedures. Due to the complexity and constraints
of the DNA structure, this is a non-trivial task.

Our central idea is to use a divide-and-conquer strategy together
with a midpoint displacement algorithm for growing a DNA polymer.
Initially, this procedure disregards any potential overlaps of the
DNA structure to ignore sequential constraints for the moment.
Subsequently, overlaps are efficiently detected and eliminated by
a force-based system, similar to the ones used in fluid simulations.
Our main contributions include:

• A problem characterization of generating large-scale DNA struc-
tures from the perspective of scientifically-accurate visualization

• Novel parallel algorithms for the instant generation of bacterial
DNA structures

• An interactive visual environment allowing users to quickly exper-
iment with different DNA generation parameters and constraints
to perform visual hypothesis generation

• The foundation for computational hypothesis generation and ver-
ification that requires the generation of a multitude of bacterial
genome models

2. Background and Related Work

In this section, we characterize architectural basics of bacterial
genomes and review literature related to the generation and visual-
ization of their structures.

Genome Architecture
The atomic details of DNA double helices were revealed in the
classic work of Watson and Crick [DH53] and the bacterial nucleoid
(the region containing most of the genetic material) was already
described more than 60 years ago [Kel58]. However, structures of
entire DNA genomes are still subject of intense study and only re-
cently detailed information has become available [Dor13] through
various experimental studies [DT16; KFS*14]. Bacterial cells typi-
cally have circular genomes, which solves an intrinsic problem with
DNA replication: The enzyme DNA polymerase cannot replicate
linear DNA to the end, so repeated rounds of replication lead to
progressive shortening of linear DNA. Bacterial genomes are also
typically highly supercoiled, leading to formation of a compactly-
folded and functionally-organized structure [DT16]. Topoisomerase
enzymes underwind the two strands of the DNA helix in an energy-
dependent process. The underwound superhelical stress then leads
to the formation of locally supercoiled loops termed ’plectonemes’.
Supercoiling is generally thought to assist with the processes of
DNA replication and transcription, which involve unwinding of the
double helix. Supercoils have been characterized in plasmids (small
circles of DNA) by electron microscopy [BWC90]. Higher-order
structure of DNA is often probed using methods such as Hi-C (a
technique to study the three-dimensional architecture of genomes).
Hi-C uses selective crosslinking to identify regions of a genome that
are in proximity. The flexibility of DNA remains a matter of conjec-
ture. It is generally seen to be relatively rigid but there are abundant
examples of kinking and bending under the influence of proteins.
In general, the flexibility of polymers, like DNA, is quantified with
a property called ’persistence length’ defining how orientational
correlations decay along the polymer chain. Studies indicate that
DNA has a persistence length of around 500 Å(ngström) [Hag88].
Ångström is the unit in natural sciences for expressing the size of
atoms, where 1 Å is equal to 10−10 m [PM10].

Generation and Visualization of DNA Structures
Early modeling and visualization of DNA structures used models
built entirely from scratch. An example is the ground-breaking ani-
mated zoom from atoms to chromosomes by Max [Max85]. More
recently, there have been several attempts at creating user-friendly
tools, such as NAB [SJJ95] and GraphiteLifeExplorer [HF13]. These
tools successfully model local details of DNA and its interaction
with proteins, but are not scalable to model entire genomes. Model-
ing of entire genomes has been attempted by several groups. Coarse-
grained techniques are often used, where segments of the DNA are
represented by single beads. For bacteria these beads may repre-
sent single turns of the DNA helix [GAO18] or larger interaction
domains [TYM*17]. For larger eukaryotic genomes, these beads
often represent locally-compact domains of many thousand base
pairs [RZ14]. Modeling of entire genomes at the atomic level has
recently been attempted for bacteria, e.g., using a stepwise process
with progressively-detailed coarse-graining [HLE17].

Many polymer-modeling methods produce only static models. In
contrast, Kolesar et al. [KPV*14] propose a technique for modeling

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

the polymerization process itself. The work of Klein et al. [KAK*18]
presents a novel technique for real-time generation and visualization
of biological mesoscale models including fibrous DNA structures.
The drawback of this method is its sequential implementation, which
constitutes a severe performance bottleneck. Recent work by Lindow
et al. [LBLH19] interactively visualizes RNA and DNA structures,
but focuses on small-scale models with less than 10,000 nucleotides.
The cellVIEW [MAPV15] system implements a novel approach for
the assembling of DNA on the GPU. However, it requires an existing
curve, approximated by discrete points, which are subsequently
interpolated on the GPU.

Random Walk Methods
A random walk is a stochastic process used to model various real-
world phenomena. Random walk algorithms often simulate move-
ment and growth, or generate models of linear polymers like nucleic
acids. A random walk is a special type of a Markov chain, where
each generated point is dependent on its predecessor. We define the
result of a random walk similar to Altendorf and Jeulin [AJ11] as a
sequence P of points: P = {p0, ..., pn} with pi = (xi,ωi) ∈ R3×S2.
Every point pi consists of a location xi and an orientation ωi.

To model bacterial genomes, a correlated random walk with bar-
riers is typically applied, where each point represents one bead of
the genome model. The barrier is defined by a compartment, e.g.
the cell nucleoid, that encapsulates the genome. The correlation is
defined by the dependency of the orientations among successive
steps. The random walk starts with an initial point p0 = (x0,ω0),
located inside of the compartment, and a random orientation. The
position xi+1 of the next point pi+1 is generated through a random
walk step, starting from the current position xi along a new random
orientation ωi+1. It is calculated as follows:

xi+1 = xi + sωi+1 (1)

where s ∈ R+ is the step size of the random walk.

For more detail, we refer to the work of Spitzer [Spi01], which
covers the theoretical foundation of random walks. Additionally,
Codling et al. [CJB08] provide an extensive overview of random
walks for modeling biological processes.

Midpoint Displacement Approaches
The power of parallel processors facilitates the generation of large
models of bacterial genomes in real time. However, current genome
modeling approaches, like random walks, have intrinsic sequential
constraints and thus do not map well to parallel processors. Another
approach to approximate various natural processes is midpoint dis-
placement. In contrast to the random walk algorithm, it is well suited
for parallelization. The midpoint displacement method has first been
introduced by Mandelbrot [B M83] in the context of fractals. It
became widely popular after Fournier et al. [FFC82] presented its
extension to the diamond-square algorithm. The algorithm generates
random heightmaps that are frequently used for terrain models. In
the simple 1D case, the midpoint displacement algorithm starts with
a line between two points. In the first step, the midpoint of the two
initial points is displaced perpendicular to the line segment by a
random amount. This process is repeated on the resulting new line
segments until the desired level of detail is attained. The displace-
ment magnitude is reduced in each iteration.

Midpoint displacement has been used and extended in vari-

ous ways. Musgrave et al. [MM89] propose a midpoint displace-
ment method for the generation of locally-controllable fractal ter-
rains. They modify a standard midpoint displacement generation
method by simulating erosion features to increase the realism of
the generated terrains. Jilesen et al. [JKL12] expand the typical
two-dimensional case of midpoint displacement to produce peri-
odic, three-dimensional models of porous media. The method is
suitable to create realistic models of rocks, as demonstrated through
a comparison with two-dimensional cross-sections of real geologi-
cal material. While most often used to model geological processes,
the application of midpoint displacement in other areas is also well
established. For instance, midpoint displacement has been used
to simulate Brownian motion, which has various applications in
biology [NML00].

3. Overview

The complex hierarchical structure of DNA, ranging from specific
nucleotide sequences at the atomic level to supercoiled topologies
at the whole-genome level, poses challenges for modeling. Random
walks and similar sequential algorithms are particularly suitable
for generating models with shape and flexibility constraints, but
are limited in their performance. This is especially problematic for
large genome structures, like the genome of Sorangium cellulosum
with about 13 million DNA base pairs. We introduce a divide-and-
conquer approach, which makes it possible to parallelize the model-
ing process. Additionally, the real-time GPU implementation opens
up the possibility of displaying models that are generally too large to
fit into the memory. In the following we describe a typical sequential
genome modeling approach and compare it to our parallel one.

Sequential Approach
Coarse-grained models of DNA, where a chain of beads is used
to model the linear or circular polymer, may be constructed using
a random walk. At each step the random walk chooses a random
direction depending on the flexibility and shape of the surrounding
compartment. The random walk starts with an initial seed point
located inside of the compartment and walks along the first step. If a
random walk step chooses a point outside of the given compartment
or an occupied area, a new random direction is chosen. This process
is repeated until a valid position is found. If no valid position can be
found, the random walk retreats to an earlier state and tries again.
When the coarse-grained chain of beads is computed, each bead
may be exchanged with a more-detailed structural building block to
assemble the final structure. Supercoils can be added by starting sub-
sequent random walks from certain points of the generated structure.
Other approaches [GAO18] start with a small square of points on
a lattice and enlarge and migrate them to build the genome model.
However, all of these sequential approaches require minutes up to
hours to generate larger genome models.

Parallel Approach
Our parallel approach to generate bacterial genome models is illus-
trated in Figure 2. In order to map the computation of the model
onto several threads of a parallel processor, an initial set of beads is
required. For this reason, we first generate a rough backbone of the
genome model. In theory, a randomly-placed circular set of beads
could be used. However, in order to make this approach applicable
to a variety of constraints and enclosing shapes, we choose to use

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

(a) coarse-grained
backbone

(b) detailed back-
bone

(c) coarse-grained
supercoil axes

(d) detailed super-
coil axes

(e) detailed super-
coiled hairpins

Figure 2: Parallel approach for the generation of bacterial genomes. First, a sequential random walk with a large step size is applied
to generated the main backbone (a), a coarse circular structure. The generated beads build the foundation for the subsequent parallel
processing. In the next step, the circular structure is enhanced in detail (b) through our parallel midpoint displacement method. Subsequently
coarse-grained supercoil axes (c) are generated with random walks branching from the backbone. Again, detail is added to the supercoils (d)
with our parallel midpoint displacement method. Finally, superhelical hairpins (e) are generated by splitting the beads of the supercoil axes in
two and rotating them resulting in the final model of the bacterial genome.

a random walk to create the initial backbone (Figure 2a). Subse-
quently, the backbone is filled with detail (Figure 2b) through a
parallel implementation of the midpoint displacement algorithm.
For each pair of initial beads, the midpoint displacement algorithm
computes a new midpoint and displaces it by a random amount,
restricted by the constraints of the model. The midpoint displace-
ment results in a sequence of beads with varying spacing. In order
to fit equally-spaced building blocks of the polymer onto the beads,
we need to perform a uniform resampling. Uniform resampling of
a sequence is a sequential process, potentially slowing down the
whole generation process. Therefore, we substitute uniform resam-
pling with an approximation that can be executed in parallel. After
the backbone is generated, supercoils are added to the structure.
First, the coarse-grained versions of the supercoil axes are computed
(Figure 2c), also using the random walk algorithm. Again, detail
is added with the parallel midpoint displacement (Figure 2d) and
the bead sequence is resampled. In the final step, the supercoiled
hairpins are generated by splitting the beads of the supercoil axes
into two chains and rotating them about the axes (Figure 2e). This is
also computed in a parallel fashion. In order to generate an atomistic
model of the bacterial genome, we calculate the orientation of struc-
tural units along the chain of beads in parallel and assemble them
with an optimized version of the cellVIEW approach [MAPV15].

Applications
We expect that our parallel approach will be useful both in educa-
tion/outreach settings and in research. For education, the interactive
nature of the method is crucial. The ability to construct new models
on the fly allows users to gain a more intuitive understanding of
the hierarchical relationships between atoms and nucleotides, genes,
entire genomes, and cells. The ability to explore different levels
of superhelicity will help users to comprehend the role of DNA
topology in the packing and function of the genome.

In research, there is a growing interest in the structure of bacterial
genomes. It is becoming clear that supercoiling of DNA and subse-
quent condensation of chromosome interaction domains play a role
in the regulation of gene expression [MLS17]. This has lead to the
examination of multiple species using techniques such as Hi-C and
fluorescence microscopy to quantify the location and interactions

of domains within the genomic DNA. These techniques typically
provide only a coarse-grained view, with resolutions of just thou-
sands of base pairs. Therefore, modeling is employed to develop
hypotheses for structural features at the finer scales.

Given the complexity of the system, most current modeling stud-
ies employ one of two simplifications. Coarse-grained modeling
techniques support the creation and testing of multiple instances
of multiple models, but at the cost of providing reduced-resolution
results. Most often, these approaches treat individual chromosome
interaction domains as the coarse-grained units, and provide useful
information on the overall shape and packing of these domains in the
interior space of the cell. More recently, several groups have created
full atomic models of bacterial genomes, constrained by available
biochemical observations. These models are laborious to produce,
and thus typically only a handful of instances are generated. Never-
theless, they open up the ability to calculate detailed properties of
the genome that will be important for understanding its interactions
with regulatory proteins and the transcription machinery.

The ability to create detailed models in real time reduces the
limitations of previous methods. For example, the simulation of
Hi-C data requires the evaluation of contact information from many
individuals in a population, recapitulating the experimental process
of low-probability crosslinking in a culture of many cells. Rapid
generation also facilitates the evaluation of multiple hypotheses.
For example, the nature of each chromosome interaction domain is
currently not known: It could be composed of a single supercoiled
plectoneme, several tandem plectonemes, or a complex branched
structure. The ability to rapidly build different models exploring
multiple hypotheses, and for each, to build multiple stochastic in-
stances of the model, will allow ready comparison to explore the
nature of consistent structures. There are also direct connections to
medical science that are becoming possible. Several classes of antibi-
otics, such as quinolones, attack topoisomerases and supercoiling.
Studying the cellular consequences of these drugs in multiple bac-
terial physiological states (rapid growth, starvation, etc.) will help
to identify aspects of the process that are amenable for continued
antibiotic development.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

4. Pipeline for Parallel Genome Generation

In the following, we describe the design of our parallel pipeline for
the interactive generation of bacterial-genome models. Each step
is designed to incorporate known characteristics and constraints of
bacterial genomes.

4.1. Backbone Construction

In the initial step of the pipeline, we construct a rough backbone
of the desired polymer structure with a random walk algorithm.
The structural rigidity of DNA polymers is typically quantified
with the persistence length. It defines the length over which the
correlations of the tangents are lost. We use the following well-
known equation [KP49] to incorporate the persistence length into
the modeling process:

〈cosθ〉= e−L/P (2)

The formula describes that the expectation value of the cosine of the
angle θ between two tangents of the polymer chain falls off expo-
nentially with distance L, where P denotes the persistence length.
We use Equation 2 to approximate the orientations for the correlated
random walk so that it reflects a given persistence length. First an
angle θmax is computed that indicates the maximum angle difference
between the previous and the new orientation. Then we choose a
new orientation using a random angle difference between 0◦ and
θmax; essentially, the computation of a new orientation is sampled
from a spherical cap. The angle θmax is defined as acos(2e−L/P−1).

With the new orientation and Equation 1, the location of the next
bead is computed. If a bead lies outside of a barrier, the algorithm
retreats and uses a new orientation. This process is repeated until a
valid position is found. The random walk algorithm stops when the
given number of steps is reached. In order to support closed, circular
DNA structures, we introduce an additional bias to the random walk
with a direction towards the first initial bead. The bias grows with the
length of the generated structure so that is has small to no influence
at the beginning of the process.

To save computation time, the backbone is computed with a low
resolution, which introduces gaps in between beads. Filling of the
gaps increases the number of beads 2n times, where n is the number
of midpoint displacement steps. In practice, we use a maximum of
ten midpoint displacement steps, which makes the backbone reso-
lution 1024 times smaller than the resolution of the final sequence.
However, using ten midpoint displacement steps is not a theoretical
limit of the approach. It corresponds to a performance optimization
of the algorithm that uses the shared memory of the GPU, which is
limited in size.

4.2. Detail Insertion

Our version of the midpoint displacement approximates a given
persistence length by utilizing a greedy approach. In every midpoint
displacement step, we insert new beads into the chain and constrain
the displacement using the given persistence. We show that the
persistence length is efficiently approximated in Section 6.

For every pair of beads pl and pr with tangents ~tl and ~tr, we
introduce a new bead pm using an adapted version of the midpoint

(a) (b)

(c) (d)

Figure 3: Adapted midpoint displacement: (a) segment of the gen-
erated backbone with beads pl and pr and tangents~tl and ~−tr. (b)
preparation step, where the tangent −~tr is reflected at the mid plane
(dashed line). (c) depicts the bisector ~sa of the two vectors~tl and
~trr, which is used to find the new midpoint. (d) the midpoint pm is
computed through the intersection of a ray along the new direc-
tion ~sr and the mid plane. The vector ~sr is chosen randomly from a
spherical cap surrounding ~sa.

displacement algorithm, as illustrated in Figure 3a. The amount
of displacement is affected by the tangents and the persistence
length. We define the midpoint displacement similar to the random
walk algorithm. We start from bead pl and walk in a direction
~sr resulting in the displaced midpoint pm. In order to choose an
appropriate direction ~sr, first, a general direction ~sa is calculated.
The direction ~sa represents a smooth continuation of the bead chain
and is determined with the tangents ~tl and ~tr. Then, the general
direction is slightly varied resulting in the random direction ~sr.

For the calculation of ~sa, we originate the direction at bead pl and
adjust the tangents accordingly. This means, we reflect −~tr across
the mid plane (indicated with dashed lines) resulting in ~trr, as shown
in Figure 3b. The mid plane is defined by the center between pl
and pr, and the normal ~n = −−→pl pr/||−−→pl pr|| . With this the general
direction is defined as ~sa = (

−→tl +
−→trr)/||

−→tl +
−→trr || (see Figure 3c).

Subsequently, we choose a random direction ~sr from the spherical
cap surrounding ~sa, as depicted in Figure 3d.

Finally, the new midpoint pm is computed through the intersection
of a ray, starting at pl with direction sr, and the mid plane. In case
the location of the new midpoint is outside of the compartment, we
repeat the process with a new random direction sr.

Uniform Resampling
The parallel midpoint displacement greatly improves the computa-
tion time, however, it does generate beads with non-uniform dis-
tances in between. To be able to fit equally sized building blocks
on the beads, the bead chain needs to be uniformly resampled. Re-
sampling is a sequential process, where each sampling step depends
on its predecessor. To improve the performance of this process, we
approximate uniform resampling so that it is suitable for parallel
processing.

We utilize the idea of the divide and conquer design paradigm and
first subdivide the sequence of beads into subsequences Pj. We de-

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

fine the subsequences as Pj = {p j(s−1), ..., p(j+1)(s−1)}, where each
subsequence contains s beads. Adjacent subsequences Pj , Pj+1 have
common border beads. Even though the uniform resampling within a
subsequence is still a sequential process, the separate subsequences
can now be processed in parallel.

Through the resampling, each subsequence Pj results in a re-
sampled subsequence R j. Within each resampled subsequence, the
distances between the beads are uniform. However, the distances of
adjacent resampled subsequences are still non-uniform. We quan-
tify the offset between the desired uniform distance and the actual
distance between adjacent resampled subsequences with the error
vector ~e j. The vector ~e j is defined as the distance between the
first bead of a resampled subsequence R j and the last bead of the
non-resampled subsequence Pj−1. The error vector of the first sub-
sequence is undefined, if the structure is not circular. If ~r j is the last
bead of the resampled subsequence R j, then ~e j = p j(s−1)− r j−1.
The maximum length of the error vector is always smaller than
the sample distance. In order to minimize potential artifacts, we
equalize the error among all beads of a subsqeuence. In detail, for a
resampled subsequence R j with indices i = {0, ...,n} for its beads,
we move each bead by n−i

n+1~e j . Consequently, the last bead of a sub-
squence is not moved with the purpose of retaining the distance to
the following subsequence.

Genome Length Estimation
In order to generate genome models with specific lengths, we utilize
a heuristic approach. Due to the parallel midpoint displacement
and the parallel uniform resampling the exact number of generated
beads cannot be efficiently determined beforehand. For this rea-
son, a heuristic is computed that estimates the resulting number of
beads for a given parameter pair (random walk step size, persistence
length). Experiments have shown that after several iterations of the
algorithm, the number of generated beads for a specific parameter
pair converges to a stable mean value. For example, an experiment
with 500 repetitions of different seed values using a persistence
length of 500 and 10,000 random walking steps results in a mean
of µ = 327,863.95 beads with a minimum of 324,550, maximum
of 329,669, and standard deviation of σ = 738.06. For many visual-
ization purposes the influence of such a variance is insignificant to
the overall perception of the generated genome structure proofing
the mean value to be a reliable estimator.

However, in some modeling scenarios the exact sequence of the
genome is known and should be reflected by the model. Here, we
slightly overestimate the length of the model and subsequently apply
a trimming, to shorten it to the exact length by removing surplus
beads. The removed beads create gaps in the structure, since its
neighbors now have a larger distance. These gaps are automatically
repaired in the subsequent relaxation step and the proper distances
are restored.

4.3. Supercoiling

We model supercoils in three steps, as depicted in Figure 4. In the
first step (a), a new sequence of beads (yellow) is generated that
branches from the main backbone (blue) representing the supercoil
axis. In the second step (b), the beads are replicated and shifted apart
from each other. Finally, the beads are rotated around the supercoil

(a) (b) (c)

Figure 4: In the initial step (a) of the supercoil generation, a se-
quence of beads (yellow) is generated that branches from the back-
bone (blue). Then (b) the generated beads are replicated and shifted
apart from each other. In the last step (c), the beads are rotated to
form the supercoil.

axis (c) to generate the twist of the supercoil. The actual values
for the twisting and shifting should be chosen corresponding to the
characteristic of the desired genome structure.

4.4. Overlap Detection and Relaxation

Due to performance reasons, the generation of the backbone and
the subsequent detail insertion do not take into account if space
is already occupied. Performing space occupancy checks requires
synchronization, and would thus introduce sequential constraints in
the parallel process. Therefore, we efficiently resolve overlapping
through a subsequent relaxation process. The relaxation is based on
a force-based system. First, overlaps are detected through a fixed
radius nearest neighbor search, as described by Hoetzlein [Hoe14].
This approach is capable of simulating millions of beads in real-
time and is often used in fluid simulations. Overlaps are resolved
with a combination of a repulsion and a recover force, based on the
work of Altendorf and Jeulin [AJ11]. The repulsion force drives
overlapping beads away from each other, whereas the recover force
models a springlike force and recovers structural constraints. The
constraints comprise the correct uniform distances between beads
and a maximum amount of kinking in the structure.

The application of forces can potentially move parts of the struc-
ture outside of its enclosing compartment. For this reason, we apply
an additional force that moves parts that now lie outside back into
the compartment. The forces are applied until all collisions are re-
solved or a stop criterion is reached. This criterion can be set by
the user and specifies a certain number of acceptable remaining
collisions.

4.5. Genome Visualization

Coarse-grained models of bacterial genomes are sufficient for ex-
ploring hypotheses about overall packing and topology. However,
to explore sequence-specific properties, such as the interaction with
proteins, more detailed atomic information is needed, which is pro-
vided by finer models. To visualize the atomic structure of the
genome, a model is required that shows the individual DNA base
pairs and their proper orientations.

Normal Computation
In order to coherently orient the building blocks along the bead

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

(a) (b)

Figure 5: Overview of the parallel normal computation. In the first
step (a), the computation of the normals is parallelized by dividing
the computation into several subsequences (indicated with dashed
lines) to facilitate parallel processing. This leads to discontinuities
at the borders between subsequences, which is quantified with the
error angle βi. Discontinuities are corrected by rotating all normals
of a subsequence by the accumulated error angles (b).

sequence, the orientation of the beads must be computed. This is
typically done by computing the orthonormal frame for each bead.

In differential geometry there are many simple methods, which
compute a moving frame. However, they often exhibit discontinu-
ities or strong torsion causing visible artifacts. For this reason, we
approximate a rotation minimizing frame. The computation of the
rotation minimizing frame is sequential in nature since the com-
putation of each frame is dependent on its predecessor. Similar to
our parallel resampling approach, we apply the divide-and-conquer
scheme and break the computation down into multiple subsequences
(Figure 5). We define the subsequences as Q j = {p js, ..., p(j+1)s−1},
where each subsequence contains s beads.

For each bead xi, we compute a corresponding normal ni. To
start the process, we choose an initial random normal for each first
bead of every subsequence and compute the remaining normals
according to the rules of rotation minimizing frames. Since the
normal computation is only continuous within a subsequences, the
process leads to discontinuities in between subsequences. We quan-
tify the discontinuity for a subsequence Q j with the error angle
β j. In detail, the angle β j is the angle between the last normal of
subsequence Q j−1 and the first of subsequence Q j. It is defined as
β j = acos(n js ·n js−1). In order to restore continuity between subse-
quences, we first apply a prefix sum to accumulate the error angles.
Then, we rotate the normals by the accumulated error angles around
their corresponding tangents. This means, the continuity is restored
by rotating all normals of a subsequence Q j by the accumulated
error angle, which is defined as β j = β j−1 + ...+β0.

Genome Assembling
Once the normals are computed, the final polymer strand can be con-
structed. In this step, the beads are exchanged with corresponding
building blocks and the final image is rendered. In the visualizations
of this work, we use the standard model of the B-DNA double helix,
which consists of individual base pairs with an angular offset of

Figure 6: Structural model of B-DNA overlayed with a bead repre-
senting a building block.

34.3◦ and a spacing of 3.4 Å between each base, as depicted in
Figure 6.

5. Implementation

For the reproducibility of the approach, we provide implementation
details of our approach below.

Backbone Construction
In order to uniformly draw samples from a spherical cap we use
the following equation: a = cos(θmax), z = X(1−a)+a, ψ = 2Xπ,
r = 2
√

1− z2, ~ω = {r cos(ψ),r sin(ψ),z} , where X ∼U([0,1)) is a
random variable uniformly distributed between [0,1). This provides
a random orientation ω with the maximal angle difference θmax to
the pole.

Detail Insertion
The midpoint displacement algorithm naturally lends itself to par-
allel processing since each level of repetition is independent from
each other. Figure 7 illustrates the parallel implementation of the
midpoint displacement algorithm. On the left side, each block rep-
resents a thread in the execution. Idle threads are depicted in blue
and active ones in red. The right side depicts the beads, where the
newly generated ones are shown in red, corresponding to the active
threads. Horizontal lines indicate synchronization points between
the individual iterations of the parallel midpoint displacement. In the
first level, only one thread is active since only one midpoint can be
created simultaneously. The number of active threads and generated
beads doubles after each execution.

Uniform Resampling
To efficiently implement the parallel resampling, the resampled

Figure 7: Illustration of four iterations of our parallel midpoint
displacement implementation. Every block (left) represents a thread
and is depicted in red, if active, and blue, if inactive. The correspond-
ing generated beads are also shown in red (right). The horizontal
lines indicate the synchronization between consecutive iterations.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

(a) (b)

Figure 8: Illustration of the trimming process. The beads (red) are
overlayed with DNA building blocks. (a) shows the DNA structure
with a trimmed bead (faded) before the relaxation. (b) shows the
repaired DNA structure after the relaxation.

beads are written in one continuous buffer of GPU memory. For this,
we need to know beforehand the memory positions to which each
thread has to write to. Therefore, we first compute the number of
beads that each thread of the resampling will produce. Subsequently,
we apply a prefix sum to the resulting values using the parallel scan
algorithm [SHGO11]. With this information, we can resample the
bead sequence in parallel.

Length Trimming
In case the exact length of the nucleic acid is known, we use a heuris-
tic that slightly overestimates the resulting number of beads and
trim surplus subsequently. To minimize the effect on the structure,
we distribute the selection of the surplus beads uniformly along the
structure. Figure 8 demonstrates one instance of the trimming pro-
cess. Figure 8a shows a piece of a DNA structure, where one bead
is trimmed. The illustrations show that the DNA structure would
be stretched at the place where the bead is missing. In Figure 8b
the hole in the structure is repaired due to the relaxation step and
proper uniform distances are restored. In order to build a heuristic
for various input parameters, we modeled a nonlinear regression
using a set of sample results with a persistence length between
100 Å and 5000 Å, and 20 to 5000 random walk steps, whereas the
remaining parameters were fixed. The nonlinear regression yields a
goodness-of-fit of R2 = .998 indicating a low discrepancy between
observed and expected length.

Supercoiling
The supercoiling is parameterized with two values, the distance of
the duplicated beads and the twisting factor that represents the level
of supercoiling. These values are specified by the user and reflect

(a) (b) (c)

Figure 9: Comparison of DNA with (a) low, (b) medium, and (c)
high levels of supercoiling.

(a) (b)

(c) (d)

Figure 10: Illustration of the overlap detection. (a) and (c) depict
an occurrence of overlapping in atomistic detail and represented
with beads, respectively. Beads highlighted in red indicate overlap-
ping regions. (b) and (d) show the structure after the overlaps are
resolved.

results from experimental studies. In Figure 9, a visual comparison
of DNA with different levels of supercoiling is shown.

Overlap Detection and Relaxation
The overlap detection and relaxation is processed on the basis of the
beads. Each bead is modelled as a bounding sphere with the radius
corresponding to its enclosing building block. The bead slightly
overestimates the size of the DNA, as shown in Figure 6. However,
the overestimation is a desired approximation from a perceptual
point of view, since the elements are easier to distinguish if they
are not in direct contact. Figure 10a and Figure 10c illustrate an
instance of overlapping, shown with atomistic detail and shown with
the corresponding beads, respectively. After the relaxation, shown
in Figure 10b and Figure 10d, the overlapping is resolved and the
two DNA strands have a distinct but small distance between them.

Normal Computation
Implementing the parallel computation of the normals consists of
the following steps. In the first step, the tangents are computed for
every bead. Then, the rotation minimizing frames are approximated.
In our implementation, we utilize the concept proposed by Wang et
al. [WJZL08]. In order to restore the continuity between neighboring
subsequences, we first calculate the error angles and then accumulate
them. To process the accumulation in parallel, we compute the prefix
sum of the error angles using the parallel scan algorithm [SHGO11].
With the result of the prefix sum, we can also restore the continuity
of the normals in parallel.

Genome Assembling
In order to assemble the DNA structure, we follow the approach of
Le Muzic et al. [MAPV15], where the final assembling in atomistic
detail is part of the rendering step. First, the bead sequence is sub-
divided into smaller beads, until each bead corresponds to a single
DNA base pair. Afterwards, the normals for the newly introduced
beads are interpolated on basis of the existing normals. In the same

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

Figure 11: Structural visualization of bacterial genomes. Left: Genome of Sorangium cellulosum, consisting of more than 13 million base
pairs. Top right: Genome of Escherichia coli consisting of more than 4.6 million base pairs. Bottom right: Genome of a Mycoplasma genitalium
consisting of more than 580,000 base pairs.

step, every normal is rotated according to a given angular offset,
which corresponds to the winding of the DNA. In the final step, each
bead is substituted with the geometric model of the base pair.

6. Results and Evaluation

To evaluate the effectiveness of the method, we have created detailed
data-driven models of the genomes of three bacteria. The perfor-
mance was measured using a computer with an Intel Core i7-6700K
CPU 4.00 GHz and a NVIDIA GeForce GTX 1080 graphics card
with 8 GB memory. Since the final assembling of the genome model
is part of the rendering process that was already presented in previ-
ous work [MAPV15], we do not include this step in the performance
measurements.

Mycoplasma genitalium
The genome of Mycoplasma genitalium, with 580,000 base pairs
(bp), is among the smallest of bacterial genomes. Figure 11 (bot-
tom right) shows the rendering of the genome model, generated in
218 ms. Previous work [KAK*18] required about 100 seconds to
generate the genome without including any complex supercoiling
structures. Recent work [GAO18] that includes supercoils generate
an equivalent model in about 9.7 minutes, thus we outperform the

(a) (b)

Figure 12: Model of Mycoplasma genitalium. (a) shows the atom-
istic rendering of the DNA enclosed in a lipid membrane. (b) shows
the individual genes of the model indicated with different colors.

result with the same scientifically-accurate complexity 2600-fold.
Figure 12 reveals a closer view of the structure of the genome en-
closed in a spherical lipid membrane. The left side (a) shows the
atomistic rendering where the right side (b) displays the model with
beads. Individual genes are displayed with different colors.

Escherichia coli
Escherichia coli is one of the best characterized organisms, with

Figure 13: Models of the Mycoplasma pneumonia genome, gen-
erated with (left) our parallel generation approach and (right) the
lattice-based method [GAO18]. In the distance maps at the bottom,
the entire genome is arrayed on the horizontal and vertical axes
with a resolution of 10 kpb, and average distances are shown with
a linear ramp from black at 0 nm to white at 200 nm and above. A
representative genome model for each approach is shown at the top.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

Table 1: Performance measurements of the generation of several bacterial genomes, separated into the different steps of the generation
process.

Model Backbone Detail Supercoiling Resampling Trimming Relaxation Normals Total
Mycoplasma genitalium 1 ms 11 ms 5 ms 35 ms 6 ms 150 ms 10 ms 218 ms
Escherichia coli 6 ms 39 ms 15 ms 136 ms 36 ms 112 ms 28 ms 372 ms
Sorangium cellulosum 19 ms 86 ms 26 ms 282 ms 88 ms 360 ms 81 ms 942 ms

a genome of about 4.6 million bp. As in previous work [GAO18],
we have separated the genome into 169 units. Each unit consists
of a 11,000 bp long plectoneme and an unsupercoiled connecting
segment of 16,000 bp. The membrane of the cell is rod-shaped with
an approximate diameter of 0.7 micron and length of 2.1 micron,
shown in Figure 11 (top right). The model was generated in 372 ms.

Sorangium cellulosum
Sorangium cellulosum currently holds the record for the largest
known bacterial genome at about 13 million bp [SPK*07], shown
in Figure 11 (left). The genome is split into 482 units similar to
Escherichia coli. Each unit consists of a 10,000 bp plectoneme and
a 16,000 bp unsupercoiled connecting segment. It is enclosed by
a rod-shaped membrane, with a diameter of 1.2 micron and 3.6
microns in length. The model was generated in 942 ms.

A more detailed investigation of the runtime, shown in Table 1,
displays the individual timings for each generation step. It is inter-
esting to note that the relaxation step for the genome model of the
Mycoplasma genitalium requires more time than the one for the
larger Escherichia coli. This is due to the fact that the Mycoplasma
genitalium model is more crowded, thus making the relaxation more
complex. The bottleneck of the performance resides in the relax-
ation and resampling steps. In order to resolve overlapping beads,
the relaxation requires several iterations. For instance, resolving
the overlaps for Mycoplasma genitalium models takes around 70
iterations, for Escherichia coli models around 32 iterations, and for
Sorangium cellulosum models around 21 iterations. However, it
is likely that a thorough parameter fine tuning of the force-based
system potentially leads to even faster resolving timings. Our imple-
mentation also offers the possibility to run the relaxation progres-
sively during the visualization to mitigate its performance impact.
The other bottleneck is the resampling. We have reduced the se-
quential constraints of the resampling through a divide-and-conquer

0 500 1,000

0

0.5

1

Distance (Å)

A
ng

le
D

iff
er

en
ce

Expected Correlation
Measured Correlation

0 500 1,000
0.6

0.7

0.8

0.9

1

Distance (Å)

A
ng

le
D

iff
er

en
ce

Expected Correlation
Measured Correlation

Figure 14: Comparison of the expected stiffness (orange) and the
measured stiffness (blue) of the genome generation approach. The
plot on the left shows the curve for a persistence length of 1,000 Å,
whereas the one on the right side uses 10,000 Å.

scheme, where we divide the sequence of beads into subsequences.
However, the computation of each subsequence is still processed
sequentially, making this the slowest step of the pipeline.

A direct comparison of our parallel generation approach with the
previous lattice-based method [GAO18] is shown in Figure 13. The
comparison is based on a genome model of Mycoplasma pneumonia.
Ten instances of a single circular genome with 44 repeating units of a
17,000 bp plectoneme and a 1000 bp connecting region where mod-
eled, within a spherical space with diameter 380 nm. Distance maps
were computed based on the average distance between 10 kbp seg-
ments. For both, our parallel approach and the lattice-based method,
these maps show the characteristic diamond-shaped features along
the diagonal that are observed in Hi-C experiments [TYM*17]. They
are a consequence of the proximity of chains within superhelical
plectonemes. The weak signal in the off-diagonal area shows that our
parallel approach produces models, where the DNA is distributed
randomly through space, rather than in local regions.

In order to evaluate the stiffness of our fiber generation approach
we compare it to the idealistic model given by Equation 2. We have
generated and measured several genome structures of different per-
sistence lengths. Figure 14 shows the corresponding curves for the
expected correlation (orange) and the measured correlation (blue).

The constantly changing domain knowledge that influences the
generation process of bacterial genomes renders it difficult to com-
pare our parallel approach more explicitly to existing sequential
approaches. For this reason, we conducted a simplified comparison
of the sequential generation of polymers with our parallel approach,
as shown in Figure 15. In the comparison, we generated simple linear
polymer structures without supercoils, which were only constrained
by the persistence length and the shape of an enclosing compartment.
Our parallel approach shows a significant performance improvement
starting with 100,000 beads rendering it useful for many applications
of instant polymer modeling.

1k 10k 100k 1m 5m

0

2,000

4,000

6,000

8,000

Number of generated beads

Pe
rf

or
m

an
ce

(m
s)

Parallel Approach
Random Walk

Figure 15: Performance measurements for random walk and paral-
lel midpoint displacement. Starting at 100,000 beads, the parallel
approach indicates a significant performance speedup.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

7. Conclusion and Future Work

We have presented a new method for interactively constructing mod-
els of entire bacterial genomes, and validated its application on three
bacteria that span the range of natural genome complexity. Looking
to the future, there are many enhancements that will need to be ap-
proached. Modeling of transcription complexes (RNA polymerase,
RNA, co-transcriptional ribosomes) will allow to study in detail
the consequences of the genome structure on gene expression. As
we move to more complex bacteria and to eukaryotes, methods for
including DNA-binding proteins will be essential, since they play a
central role in compacting, organizing, and regulating the genetic
information. Detailed atomic structures and physicochemical prop-
erties are known for most of these additional molecules, so we are
optimistic about future enhancement of the method.

ACKNOWLEDGMENTS
This work was funded under the ILLVISATION grant by WWTF
(VRG11-010). It is based upon work supported by the King Ab-
dullah University of Science and Technology (KAUST) Office of
Sponsored Research (OSR) under Award No. OSR-2019-CPF-4108
and BAS/1/1680-01-01. The Scripps Research Institute researchers
acknowledge support from the National Institutes of Health under
the grant R01-GM120604. This paper was partly written in collab-
oration with the VRVis Competence Center. VRVis is funded by
BMVIT, BMWFW, Styria, SFG and Vienna Business Agency in the
scope of COMET - Competence Centers for Excellent Technolo-
gies (854174), which is managed by FFG. The authors would like
to thank Nanographics GmbH (nanographics.at) for providing the
Marion Software Framework.

References
[AJ11] ALTENDORF, HELLEN and JEULIN, DOMINIQUE. “Random-walk-

based stochastic modeling of three-dimensional fiber systems”. Phys. Rev.
E 83 (4 2011), 041804 3, 6.

[B M83] B. MANDELBROT, BENOIT. “The Fractal Geometry of Nature”.
Vol. 51. 1983, 468 p. ISBN: 0716711869 3.

[BWC90] BOLES, T. CHRISTIAN, WHITE, JAMES H., and COZZARELLI,
NICHOLAS R. “Structure of plectonemically supercoiled DNA”. Journal
of Molecular Biology 213.4 (1990), 931–951. ISSN: 0022-2836 2.

[CJB08] CODLING, EDWARD, J PLANK, MICHAEL, and BENHAMOU, SI-
MON. “Random walks in biology”. Journal of the Royal Society, Interface
/ the Royal Society 5 (2008), 813–34 3.

[DH53] D WATSON, JAMES and H CRICK, FRANCIS. “Molecular Struc-
ture of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid”. The
American journal of psychiatry 160 (1953), 623–4 2.

[DN04] DECAUDIN, PHILIPPE and NEYRET, FABRICE. “Rendering Forest
Scenes in Real-time”. Proceedings of the Fifteenth Eurographics Con-
ference on Rendering Techniques. EGSR’04. Eurographics Association,
2004, 93–102. ISBN: 3-905673-12-6 1.

[Dor13] DORMAN, CHARLES. “Genome architecture and global gene reg-
ulation in bacteria: Making progress towards a unified model?”: Nature
reviews. Microbiology 11 (2013) 2.

[DT16] DAME, REMUS T and TARK-DAME, MARILIIS. “Bacterial chro-
matin: converging views at different scales”. Current Opinion in Cell
Biology 40 (2016), 60–65. ISSN: 0955-0674 2.

[FFC82] FOURNIER, ALAIN, FUSSELL, DON, and CARPENTER, LOREN.
“Computer Rendering of Stochastic Models”. Commun. ACM 25.6
(1982), 371–384. ISSN: 0001-0782 3.

[GAO18] GOODSELL, DAVID S., AUTIN, LUDOVIC, and OLSON, ARTHUR
J. “Lattice Models of Bacterial Nucleoids”. The Journal of Physical
Chemistry B 122.21 (2018), 5441–5447 2, 3, 9, 10.

[Hag88] HAGERMAN, PAUL J. “Flexibility of DNA”. Annual Review of
Biophysics and Biophysical Chemistry 17.1 (1988), 265–286 2.

[HF13] HORNUS, SAMUEL and FOURMENTIN, ERIC. “Easy DNA Mod-
eling and More with GraphiteLifeExplorer, in "PLoS ONE”. doi :
10.1371/JOURNAL.PONE.0053609], http://hal. inria.fr/hal-00924190.
2013 2.

[HLE17] HACKER, WILLIAM C., LI, SHUXIANG, and ELCOCK, ADRIAN
H. “Features of genomic organization in a nucleotide-resolution molecular
model of the Escherichia coli chromosome”. Nucleic Acids Research
45.13 (2017), 7541–7554 2.

[Hoe14] HOETZLEIN, RAMA. “Fast Fixed-Radius Nearest Neighbors: In-
teractive Million-Particle Fluids”. GPU Technology Conference (GTC)
2014. 2014 6.

[HRRG08] HAN, CHARLES, RISSER, ERIC, RAMAMOORTHI, RAVI, and
GRINSPUN, EITAN. “Multiscale Texture Synthesis”. ACM Trans. Graph.
27.3 (2008), 51:1–51:8. ISSN: 0730-0301 1.

[JKL12] JILESEN, JONATHAN, KUO, JIM, and LIEN, FUE-SANG. “Three-
dimensional midpoint displacement algorithm for the generation of fractal
porous media”. Computers & Geosciences 46 (2012), 164–173. ISSN:
0098-3004 3.

[KAK*18] KLEIN, TOBIAS, AUTIN, LUDOVIC, KOZLÍKOVÁ, BARBORA,
et al. “Instant Construction and Visualization of Crowded Biological Envi-
ronments”. IEEE Transactions on Visualization and Computer Graphics
24.1 (2018), 862–872. ISSN: 1077-2626 3, 9.

[Kel58] KELLENBERGER, EDOUARD. “Electron Microscope Study of
DNA-Containing Plasms: II. Vegetative and Mature Phage DNA as Com-
pared with Normal Bacterial Nucleoids in Different Physiological States”.
The Journal of Cell Biology 4 (1958), 671–678 2.

[KFS*14] KLECKNER, NANCY, FISHER, JAY K., STOUF, MATHIEU, et
al. “The Bacterial Nucleoid: Nature, Dynamics and Sister Segregation”.
Current Opinion in Microbiology 22 (2014) 2.

[KP49] KRATKY, OTTO and POROD, GÜNTHER. “Röntgenuntersuchung
gelöster Fadenmoleküle”. Recueil des Travaux Chimiques des Pays-
Bas 68.12 (1949), 1106–1122. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/recl.19490681203 5.

[KPV*14] KOLESAR, IVAN, PARULEK, JULIUS, VIOLA, IVAN, et al. “In-
teractively illustrating polymerization using three-level model fusion”.
BMC Bioinformatics 15.1 (2014), 345. ISSN: 1471-2105 2.

[LBLH19] LINDOW, NORBERT, BAUM, DANIEL, LEBORGNE, MORGAN,
and HEGE, HANS-CHRISTIAN. “Interactive Visualization of RNA and
DNA Structures”. IEEE Transactions on Visualization and Computer
Graphics 25.1 (2019), 967–976. ISSN: 1077-2626 3.

[MAPV15] MUZIC, MATHIEU LE, AUTIN, LUDOVIC, PARULEK, JULIUS,
and VIOLA, IVAN. “cellVIEW: a Tool for Illustrative and Multi-Scale
Rendering of Large Biomolecular Datasets”. Eurographics Workshop on
Visual Computing for Biology and Medicine. EG Digital Library. The
Eurographics Association, 2015, 61–70. ISBN: 978-3-905674-82-8 3, 4,
8, 9.

[Max85] MAX, NELSON. “DNA Animation from atom to chromosome”.
Journal of Molecular Graphics 3.2 (1985), 69–71. ISSN: 0263-7855 2.

[MLS17] MIRAVET-VERDE, SAMUEL, LLORÉNS-RICO, VERÓNICA, and
SERRANO, LUIS. “Alternative transcriptional regulation in genome-
reduced bacteria”. Current Opinion in Microbiology 39 (2017), 89–95.
ISSN: 1369-5274 4.

[MM89] MUSGRAVE Forest K.and Kolb, CRAIG E. and MACE, ROBERT S.
“The Synthesis and Rendering of Eroded Fractal Terrains”. SIGGRAPH
Comput. Graph. 23.3 (1989), 41–50. ISSN: 0097-8930 3.

[NML00] NORROS, ILKKA, MANNERSALO, PETTERI, and L. WANG,
JONATHAN. “Simulation of Fractional Brownian Motion with Condi-
tionalized Random Midpoint Displacement”. Advances in Performance
Analysis 2 (2000) 3.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://onlinelibrary.wiley.com/doi/pdf/10.1002/recl.19490681203
https://onlinelibrary.wiley.com/doi/pdf/10.1002/recl.19490681203

T. Klein / Parallel Generation and Visualizationof Bacterial Genome Structures

[PM10] PETERS, JUSTIN P. and MAHER, L. JAMES. “DNA curvature
and flexibility in vitro and in vivo”. Quarterly reviews of biophysics 43
(2010), 23–63 2.

[RZ14] ROSA, ANGELO and ZIMMER, CHRISTOPHE. “Chapter Nine -
Computational Models of Large-Scale Genome Architecture”. New Mod-
els of the Cell Nucleus: Crowding, Entropic Forces, Phase Separation, and
Fractals. Ed. by HANCOCK, RONALD and JEON, KWANG W. Vol. 307.
International Review of Cell and Molecular Biology. Academic Press,
2014, 275–349 2.

[SHGO11] SENGUPTA, SHUBHABRATA, HARRIS, MARK, GARLAND,
MICHAEL, and OWENS, JOHN. “Efficient Parallel Scan Algorithms for
GPUs”. 2011, 413–442. DOI: 10.1201/b10376-29 8.

[SJJ95] S. DUNCAN, BRUCE, J. MACKE, TOM, and J. OLSON, ARTHUR.
“Biomolecular visualization using AVS”. Journal of molecular graphics
13 (1995), 271–82, 299 2.

[SKK*14a] STEINBERGER, MARKUS, KENZEL, MICHAEL, KAINZ,
BERNHARD, et al. “On-the-fly Generation and Rendering of Infinite
Cities on the GPU”. Computer Graphics Forum 33.2 (2014), 105–114.
ISSN: 0167-7055 1.

[SKK*14b] STEINBERGER, MARKUS, KENZEL, MICHAEL, KAINZ,
BERNHARD, et al. “Parallel Generation of Architecture on the GPU”.
Comput. Graph. Forum 33.2 (2014), 73–82. ISSN: 0167-7055 1.

[Spi01] SPITZER, FRANK. Principles of Random Walk. Graduate texts in
mathematics. Springer, 2001. ISBN: 9780387951546 3.

[SPK*07] SCHNEIKER, SUSANNE, PERLOVA, OLENA, KAISER, OLAF,
et al. “Complete genome sequence of the myxobacterium Sorangium
cellulosum”. Nature biotechnology 25 (2007), 1281–9 10.

[TYM*17] TRUSSART, MARIE, YUS, EVA, MARTINEZ, SIBOLESRA, et
al. “Defined chromosome structure in the genome-reduced bacterium
Mycoplasma pneumoniae”. English (US). Nature Communications 8
(2017). ISSN: 2041-1723 2, 10.

[WJZL08] WANG, WENPING, JÜTTLER, BERT, ZHENG, DAYUE, and LIU,
YANG. “Computation of Rotation Minimizing Frames”. ACM Trans.
Graph. 27.1 (2008), 2:1–2:18. ISSN: 0730-0301 8.

© 2019 The Author(s)
Computer Graphics Forum © 2019 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1201/b10376-29

