
High-Quality Rendering of
Interactive Particle Systems for

Real-Time Applications

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Medieninformatik und Visual Computing

eingereicht von

Alexander Heinz
Matrikelnummer 01426648

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Mitwirkung: Univ.Ass. Dipl.-Ing. Johannes Unterguggenberger, BSc

Wien, 29. April 2019
Alexander Heinz Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





High-Quality Rendering of
Interactive Particle Systems for

Real-Time Applications

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Media Informatics and Visual Computing

by

Alexander Heinz
Registration Number 01426648

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer
Assistance: Univ.Ass. Dipl.-Ing. Johannes Unterguggenberger, BSc

Vienna, 29th April, 2019
Alexander Heinz Michael Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at





Erklärung zur Verfassung der
Arbeit

Alexander Heinz
2620 Mollram, Jägerweg 5 Haus 3

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. April 2019
Alexander Heinz

v





Danksagung

An dieser Stelle möchte ich mich bei all denjenigen bedanken, die mich während der
Programmierung und Verfassung dieser Bachelorarbeit unterstützt und motiviert haben.
Ohne sie würde diese Arbeit nicht in dieser Form vorliegen.

Zuerst gebührt mein Dank Univ.Ass. Dipl.-Ing. Johannes Unterguggenberger BSc, der
meine Bachelorarbeit betreut und begutachtet hat. Für die konstruktive Kritik und die
zahlreichen vielseitigen Hilfestellungen möchte ich mich herzlich bedanken.

Ebenfalls möchte ich mich bei Lukas Gersthofer BSc bedanken, der mich während der
praktischen Arbeit unterstützt hat. Bedanken möchte ich mich für die vielen Ideen,
Fehlerfindungungen und der technischen Wissensübetragung.

Abschließend möchte ich mich bei meinen Eltern Nina Heinz und Christian Freiler
bedanken, die mir mein Studium durch ihre Unterstützung ermöglicht haben.

vii





Acknowledgements

In this section I would like to thank all those who supported and motivated me during
the programming and writing of this bachelor thesis. Without them this work would not
be as it is.

First, thanks to Univ.Ass. Dipl.-Ing. Johannes Unterguggenberger BSc, who supervised
and examined my bachelor thesis. For the constructive criticism and the many versatile
help I would like to thank you.

I would also like to thank Lukas Gersthofer BSc, who supported me during the practical
work. I would like to thank you for the many ideas, error finding and the technical
knowledge transfer.

Finally, I would like to thank my parents Nina Heinz and Christian Freiler, who made
my education possible through their support.

ix





Kurzfassung

Partikelsysteme sind weit verbreitet in Echtzeitanwendungen. In dieser Arbeit werden
aktuelle Techniken zur Darstellung und Simulation von Partikelsystemen beschrieben und
verglichen. In der Computergrafik werden Partikelsysteme verwendet, um Flüssigkeiten
wie Wasser, gasähnliche Stoffe wie Feuer und Rauch oder Effekte wie Explosionen und
Feuerwerke darstellen zu können. Im Fall von Wasser könnte man jeden einzelnen Partikel
als ein oder mehrere Wassertropfen interpretieren. Bei einem Feuerwerk wären das die
Funken und Feuer bzw. Rauch könnte durch Überlagerungen von größeren Partikeln
simuliert werden. Im Kontext dieser Arbeit werden alle beschriebenen Vorgehensweisen
entweder dem Rendern, also der Darstellung, oder der Simulation zugeordnet.

Um ein Partikel mit Hilfe einer Grafikkarte zu rendern gibt es viele verschiedene Techniken.
Bei der wohl einfachsten Variante wird eine Textur auf ein Quadrat, welches immer zur
Kamera gerichtet wird, gezeichnet. Dieses Verfahren wird auch Billboarding genannt
und kann sehr einfach und effizient implementiert werden. Ein Nachteil ist, dass die
Kanten des gezeichneten Quadrates sichtbar werden können, wenn sich Bereiche des
Partikels mit anderen Gegenständen in der Szene überlappen und somit das volumetrische
Erscheinungsbild verändert wird. Um dies zu verhindern kann die Transparenz des
Quadrates in der Nähe anderer Gegenstände vermindert werden, um den harten Übergang
etwas weicher zu machen. Diese Vorgehensweise wird auch Soft Particles genannt und
wird verwendet, weil es die Darstellungsqualität der Partikel erhöht.

Als Simulation, welche den wesentlichen Kern dieser Arbeit bildet, versteht man die
Annäherung an ein physikalisches Verhalten, welches durch Manipulation der Daten
erreicht wird. Dabei geht es also um das Verändern, Erstellen und Löschen von Partikeln.
Ein Regentropfen-Partikel würde als Beispiel am Himmel bei einer Wolke erstellt werden,
dann hinunter fallen und am Boden wieder gelöscht werden. Es liegt Nahe, dass ein
System aus sehr vielen Partikeln bestehen kann bzw. sollte, um das zu approximierende
Phänomen zu erhalten. In Echtzeitanwendungen sollten alle Partikel im optimalen Fall
mindestens 60 mal in der Sekunde simuliert werden können, jedoch ist dies nicht zwingend
nötig bei der Art der Simulation, die dieser Arbeit zugrunde liegt. Darum ist es besonders
wichtig, dass die Simulation möglichst effizient ausgeführt werden kann. In dieser Arbeit
werden drei verschiedene Grundtechniken zur Simulation beschrieben und verglichen. Die
zwei wesentlichen Unterschiede sind die Verwaltung des Speichers der Daten und die Art
der Simulationsberechnung. Während bei der einen Technik die Daten im Hauptspeicher
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gespeichert und die Berechnungen auf der CPU durchgeführt werden, werden diese zwei
Prozesse bei den anderen beiden Techniken direkt auf die GPU ausgelagert. Am Ende
eines Simulationsschrittes wird überprüft, ob das Partikel mit anderen Objekten kollidiert
ist. Wenn dies der Fall ist, wird das Partikel dementsprechend reflektiert. Um durchsichtige
Strukturen, wie Rauch, richtig darzustellen, müssen die Partikel nach ihrer Distanz zur
Kamera sortiert und - beginnend mit dem weitest entfernten - gerendert werden. Um
das zu erreichen, werden solche Partikel nach der Simulation entsprechend sortiert. Auf
der CPU kann die Partikelliste ganz einfach mit klassischen Sortieralgorithmen sortiert
werden, aber auf der GPU werden andere Algorithmen, wie der Bitonic Merge Sort,
benötigt.



Abstract

Particle systems are widely used in real-time applications. This thesis presents and
compares several state-of-the-art methods for rendering and simulating particle systems.
In computer graphics, particle systems are used to represent fluids like water, gas-like
substances like fire and smoke or effects like explosions and fireworks. In the case of
water, each particle can be interpreted as one or more waterdrops. To simulate a firework,
the particles can be seen as sparks, and for smoke or fire big particles can be used and
blended over each other. In the context of this thesis all described techniques can be
associated with either rendering or simulation.

For rendering a single particle using the graphics processing unit (GPU), several methods
exist. Probably the easiest would be to draw a texture onto a quad that is always looking
towards the camera. This is called Billboarding and can be implemented very easily
and efficiently. One drawback is that the hard edges of the drawn quad can become
visible, when parts of the particle overlap with other objects in the scene. In this case
the volumetric appearance of the particle can easily be destroyed. In order to avoid this,
the transparency can be adapted near the region of overlap in such a way that the hard
edges are smoothed out. This method is called Soft Particles and is used, because it
increases the picture quality of the particle.

The simulation, as the main topic of this work, can be interpreted as the approximation
of a physical behavior, that can be achieved by manipulation of the data. Therefore it is
about the changing, creation and deletion of particles. A raindrop-particle, as an example,
is created in the sky in a cloud, then fall towards the ground, and at the ground the
particle gets deleted. It is obvious that a system may contain a high number of particles
in order to obtain the phenomenon to be approximated. In real-time applications, all
particles should ideally be simulated at least 60 times per second, but this is not absolutely
necessary in the type of simulation, that underlies this work. Therefore, an efficient
method for simulation is very important. In this work three different basic methods
for simulation are presented and compared. The two most important differences are
the memory management and the way of computation of the simulation. While in one
technique the particle data is stored in the main memory and the computation is done by
the CPU, these two processes are outsourced to the GPU, when using one of the other
methods. At the end of each simulation step the particles are checked against collision
with other scene objects. In case of a collision the particle is reflected respectively. In
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order to represent transparent substances like smoke properly the particles have to be
sorted and - starting with the farthest away - rendered. The easiest way would be to sort
the particles according to their distance to the camera. When simulation is done on the
CPU this can be easily achieved using classical sort algorithms, but when storing the
particle data on the GPU other algorithms, like the Bitonic Merge Sort, have to be used.
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CHAPTER 1
Introduction

This bachelor thesis deals with the simulation and rendering of fire and smoke effects in
real-time applications, using billboarding-based rendering of particle systems. In this
chapter, at first the motivation for this work is given. After that, the general problem
statement and the aim are defined. Then, the implemented methodological approach is
presented. The last section of this chapter shows the structure of the following chapters
of this thesis.

1.1 Motivation
It is the time, where people are looking for more and more realistic and interactive
representations and visualizations of all known phenomena. A reason for this is the
ever-increasing demand for knowledge and understanding and in some cases this is more
and more available, due to the increasing strength of hardware. After closer examination,
it can be seen that some phenomena consists of very many small dynamic structures. As
examples, water, consisting of water drops, or the little sparks of a campfire can be stated.
And even after going a few steps further to atom level, it is obvious that everything can
be interpreted as molecules. A way to approximate all these small structures within a
phenomenon would be to interpret them as one or more particle systems. Therefore the
need for having efficient methods for simulating and rendering particles is big.

1.2 Problem statement
The problem statement was to compute an interactive fire beam in real-time, including
interacting on scene obstacles. A flame, for example, could be assumed to consist of
fire particles and smoke particles. The challenge is to model these particle systems in
such a way, that they can approximate liquid and gas like substances like fire and smoke.
Therefore each system has to pretend to be one big dynamic substance instead of many

1



1. Introduction

single particles. In order to achieve this, a huge amount of particles can be needed.
Another challenge is to process a huge amount of particles efficiently, ideally 60 times
per second, in order for this technique to be suitable for real-time applications.

1.3 Aim of the work

The aim of this thesis is to describe the implementation of different techniques for
rendering and simulating large particle systems in real-time. They are compared with
each other in terms of speed and required resources, especially memory. While for the
rendering part a proper visual appearance is the main goal, the important conditions
for the simulation are an efficient way to update a huge amount of particles and dealing
with obstacle collisions in the scene.

1.4 Methodological approach

The methodological approach of this work consists of several tasks, where each can
be assigned to either the simulation or the rendering step. First, the main parts of
the rendering procedure were implemented. After having a solution for that, simple
CPU-based simulation was applied. This basic simulation was then implemented on the
GPU, too. While the CPU simulation had performance issues for very large particle
systems at this point, the GPU simulations had much less troubles with the same particle
system. In parallel the sequence of render tasks per frame and the used framebuffer
setup were rearranged multiple times, until they were suitable for additive fire particles
and effects like Soft Particles and Bloom. The result is summarized in subsection 3.2.1.
The last tasks were to implement and integrate the GPU sorting algorithm and the
collision detection and handling. All simulation tasks were implemented on the CPU first,
then analyzed and implemented to be executed on GPUs. During the implementation,
the used resources, mainly the memory requirements, were analyzed and compared per
simulation approach. In order to compare the speed, the communication and computation
costs were considered. Also the measured rendered frames per second contributed to the
comparative result.

1.5 Contributions

The main contributions of this thesis are:

• Different approaches to simulate and render interactive particle systems in real-time
are described along with concrete guidelines how they can be implemented.

• Various optimizations using different tools of modern GPUs for the simulation of
big particle systems are presented.
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1.6. Structure of the work

• Comparisons of all introduced approaches in terms of execution time, used memory
and needed communication amount are stated.

1.6 Structure of the work
In this section, a short overview of the next parts of this thesis is given. In chapter 2
the list of related state-of-the-art literature for each task is described. In chapter 3 the
implemented system is explained in more detail and chapter 4 explains the results of
the comparisons and generated pictures. In chapter 5 the thesis is reflected and possible
additional ideas for improvement as future work are given.
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CHAPTER 2
State-of-the-art

In this chapter some state-of-the-art methods concerning the main topics of this thesis
are presented. Therefore some needed basic concepts like billboarding, particle systems
and bloom are discussed. Furthermore, particle simulation and rendering techniques
are described. Then some papers with focus on rendering fire and smoke are given.
The last three sections handle GPU sorting techniques, GPU collision handling and
Order-Independent Transparency.

2.1 Basic concepts

2.1.1 Billboarding

A billboard is a polygon, usually a quadrilateral, oriented in space relative to the view
direction [AMHH08]. In combination with textures, complex geometry or phenomena
can be approximated very easily and efficiently. The orientation of a billboard can
be represented by a normal and an up vector and the final position in space can be
determined by the polygon’s center, for example. According to [AMHH08], there are
different types of billboards:

• Screen-Aligned Billboard

• World-Oriented Billboard

– Viewplane-Oriented Billboard

– Viewpoint-Oriented Billboard

• Axial Billboard

5



2. State-of-the-art

A Screen-Aligned Billboard is always parallel to the screen - the normal vector is
pointing in the negative direction of the viewplane’s normal vector and the up vector
is the same as the camera’s. That means, that the billboard is independent from the
camera’s rotation along the view direction (e.g. z-axis).

A World-Oriented Billboard’s up vector is not bound to the camera, but usually
aligned with the world’s up vector. The polygon is called a Viewplane-Oriented
Billboard, if the polygon’s surface is parallel to the viewplane. One rotation matrix
can be applied to all billboards. When the normal vector of the billboard is pointing
from the center to the camera’s position (viewpoint), it is called a Viewpoint-Oriented
Billboard. In this case all billboards have a different rotation matrix. In Figure 2.1
these two methods are illustrated.

Figure 2.1: This figure shows the differences between viewplane- and viewpoint-oriented
billboards. The left picture illustrates the viewplane-based approach, and on the right
the viewpoint-based polygons can be seen. Adapted from [Lar10].

An Axial Billboard’s orientation is limited to the rotation along only one world space
axis. The polygon aligns itself towards the camera as best as possible within this
limitation. This sort of billboarding can be used for distant trees for example.

Billboards can be easily created on the fly from point data on the GPU using the geometry
shader [Bas10].

2.1.2 Particle Systems

A particle system contains many different small objects, which are moved and animated
in order to approximate some phenomena like fire, smoke or explosions [AMHH08].
Primarily, the purpose of a particle system is the simulation and not the rendering of
particles. The main operations are creating, manipulating and deleting many of these
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2.1. Basic concepts

small objects in a dynamic manner. A single particle can be represented in many different
ways like, for example, as point, line or billboard.

Often, a particle system needs emitters [Lar10]. An emitter is handling the creation of
new particles and defines parameters like position, speed, distribution, direction, size and
so on. Another important concept is the usage of external forces like wind or gravity in
order to make the simulation more realistic.

Anderdahl et al. [AD14] add the terms of a demitter and the bounding volume to the
definition of a particle system. A demitter or despawn is the opposite of an emitter
or spawn and deletes a particle. A bounding volume can be seen as the border or the
validity area of the system, if available.

2.1.3 Texture Animation

In order to make the appearence of a textured geometry more dynamic the texturing can
be animated. This can be easily achieved by changing the texture to be sampled and/or
the sampling coordinates from frame to frame [AMHH08]. Operations can be simple
moving the coordinates around in the texture space or applying linear transformations
(e.g. zoom, rotation, ...). Many effects like a waterfall and fire can be approximated with
this approach.

When changing textures from frame to frame a texture atlas can be used. A texture
atlas is a big texture that contains many smaller independent textures [Lar10]. They can
be aligned in a grid or a line for example. For sampling, the original texture coordinates
need to be converted to point at the appropriate subregion of the texture. Using a
texture atlas decreases the number of texture switches and is therefore more efficient
than binding all the small textures separately.

2.1.4 Image Processing and Filters

The images created when rendering geometry can be processed further before showing on
the screen. Applying image processing methods on images after rendering is also known
as post processing [AMHH08]. Such an image processing technique would be applying a
gaussian filter in order to blur the image.

Another image processing technique to blur an image is to downsample an image. The
downsampled image can then be blended over the original image [AMHH08].

The gaussian filter is a so called seperable filter kernel. Seperable means, that the filter
can be applied in two seperate one-dimensional filter passes [AMHH08][PVV05]. This is
much more efficient, because much less texel-fetches have to be done. As an example a 5
by 5 gaussian filter kernel would need 25 texel-fetches in one pass. Using the seperable
gaussian filter would mean, that a 5 by 1 and a 1 by 5 filter need to be applied in two
passes, leading to only 10 texel-fetches.
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2. State-of-the-art

2.1.5 Bloom and Glow

Bloom is an effect, where very bright areas shine over neighboring pixels. To achieve such
overexposed images the areas which should receive the effect need to be rendered into a
seperate texture, which, subsequently, is blurred and added to the original image. These
steps can easily be done with image processing [AMHH08]. The interesting areas can be
determined by applying a bright-pass filter, where only pixels to be bloomed are not set
to black. This makes the bloom effect react dynamicly on very bright areas of the scene.

Instead of a bright-pass filter, an additional texture, that identifies the interesting regions
of geometry, can be used [Fer04a]. This makes the bloom effect more controlable over
the scene, because only parts defined in the textures are overexposed. The composition
of the final image can be seen in Figure 2.2.

Figure 2.2: This figure shows the process to create the bloom/glow effect. (a) is the
original scene image and (b) is the texture, that holds the parts which are to receive the
effect. These parts were defined by an additional texture (not shown; often called Alpha
Texture). (c) holds the blurred image from (b) and the final image (d) is composited as
the sum of (a) and (c). Adapted from [Fer04a].

2.2 Particles

2.2.1 Soft Particles

A problem with billboard rendering of particles is, that the hard edges of the polygon
can become visible when hitting scene geometry. Lorach [Lor07] introduces the idea of
fading the fragments out in regions close to other geometry/other objects. An easy way
to achieve this is to use the scene depth (e.g. z-buffer). Figure 2.3 shows, why using
depth information helps to overcome this problem.
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2.2. Particles

Figure 2.3: This figure demonstrates the idea of using depth information for removing
hard edges. It can be seen, that d1 is behind the scene geometry/other objects and d2 is
a little bit in front of the scene geometry/other objects. When rendering the particle the
common way, a hard edge would be noticeable where other geometry is intersected by the
bounded plane representing the particle. This can be solved by smoothly decreasing the
alpha value of the particle in that regions. In general, that means the closer fragments
are to the scene geometry, the more they have to be faded out. Adapted from [Lor07].

2.2.2 High-Speed, Off-Screen Particles

In [Ngu07] a method to improve the performance of particle rendering is described. The
main problem is, that rendering alpha transparent particles needs a lot of blending
operations and one way to lower the number is to render these into a smaller render
target, leading to less fragments that need to be alpha blended. Therefore, all particles
are rendered into an off-screen render target with lower resolution. To test the particles
against the depth of the scene the z-buffer needs to be downsampled until it fits the
resolution of the off-screen render target. However, using binary depth testing when
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2. State-of-the-art

rendering the particles makes downsampling artifacts visible. Implementing Soft Particles
from last section shrinks these artifacts, but there are still some noticeable blocky regions
in the images. To overcome this, the authors introduce the Mixed-Resolution Rendering
technique, that uses an edge image, the stencil buffer and a second particle render pass.
Figure 2.4 shows a result.

Figure 2.4: This figure shows the differences of particles rendered at full resolution (left
image) and the Mixed-Resolution Rendering technique (right image). Adapted from
[Ngu07].

2.2.3 GPU Simulation

McCool et al. [MDTP+04] describe a method for manipulating states of particles of a
particle system using a stream program.

Another way to simulate particles on the GPU is storing particles as texels inside a
texture. They can be updated by executing a pixel shader [KLRS04][Bas10].

Another approach for GPU-based particle simulation is to store particles as vertices inside
a vertex buffer. An update step is done by executing a geometry shader, whose output is
not passed to the pixel shader, but written into another vertex buffer using stream-out
(DirectX’s Stream-Out [JK18] is comparable to OpenGL’s Transform Feedback [Wik18b])
[Bas10].

A geometry shader can output a dynamic amount of points or other geometries [Wik19b].
That is the reason why this shader stage can be used for the creation, manipulation and
deletion of particles on the GPU [Bas10].
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2.3. Fire and Smoke

2.2.4 Comparison Between Particle Rendering Techniques in DirectX
11

Andersson and Johansson [JA17] are comparing one CPU-based solution using hardware
instancing and one GPU-based approach using DirectX’s Stream-Out technique. The
results show, that the GPU version is much better than the CPU version, when talking
about big non-interacting particle systems. On the other hand the CPU approach is
better, when it comes to smaller particle systems with the need for collision detection or
vector forces.

2.2.5 Particle Systems Using 3D Vector Fields with OpenGL
Compute Shaders

Anderdahl et al. [AD14] are comparing two compute shader based particle simulation
solutions using vector fields. A compute shader can perform operations on several data
structures (e.g. buffers, textures) in parallel. They are a good tool/approach for particle
simulation, because manipulating vertex buffer data entries is the only operation, that
needs to be done for particle simulation. Compute shaders can perform these operations
more efficiently than, e.g., Transform Feedback methods, because much less state changes
need to be done (e.g. no vertex-, geometry-shader stage and no vertex array object
needed) and only one buffer is needed. The authors test their solutions with different
work group sizes for all compute shaders (one for creating vector fields and one for moving
the particles) and visualize the results. The insight was a different execution time for
different work group sizes. In addition the authors discover the assumption, that the
computation time does not depend directly on the number of particles, but on the size of
the data.

2.3 Fire and Smoke

2.3.1 Fire in the "Vulcan" Demo

In [Fer04b] the authors introduce a technique for rendering realistic fire and smoke
coming out of a character. They use video-textured sprites (billboards with animated
textures) for rendering. The authors use additive blending for fire particles, because
the composition is independent from the order of the particles. A problem is, that
the resulting colors get uncontrolable and the mixing with the smoke particles is very
tricky. So they decide to first sort all particles (fire and smoke) each frame and then
render them alpha blended over each other. The particles are rendered in a seperate
render target, that has a lower resolution. This reduces the amount of needed blending
operations and increases the performance. To improve the quality of the images a glow
effect is implemented (see subsection 2.1.5[Fer04a]). Figure 2.5 gives an illustration of
the rendering pipeline.
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2. State-of-the-art

Figure 2.5: This figure shows the rendering process used in [Fer04b]. The glow stage can
be seen on the right and the particles on the left. Adapted from [Fer04b].

2.3.2 Smoke rendering

When rendering smoke billboard particles additive blending cannot be used, because the
undesired blending results are not typical for translucent materials. Therefore smoke
particles need to be alpha blended [Bas10]. For the proper appearence of alpha blended
geometry the fragments need to be composited in the right depth order, namely distant
fragments first. To achieve this the smoke particles can be sorted before rendering. When
simulating the particles on the GPU a GPU sorting algorithm need to be applied (see
section 2.4).

Smoke can also be simulated with Fluid Simulation techniques, e.g. simulate smoke
particles on the GPU, create a volume by rendering them into textures and render the
smoke with volume ray casting/marching to the screen [Lar10].

2.4 GPU sorting

2.4.1 Odd-Even Merge Sort and Bitonic Merge Sort

Performing sort algorithms effieciently on GPUs needs algorithms for parallel architectures,
for example the Odd-Even Merge Sort or the Bitonic Merge Sort. Both algorithms don’t
suffer or benefit from a special order or structure of the unsorted elements. Additionally
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2.4. GPU sorting

the worst-, best- and average-performance is in O(log(n)2) parallel time [con19a][Wik19d].
[PF05] provides pixel shader implementations for both.

The Odd-Even Merge Sort needs more passes to fully sort a list of elements. In general,
a pass is a command (draw or dispatch) on the CPU side. Too many of these passes are
bad for the performance. However, a strength of the Odd-Even network is, that the list
is not getting less sorted after some passes. This leads to the mechanic of splitting the
passes over frames. That means the list is not fully sorted after the first frames, but it
gets better over time [Bas10][KLRS04].

The Bitonic Merge Sort needs fewer passes to fully sort a list of elements, but the
sortedness does not increase after each pass. This is, because the groups are sorted
alternating descending and ascending and therefore the algorithm cannot be splitted over
frames [Wik19d][Bas10]. Figure 2.6 shows the sorting network.

Figure 2.6: This figure shows the bitonic network for 16 elements. The black arrows
define the comparisons and the colors (green, blue) are encoding the sort direction of
this block in this pass. Adapted from [Wik19d].

An illustration of the Bitonic Merge Sort algorithm can be seen in Figure 2.7. The
algorithm starts with bunchSize = 2. In this example a bunch is a group of elements and
the list contains n/bunchSize bunches. Within a bunch pairs of elements are ordered
in the same direction. The order direction alternates over the bunches. First all direct
neighbors are compared with each other, that means jumpSize = 1. jumpSize defines
the distance of one element to the element to be compared with within a bunch. The
sort direction, that is depending on the current bunch, is stated with the gray dotted
arrows in the figure. The elements, that need to be switched, are marked in red. In the
figure, the list should be sorted in ascending order. When sorting needs to be descending,
all sort directions need to be flipped. Then bunchSize is doubled to 4. Now there are
two invocations, the first, which compares each element with the second next neighbor
(jumpSize = 2), and the second, which compares again each direct neighbors with each
other (jumpSize = 1). Then bunchSize is doubled to 8. That means, that there are
three invocations, where the second and third have the same comparison schema as for
bunchSize = 4. In the first invocation each element is compared with the neighbor, that
is four fields further (jumpSize = 4). This results in 6 shader invocations for n = 8
elements.

13



2. State-of-the-art

Figure 2.7: In this figure, an example for the bitonic merge sort algorithm in ascending
order for n = 8 elements is given, where Bunch is bunchSize and Jump is jumpSize.

2.5 Collision detection and handling

2.5.1 Hardware-based simulation and collision detection for large
particle systems

Kolb et al. [KLRS04] introduce a GPU-based simulation for big particle systems with
detecting collisions on surrounding objects. The collision detection method is image-based,
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that means for each collider several depth maps are created. The depth maps approximate
the border of the object and each depth map contains the distance to the original collider
object per pixel, the corresponding normal vector and the transformation matrix from
collider object space to depth map space. During the particle system simulation procedure
the depth maps are accessed in the shader and the collision detection can be computed
(e.g. set velocity to zero or simple reflect on normal vector). In Figure 2.8 some results
for colliding particles are shown.

Figure 2.8: This figure shows some results for big particle systems colliding with sur-
rounding objects. Adapted from [KLRS04].

2.6 Order-Independent Transparency
An Order-Independent Transparency method’s property is to automatically accumulate
all transparent geometry parts in the right order independent from the rendering order.
Such algorithms operate at fragment level, insuring correct composition over all fragments.
During rendering, every fragment need to be stored somehow, because all pixels are
contributing to the result. A simple approach would be to store all fragments in a
buffer and sort each of them afterwards. The problem with that is a very tricky efficient
implementation on the GPU. Another solution would be to store a fixed-size amount
of values per pixel, but this is also very unefficient, because the fragment count can
differ for all pixels. Maule et al. [MCTB12] introduce a memory-efficient technique for
order-independent rendering of transparent geometries, using a method called Dynamic
Fragment Buffer.
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CHAPTER 3
Methodology

3.1 Used technologies
This section gives a short overview of the used technologies. The programming language
C++ and the graphics library OpenGL [Rod18][Wik18a] were used for creating this
application and resulting images. Because compute shaders were used in important parts
of this work, OpenGL 4.3 is a minimum requirement [Wik19a].

3.2 Rendering
In this chapter, the rendering of billboard-based particles is described in detail. First,
an overview of the sequence of render tasks and used framebuffer setup is presented.
Subsequently, the layout of the buffer that should be drawn is introduced. In the next
section an overview of the used Billboarding technique and shader programs is given.
Then the progress, that makes an animated billboard out of a texture atlas is shown.
Next, the bloom and the blurring processes are illustrated and at the end the Soft
Particles effect is described.

3.2.1 Overview

In this section, the main tasks of a single render frame are described. A simplified
depiction of the whole process can be seen in Figure 3.1. Rendering fire and smoke
particles to the same scene is not trivial and therefore several textures and render targets
are used.

During the Render scene task, the entities, a skybox and the floor are rendered. In parallel,
an additional texture is filled with the corresponding scene depth values, because the Soft
Particles effect needs information about the scene depth and the current depth-stencil
render target cannot be used for reading, when currently assigned to a framebuffer.
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During Render smoke alpha transparent smoke particles are rendered onto the scene.
This results in very dark and dense smoke. Particles are not rendering their depth to
the current depth-stencil render target, but their fragments are tested against the depth
values from the scene.

After that, the fire particles are rendered during the Render fire step. The fragments are
additively blended over each other, because this increases the intensities and lets the fire
glow a little bit. The render target is cleared to fully transparent black at the beginning
of each frame. This is done, because for additive blending the intensities are summed
up per fragment. When rendering fire onto the scene like it is done for smoke, all the
intensities would be almost one, because the intensities of the underlying scene fragments
would contribute to the result.

The bloom is part of the general particle render process. In order to determine, which
fragments need to be bloomed afterwards, the colors to be bloomed are rendered into the
Bloom Texture as second render target during the Render smoke and Render fire stages.
In case of smoke the bloom texture fragments are black, because the bloom effect would
not be noticeable at all. In general, bloom increases the glow even more in the case of
fire. Therefore, the fragment color with different weights per color channel is rendered.
The weight of the red channel is the most dominant, because this lets the fire glow more
in red, what makes the fire more realistic.

During Blur textures the Bloom Texture is blurred, because in general this is part of the
bloom effect. The whole bloom procedure is described in detail in subsection 3.2.5.

In order to merge all created textures to the final image, first the scene and fire textures
are alpha blended over each other. This is done, because it preserves the intensity and
transparent parts of the fire particles. The next step is to add the blurred bloom texture
fragment-wise, because this is the last step of the bloom effect. The result is drawn to
the screen.

3.2.2 Layout of buffers

A very simple way to render a particle would be to store a quad inside a GPU buffer
and prepare a transformation matrix for each particle. Then iterate over all particles,
upload the current transformation matrix to the shader and render the quad. There are
several performance issues with that approach. A 4 by 4 transformation matrix has to
be stored and uploaded for each particle per frame, where only a 3-component vector for
the position and some single float values for rotation and scaling are needed in the simple
case. Besides that, a single draw call is executed per particle, what is also a big waste of
resources. A smarter version would be to store only necessary data into a buffer, create
the billboard on the GPU using the geometry shader and execute only one draw call for
all particles. With that approach, the buffer is a list of particle data, where for each
particle a 3-component vector for the position and a 2-component vector for rotation
and scaling are stored. A single value for rotation is enough, because a billboard can
only be rotated along the local z-axis. Otherwise it would not look towards the camera
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Figure 3.1: This figure shows all the steps of our algorithm. At the left, the separate
compute/render steps are depicted. On the right, the required resources are shown which
are read by the steps on the left or written into, respectively.

anymore. For this thesis, an extended version of the described buffer was used for the
GPU simulation techniques in section 3.3. For each particle, the following data is stored:

1. 4-component vector for position; w value is used for distance to camera

2. 2-component vector for elapsed time and maximal life time
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3. 3-component vector for rotation and scaling; 2 values for scaling, where the actual
scaling is the interpolation of these two values according to the elapsed time

4. 3-component vector for current velocity of the particle

Some of the values like the two life time values and the velocity are only used for
simulation, but the same buffer is used for rendering and simulation.

3.2.3 Billboarding and rendering pipeline

Consider having a buffer with a list of particle data stored as discussed in the previous
section. Knowing the amount of stored particles we can draw as much points as particles
after binding the proper shader program. First the vertex shader is executed. This shader
passes all components to the next stage. Then the second stage the geometry shader is
executed. The main purpose is to create the billboard and set all preparations for the
rasterizer. In order to create the billboard the passed world position is transformed into
view space using the view matrix. Up to now we have only one single point in view space
instead of a quad in clip space. A view space quad can now easily be created by adding
the four corner points of a quad to the view space position. The quad can be scaled by
using the size for the computation of the relative corner points. In order to apply also
the rotation to this quad a z-rotation matrix is built inside the geometry shader and
each corner point is transformed accordingly, before adding it to the view space position.
After that the projection matrix is applied to the quad and the primitive is emitted. The
computation of the left top corner point in clip space can be seen in Equation 3.1,

posvs = mview ∗ posws

ltvs = (mmodel ∗ vec4(−s, s, 0, 0)) + posvs

ltcs = mproj ∗ ltvs

(3.1)

where posws is the input position in world space, mview the view matrix and posvs the
transformed position in view space. In the second line mmodel describes the z-rotation
matrix and s is the size of the particle. In the last line mproj is the projection matrix
and ltcs holds the left top corner point in clip space. In order to get the other three
corner points of the quad, only the sign of each s inside the vector has to be modified.
As output mode of the geometry shader a triangle strip is used. It is not hard to see that
the generated quad is always facing the camera, because it creates the quad in front of
the camera in view space. But as simple as this approach is, it brings some performance
issues. The quad and the model matrix for the z-rotation have to be generated new for
each particle in each frame. In the next section the fragment shader and the needed
preparations are described.
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3.2.4 Animated textures

Having the properly generated billboard, each fragment needs to be illuminated. Because
of the dynamic appearance of fire and smoke, it can be beneficial to not use static textures
but animate them. Such an animated texturing can be achieved by using a texture atlas
(see Figure 3.2). This atlas is built up like a grid. While the particle is alive, that means
the elapsed time is lower than the max life time, the life progress can be computed.

Figure 3.2: This figure shows an example of a fire texture atlas, arranged in a 4 by 4
regular grid. This atlas was used to animate the fire particles. In general the layout of
the atlas doesn’t matter, the subtextures could also be aligned in one row or column. It
can be easily seen, that this atlas delivers many changes regarding size and volume, what
makes the appearance of the fire more dynamic.

According to this value the current independent texture of the atlas can be determined.
The next independent texture in the grid can be used to smoothly interpolate between
two subimages. Therefore, in the geometry shader the texture positions for the current
and the next atlas cell can be assigned to each corner point and passed to the fragment
shader. The next values, that can be computed according the life progress value, are the
fade-in and fade-out alpha values. The smoke particles, for example, are very transparent
at the beginning and smoothly get more visible over time. For a nice optical effect, we
suggest to fade out the fire particles in order to see the visible smoke at the end of the
beam. This means also these computed alpha multipliers are passed to the fragment
shader. Finally the fragment shader is executed. Thanks to the pre-calculated values in
the geometry shader, it only has to sample the texture atlas and set all output values
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accordingly. The color computation of the particle fragment can be seen in Equation 3.2,

c1 = sample(tatlas, uv1)
c2 = sample(tatlas, uv2)

cout = tfade ∗ ((1− ap) ∗ c1 + ap ∗ c2)
cbloom = bweights ∗ cout

(3.2)

where uvi are the two texture atlas coordinates and ci hold the sampled atlas colors, for
i ∈ [1, 2]. tatlas is the bound texture atlas, tfade the alpha multiplier and ap ∈ [0, 1] the
interpolation factor between the adjacent atlas cells. The fragment color is stored in cout.
cbloom holds the color rendered to the bloom render target and is set to the fragment
color weighted by bweights.

3.2.5 Bloom

Up to now particles are stored in one buffer and can be efficiently rendered using animated
billboards. This part gives a detailed description, how the appearance of the fire particles
can be improved using a simple bloom effect (see subsection 2.1.5, [AMHH08], [Fer04a]).
In general, this effect consists of three parts, namely rendering into a separate texture,
blurring it and adding the result to the scene. First, the parts of the scene, that should
be bloomed, have to be rendered into one texture. This happens during the fragment
shader of the particle rendering shader program, where the input for this texture is a
weighted color of the fragment color itself (last line of Equation 3.2). In the case of
smoke these weights can be zero, because blooming the low intensity fragment colors of
the used atlas wouldn’t be noticeable at all. On the other hand blooming increases the
quality of the visualizations of fire, because this approximates the glowing parts of real
fire. The differences of disabling and enabling bloom can be seen in Figure 3.3. After
rendering into the texture the data has to be blurred in a separate stage. We chose
gaussian kernels of size 11 with sigma 2.0 for blurring, but it depends on the scene and
the required distortion.

The blur can be reinforced by using smaller textures as render targets. Due to the fact,
that a gaussian kernel is separable (discussed in subsection 2.1.4[AMHH08][PVV05]) and
the bloom texture is blurred twice in this project, the whole procedure consists of four
steps:

1. horizontal blur with third of screen dimensions

2. vertical blur with third of screen dimensions

3. horizontal blur with sixth of screen dimensions

4. vertical blur with sixth of screen dimensions
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(a) Scene without bloom. (b) Bloomed fire and smoke.

Figure 3.3: This figure shows the visual differences of disabled and enabled bloom. It
can be easily seen, that the bloom increases the quality of the fire.

The blur is applied twice, because it reinforces the blurring even more. This approach
is more efficient than using an accordingly bigger kernel, because it allows using much
smaller kernels applied on much less fragments, due to the shrunken textures, to get the
same result. When only using the second blur artifacts would be noticeable. To finalize
the bloom effect the blurred texture is added fragment per fragment to the combined
scene and fire texture.

3.2.6 Soft Particles

Up to now interactive images can be created using the techniques mentioned in the
previous sections. But there is an issue with the used billboarding rendering technique.
The quad can become visible, when parts of a particle overlap with other scene objects
and this might destroy the visual appearance of fire and smoke. This section shows a
method to counteract this visual issue, called Soft Particles [Lor07]. An introduction to
Soft Particles has been given in subsection 2.2.1. This method smooths out these hard
edges in overlapping regions using the depth buffer. The original depth buffer, that is
used for depth testing and writing, cannot be used efficiently for that, because in order
to use this depth texture it must not be bound as the current depth-stencil render target.
Instead of unbounding it from that target before rendering and bounding it again to that
target afterwards, it is easier to create another independent texture for that. This texture
stores 32 bit float values and is bound as the second render target, when rendering scene
geometry. During the fragment shader the generated depth texture can be used, in order
to decrease the overall alpha value for fragments, that are very close to the scene. The
computation of this alpha value can be seen in Equation 3.3,

asoft = abs(dscene − dparticle) ∗ ssoft (3.3)

23



3. Methodology

where dscene is the obtained scene depth value, dparticle the length of the particle position
in view space, ssoft a scaling value and asoft the resulting alpha value, that is multiplied
to the alpha channel of the fragment color. The value of ssoft is very important for the
result, but it totally depends on the scene. In this project ssoft is set to 2. Illustrations
of the effect of Soft Particles can be seen in Figure 3.4.

(a) Hard edges of quad can be seen. (b) Scene with Soft Particles.

Figure 3.4: This figure shows the visual differences of Soft Particles disabled and enabled.
It can be easily seen, that hard edges of the billboard quad can become visible without
this effect.

3.3 Simulation
In the previous chapter several techniques for rendering particles have been presented.
The goal for this chapter is to give an introduction into the implemented simulation types,
that are more or less suitable for very big particle systems. The comparison of the results
is presented in chapter 4. First, the CPU-based technique will be described. Second,
the first GPU-based technique will be described, which is using transform feedback. An
improved version of this technique is described as the third variant. It makes use of
compute shaders. The next section deals with sorting the GPU particle buffers. In
section 3.5 the collision detection and handling of particles and scene obstacles are
described.

3.3.1 Introduction

During the simulation of particles the physical behavior of the underlying phenomenon
is approximated. This can be achieved by manipulation of the particle data during the
update procedure of the engine. First the components of a particle, which are needed
for simulation, are discussed. It is obvious that a simple particle needs a position. Due
to the fact that a particle can move around, an easy way to model this would be to
add a velocity vector to the data, that keeps track of the current moving direction and

24



3.3. Simulation

speed. Also active particles may die or a new particle can get created. That means each
particle has to keep track how long it has been living, in order to determine, when to
end being active. So we added the elapsed life time and the max life time. After defining
the components of the particles the simulation process can be discussed.

3.3.2 CPU-based simulation

Consider having particle objects stored in an array or a dynamic list data structure. The
first thing during the update method is to determine, how many new particles have to
be created in this frame. This amount of new particles is added to the data structure.
Then iterate over the data structure and do a simulation step for each active particle.
This simulation step is performing the following steps:

1. Increase elapsed life time

2. Change position according velocity

3. Change velocity regarding global forces, like gravity or wind

Particles, where the elapsed life time is greater than the max life time, need to be removed
from the data structure, because these particles are no longer active. The advantage of
having the particle data stored on CPU side is the practicality, because all methods that
can be applied to this data structure or the particle object itself can be executed easily.
The big disadvantage is the fact, that some components of each particle, especially the
position, needs to be uploaded to the GPU shader in order to render the particle. This
is not suitable for large particle systems, because the amount of data, that needs to be
transferred would worsen the performance very much. This leads to the next section.

3.3.3 GPU-based simulation - Transform feedback

In this section a technique for particle simulation is described, that is able to read, process
and then write back a huge amount of particle data stored in a GPU buffer. Consider
having a GPU buffer and a particle list on the CPU. The list can easily be uploaded to
that GPU buffer and rendered. Another important detail is, that in our implementation
the GPU buffers have one additional particle stored, namely the emitter. The emitter
cannot be updated or rendered and its task is to emit new particles during its update
step.

The next lines will explain the functionality of transform feedback, that is the core part
of this approach. With transform feedback the result of a vertex or geometry shader can
be written into another buffer [Wik18b]. That means a second buffer is needed as target
of the written geometry. To use transform feedback for particle simulation the vertex
shader is invoked with that input particle data buffer and the output of the geometry
shader is written into another buffer. In the next frame, this buffer will be the input
and the other buffer the target. So the buffers are Ping-Ponging every frame. In our
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implementation it is important to disable the rasterizer, because we don’t want to render
anything in this case, but just perform the simulation.

The vertex shader is just passing the input components further to the geometry shader
[Wik19c]. The procedure of the geometry shader can be seen in algorithm 3.1. This
algorithm is executed for each particle in parallel. In line 2, the current particle is
obtained and in line 3, it is checked if the current particle is the emitter. In this thesis,
an emitter is a particle that never dies and is responsible for spawning new particles.
Therefore the emitter is written into the output buffer without changes, because all
buffers need exactly one emitter. The function WriteParticle executes the output of
a particle to the output buffer. In lines 5 to 8, new particles are created using the
CreateNewParticle function and written into the output buffer. If the current particle
is not the emitter, then it is updated in line 10. GetUpdatedParticle takes the current
particle, manipulates and returns it. If it is not active anymore (determined by IsAlive),
then it won’t be written to the output buffer. Otherwise the collision handling is done
in line 12 and in line 13 the collision handled particle is written to the output buffer.
GetCollisionHandledParticle takes the updated particle, checks it against all colliders,
manipulates it if necessary and returns it.

Algorithm 3.1: Update particles using transform feedback
1 function GeometryShaderSimulationMain(dt, nspawn, paramsspawn, g,

paramscolliders)
input : dt ∈ R, dt > 0, dt is elapsed time since last frame

nspawn ∈ N, nspawn is amount of new particles to spawn
paramsspawn is list of spawn parameters
g ∈ R3, g is gravity
paramscolliders is list of colliders

2 pcurrent = GetCurrentParticle();
3 if IsEmitter(pcurrent) then
4 WriteParticle(pcurrent);
5 for i = 1..nspawn do
6 pnew = CreateNewParticle(paramsspawn);
7 WriteParticle(pnew);
8 end
9 else

10 pupdated = GetUpdatedParticle(pcurrent, dt, g);
11 if IsAlive(pupdated) then
12 pcollisionhandled =

GetCollisionHandledParticle(pupdated, paramscolliders);
13 WriteParticle(pcollisionhandled);

In order to keep track of the current amount of active particles the number of written
particles needs to be transferred from the GPU to the CPU. This is necessary, because the
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CPU, which is executing the shader program, needs to specify the number of primitives
that should be updated in the next frame. To achieve this an OpenGL query object, that
listens to the generated primitives of the bound transform feedback target buffer, is used
[Wik19c].

The goal was to find a method, that can efficiently simulate a huge amount of particles,
using the parallelization strength of the GPU. With the transform feedback approach
this goal is reached, but it brings also some disadvantages. One downside is the needed
memory, because two buffers, one as input and one as output, have to be used. That
means, that the particle data is stored twice on the GPU and that is a huge amount of
additional needed storage in case of very large particle systems. Another disadvantage
is, that the practicality of the CPU-based approach is gone. All functions, that can be
applied on the data structure, like sorting, have to be implemented new, in order to be
suitable for GPU buffers. A sorting algorithm will be described in section 3.4.

3.3.4 GPU-based simulation - Compute Shader

In this section a second GPU-based approach is described, which uses compute shaders.
A simple way to use a compute shader for particle simulation is to implement it exactly
like the transform feedback approach from the previous section.

In general, a compute shader can manipulate images and buffers, that are bound to the
program [Wik19a]. There is no need for an additional target image or buffer, because it
can read and write from and to the same image or buffer in one execution step. When
executing the shader the amount of instances, that should run in parallel, has to be
stated. The index of the current executed instance can be queried inside the shader code.

In order to implement the transform feedback algorithm using a compute shader, the
input particle buffer, the target buffer and an additional counter buffer are bound. Instead
of getting the particle count using a query object, the actual amount has to be computed
in the shader code. This means every particle, that is written into the target buffer,
increases the value in the counter buffer by 1. The value stored inside this buffer is the
amount of instances for the execution in the next frame. It is obvious, that no matter
which GPU technique is used for this algorithm, the needed memory is identical. An
improved compute shader version would be an algorithm, that only needs one bound
particle buffer instead of one input and one target buffer.

In algorithm 3.2 the improved algorithm can be seen. In line 2 the instance index is
queried and in line 3 it is checked, if the particle at this index is the emitter. If yes,
nothing needs to be done, because the emitter particle should stay unaltered at the same
position in the buffer. If it is not the emitter, in line 5 it is checked, if the current index
holds a valid particle. An invalid particle data would be an empty or died particle and is
determined by the IsV alid function. If the data is a valid particle, then it is updated in
line 6. When it is still alive after updating the collision handling is executed in line 9
and the particle is written back to the same position in the buffer. If the buffer holds an
invalid particle at this position, this index in the buffer could be used for a new particle,
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Algorithm 3.2: Update particles using compute shader
1 function ComputeShaderSimulationMain(dt, nspawn, paramsspawn, g,

paramscolliders, parr)
input : dt ∈ R, dt > 0, dt is elapsed time since last frame

nspawn ∈ N, nspawn is amount of new particles to spawn
paramsspawn is list of spawn parameters
g ∈ R3, g is gravity
paramscolliders is list of colliders
parr is the buffer of particle data

2 i = GetCurrentIndex();
3 if !IsEmitter(parr[i]) then
4 alive = false;
5 if IsV alid(parr[i]) then
6 pupdated = GetUpdatedParticle(parr[i], dt, g);
7 if IsAlive(pupdated) then
8 alive = true;
9 parr[i] = GetCollisionHandledParticle(pupdated, paramscolliders);

10 if !alive then
11 nspawn = nspawn − 1;
12 if nspawn > 0 then
13 parr[i] = CreateNewParticle(paramsspawn);
14 else
15 parr[i] = CreateEmptyParticle();

that would need to be created and stored. This is the case, when the particle died or the
data has not been valid at all. In line 11 the global value in the bound counter buffer is
decreased. In this case the counter buffer doesn’t hold the count of particles, but the
amount of particles to spawn. When no new particles need to be created, the particle
data at this position is set to empty in line 15 using the CreateEmptyParticle.

The advantage of this approach is, that it doesn’t need to store all particles in two buffers,
because the compute shader will only manipulate one buffer. A condition for this to work
properly is to execute the program with the maximal count of particles, instead of the
current particle count. This is, because the compute shader will place the new particles
at random positions all over the buffer. On the other hand the particles during the
transform feedback method are arranged on the left without holes. This is also illustrated
in Figure 3.5. Note, that the indices buffer need to be as big, as the next power of 2 of
the maximal particle count, because this is required by our sorting algorithm.
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Figure 3.5: In this figure, an illustration of the layout of different GPU particle buffers
can be seen. n is the current particle count and n + k = nmax the maximum amount of
particles that can be stored in this buffer. n + k + m = Nmax is the next power of 2 of
nmax. It can be seen that transform feedback arranges the particles from left to right.
The compute shader approach accesses the buffer at random positions and therefore the
particles are stored at random indices in the buffer.

3.4 Sorting
Up to now particles can be rendered and simulated efficiently, but there are some visual
issues with smoke particles. Those are rendered with alpha blending enabled and this
requires the smoke fragments to be rendered from back to front, otherwise, it could give
a different, incorrect result every frame. There are several techniques to do this, but
in our implementation we are sorting descending the smoke particles regarding their
distance to the camera. In case of the CPU approach, this can be easily achieved by
applying standard sort algorithms, like Quick Sort [con19b]. When having one of the
presented GPU approaches, a parallel sort algorithm suitable for GPU buffers has to be
implemented. Therefore, we developed the Bitonic Merge Sort (see section 2.4), that
sorts the indices in the elements buffers.

In order to implement this algorithm on the GPU using a compute shader, the tasks
need to be split into CPU and GPU part. The comparison operations can be executed
in parallel. In Figure 2.7 they are illustrated with the black arrows which, in each case,
refer to the elements to be compared with each other. Therefore, each row of the figure
is one shader execution.

One disadvantage of this algorithm is that it can only be applied to particle buffers,
whose size is a power of two. To extend the algorithm to be able to sort an arbitrary
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amount of particles, the indices buffer has to be extended to the next power of two
number and inside the compute shader some sort values need to be treated separately.
The sort values of particles, that are beyond the maximal data buffer position, are set to
a very low value, in order to sort these indices to the end of the buffer.

3.5 Collision detection and handling
Another step in our particle simulation is the handling of collisions with other objects.
Particles should not penetrate the scene entities. In general they should rather be reflected
than only avoiding penetration. In our implementation, for simplicity, we decided to use
scene obstacles with global axis-aligned bounding boxes of different sizes. Therefore a
particle can be seen as inside a cube, if the particle position is between all faces, which
are global axes, of the cube.

Due to the fact, that there are not that many scene obstacles, they can be stored
and updated on the CPU. That means, that the information of the colliders needs to
be uploaded to the GPU every frame. The collision detection is executed after the
manipulation of position and velocity and only if the particle is still alive. Each particle
is checked against all bounding boxes. When the position is inside a box, that means the
particle is really penetrating the entity, the following things are done:

1. Change velocity according to the reflected and a random direction

2. Reset position to the exact position of impact

3. Decrease speed

The exact position of the impact can easily be determined, as it is the position clamped to
the nearest face of the cube. This has to be done, because otherwise some particles would
get stuck inside the cube. When collision has been detected the speed, encoded in the
velocity, is decreased and a random direction is computed, that is pointing somewhere out
of the hemisphere of the reflecting direction. The changed velocity is a linear combination
of the reflected and the random direction with the length of the decreased speed. The
reduction of speed approximates the loss of kinetic energy after collision and the usage
of the random direction should simulate displacement of collisions between particles
themselves during collision.
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CHAPTER 4
Results

In this chapter the results are given and discussed. Also the implemented simulation
methods are analyzed and compared with each other.

4.1 Visualizations

In order to determine which simulation approach to use for a specific task, 4 different sized
fire and smoke systems were tested. The amount of particles that should be spawned per
second npps and the maximal life time tmax in seconds determine the maximal number of
particles nmax. Fire and smoke particles are processed in separate particle systems, but
of the same size. Table 4.1 shows the different configurations.

Table 4.1: Sizes of particle systems

npps fire tmax fire nmax fire nmax fire & smoke

5 4 20 40
25 4 100 200
200 4 800 1600
20000 4 80000 160000

Figure 4.1 shows images of fire beams rendered with particle systems of different sizes. It
can be seen, that the fire beam with maximal 1600 particles (Figure 4.1c) simultaneously
approximates a real flame thrower better than the systems with maximal 40 particles
(Figure 4.1a). This is the case, because the small system has holes. Therefore the system
fails to pretend to be one big dynamic structure. In addition the glow is weak, because
too little fragments are blended additively over each other. On the other hand the
intensities for the systems with 160000 particles (Figure 4.1d) are very high during the
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(a) 40 particles. (b) 200 particles.

(c) 1600 particles. (d) 160000 particles.

Figure 4.1: This figure shows 4 particle systems with different amount of particles.

first half of the lifetime, that means almost white fire fragments. In addition, the overall
shape appears very flatly. One reason for this is, that the high amount of particles is
approximating the shape, defined by the simple velocity vector, without holes. Another
reason is the very small size of the particles, leading to the loss of dynamism of the used
texture atlas. Therefore very small and very big systems are not suitable for fire particles,
at least not in the way, how we have implemented it.

For the collision handling, two parameters are modifiable in order to interactively
determine a combination that delivers the most realistic collision behavior. These
parameters are the randomness crand ∈ [0, 1] and the slowdown cslow ∈ [0, 1]. crand gives
the interpolation value, that is used for the linear combination of the reflected direction.
cslow is a multiplicative number, where a value of 0.5 would reduce the speed to 50%. In
Figure 4.2 results for different settings of these parameters are given.

As mentioned in the previous chapters, the fire particles are rendered after the smoke
particles. This causes the fire to shine through the smoke every time. Rendering the
smoke after the fire would have the effect that the smoke would be visible from every
angle. But also the smoke would cover most parts of the fire, what would decrease the
glow. So rendering fire after smoke seems to be a better solution. The issue can be seen
in Figure 4.3, where the camera is in front of the beam. Actually the smoke particles
should cover the glowing fire from this perspective, but they don’t. A solution would be
to store fire and smoke particles in the same data structure and order the whole buffer,
like it is done for the smoke particles. The problem with this approach is, that applying
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(a) Simple reflection. (b) Random reflection with speed reduction.

Figure 4.2: This figure illustrates two modes of collision handling.

Figure 4.3: These figures illustrate the issue, that fire particles are always shining through
the smoke.

different blending methods on different elements in the same buffer during one draw call
is not possible.

4.2 Analysis and performance
In this section the advantages and disadvantages of all introduced methods are discussed
and the obtained performance numbers are analyzed. The environment parameters for
the benchmark and the used hardware is stated in Table 4.2.

First the analysis of the used resources is given. Consider having one GPU particle data
buffer, where nmax is the maximal particle count and Nmax is the next power of 2, that
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Table 4.2: Benchmark parameters and hardware specification

Type Value

CPU AMD Ryzen 2600X
GPU Nvidia GeForce GTX 1070
RAM 16GB DDR4

Display Dimension 1280x720
Number of Colliders 6

is greater or equals to nmax. The following calculations are applicable for the buffer
setup used in our environment. For a single CPU particle, 11 float values are stored in
the main memory, where only 8 of them need to be uploaded to the GPU fo rendering.
For a single GPU particle 11 float values are stored and therefore nmax ∗ 11 for the
whole buffer. An indices buffer, that is needed for sorting, has Nmax unsigned int values.
When analyzing the biggest system (nmax = 160000, Nmax = 262144), one GPU particle
data buffer would take ˜6,7 Mebibyte and one indices buffer 1 Mebibyte. Therefore the
optimized compute shader approach takes ˜7,7 Mebibyte. For transform feedback and
the unoptimized compute shader approach one indices buffer and two particle buffers are
needed, resulting in ˜14,4 Mebibyte in total. The CPU approach takes ˜6,7 Mebibyte in
the main memory and ˜4,9 Mebibyte on the GPU, resulting in ˜11,6 Mebibyte in total.

The communication costs between CPU and GPU are analyzed. Each render frame
consists of only one draw call for each particle system. So the communication costs
are equal for all approaches for the rendering. On the other hand there are differences
for the simulation. During the CPU approach simulation frame the active particle
data needs to be uploaded to the GPU (˜2,4 Mebibyte for the biggest system), what
is obviously very slow. Another big drawback is, that the transferred data depends
on the particle size. A particle can consist of many attributes, for example position,
velocity, transformation, color, life progress, texture coordinates and so on. Each attribute
increases the communication costs and therefore the particle size is critical for the CPU
solution. On the other hand a GPU simulation frame consists of one draw or compute
call, uploading the list of colliders and writing/reading the information, that is applied
to the whole system, as uniforms or buffer values.

After the analysis the implemented methods are compared according speed, that means
the elapsed time measured in milliseconds. Figure 4.4 shows the benchmarks of the four
introduced simulation techniques without particle sorting applied on the biggest systems.
It can be seen, that the CPU approach seems to be faster for small systems, that means
less than ˜4000 particles. When comparing the GPU approaches at first glance there
seem to be no differences in speed. After tracking the elapsed time for each simulation
function it can be seen, that transform feedback is slower than both computershader
versions. In addition there were some breaks with the particle count, when using
transform feedback, namely the full 160000 particles were not reached constantly. This is,
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Figure 4.4

because the geometry shader’s maximum output of new primitives is limited [Wik19b]
and therefore the overall particle count depends on the current FPS. Furthermore the
optimized computeshader seems to be a little bit faster than the simple computeshader
approach with two buffers. That means, that the implemented optimized computeshader
is the most efficient solution in terms of used resources and speed for big systems in our
test application.

Figure 4.5 shows the elapsed times of simulation using the optimized computershader and
the rendering (Render fire, Render Smoke and the whole process from Figure 3.1). This
benchmark was tracked with the camera near in front of the beam, leading to particles
covering the whole screen and a maximum of blended fragments. It can be seen, that
rendering smoke particles needs more time than rendering fire particles. This can be
explained with the fact, that alpha blending is more expensive than additive blending.

Figure 4.6 shows the speeds of the implemented GPU sort algorithm and the used CPU
library. The sort algorithms were not applied on the biggest systems, because the GPU
sort algorithm has got real performance issues with that amount of particles. It can
be observed, that the CPU solution is much more efficient. In addition it seems to be,
that the GPU sort is a little bit faster, when not using the transform feedback approach.
This could be, because of the different data layout of the buffers, leading to much more
unnecessary data movements.
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Figure 4.5

Figure 4.6
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CHAPTER 5
Conclusion and Future Work

The aim of this thesis was to investigate different approaches for rendering and simulating
large particle systems in real-time. The problem statement was to implement simulation
and rendering of interactive particle systems consisting of various numbers of particles
that should approximate the fire and smoke parts of a fire beam ideally with 60 frames
per second. The most important condition for the simulation stage, namely an efficient
way to update a huge amount of particles, can be measured. The collision handling
environment was based on less than ten global axis-aligned cubes as colliders and therefore
the implementation was easy and the influence on the simulation speed was small. A
big drawback of the implemented rendering solution was the shine through of the fire
parts, because of the seperate rendering processes of smoke and fire particle systems.
Another drawback was, that the proper representation of transparent smoke particles
need a way to sort the smoke fragments before rendering. To approximate this a GPU
sort algorithm has been implemented, that sorts whole particles according the camera
distance. The main issue with this algorithm is its high performance costs which become
very noticeable for larger particle systems.

The introduced simulation methods all come with strengths and weaknesses. When a
small particle system is needed the CPU approach is the best choice. Transform feedback
can be used for bigger systems, because it is fast and a lower version of OpenGL is
required [Wik18b]. For very big systems compute shaders are the best choice.

As future work we would like to find solutions to overcome the drawbacks. The shine
through problem can be solved with a technique, that composes particle systems with
different rendering states. In order to compose the fire and smoke particles with different
blending equations Order-Independent Transparency (see section 2.6, [MCTB12]) would
be a suitable method. This would also allow for omitting a GPU sorting algorithm, because
the fragments can be sorted and individually composed at the same time. To improve the
rendering of the particles, an approach like High-Speed, Off-Screen Particles, described in
subsection 2.2.2 and in [Ngu07] could be used. To achieve collision detection and handling
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with more complex geometries, the method described in subsection 2.5.1[KLRS04] can
be implemented with e.g. 3D-Texture as depth maps.
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