
Guided Data Cleansing of Large
Connectivity Matrices

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Florence Gutekunst
Matrikelnummer 01637640

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Mitwirkung: Dipl.-Math. Dr. Katja Bühler

Professor Guillaume Beslon

Wien, 29. Jänner 2019
Florence Gutekunst Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Guided Data Cleansing of Large
Connectivity Matrices

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieurin

in

Medical Informatics

by

Florence Gutekunst
Registration Number 01637640

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller
Assistance: Dipl.-Math. Dr. Katja Bühler

Professor Guillaume Beslon

Vienna, 29th January, 2019
Florence Gutekunst Eduard Gröller

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Florence Gutekunst
Schäffergasse 2, 1040 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 29. Jänner 2019
Florence Gutekunst

v

Acknowledgements

First of all, I would like to sincerely thank Katja Bühler for giving me the opportunity
to work on this fascinating topic, for her important scientific support and for guiding
me during the whole thesis, especially in the design and method choices. I also express
my gratitude to Eduard Gröller who has taught me scientific rigor, for his support and
for orienting me from the beginning to the end. I would also like to thank Florian
Ganglberger for his availability and for his very precious help during the whole thesis, in
all important implementation choices especially.

My thanks are also addressed to Guillaume Beslon, who supervised me from France, for
his availability and for everything he taught me at my French university (INSA Lyon). In
addition, I want to thank my colleagues from VRVIS for the interesting discussions and
their precious help. I would like to thank in particular Florian Schulze, Nicolas Swoboda
and Markus Töpfer, team members of the Biomedical Visualization Group at VRVis, for
their encouragement, for their support, feedback and suggestions, as well as for teaching
me ReactJS.

To conclude, I would like to dedicate this thesis to my parents, to my sisters, to my great
roomate Jelena and to Sébastien. I will never thank them enough for the support they
provided me.

vii

Kurzfassung

Die Untersuchung des Gehirns ist ein wichtiges Ziel in den Neurowissenschaften und der
Psychiatrie. Die Biomedical Image Analysis Group am VRVis hat mit der Wulf Haubensak
Group am Institute of Molecular Medicine ein Framework entwickelt, um Gehirn-Daten
zu untersuchen. Gehirn-Daten können als Konnektivitätsmatrizen gespeichern werden.
Diese sind aber sehr groß und enthalten Rauschen. Das Ziel dieser Diplomarbeit ist die
Säuberung von großen Konnektivitätsmatrizen. Zu diesem Zweck wird die Reduzierung
von Rauschen sowohl das Zusammenführen ähnlichen Zeilen und Spalten auf eine kleine
Matrix mit Hilfe einer Visualisierungsfunktion vorgeführt. Diese beinhaltet ein visuelles
und evaluirendes Feedback der Operationen, so dass die wichtigsten Informationen
nicht während des Prozesses gelöscht werden. Die resultierende Matrix besieht sich auf
eine zufällige Stichprobenentnahme aus den anatomischer Gehirn-Hierarchien. Dieses
Werkzeug is ein Schritt in der Kette zur Verarbeitung von Konnektivitätmatrizen.

ix

Abstract

Understanding the organization principle of the brain and its function is a continuing
quest in neuroscience and psychiatry. Thus, understanding how the brain works, how
it is functionally, structurally correlated as well as how the genes are expressed within
the brain is one of the most important aims in neuroscience. The Biomedical Image
Analysis Group at VRVis developed with the Wulf Haubensak Group at the Institute
of Molecular Medicine an interactive framework that allows the real time exploration
of large brain connectivity networks on multiple scales. The networks, represented as
connectivity matrices, can be up to hundreds of gigabytes, and are too large to hold in
current machines’ memory. Moreover, these connectivity matrices are redundant and
noisy. A cleansing step to threshold noisy connections and group together similar rows
and columns can decrease the required size and thus ease the computations in order to
mine the matrices. However, the choice of a good threshold and similarity value is not a
trivial task. This document presents a visual guided cleansing tool. The sampling is based
on random sampling within the anatomical brain hierarchies on a user-defined global
hierarchical level and sampling size ratio. This tool will be a step in the connectivity
matrices preprocessing pipeline.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Aim of the Work . 2
1.4 Methodological Approach . 3
1.5 Structure of the Work . 3

2 State of the Art 5
2.1 Underlying Neuroanatomical Concepts 6
2.2 Brain and Graph Theory . 15
2.3 Sampling Methods . 22
2.4 Connectivity Analysis Visualization . 43
2.5 Limitations and Challenges . 48
2.6 Comparison and Summary of Existing Approaches 48

3 Methodology 57
3.1 Specifications . 57
3.2 Concepts . 58
3.3 Languages . 64
3.4 Data Models . 65

4 Suggested Solution/Implementation 67
4.1 Implementation of the Sampling Methods 67
4.2 Development of the Tool for the Matrix Visualization 75
4.3 Implementation of the Cleaning Operations 81

5 Critical Reflection 89
5.1 Evaluation . 89

xiii

5.2 Discussion and Open Issues . 111
5.3 Relation to the Literature . 115

6 Summary and Future Work 117

A Supplementary Figures 121
A.1 Mockups - Final Iteration . 121

List of Figures 129

Glossary 131

Acronyms 133

Bibliography 135

CHAPTER 1
Introduction

1.1 Motivation

Understanding the organization principle of the brain and its function is a continuing
quest in neuroscience and psychiatry. In the past decades, progress in medicine and
medical imaging techniques enabled procedures with ever increasing resolution to image
the brain anatomical circuitry. This progress also enabled the identification of brain
regions correlated to physiologically-based signals, such as fear. This encouraged the
definition of transcriptional similarities networks for genes that may have impacts on
the brain anatomy and the behaviour. Indeed, one aim in neuroscience and psychiatry
is to understand how the genes and the brain structure can impact brain anatomy and
behaviour [GKP+17]. It has also been shown that the circuitry of the nervous system
is linked to genes [LHA+07], thus the fusion of these different connectivities is of high
interest in order to better understand how the brain works.

Therefore, exploring how the brain is anatomically, structurally and functionally inter-
connected is a crucial task. In the last years, brain initiatives such as the Human Brain
Project [hum] or the Allen Institute [OHN+14] have released multimodal neurobiological
data with ever increasing resolution that can be used to create very large network graphs.

1.2 Problem Statement

The Biomedical Image Analysis Group at VRVis developed together with the Wulf
Haubensak Group from the Institute of Molecular Medicine at the Research Institute
of Molecular Pathology (IMP) an interactive framework that can perform a real time
exploration of large brain connectivity networks on multiple scales. The networks,
represented as connectivity matrices, can be up to hundreds of gigabytes. They are too
large to hold in current machines’ memory. This is especially the case if one wants to

1

1. Introduction

fuse different connectivity matrices to better understand the underlying processes, i.e.,
on anatomical, structural, and functional scales. The underlying technology harnesses
spatial organization, sparsity, and correlation of the data to overcome these obstacles
with a highly optimized connectivity index. However, the matrices are still too large to
be easily mined.

These networks, that are up to several gigabytes, contain noisy and redundant data. A
cleansing of these networks is thus required in order to be able to fit them in current
machines’ memory. Operations could then be performed on them in order to infer new
knowledge in neurosciences. The goal of this thesis is thus to realise a software prototype
for visually guided cleansing connectivity matrices in order to reduce the size of the
initial matrix while keeping the most important information.

1.3 Aim of the Work

The goal of this masters thesis is to develop a tool in order to cleanse large connectivity
matrices. However, the user does not want to operate blindly. As a result, a visual
tool is also required. Different cleansing operations can be applied to the initial large
matrix. However, the parameters of these operations are data-dependant. In order to find
good cleansing operation parameters, these matrices should first be sampled to relevant
data. The reduced data (the sample), should remain representative of the initial data, so
that the patterns and features found in the sample also exist and are important in the
original data. As reading connectivity matrices can be long, the sampling step should be
performed with a one-pass algorithm approach and the sampled version of the matrix
should fit in a standard computer’s RAM.

This sampled matrix should then be visualised in a web application as well as relevant
information such as network measures about the sampled and the initial matrix. These
measures can help the user to check that the most important information of the initial
data are not lost. The user can then employ this web application tool in order to estimate
cleansing parameters to apply to the initial matrix later on. According to Sporns [Spo16],
the presence or absence of connections and the estimation of their strength are subject
to noise, statistical biases, and observational errors. It is thus relevant to cleanse these
matrices, both for removing noisy connections, but also to gain storage place and increase
the computation efficiency of algorithms on the connectivity matrices. The visual feedback
can help the user to check that the cleansing filters applied did not change the data "too
much".

Thus, the main contribution of this thesis is the development of a visualisation prototype
tool. This tool will first sample a connectivity matrix and apply cleansing filters on it
(namely thresholding and row and column merging by similarity). Through the visual
tool, scientists can visualise how the data is modified in order to find the right parameters
for the later cleansing of the whole matrix. Finally, the users can apply the selected
filters on the initial matrix and get the final cleansed matrix.

2

1.4. Methodological Approach

1.4 Methodological Approach

First of all, a literature review had to be performed in order to become familiar with the
topic. This review also aimed at suggesting an appropriate way to sample the connectivity
matrices as well as visualise the sampled matrices.

Then, one-pass sampling algorithms had to be engineered, requiring a literature review
about sampling in big data, as well as their mathematical foundations. The appropriate
implementation tools for the back-end had to be chosen and the back-end developed and
tested. An evaluation of the sampling methods was then necessary in order to decide on
the best sampling approach.

A literature review about visualisation for connectivity matrices as well as large matrices
was then performed before creating a mockup for the visualisation application. Then,
this mockup was developed as a web application.

Finally, the evaluation of all steps had to be realised. The sampled matrix, the sampled
matrix after cleansing, and the initial matrix after cleaning had to be evaluated in order
to define the appropriate sampling rates without loosing too much "information", and to
evaluate how the tool performed.

1.5 Structure of the Work

This thesis is structured as follows.

Chapter 2 gathers the state of the art in terms of neuroanatomical concepts (Section
2.1), connections between brain connectomics and graph theory (Section 2.2), sampling
strategies for large datasets (Section 2.3)), as well as visualisation of large connectomic
matrices and more generally of large matrices (Section 2.4). See Section 2.1 to become
familiar with the important knowledge about the neuroscience fields relevant for this
thesis. The Section 2.2 will provide the reader with knowledge about the graph theory and
how it is related to brain connectomics. It is especially relevant for the later evaluation.
The Section 2.3 describes several sampling strategies for large datasets and is thus relevant
for the development of a sampling strategy. Finally, Section 2.4 presents the visualisation
of large matrices, and is thus relevant for the development of the visualisation tool.

Chapter 3 describes methodological aspects of the current work. The specifications of
the project are first gathered, see Section 3.1. Then, the developed concepts (sampling
algorithms, visualization, see Section 3.2), the programming language choices (see Section
3.3) and the data (see Section 3.4) are detailed.

Chapter 4 details the implementation choices and strategies for the concepts that were
developed in the previous chapter. The implementation of the sampling algorithm
is detailed in Section 4.1, as well as the development of all concepts useful for the
visualization in Section 4.2. Finally the implementation of the cleaning operation is
characterized in Section 4.3.

3

1. Introduction

Chapter 5 reports the different evaluation steps and analyses them. It suggests interpre-
tations of the results to answer the research question.

Finally, Chapter 6 summarises the present work. A discussion of how this work can be
extended concludes the thesis. Supplementary figures can be found in Appendix A.

4

CHAPTER 2
State of the Art

Over the last decades, large brain datasets have become available, such as the ones
provided by the Allen Institute [OHN+14] or the Human Brain Project [hum]. These
datasets represent underlying neuroanatomical connections and can thus help to explain
how the different mechanisms of the brain work. They are also very large. Indeed,
humans have around 100 billions neurons, and there are dozens of different regions within
the brain that are connected together.

While these brain connections were more and more studied by the scientific community,
another field, neuroinformatics, also emerged. Neuroinformatics provides tools for large
brain data storage, management, mining, analysis, and visualization. Thus, scientists can
get insights into fundamental properties of neuronal ensembles [XYJ+15, KS05]. Because
of the large size of the underlying data, neuroinformatics is one typical application of big
data mining tools and algorithms. It is also related to graph theory, since the brain can
be described as a complex network of nodes and edges. For example, on the microscale,
nodes can be neurons, and edges can be the synaptic connections between these neurons.

Thus, this chapter provides an overview of the state of the art in neuroinformatics,
regarding the current research topic. The underlying neuroanatomical processes will first
be described in order to get general insights on the meaning of the data used during the
thesis. Then, graph theory will be related to the brain connections. Indeed, connectivity
matrices represent graphs. The review of graph theory related to brain connectivity aims
at understanding the actual data the developed tool is provided with. These first two
important topics were mainly studied in order to provide strategies in the sampling step.
Indeed, as can be read in the following section, where a review of some big data processes
is presented, sampling the data, especially in a one pass approach, is a hard task. Once
the data is sampled, it should be visualized. Therefore, a review of the connectivity
analysis visualisation is also presented. Finally, limitations and challenges are described
and a comparison and summary of the existing approaches are presented.

5

2. State of the Art

2.1 Underlying Neuroanatomical Concepts

This section defines the different scales for analysis of neuroanatomy, as well as the
different kinds of connectivity that are of use in neuroscience and psychiatry. The main
purpose of this section is to give the reader more insights about the meaning of the data
that is being used during the thesis.

An important concept in neuroscience is the connectome. A connectome is a comprehen-
sive map of neural connections in the brain, and may be thought of as its "wiring diagram".
Characterising and sketching the connectome is thus of high interest in neuroscience.

Here, two main aspects of the underlying neuroanatomical concepts will be presented.
First of all, neuroscience can be performed on different scales. The different scales as well
as their main characteristics will first be described. There also exist different connectivity
types. These types will then be characterized.

2.1.1 The Different Scales in Neuroscience

Neuroscience can be performed on different scales. All of these scales can be perceived as
points of view regarding neuroscience. The topological scale ranges from single nodes
to the whole network. The spatial scale can gather individual neurons to brain regions.
Finally, the time scale can range from milliseconds to the evolutionary process of species
[BB17].

The spatial scale itself can be divided into three main scales, namely microscale, mesoscale,
and macroscale. These are respectively also known as cellular, tissue, and whole brain
scales. The nanoscale (molecules and synapses scale, also known as subcellular scale) can
also be of use in neuroscience. Moreover, it is of interest to map different spatial scales
to understand how the properties of one spatial scale are related to the properties of
another one[BB17, Spo16].

The nanoscale The nanoscale describes the subcellular level, and typically gathers
gene expression data, also known as transcriptomics or RNA-sequencing data. This data
quantifies messenger RNA in a biological sample, and can help to characterize a brain
cell. In order to elaborate a molecular profile of a cell, its messenger RNA needs to be
measured, to determine which genes have discriminative power for this particular cell.
Two main methods coexist for this purpose, namely in situ hybridization, which allows
scientists to determine which cells within the brain express one particular gene. This
allows researchers to get localization properties of the cells expressing the gene of interest,
but then the co-expression with another gene is unknown. On the other hand, single cell
analysis provides information about co-expression of genes, but does not provide "spatial
information". Indeed, in single cell analysis, we are interested in a single cell, i.e., which
other cells express the same genes.

6

2.1. Underlying Neuroanatomical Concepts

The microscale The microscale describes the cell level, i.e., the level of individual neu-
rons, and can be imaged using automated histology methods (such as electron microscopic
reconstruction or light microscopy) or through cytoarchitectonics, myeloarchitectonics,
chemoarchitectonics, etc [OHN+14, Spo16]. While MRI is often used to image the
macroscale and the mesoscale, its resolution is not good enough yet to reach the cell or
synapse level [BB17]. It thus aims at describing connections between individual neurons.
Before describing further this scale, some basics of neuroanatomy will follow.

The mammalian central nervous system (CNS) is composed of two large categories of
cells, namely the neurons and the glia cells. These two categories are further subdivided
into a large variety of cell types, with unique morphology, connectivity, physiology, and
function [LHA+07]. We will only make a broad overview of the main types of cells.

Neurons are the basic cells in the nervous system and are surrounded by glia cells, who
provide the structure and some insulation. There exists different types of glia cells with
specific aims: the ependymal cells separate the brain from other organs, astroglia provide
nutrients and energy to the neurons, oligodentrocytes provide the myelination (sheets
around the axon that helps faster signal transmission), and microglia are immune cells to
protect the neurons.

Neurons are composed of several parts. First of all, their cell body contains several
parts, namely the nucleus, the ribosom, the Golgi apparatus and endoplasmic reticulum
and mitochondria. The nucleus contains genetic material and where messenger RNA is
synthesized. Ribosomes synthesize proteins based on messenger RNA. The Golgi appa-
ratus and endoplasmic reticulum transport and modify proteins. Finally, mitochondria
synthesize and generate energy for the cell.

In order to send or collect information, extensions are attached to this cell body. The
dendrites are the receptor canals, whereas the axon is the canal through which the
information is sent. Two neurons can thus be connected if the axon from one neuron is
linked to the dendrites of the other one. This process is made through synaptic terminals
(synapses). The function of any neuron is thus also linked to its input and output neurons,
as well as how it connects to these other neurons [Spo16]. Most of the connections from
a given neuron are with neighbouring neurons. As such, neurons often form groups of
highly interconnected neurons. The connections from one group of neurons to another
group of neurons is called circuits or pathways [KS05]. A projection is another term to
describe the connection of a neuron to another one.

Different types of neurons exist, who differ according to the number and size of dendrites
and axons. Figure 2.1 describes the organisation of a neuron. Neurons can be characterized
using different criteria, namely morphology, connectivity, physiology, molecular profile,
functional response properties, electrophysiological properties, position within the brain,
etc.

Thus, microconnectomics focuses on the single cell network level [Spo16]. However, this
level has several characteristics that make it rather difficult to sketch the connectome. First
of all, the microscale is characterized by an important synaptic and extrasynaptic plasticity.

7

2. State of the Art

Figure 2.1: Schema of a multipolar neuron, from Bruce Blaus [Bla]

Indeed, neuron connections are constantly changing over time, as new connections are
created when we learn and others are deleted when the neurons are not enough stimulated.
The high variability of cells and their large number (around 20 billions neurons in the
brain) are also intrinsic characteristics of the microscale. Moreover, getting a correct
image of all the neurons and their connections would be a very time-consuming process.
As such, the datasets on the microscale are only composed of a fraction of the neurons.
Cunningham and Yu also add that some phenomena cannot be fully explained only on
the single neuron basis [CY14].

The mesoscale On the mesoscale, both long-range and local connections are studied,
i.e., the focus is on neuronal populations. These can be imaged using neuroanatomical
tracers [OHN+14]. On the mesoscale, the connectome will not be characterized in terms
of local and global properties, but rather in terms of differently sized clusters of neurons,
their configurations and the association with functional or behavioural characteristics
[BB17, Spo16]. This scale thus focus on neuronal populations [RRG+09] and on areas
and inter-areal projections (i.e., inter-areal connections) [Spo16].

The macroscale The macroscale describes long-range region to region connections
and pathways [OHN+14, YAC+15]. The focus is thus on inter-areal or large-scale
projections on anatomically distinct brain regions. Analyses of the human cortex enabled
the identification of 52 areas [Spo16]. The macroscale has been widely studied in the
literature, and enabled the description of central lobes, surface landmarks, and white
matter tracts [Spo16]. Neuronal popupaltions are defined as a composition of highly

8

2.1. Underlying Neuroanatomical Concepts

similar and connected elements. However, brain areas and neuronal populations are
difficult to delineate, and there is no consensus on the parcellation scheme for human brain
regions. This causes problems when creating the connectome [STK05]. Moreover, the
brain areas will be represented differently if we consider the functional or the structural
areas. Figure 2.2 depicts the functional areas of the human brain, which can then be
further divided into subregions.

The delineation could be strictly structural (e.g., anatomical), or also functional. Indeed,
while there is most of the time a functional connection between structurally connected
regions, it may not always be the case. Sporns et al. [STK05] add that the macroscale
may provide several hundred brain regions and thousands of pathways. However the
macroscale does not incorporate information on subdivisions and subcircuits within each
of the aforementioned regions.

Figure 2.2: The functional areas of the human brain, from Wikipedia [bra]

There are different processes in order to acquire macroscale brain images. Diffusion-tensor
imaging (DTI), functional Magnetic Resonance Imaging (fMRI, with Blood Oxygen Level
Dependent (BOLD) signal), Diffusion-weighted Magnetic Resonance Imaging (dMRI),
proton density MRI, and blood flow imaging are valuable non invasive imaging techniques
and are mainly used in macroscale brain acquisition. As these are non-invasive techniques,
the axons and fiber bundles are indirectly estimated and as such, they may be difficult to
interpret quantitatively and are error-prone [BS12, HMB+, KS05]. Indeed, MRI images
return observations on a voxel scale, which may be noisy, according to the resolution of
the imaging device.

It is also possible to use post-mortem dissection, as well as tract tracing. In recent years,
other invasive approaches emerged, such as histological staining after injection of tracers

9

2. State of the Art

(such as fluorescent dye or a virus) into specific brain regions [HMB+]. These approaches
also involve the sacrifice of the animal to see how the tracer material spreads through the
tissue, along the axons [HMB+]. Contrary to non invasive techniques, tracer techniques
are very precise and accurate, as they can determine whether two regions are effectively
connected (which may not be ensured by non invasive techniques) as well as the direction
of the connection. They require the sacrifice of the subject, which can not be performed
for human brain imaging, and only a few connections can be tested on a single animal
[BS12, HMB+].

Diffusion weighted imaging

Figure 2.3 describes the different scales of interest for neurology. Figure 2.4 from Betzel
and Bassett [BB17] describes the different scales within the brain. The microscale we
described corresponds to the synapses and neuron scales. The mesoscale gathers the
network and maps scales. The macroscale is composed of the maps and systems scales.
CNS (central nervous system) is the highest scale of the figure and it comprises the
brain and spinal chord. In mammalian species, the mesoscale and macroscale maps are
preferred to describe brain connectivity, as they allow the expert to establish relations
between connectivity, functions, and behaviour [Spo16].

2.1.2 The Different Kinds of Connectivities

As previously mentioned, there are different scales. As a result, different kinds of
connectivities are of interest in the neurosciences. The two most important kinds of
connectivities are the structural (or anatomical) and the functional connectivity. It has
been shown in numerous studies, such as in the work of Hermundstad et al. [HBB+13],
that these two types of connectivities are significantly related. Structural connectivity
may shape functional connectivity, however, a pure anatomical description is not enough
to fully explain perception or behaviour [Spo16]. Indeed, there are regions with strong
functional connectivity but with weak structural connectivity. This can be either explained
by imaging limitations (e.g, inaccurate tractography of the fibers due to noise in MRI) or
by pathways that have strong indirect (polysynaptic) connections [Spo16].

It is of high interest in the neurosciences and psychiatry to discover relations between
genes, brain circuitry, and behaviour. This information can then help to better understand
some psychiatric pathologies such as Alzheimer, or simply to better understand the brain
and how the different physiological features of connections impact neuronal interactions
and neuronal circuit computation [Bar12, Spo16]. Thus, the fusion of these different
connectivities is of special interest in the neurosciences. Ganglberger et al. [GKP+17]
proposed an algorithm for fusing sets of functionally related genes with connectomes and
gene expression maps, in order to predict neuroanatomical maps of multigenic functions.
As a result, researchers get a better understanding of the underlying brain function
or behaviour and this can also help to identify the underlying function-specific brain
circuitry. They used the Allen Mouse Brain Atlas Gene Expression and Connectivity
Data framework [all]. They tested their method on several gene sets, for which the

10

2.1. Underlying Neuroanatomical Concepts

Figure 2.3: The different levels of investigation from Kennedy et al. [Spo16]

functional associations and neuroanatomy were already established. However, the fusion
of the different connectivities is challenging. First of all, it requires the registration from
one connectivity type to another one, and as such it requires annotations, especially if
one wants to register data from different scales with each other [Spo16].

Structural Connectivity

The structural connectivity describes how regions are anatomically (physically) connected
[BB17, Spo16]. They represent synaptic connections between neuronal elements and

11

2. State of the Art

Figure 2.4: The different scales of the brain, from Betzel and Bassett [BB17]

allow researchers to infer knowledge on how these regions are physically connected. The
strength, the size, density, number of synapses, or coherence of the connection are typical
examples of interesting connection characteristics [Spo16, RS10]. On the macroscale and
mesoscale, connections are often imaged with MRI and then they typically reflect the
different characteristics of the reconstructed white-matter fiber tracts [BB17, RS10].

Structural connectivity can also be imaged through axonal tracing. A tracer dye is
injected in a neuronal brain area. It is then taken up by the local membrane receptors of
the local neurons. Finally, it is automatically transported by an axon protein machinery
to various projection targets of that neuronal area. Then, the subject has to be sacrified
and the neural tissue can be sliced up. This allows researchers to describe how the
neuronal area projects within the brain, based on the spread of dyes. The approach leads
to high resolution information, but is a very invasive technique that requires the sacrifice
of the subject [Kai11].

Diffusion-weighted MRI (dMRI) is an important imaging modality for determining
structural connectivity in the white matter. It uses tractography algorithms and cannot
give any information about specific axons. Moreover, it can be difficult to disantangle
fibers coming from very close regions.

A characteristic of structural connectivity networks on the macroscale is that they are
often sparse. Most potential connections do not exist, and the regions tend to be highly

12

2.1. Underlying Neuroanatomical Concepts

connected to neighbouring regions. These networks are also relatively stable across time
[Spo16].

Structural connectivity is often expressed as a square matrix. There, the weights in the
cells can indicate the number of fibers between brain regions (or neurons, depending on
the scale of interest), the degree of myelination, the probability that a region (respectively
neuron) can be reached by another region, and so on [Kai11].

Effective Connectivity

Effective connectivity is a connectivity measure that is related to the underlying mecha-
nisms (direct or indirect causes) for correlated activity and the influence of one region on
another one [Spo16, RS10]. Indeed, the real importance of a connection does not only
depend on anatomical or functional connectivity weights. It can also be influenced by a
variety of other factors, such as the neurotransmitters, the excitation/inhibition balance,
whether the connection is feedforward or feedback, and so on [Spo16]. As a result, the
weights in the effective connectivity matrix usually represent the causal relationships
between the different nodes [Kai11].

Functional Connectivity

Functional connectivity models how different regions of the brain work together [Spo16].
For a given task, the activation patterns of different brain regions are analysed and
compared in order to discover corresponding firing patterns across different regions.
Functional connectivity requires a functional connectivity mapping, which can be per-
formed either using Resting State or Meta-Analytic Connectivity Modeling. Resting
State networks focus on the coupling of brain regions in the absence of a task, whereas
Meta-Analytic Connectivity Modeling is task dependent. The combination of the two
can lead to inferences about which regions are actually taking part in the studied mech-
anism or task (for instance moving a finger). Thus, it relies on the strength of the
statistical relationship between regions’ or neurons’ activities, quantified through the
covariance, the cross-correlation, the Fisher-transformed correlation coefficient [ZFB12],
or other coherence measures [Spo16, BB17, Kai11]. While there is most of the time a
good correlation between functional connectivity regions and strong close connections
[MERG+14], functional connections may also occur between anatomically unconnected
regions. Functional connectivity networks are therefore likely to be denser than structural
ones [RS10, DG09].

Functional connectivity is divided into functional specialisation and functional integration.
The former considers how large regions are individually engaged in a specific functional
context, for instance how is one region individually responsible for moving a finger. On
the other hand, functional integration is concerned with how the different regions relate
to each other in order to produce coherent behaviours [BS12].

13

2. State of the Art

Genetic Connectivity

Genetic studies have demonstrated that genes play an important role in our brains. First
of all, it has been shown that several characteristics of the brain structure are heritable,
such as the total amount of grey or white matter, the volume of the ventricles, the size
of the hippocampus, and so on [Spo16]. Several projects, such as the ENIGMA project
(Enhancing Neuroimaging Genetics through Meta-Analysis), focus on how variants in
the genetic code may influence the brain [Spo16]. The Allen Brain Atlas project focuses
on how the genes influence the structural and cellular architecture of the mouse brain.
This project uses an atlas containing expression patterns of around 20.000 genes in the
adult mouse brain [LHA+07]. Gene expressions have been found to be linked to several
personality traits, to cognition processes and also to risks for neurological or psychiatric
diseases [Spo16].

Even if it seems rather difficult due to the differences in terms of scale, Stein et al.
[SHL+10] proposed a method to link voxels from the brain to genomics. This requires to
perform more than one billion statistical tests, thus one has to find sampling methods to
ease this computation. Moreover, this also requires comprehensive gene correlation atlases
[LHA+07]. It has also been shown that functionally related genes are not distributed at
random within the brain and have a rather specific structure [GKP+17].

2.1.3 Summary of the Underlying Neuroscience Concepts

The concept of connectome can be defined as a "comprehensive structural description of the
network of elements and connections" of a given nervous system [Spo16, OHN+14, STK05].
It aims at providing spatial and strength characteristics of the connections between areas
[Spo16]. The connectome faces several challenges. First, relating brain connectivity
networks from different scales (scale challenges) is not a trivial task. Then, connections
evolve, both on a small time window on the synaptic plasticity level, and on the evaluation
level (time challenges). Last but not least, inter-individual differences is another tough
task, since it requires the mapping to atlases, and defining a correct atlas on the first
place is not a trivial task [Spo16].

The brain connectivity data have some specific characteristics. First of all, they are
subject to noise, statistical biases, and observational error [Spo16]. For macroscale or
mesoscale data, errors can be due to inaccurate mappings, to the resolution and noise
level of the imaging device, or also to inaccurate intersubject registrations to an atlas.
Inaccurate mapping often occurs because of bleeding or signals from draining veins during
the imaging procedure [Spo16].

Another important characteristic is that the data is large, since humans have around 100
billion neurons, and each neuron contacts more than 1.000 others on average. The data
is also rather sparse, especially when it is evaluated at fine-grain levels. There is also
a rather high intra-region connectivity: around 80 % of the inputs for one node come
from local circuits [MMF+11]. Indeed, the strongest connections are always the ones
with the nearest neighbours. It has been observed that the neuronal projection strength

14

2.2. Brain and Graph Theory

is exponentially related to distance [Spo16]. The different pathways within the brain
cover five orders of magnitude in connection strength [MMF+11, Spo16, KERKT16]. As
a result, high clustering and short path length are important characteristics of such data
[Spo16, BS09].

The brain connectivity data also appears to be characterized at multiple physiological
and anatomical levels by a log normal distribution [Spo16, MERG+14]. A log normal law
(or log normal distribution) is a continuous probability distribution of a random variable
whose logarithm is normally distributed. The variability of the brain connectivity log
normal distribution can be described by a negative binomial distribution [MERG+14].

These concepts are of interest for the current topic since they describe on a high level
the meaning of the data that is being used during the thesis. Indeed, the datasets that
were used are on different connectivity levels and cover different scales.

2.2 Brain and Graph Theory
Studies of the brain connectivity and graph and network science were developed in
parallel. Since the mid-1990 a lot of transdisciplinary approaches combine these two
scientific domains.

First of all, a graph is a mathematical representation of interactions between a set of
objects (nodes), whose interactions are materialized with connections (edges). Visual
representations of graphs are common, where nodes are drawn as points and edges as
lines connecting the nodes [Spo16]. There is an evident link with brain connectivity data.
The nodes are the neurons, or regions, or other node structures depending on the scale.
The connectivities may be symbolized through the edges. The pairwise relationships are
then summarized in a connectivity matrix and represent the network’s topology [Spo16].

Moreover, graph and network sciences provide tools and methods in order to characterize,
model, and analyse complex networks. It has been shown that connectivities from different
types and scales had features of complex networks, such as small-world topology, highly
connected hubs and modularity, rich club organizations, and so on [BB17, Spo16, BS09].
Graph models applied to the neurosciences allow researchers to test structure and function
hypotheses, and also to explore the brain topology, organization, and complex dynamics
[BS09, ZFB10, HSC+09, SCKH04].

Connectivity matrices are being used for this thesis, which are adjacency matrices that
represent the underlying brain network on a given scale. The main goal of this section is
to understand the actual data that is being used, as well as to help to define sampling
strategies. Another goal is to define graph measures of interest to display in the visual
tool. These measures can then provide the user a quantitative evaluation of the cleansing
tools parameters that are tested. Some measures will also be used in the evaluation of
the prototype.

Network sciences provide network measurements that help to get insights into the
network’s function and highlight important nodes and other features that characterize

15

2. State of the Art

a network such as its robustness or vulnerability [BB17]. These quantities range from
measurements at the individual node scale to measurements at the whole network scale.
Measurements of individual network elements reflect how these elements are embedded
in the network, whereas measurements at the network scale provide a global description
of the network [RS10].

Figure 2.5 describes the most important measurements of network topology.

Figure 2.5: Measures of network topologies, from Rubinov and Sporns [RS10]

There are different types of networks. The most important ones are: random net-
works, scale-free networks, small-world networks and modular networks. In random
networks, all connections are equally probable, i.e., the degree distribution is Gaussian
and symmetrically centred.

In a Scale Free Graph, nodes follow a longtail or heavy tail distribution, which is well
approximated by a power law. The human brain connectivity networks do not usually
follow a pure powerlaw, which has only been reported by analyses on the voxel level. They
usually follow an exponentially truncated law, which is associated with a lower probability
of very high degree nodes [BS09, Spo16, SWM05]. An example of a small-world network
can be the links between users of a social network. Most nodes are not direct neighbours,
but the neighbours of a node are likely to be neighbours of each other. Moreover, most
nodes can be reached from any node by a small number of steps [sma]. Modular networks
are characterized by a high modularity, i.e., they have dense connections between the
nodes within modules but sparse connections between nodes in different modules.

Node Degree and Degree Distribution

The node degree is the number of edges for a given node [BS09, BB17, TB13, RS10].
If the graph is weighted (i.e, if the edges have a value symbolizing the strength of the
connection between two nodes), it is also referred as to node strength and aggregates the
weights of its edges [RS10, BS09]. If the graph is directed, there is a distinction between
the incoming (in-degree) and out-going (out-degree) links to the node [RS10, LF06].

16

2.2. Brain and Graph Theory

The degree distribution is defined by the degrees of all the nodes in the network [RS10,
BS09]. Brain connectivity networks, and more generally most graphs describing real-
world networks are complex networks. They usually deviate from a Gaussian degree
distribution. Indeed, in real-world networks, most nodes have a rather small degree, while
a few of them have a high degree (hub), and thus are closer to a power-law distribution.
In biological systems, the degree exponent often ranges between 2 and 3 [BS09].

The node degree can be be seen as a measure of the influence of a given node and it also
represents the node’s number of neighbours. High degree nodes will have the greatest
influence on the network and are called hubs [BB17]. Most important nodes are either
integrator or distributor nodes. Integrator nodes are nodes whose connections are mostly
incoming ones, while distributor nodes are nodes whose connections are mostly out-going
ones. Moreover, the ratio between the in- and out-degree of a node is also of interest
and can give information about its function, about integrator nodes or about distributor
nodes [Kai11].

2.2.1 Influence Measures - Rich Club

Measures of influence aim at quantifying the importance of network elements (nodes or
edges) for the global functionality of the network [Spo16].

Centrality, Hubs and Robustness

Hubs are nodes with high degrees [BS09] and usually high centrality. Centrality measures
how important a node is in a given network. Freeman [Fre78] defined three different
measures for network centrality: degree, closeness and betweenness. As previously
described, the degree is the number of nodes that are connected to the given node.
Closeness is defined as the inverse average shortest path length from one node to the
others. It thus describes how quickly the node can access the others. Finally, betweenness
describes how often a node is part of the path from one node to another one, i.e., it
measures the proportion of shortest paths passing through the node with respect to all
shortest paths. As shortest paths are preferred, the given node will have an important
role [BS09, TB13, XYJ+15, Spo16].

Hubs are nodes that are often of special interest in network studies, because they often
have high centrality and are thus important for information integration, while being also
vulnerable to attacks [Spo16]. The importance of a given node can then be assessed by
deleting it and estimating how the information spreads in the residual network [BS09].
There are different kinds of hubs. Provincial hubs are hubs connecting nodes within a
given community, whereas connector hubs interconnect different communities [Spo16].

Density - Sparsity

Network density describes the number of potential connections in a network that are
actual connections. It is thus the ratio between the number of edges in the network

17

2. State of the Art

and the maximum number of edges it could have (where all nodes would be linked)
[Spo16, BS09]. A network is then sparse if its density is very low [Spo16]. The mean
network degree can also be used as a measure of density [RS10].

Rich-Club Organizations

Rich clubs are groups of hubs (high degree nodes) that are densely interconnected to one
another. They thus often have an important role in a network. They can be detected
by calculating a so-called rich-club coefficient φ(k), which measures the density among
nodes with degree higher or equal to k, and compares the coefficient with the one from a
random network. If the network indeed contains rich-clubs, then its rich-club coefficient
will significantly deviate from the one of a random network [BB17].

Core-periphery structures are related to rich-club organizations and consist of a dense
cohesive core and a sparsely connected periphery, whose nodes sparsely interact with
one another. The cores thus play an important role within the network to link different
regions and exchange information [BB17].

A scale free graph architecture is characterized by a small number of hubs, while other
nodes are less densely connected, but these networks do not necessarily contain rich-clubs
if the hubs are separated by lower degree nodes [Spo16].

Van den Heuvel and Sporns [vdHS11] stated that several brain regions have the rich-club
property. The bilateral precuneus, the superior frontal cortex, the superior parietal
cortex, the hippocampus, the putamen, and the thalamus are the main brain regions
that have this property. These regions are thus very important in the brain functioning,
as a very high percentage of the shortest paths from the brain passes through the rich
club [Spo16]. Indeed, removal of these regions could cause severe neuropathologies
[vdHS11, YAC+15, TB13]. Figure 2.6, from the publication of van den Heuvel and
Sporns [vdHS11] summarizes these findings.

There are also other graph measures linked to linear algebra and spectral properties.
Indeed, graphs can also be represented by their adjacency matrix. It has also been shown
that the spectral properties of graphs often follow a heavy-tail distribution [LF06].

2.2.2 Segregation Measures - Community Detection

In graphs, segregation measures how the nodes aggregate into distinct communities, and
can be expressed through a clustering coefficient or modularity [Spo16].

Clustering Coefficient, Modularity and Motifs

In graph theory, a cluster or module describes a group of nodes that are directly connected
to each other. Thus, the clustering coefficient measures the fraction of the number of
edges of a node with his neighbours over the maximum number of edges that could
theoretically exist between these nodes [BS09, XYJ+15, LF06, WS98]. The modularity

18

2.2. Brain and Graph Theory

Figure 2.6: Rich-Club Organisation within the human brain from van den Heuvel and
Sporns [vdHS11], (a): anatomical brain representation; (b): group averaged connectome;
(c): group averaged with Rich-Club connections; (d): group averaged with Rich-Club
connections connected to other regions; (e): Rich-Club

also measures the strength of the division of the network into clusters (or modules).
Networks with high modularity have dense connections between nodes in clusters and
sparse connections with nodes from different clusters [RS10].

Random networks usually have a low average clustering coefficient, whereas complex
networks are often characterized by a high clustering coefficient [BS09]. Various algorithms
allow scientists to measure the modularity of a network, most of the time based on
hierarchical clustering [BS09, GN02].

The fraction of triangle structures around a node also has a role in the clustering coefficient.
It corresponds to the number of neighbours that are neighbours of each other. The more

19

2. State of the Art

triangles, the higher the clustering coefficient will be [RS10].

Community Detection

Community detection within graphs is of high interest. Indeed, first of all, it provides
some characteristics of the network. The network can also be split into subgraphs, where
the similarity within the subgraph is high (communities). This is particularly relevant in
neurosciences in order to detect brain areas or brain neurons (depending on the scale)
that are similar in some ways, for instance to detect sets of neurons that fire for the
same task. It can also help in dimensionality reduction by grouping nodes together.
The most often used method for community detection consists in finding the best set
of subgraphs that maximize the modularity of the network, thus groups of nodes with
similar connectivity patterns [BB17, HMB+, OW14, RS10].

A well-known hypothesis about the brain is that it is organized into hierarchical com-
munities, where each community found at a given scale can be refined into smaller
communities on a lower scale [BB17]. Indeed, community detection can occur at different
scales. Most community-detection studies of the brain have focused on communities
at the same scale [PCN+11, GSM+15], or were based on heuristics if dealing with dif-
ferent scales [PCN+11], which can lead to suboptimal solutions [BB17]. Some studies,
however, use a multi-scale modularity maximization by tuning the resolution param-
eter, in order to obtain estimates of the community structure over multiple scales
[GSM+15, BMP+17, BB17]. An optimization function that takes into account the res-
olution can thus be Q(γ) =

∑
ij(Aij − γPij).δ(σi, σj), where δ is the Kronecker delta

function (equal to 1 if both arguments are the same and 0 otherwise), Aij is the observed
connectivity between nodes i and j, Pij is the expected connectivity under a null model,
σi indicates to which community the node i is assigned and γ is a parameter for resolu-
tion tuning [BB17]. By varying the resolution parameter, one can perform multi-scale
community detection. It can be difficult to choose a good resolution parameter, because
some communities will be found at every scale, but they may not be of interest and
may also not be representative. The question remains how to define whether a found
community is of interest.

Some approaches consider calculating a community contribution measure for all found
communities, and for instance use the OSLOM algorithm [LRRF11]. This algorithm will
first identify the worst node in a community, and then the community will be assigned
a score, which is the probability to have a node within the community that is more
connected within the community than it would be in a random network [BB17].

In order to detect whether a graph contains significant communities, it can also be fitted
to a stochastic block model. A stochastic block model is a generative model for random
graphs that tends to have communities. This model is characterized by a number of
communities, but knowing the number of communities in the graph we want to test is
not straightforward. Thus, a solution according to Olhede and Wolfe [OW14] can be to

20

2.2. Brain and Graph Theory

fit the graph where we want to discover communities to a stochastic block model with a
varying number of blocks.

The distribution of sizes of strongly connected components can be of interest in community
detection. A component consists of a set of nodes where for each pair of nodes, there
exists a directed path between them. On the other end of the spectrum of segregation
measures lies the distribution of sizes of weakly connected components. These are sets of
nodes where for every pair of nodes there exists an undirected path between them [LF06].

Another method explained in the book by Leskovec et al. [LRU14] to find communities
is to use betweenness. The higher the betweenness value of a node (or of an edge) is,
the most probable it lies between different communities. Thus communities could be
extracted by removing the edges or points of highest betweenness.

2.2.3 Integration Measures

The integration describes how quickly or how easily information can travel along network
paths, and thus describes how nodes can exchange information [Spo16, RS10]. Integration
is mostly measured through path length and network efficiency.

Integration can also be applied to brain networks and then measures how fast brain
regions can exchange information for a given task. As previously mentioned, neurons
tend to be connected to their neighbours rather than to distant neurons, and this can be
explained by the need to make the information travel faster.

Path Length and Efficiency

The path length is the minimum number of edges that must be traversed to go from one
node to another one, in other words the number of hops from one node to another one
[BS09, TB13, XYJ+15, Spo16]. On the network scale, the characteristic path length is
defined by the average path length through the whole network [BB17, RS10, WS98].

Thus, in networks with short characteristic path length, nodes can be quickly reached,
and thus the information can be quickly shared. Efficiency is inversely related to path
length, so a network with a short characteristic path length will thus be efficient. The
global efficiency is described as the average inverse of the shortest path length, while
the local efficiency is the measure on the node level of how quickly the current node can
reach its neighbours.

Another network measure linked to path length is the hop-plot. It is the number of
reachable nodes under a given distance. In the case of unweighted graphs, the distance is
the number of edges, whereas in weighted graphs it is the sum of weights to get from a
node to another one [LF06].

Finally, the diameter of a graph is also linked to path length and defines the largest
distance between any pair of vertices. Reachability is also linked to these notions and
defines the ability to go from a node to another one in the graph.

21

2. State of the Art

2.2.4 Small-World Property

The small-world property defines a small-world network and combines high clustering
among nodes of a network and network efficiency. It is defined as the ratio between
the clustering coefficient and the path length [BS09, RS10, GZFA10, Spo16, HG08]. All
nodes from the network are linked through relatively few intermediate steps. This has
been described mainly in social networks [TM67]. The small-world property combines
measures of segregation (high clustering) and integration (small average distance).

It has been shown that small-worldness is a characteristic of brain functional networks,
but occurs also in genetics or many other natural networks [BS09, Spo16]. It rather
characterises how the brain has high modularity for specialized computations, since the
neighbouring neurons often have a similar function and are often connected. It also keeps
an efficient communication across the brain to combine different subtasks [Spo16].

2.2.5 Graphs and Brains

In summary, it has been found that the human brain is a complex network that has specific
topological properties such as centrality, a modular community structure (high clustering),
which is hierarchically built, contains hubs and sparse connections, a short average path
length (associated with a high efficiency, especially on the structural connectivity graph),
high robustness, a small-world property, etc [BS09, ZFB10, BB17, MERG+14]. The
connection patterns are rather complex, because of the above properties and the large size
of the network, thus a graph approach can help to explore the different brain properties
[MERG+14].

Moreover, Betzel et al. [BAKG+16] evaluated different generative models for the human
connectome. Their evaluation was based on the Kolgomorov-Smirnov statistics of the
network’s degree, clustering, betweenness centrality, and edge length distributions. They
define edge length as the Euclidean length between the nodes, even if the fiber length would
be more appropriate. They took the maximum value of the Kolgomorov-Smirnov statistics
as final value. They found that the best result is a model based on homophilic attraction
combined with geometry constraints. This model can reproduce degree, betweenness
coefficient, edge length distribution, characteristic path length, mean clustering coefficient,
global efficiency, modularity, propensity for high degree nodes to be connected via long
distance edges as well as local node statistics (degree and clustering coefficient).

Table 2.2 summarizes all important network measures in the work from Rubinov and
Sporns [RS10]. These measures are of interest mostly for the evaluation of the sampled
matrix compared to the original one, as well as for the evaluation of the cleansing.

2.3 Sampling Methods

As previously stated, the brain connectivity matrices are very large, but tend to be
sparse and noisy. It is important to define sampling methods in order to be able to infer

22

2.3.
Sam

pling
M
ethods

Metric name Metric explanation Biological significance Measure type
Assortativity Correlation coefficient be-

tween the degrees of all
nodes on two opposite
ends of a link (for a
binary connectivity ma-
trix)

Assortativity measures the tendency for one neuron to be
connected to similar neurons in terms of connection strength.
As a result, a positive assortativity coefficient will indicate that
neurons tend to be connected with other neurons with similar
connection strength, whereas a negative assortativity coefficient
may indicate that there are some widely distributed neurons
with high strength (hubs), which are then vulnerable.

influence

Betweenness
centrality

Fraction of all shortest
paths in the network that
contain a given node

Betweenness centrality measures how important a node is in
terms of integration. In natural settings, information tends
to use the shortest path. As a result, if many shortest paths
go through a neuron, it means this neuron has a key role in
information exchange and is thus very vulnerable.

influence

Degree distribu-
tion (in and
out)

Number of links con-
nected to the node

Number of neurons one neuron projects to (out-going connec-
tivity) and number of neurons one neuron gets projections from
(in-coming connectivity).

influence

It basically measures the importance of a neuron in terms of
number of connections with other neurons.

Density Fraction of present con-
nections to possible con-
nections (counts non-zero
connections)

Neurons are connected in a particular way, and not all neurons
are connected. Density thus evaluates the total number of
connections compared to the number of possible connections.
The denser the brain, the more connections between neurons
there are.

influence

23

2.
State

of
the

A
rt

Edge between-
ness centrality

Fraction of all shortest
paths in the network that
contain a given edge

Edge betweenness centrality measures how important a con-
nectivity path between two neurons is in terms of integration.
In natural settings, information tends to use the shortest path.
As a result, if many shortest paths go through an edge (con-
nectivity path between two neighbouring neurons), it means
this edge has a key role in information exchange and is thus
very vulnerable.

influence

Strength distri-
bution (in and
out)

Sum of weights of links
connected to the node

The weight between neurons can represent different properties
(the number of fibers between neurons, the degree of myelina-
tion, the probability that a neuron can be reached by another
one...). It thus somehow describes the connection importance
between neurons.

influence

The strength distribution thus measures the strength of the
total out-going connection from one neuron to the others, and
the strength of the in-coming connection to this neuron.
It basically measures the importance of a neuron in terms of
connection strength with other neurons.

Strength ratio
distribution

Ratio between in- and
out- strength distribu-
tions

Ratio between in and out strength distributions. Some neurons
are mostly "receivers", while others are "emitters". The strength
ratio distribution evaluates this behaviour in order to define
whether one neuron has more a receiver or emitter behaviour.

influence

Rich-club coeffi-
cient

Fraction of edges that
connect nodes of degree k
or higher out of the max-
imum number of edges
that such nodes might
share

Rich clubs are neurons of high connection strength (strength
higher than a value of interest k) that are intensely connected
to another. Several regions within the brain have a rich-club
property (among which the bilateral precuneus, the superior
frontal cortex, the superior parietal cortex, the hippocampus,
the putamen and the thalamus). Rich-clubs can facilitate the
transmission of information.

influence

24

2.3.
Sam

pling
M
ethods

The rich-club coefficient measures how the neurons with highest
strength are connected to each other. It will be higher if there
are such rich-clubs, and lower in the other case.

Clustering coef-
ficient

Fraction of triangles
around a node (in
the case of a binary
connectivity matrix)

The clustering coefficient computes the fraction of neurons
among a neuron’s neighbours that are also neighbours of each
other. It thus measures the interconnection of the neighbour-
hood of a neuron.

segregation

Average weight of trian-
gles around a node (in the
case of a weighted connec-
tivity matrix)

The higher the clustering coefficient, the more interconnected
the neighbourhood of a neuron is. Moreover, high clustering
is associated with robustness of a network. It indicates re-
dundancy in the paths between neighbouring neurons, and
information can go through different paths of about the same
length to reach its destination, even if some paths are damaged.

Core structure Partition of the network
into two non-overlapping
groups of nodes, a core
group and a periphery
group

Core-periphery structures assume that the brain consists of a
dense cohesive core and a rarely connected periphery, whose
neurons sparsely interact with one another. The cores play
an important role in the network to link different regions and
exchange information.

segregation

This core-periphery structure can measure to which extent
one neuron behaves more like a core (important information
exchange role) or like a periphery.
Anatomically central nodes (i.e., neurons or regions) often
facilitate integration and enable links between anatomically
unconnected regions.

Modularity
(community
structure)

Statistic that quantifies
the degree to which the
network may be subdi-
vided into clearly de-
lineated non-overlapping
groups

The community structure aims at finding non-overlapping
groups of neurons to maximize the within connectivity between
neurons of the same community, and minimize the connectivity
with neurons from other communities.

segregation

25

2.
State

of
the

A
rt

The modularity measures the strength of the division of the
brain network into communities (or modules, or clusters). Net-
works with high modularity have dense connections between
neurons and sparse connections with neurons from different
communities. It measures how "modular" the brain is, i.e., to
which extent we can subdivise it into modules. It is also a
well-known fact that the brain has a high modularity.

Characteristic
Path Length

Average shortest path
length in the network

The characteristic path length measures the average of the
shortest path between neurons. It describes how fast the infor-
mation can travel across the brain from one neuron to another
one.

integration

Diameter Maximum eccentricity The diameter describes the longest path length between two
neurons. The smaller the diameter, the more efficient the brain
network, i.e., the information will proceed quickly between far
away neurons.

integration

Global effi-
ciency

Average inverse shortest
path length in the net-
work

Global efficiency is the inverse of the characteristic path length.
Indeed, the shorter the characteristic path length, the faster the
information can travel across the brain and the more efficient
is the brain network.

integration

Node eccentric-
ity

Maximal shortest path
length between a node
and any other node

The node eccentricity describes the maximum path length
between one neuron and all other neurons. The larger the node
eccentricity, the longer it will take for the information to travel
from the neuron of interest to another one in the worst case
(i.e., if these neurons are far apart). It often means the node is
at the periphery and far from the center.

integration

26

2.3.
Sam

pling
M
ethods

Radius Minimum eccentricity The radius describes the shortest of the maximum of all paths
between two neurons. The larger the radius, the less efficient
is the brain network. This also measures how long it will take
for information to travel from a rather central neuron (i.e.,
a neuron that is close to all others) to other neurons in the
periphery.

integration

Local efficiency Global efficiency com-
puted on the neighbour-
hood of the node

The local efficiency computes the inverse path length between
a neuron and its neighbours. As a result, the closer the neigh-
bouring neurons are (in terms of weights and distances), the
more efficient the neuron is because the information can travel
faster to the other neurons.

integration

Table 2.2: Most important network measures

27

2. State of the Art

knowledge from the data. There are different possible ways to sample the data. However,
it is also of interest to keep the most important connections. We also need to keep a
dataset that is still representative of the underlying data, i.e., preserve the structure of
the dataset.

Different approaches coexist in the literature in order to sample large connectivity matrices.
In this section, we will present approaches based on underlying neuroanatomical concepts,
and also more general sampling approaches for dimensionality reduction and graph
sampling. As the data is large, it is also linked with big data analytics, which offers
different sampling methods, like the so-called streaming methods that aim at analysing
the data in real-time on the fly. Sampling has to be performed carefully, since the
result can become inaccurate especially when testing for power-law degree distributions,
according to Stumpf et al. [SWM05].

As a result, this section aims at presenting different sampling approaches. One of these
approaches will then be chosen for the sampling preprocessing step, and will be specialised
and tuned to the current topic using the knowledge acquired in the review of the precedent
sections.

2.3.1 Sampling Based on Underlying Neuroanatomical Concepts

Sampling large data can be a tedious task, especially if there is no a priori knowledge
about the data. The data used for this thesis is rather specific as it represents brain
connectivity. As such, it has some characteristics, as described in Section 2.2. These
characteristics can be used in order to sample the graph.

Parcellation Methods

A characteristic of the brain is its hierarchical structure. A possibility to sample the brain
is to group together nodes that are in the same hierarchical cluster [BJG+13, Spo16].
These are so-called parcellation methods. These methods aim at grouping nodes (or
voxels when considering images) together into regions [BB17].

Parcellation methods need some criteria in order to group nodes together, and there are
a plethora of different possible criteria, such as for instance spatial variation in functional
connectivity, myelination, etc. The desired number of parcels, as well as the scale of study
also play a role in the method and will have impacts on the resulting network’s topology,
and are not trivial to find [WWZ+09, BB17]. Multi-scale community detection is another
possibility in order to parcellate the brain at different resolutions [BB17, BRNL+10].
Parcellation methods can also be based on dimensionality reduction, as presented by
Roca et al. [RRG+09].

Definition of Sampling Rates

Brain connectivity matrices often contain noisy and missing data. A possible sampling
method is to delete noisy connections. For instance, Oh et al. [OHN+14] applied several

28

2.3. Sampling Methods

sampling rates on their mouse connectome in order to delete noisy connectivities and
thus keeping mostly true positives. They found that true positive values predominantly
fell within the range of [10−4; 105].

Oh et al. estimated in their mesoscale mouse brain connectome an upper bound for
sparsity of 36 % for the entire brain and 52 % for cortico-cortical connections, and a lower
bound of 13 % and 32 % respectively. They found out that the distribution of the strength
in their connectome fits a lognormal distribution. In fact, the log distribution of the whole
brain strength is even better approximated by a two-component Gaussian Mixture Model.
They also performed network analyses, such as clustering coefficient measurements and
degree distribution determination and found out that neither small-world nor scale-free
topologies well fitted the data..

Markov et al. [MERG+14] also stated that Fraction of Labeled Neurons (FLNe) from the
strength distribution of their mesoscale monkey brain connectome was approximated by
a lognormal distribution, and that the cortical matrix structure was rather dense (66 %).
They defined a connection to be moderate if its FLNe value ranges between 10−4 and
10−2, the ones with values under 10−4 being described as sparse, while the ones whose
value exceeds 10−2 define strong projections. They showed that the standard deviation
and mean of the FLNe was approximated by a negative binomial distribution with a
dispersion parameter of 5.0. The sampling rate clearly depends on the data and is not
trivial to define ad hoc.

2.3.2 Dimensionality Reduction

The data used in the thesis has a high dimensionality, since it consists of connectivity
matrices. These are indeed adjacency matrices with many nodes. As a result, the data is
high dimensional. This subsection presents dimensionality reduction methods. This type
of methods can produce low-dimensional representations of high-dimensional data, where
the prominent features are kept.

Roca et al. [RRG+09] proposed a tractography-based parcellation method for the
cortex, relying on a dimensionality reduction of the connectivity matrix based on spatial
information, without relying on apriori knowledge about the cortex structure. First
of all, they randomly assigned all neuronal nodes to a Voronoi patch, and computed
the associated connectivity matrix. They then performed dimensionality reduction to
this connectivity matrix and applied a k-medoid clustering and iterated on all these
steps until there were no parcels added to the final parcellation (there were at most
5 iterations). The dimensionality reduction consists here in computing the density of
connections to the given patch and to compute the watershed to split the cortex into
catchment basins (areas that are connected to the patch) leading to the patch. The
basins are then pruned to keep only the most significant basins, and the connectivity
matrix is updated accordingly.

Most dimensionality reduction methods (Principal Component Analysis, Singular Value
Decomposition, Multi-Dimensional Scaling, Factor Analysis or Eigenvalue/Eigenvectors

29

2. State of the Art

Decomposition) are costly and slow to perform on big data. Multi-Dimensional Scaling
aims at finding a set of low-dimensional coordinates that best preserves pairwise distances
in the original high-dimensional space. This provides a visual representation of similarities
within a dataset for any pairwise dissimilarity, and reconstructs a map that preserves
distances. Principal Component Analysis is a statistical method to emphasize variation
and detect strong patterns along so-called principal directions. It thus outputs an ordered
set of orthogonal directions that captures the greatest variance in the data. Moreover,
classical linear techniques may not be very effective for large connectivity matrices.
Indeed, neural networks represent rather nonlinear data, thus linear methods may fail to
realize a good dimensionality reduction [YAC+15, MORG91].

Ye et al. [YAC+15] proposed methods to construct the geometry of the brain using
dimensionality reduction techniques. They evaluated some dimensionality reduction
techniques and applied them to the human brain structural connectome. Among them,
they evaluated Multi-Dimensional Scaling, which is a classic linear embedding technique,
Isomap, and t-distributed stochastic neighbourhood embedding. They found that the
structural connectome could not be well explained by a linear embedding technique, and
that the t-distributed stochastic neighbourhood embedding also led to poor results. They
found that Isomap was the most appropriate dimensionality reduction technique in this
case. In order to test their node deletion method and study if this dimensionality technique
still captures meaningful information, they studied the impact of node removal by rich-
club removal and also by random deletion of 21.5 % of the nodes according to various
connectome measures: descending nodal strength, ascending clustering, ascending path
length, descending betweenness centrality, and embeddedness. Apparently, removing
nodes with the lowest 21.5 % of nodal clustering coefficients minimally impacts the
structural connectome’s intrinsic geometry. They also found out that highly embedded
regions had an important role in the structural connectome.

Cunningham and Yu [CY14] declared that dimensionality reduction is well-suited for
analysing mesoscale neuronal activity. In order to be able to generate hypotheses about
the activity of single neurons or a population, an exploratory data analysis step is required,
and often involves the visualization of a large amount of data. The aim of dimensionality
reduction is to be able to explain the D measured variables by K variables that capture
the underlying distribution, with K << D. These K variables are also called latent
variables (not directly observed variables). They reviewed the dimensionality reduction
methods that were mostly used in neuroinformatics and provided guidelines on how to
select one. Among them are basic covariance methods such as Principal Component
Analysis, or Factor Analysis. Time series methods were also presented like Hidden Markov
Models, Gaussian Process Factor Analysis, or Latent Dynamical Systems. Finally, they
reviewed methods with dependent variables such as Linear Discriminant Analysis, or
mixed dimensionality reduction methods such as a variant of linear regression, as well as
non-linear methods like Isomap and Locally Linear Embedding.

30

2.3. Sampling Methods

2.3.3 Sampling and Summarization of Large Data

Nowadays, companies and scientists have to deal with large amounts of data. In data
mining and data-analysis, they try to find interesting patterns and features in the data.
However, most algorithms that can find patterns and features cannot scale well. The data
needs to be reduced in the first place. The reduced data (the sample), should remain
representative of the initial data, so that the patterns and features found in the sample
also exist and are important in the original data. Summarization techniques (also known
as sketching techniques) aim at providing a summary or synopsis of the data and are
particularly relevant.

Hesabi et al. [HTG+15] provided a complete review about the different data summa-
rization techniques. They divide the techniques into six different categories, namely
clustering, sampling, compression, histograms, wavelets, and micro-clustering, and review
how and when these techniques are applicable. Other categories such as hash-based or
spectral-sparsification based methods are also present in the literature. These categories
will be described and their applicability for large connectivity matrices will be analysed
in the next subsections. We will also introduce the notion of streaming and of streaming
algorithms first, and elaborate on how and why these streaming techniques are relevant
in the context of sampling large connectivity matrices.

Streaming

In the big-data era, massive amounts of data are continually arriving at a fast pace
and need to be processed and analysed. Due to computer memory limitations among
others, only a small fraction of the data can be stored at the same time in the RAM
[BMKK14, LRU14]. A model emerged, considering datasets as streams, where the
information is only accessible once, and is then lost if it is not stored or processed.
Streaming algorithms aim at analysing data in real-time (in one-pass if possible), relying
on the fact that it is more useful to have a fast and approximate solution than an exact
solution [LRU14]. Among them, streaming sampling algorithms are of particular interest
for this thesis. We first want to sample very large connectivity matrices. A streaming
model can be applied to represent the data, as we are reading it sequentially, and a
sampling streaming algorithm is of great interest.

The performance of a streaming sampling algorithm is one of its key features. It can be
measured in terms of number of passes over the data stream, the memory required by the
algorithm and its internal structures, the running time of the algorithm, as well as the
approximation ratio (i.e., how well the algorithm approximates the data stream) [Mir17].

There are different streaming sampling possibilities described in the literature. The most
obvious one is random sampling, which can lead to surprisingly good results. There are
also specific so-called sketching streaming techniques. These algorithms aim at building
a summary or synopsis of the data stream (to have a representative sample), while using
only a small amount of memory [BMKK14, JP17, TCM16]. A challenge in sketching
methods is to keep a high accuracy and a good approximation of the data. They should

31

2. State of the Art

optimize a representativeness function [BMKK14]. Two other measures are of importance
in data streaming algorithms, namely the time required to add an element in the sketch
(update time), as well as the reconstruction time (time to produce an approximate
summary, also known as query time).

Sliding windows is another streaming possibility. It consists in performing a detailed
analysis of the last items and of the summary of all other items. According to Joshi
and Patel [JP17], these sliding windows techniques have several advantages: they are
well-defined, easy to understand, as well as deterministic. As such, they have been broadly
studied in the streaming literature. These techniques are particularly used when the data
change over time. For instance, in the web case, if every IP address is a node and every
request an edge, it can be of interest to determine how these requests evolve over time, in
order to find frequent patterns. It can then happen, and actually rather often does, that
the same request will be performed several times. With these sliding windows methods,
only the last requests are in the sliding window while the others are in the summary. It
is well adapted for dynamically changing structures. However, it requires to keep values
in memory, as well as to scan the summary in order to know whether an incoming value
should be stored or not. A possible solution is to keep statistics of the summary, and
recompute these statistics only once a whole window has been summarized.

Clustering

As previously stated, a cluster gathers elements that have a high similarity, while having a
low similarity with other elements from different clusters. These methods are unsupervised
and there are different similarity metrics to gather points within the same cluster. Distance
(Minkowski, Manhattan, Euclidean, Mahalanobis) is the most commonly used metric in
clustering. It can be difficult to apply distance measures to non-numerical data, thus
other metrics also exist. In our case the matrix contains numerical data, thus distance
measures can be applied. According to Hesabi et al. [HTG+15], clustering algorithms
can be subdivided into four main types, namely hierarchical, density-based, partitioning
and grid-based clustering algorithms.

Hierarchical clustering, also known as connectivity clustering, creates clusters in the
form of a tree, where each level of the tree can cluster the data into bigger groups.
The BIRCH [ZRL96], CURE (Clustering Using REpresentatives) [GRS98], and ROCK
(RObust Clustering using linKs) [GRS00] algorithms are the three main hierarchical
clustering algorithms that are applicable to big data. The BIRCH algorithm cannot
be applied to clustering of arbitrarily shaped groups, it is thus not applicable for high
dimensional data such as our connectivity matrices. ROCK is similar to CURE but
designed for categorical data. These two approaches are not that relevant for large
connectivity matrices sampling.

CURE is based on random sampling and partitioning and comprises six steps. First,
samples are randomly chosen. These samples are divided into a fixed number of partitions
and these partitions are hierarchically clustered. The outliers are removed and the

32

2.3. Sampling Methods

clusters are refined. An important aspect here is that the clusters are not defined
only by a centroid, but rather by a set of representatives, and as such CURE can
find clusters of any shape. Finally, the samples are assigned to the closest cluster by
computing the distance to the representatives of all clusters. CURE is robust against
outliers and can deal with any cluster shape, which may be of interest. It runs with an
O(N2

samplelog(Nsample) +Nsamplek) time complexity, k being the number of final clusters,
which cannot be evaluated in advance, the last term is due to the labelling task. It has a
space complexity of O(Nsample) [HTG+15].

Partitioning algorithms divide the data set into k partitions by maximizing an error
function. The most well-known algorithm in this context is k-means [For65]. CLARA
(Clustering LARge Applications) [KR90] and its improved version CLARANS (Clustering
Large Applications based upon Randomized Search) [NH94] are other important partition-
ing algorithms that can deal with big data [HTG+15]. The time complexity of CLARANS
is quadratic, and the time complexity for CLARA is in O(k(40+k)2+k(N−k)). Although
these algorithms require a predefined number of clusters, and we do not know how many
representative clusters there are in our connectivity matrices, these approaches can still
partition our matrices by keeping somehow representative items (columns or rows) as
the clusters’ centres. The algorithm should not be based on k-means, which computes
the mean for the cluster’s center, but rather on k-median, in order to keep a real column
(respectively row) of the matrix.

Density-based algorithms rely on the density of the input space. Then, dense areas
can be kept while sparse areas are discarded and classified as noise. Because of the
network-topology characteristics that are assumed for connectivity matrices (such as
small-worldness, high clustering, and presence of hubs), this could be a good strategy
in order to sample such matrices. The main algorithms are DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [EKSX96], DBCLASD (Distribution Based
Clustering of Large Spatial Databases) [XEKS98], GDBSCAN (Generalized Density Based
Spatial Clustering of Applications with Noise) [SEKX98], DENCLUE (DENsity-based
CLUstEring) [HK98] or OPTICS (Ordering Points To Identify the Clustering Structure)
[ABKS99]. These algorithms run in at least O(NlogN) time [HTG+15], which is not
suitable in our case, for time complexity is an important factor.

Grid-based clustering methods first partition the dataset into cells, based on a grid-
structure, and then sort the cells according to their densities in order to identify clusters.
STING (STatistical INformation Grid-based clustering) [WYM97], CLIQUE (CLustering
In QUEst)[AGGR98], GRIDCLUS [Sch96], Wave Cluster [SCZ00], FC (Fractal Clustering)
[BC00] and OptiGrid[HK99] are common grid-based clustering methods in the big-data
analysis. FC for example has a computation time of O(N). A drawback of these clustering
methods lies in the fact that the cluster shapes are limited to unions of cells [HTG+15],
and the cells may not contain similar data, especially for connectivity matrices.

Micro-clustering techniques can be applied to streaming data and provide a real time
summarization of these streams. An early work on micro-clustering is described by
Aggarwal et al. [APHW03], who developed an algorithm called CluStream, which runs

33

2. State of the Art

in two phases. An online phase gathers summary statistics about the streaming data,
and an offline phase performs clustering on these summary statistics. In the online phase,
Aggarwal et al. use a pyramidal time frame approach in order to store the statistics
as micro-clusters: they store the sum and sum of square of times stamps, the sum and
sum of square of the data values as well as the number of values within the cluster.
Aggarwal et al. use a k-means clustering on the micro-clusters in the offline phase. There
are also variants, using the same micro-clustering approach at first, and then applying
other clustering algorithms on the micro-clusters, such as Denstream (a density-based
approach) [CEQZ06].

Compression

Compression allows scientists to represent the data in a compact way in order to save
space. Compression methods can be either lossless or lossy. Lossless compression consists
in removing statistical redundancies, thus the original data can be fully retrieved after
decompression. Lossy compression throws away part of the data, which can never be fully
reconstructed afterwards [HTG+15]. The main aim in compression is thus to identify
similar patterns and then reduce redundancies, so that the size is reduced while keeping
a representative version of the data.

Compression is based on the so-called MDL (Minimum Description Length), where all
redundancies have been removed. This kind of method is particularly well adapted to
datasets containing a lot of redundancies, such as web queries for example.

The purpose in our case is not to compress the data, because it then needs to be processed.
As such, data compression does not seem to be the appropriate sampling solution.

Wavelets and other Signal processing-based Techniques

Signal processing methods have been broadly applied for compression and feature ex-
traction, for instance through Fast Fourier Transforms or Discrete Wavelet Transforms
[PBF16]. In this section, we focus on wavelets, because they gather both time and
frequency information, and can decompose and store a signal more efficiently than with
a Fourier Transform [HTG+15].

Wavelet methods decompose the signal into wavelet coefficients on a pyramidal basis, but
most of these coefficients are close to zero. Only the largest ones are of interest in order
to get an approximated reconstruction of the initial signal. The wavelet decomposition
can be a very efficient lossy compression method, while keeping the most important
information and features of the signal. Wavelet decomposition can be seen as the
decomposition of the signal into a coarse approximation with details at different scales.
The Discrete Wavelet Transform decomposes a signal into its low and high frequency
parts by applying highpass and lowpass filters on different scales. Wavelets are produced
from a "mother wavelet", which then defines the wavelet family. The most notable ones
are Haar wavelets and Daubechies wavelets. Haar wavelets have been broadly studied in
the literature, because of their simplicity, and have been applied to summary construction

34

2.3. Sampling Methods

[GH05]. The main purpose of Haar wavelets is to minimize the mean square error, while
other families of wavelets can be applied to minimize other error types [HTG+15].

Wavelets are both time and frequency representations and have been proven to provide a
good representation of discrete signals [GH05, HTG+15, PBF16]. Wavelet decomposition
is often used in order to get a summary of the data. This technique has been widely
applied in image and signal processing, leading to good compression results. As a result,
the use of wavelets for data summarization of large datasets or streams was rather
straightforward, and several streaming approaches are based on wavelets.

Most of the previous body of work focused on Euclidean errors (L2 distance), thus Guha
and Harb [GH05] proposed a one pass streaming sampling algorithm based on wavelets
for Non-Euclidean error measures in O(N) and space in O(B+ log(N)) with B being the
maximum number of coefficients stored, using Haar wavelets. The computation time is
actually in O(|R|2NB) with R being a subset where the estimated error would be close
to the optimum.

Cormode et al. [CGS06] proposed a streaming method for an approximated wavelet
decomposition. It relies on a structure called Group Count Sketch, stored in polylogarith-
mic size, with a logarithmic update time, and a polylogarithmic query time to compute
the top wavelet coefficients.

Papadimitriou et al. [PBF16] proposed the AWSOM method (Arbitrary Window Stream
mOdeling Method) to automatically, effectively, and efficiently discover patterns and
trends in streaming data in constant time using logarithmic space, without any prior
knowledge. The method captures and identifies periodic components, identifies noise,
performs forecasts, while being unsupervised and using limited space in one pass. It
relies on Daubechies-6 wavelets. For each level, they performed auto-regression on the
wavelet representation and expressed the wavelet coefficients at each level as a function of
the previous coefficients of the same level. This auto-regression is based on applying the
Fisher test using the Square Sum of Residuals error function. This determines whether
the reduction in error achieved by adding a new parameter to the model is statistically
significant. Only the really significant wavelet coefficients are kept.

The same as for compression schemes, wavelet-based data can be difficult to process.
Moreover, the mathematical meaning of such an operation on connectivity matrices is
not trivial and there is no guarantee that zero values lie next to each other.

Histograms

Histograms are structures that gather data into intervals (called buckets) and count
the number of values that are mapped into these intervals. They represent data in a
concise manner [JP17, HTG+15]. Different histogram techniques exists. Equi-sum are
histograms whose buckets have the same length, but are not suitable for skewed data, as
in our case. Equal-depth histograms are histograms where the frequency of the items
for the different buckets are similar. The computation of the buckets’ boundaries is
computationally intensive.

35

2. State of the Art

V-optimal histograms aim at finding the optimal set of buckets so that the variance inside
each bucket is minimized. Variants are the End-biased V-optimal histograms, where the
value with the highest frequency is placed into its own bucket. Even if these histograms
represent the data well, they are difficult to update and as such may not scale well to
large datasets. MaxDiff histograms or Spline histograms are other types of histograms,
and there exist also multi-dimensional histogram variants [HTG+15], but none of these
algorithms is really applicable in our situation.

Hash-based Sampling

Hashing is a further possibility in streaming and offers various algorithms to sample data.
The key idea behind the hashing methods is to rely on a hash-function, that will map
the values into a smaller space. Cormode and Duffield [CD14] provided an overview of
the hashing methods in 2014. For instance, the bottom-k algorithm hashes each key and
keeps only the keys with the smallest hash values. Applied in our case the keys could be
the ids of the row and of the column, or the value of the cell in the matrix.

Another possibility described by Leskovec et al. [LRU14] is to hash the key and check
if the hashed value is already present in the summary. If it is present then the value
is added, otherwise the value is added with some probability. It is also possible to use
multiple hash functions and create several small summaries. This keeps more information
while still having a limited storage space. This is the idea behind the sampling strategy
presented by Tang et al. [TCM16], where different hash functions are applied to the data
so that less information is lost.

Leskovec et al. [LRU14] proposed other hashing approaches, such as minhash or Locality-
Sensitive Hashing. Locality-Sensitive Hashing hashes similar rows or columns together
based on some distance measure. It is then easier to find similarities. The purpose here
is to hash together (i.e., group together) similar rows or columns so that to decrease
the size. The hash function should be chosen so that, if vectors ~p and ~q are close (i.e.,
d(~p, ~q) ≤ D with D being a distance threshold), then, the probability that their hash
values will be equal is below a probability threshold P1 (i.e., Pr[h(p) = h(q)] ≤ P1), and
if their distance is higher, the probability that they will be mapped together is below a
probability threshold P2 (i.e., Pr[h(p) = h(q)] ≤ P2), with P1 ≥ P2.

A good choice of the hashing function is of particular importance in order to have a good
final sampling, as well as the choice of an appropriate key, i.e., which attributes should
be chosen to be part of the key. Indeed, as the hashing space is smaller, care has to be
taken so that to avoid too many collisions, i.e., key values map to the same hash value.
Hash functions can be based on random projections, using for instance cryptographic
hash functions such as SHA-1, but these functions may be too complex, as we do not
necessarily need the power of cryptographic security. They can also be based on heuristic
hash functions such as rand, but it may not be random enough. Finally they can be
based on mathematical hash functions such as universal hashing, which have precise
mathematical properties and can be implemented in such a way that it is fast [CD14].

36

2.3. Sampling Methods

Probability Sampling

Probability sampling is a broadly used technique in the literature in order to get a concise
representation of the data. According to Hesabi et al. [HTG+15], there are four main
probability sampling categories, namely simple random techniques, systematic sampling
methods, stratified sampling, and clustering sampling.

Random sampling randomly takes elements from the total population. It is very easy to
perform and does not require any a priori knowledge. Random sampling with reservoir is
a common random sampling streaming strategy. It consists of keeping a reservoir of size
m and filling it with the first m elements. If the m+ 1th element arrives, it will be added
to the reservoir at a random position with a given probability [HTG+15].

Systematic sampling simply computes intervals of a given size and takes one value in
every interval. This approach may not be representative, as not all points have equal
chances of being selected since their selection depends only on their position in the stream
[HTG+15].

Stratified sampling takes samples from identifiable subgroups (strata). Even small groups
can be represented. This sampling can be performed randomly. In an optimal selection,
the number of samples per strata depends on the strata size. It is more complicated than
simple random techniques and requires a good definition of a strata [HTG+15].

Another method called clustering sampling is also based on groups in the population.
This method is different from the clustering methods presented in Subsection 2.3.3.
Contrary to stratified random sampling, it takes a sample of whole clusters. It may not
be very representative of the data, depending on how the clusters are grouped together
and how the clusters are sampled [HTG+15]. Multi-stage sampling is commonly used
in clustering sampling, where, instead of keeping the whole clusters, another sampling
scheme is performed to take only a sample from each cluster.

Graph Sampling

Graph measures can be very interesting in neuroinformatics in order to infer new knowl-
edge about the roles and interlinks between the different structures. The graphs are very
large and these graph methods often become too costly to perform. This also applies
to graph clustering and partitioning. These methods usually do not scale well for large
graphs or matrices. Therefore the graph should be sampled [LF06].

Leskovec et al. [LF06] addresses four steps before performing graph or matrix sampling.
First, a sampling method needs to be chosen. Graphs are particular structures and
as such, some of the previously presented sampling methods may not work or have to
be adapted. The sample size should also be defined as well as how to estimate if the
proposed sampling is satisfying.

Different possibilities exist to sample large matrices of graphs. Some are random-based,
some are hash-based, and other are based on spectral sparsification. We are interested

37

2. State of the Art

in so-called scale-down sampling, which consists in getting a representative subgraph of
the current graph, i.e., summarizing the graph or matrix. On the other hand, a scale-up
sampling will estimate the initial graph from a sampled one. Another approach exists,
the back-in-time sampling, which consists in finding the most similar graph on a time
perspective. We focus here on static graphs, thus these sampling methods are out of the
scope of this thesis.

Some streaming sampling methods have been applied to graphs. The purpose is to find
a subgraph fitting in sublinear space, while being linear in construction time with a
constant edge update cost. It should also approximate well the initial large graph. Then,
the graph is modelled in a streaming way: an ordered sequence of edges continuously
arrives. These graph streaming models can be divided into two categories. The adjacency
streaming model assumes the edges arrive in arbitrary order. In the incidence streaming
model, all edges incident to a node arrive successively. This later model is particularly
suited to our case, where we will sequentially read the matrix row or column wise.

Tang et al. [TCM16] proposed an approach related to the Count Min algorithm based
on hash functions in order to sample a graph (either directed or undirected). It is a one
pass approach, in linear construction time, constant update time and it fits in sublinear
space, while keeping the connections of the original graph. The idea is to use a set of d
pairwise independent hash functions hi and store an adjacency matrix Mi for each of
these. As the hash functions are different, the initial values can then be reconstructed
if the hash functions are chosen wisely. As a result, the storage space is smaller and
the reconstruction is possible. For each edge e of weight w (1 in an unweighted graph)
between nodes x ans y, increaseMi[hi(x), hi(y)] by w, for each i ∈ [0, d−1]. They suggest
to keep a d× n hash table to store the correspondence between hash values and node
indices. With this extension, the time complexity is in O(n), the space complexity is in
O(d ∗ (k2 + n)) with k being the width of the hash functions mapping and n being the
number of nodes.

According to Leskovec and Faloutsos [LF06], there are three main groups of random
graph sampling, which are adapted from random sampling. They can either be based on
random node selection, on random edge selection, or on exploration techniques.

First, the sampling can be performed by random node selection (node-induced subgraph).
This consists in sampling a set of nodes and collecting the edges linked to these nodes.
There are three main variants. The first one is called Random Node Sampling and
uniformly selects a set of nodes and the corresponding edges. This method has no bias
towards high degree nodes and thus cannot retain a power-law node distribution. The
second one is called Random PageRank Node Sampling, which uses the PageRank weight
of a node as its probability of being selected. The third approach is called Random
Degree Node Sampling, which uses the degree of the node as its probability of being
selected. A drawback of the random node selection methods is that we cannot forecast
the number of edges that will be sampled, while there are usually more edges than nodes
in graphs [LF06, ANK14].

38

2.3. Sampling Methods

Another random graph sampling group is based on random edge selection (edge-induced
subgraph). The first algorithm in this category is Random Edge Sampling, which
uniformly picks edges and collects the associated nodes. Another possibility is to have a
node and edge approach, for instance with the Random Node Edge Sampling method. It
consists in uniformly selecting a node, and then uniformly selecting some of its edges.
Another method, called Hybrid Sampling, combines these two methods: Random Node
Edge Sampling will be performed with probability p, and Random Edge Sampling
with probability 1-p (p = 0.8 was found to perform best). These random edge selection
methods tend to lead to rather sparse graphs and thus do not retain community structures
[LF06, ANK14].

The third group of random-based sampling methods consists in sampling by exploration
(topology sampling). By Random Node Neighbour Sampling, a node will be uniformly
selected, and all its neighbours will be taken as well. The Random Walk Sampling
consists in selecting uniformly a node and performing a random walk starting at this
node. At every step, it flies back to the starting node with a given probability (0.15 is
a value commonly used in the literature). It selects another node to start again if the
algorithm gets stuck, i.e., if after a long number of steps not enough nodes were visited.
Leskovec and Faloutsos set the number of steps to be 100n with n being the number of
nodes. Random Jump Sampling is a variant of the Random Walk Sampling. At every
iteration it can jump to a new node with a given probability (a probability of 0.15 was
found to perform well). This variant will not get stuck. Snowball Sampling is another
variant of Random Walk Sampling and picks many initial nodes at initialization time
[CD14]. The four previous methods are biased towards high degree nodes and densely
connected parts of the graph. The Forest Fire Sampling starts by choosing uniformly
a node, and randomly generates a percentage of its neighbours that will be visited, if
they have not been visited yet. The same will be applied recursively to all selected nodes.
Once a node has been visited, it can not be visited again [LF06].

Leskovec and Faloutsos [LF06] reviewed large graph sampling. They conclude that
edge-induced methods do not perform well, while Random Node Sampling appears to
perform well. The best performing methods are the ones based on exploration (Random
Walk or Random Jump, as well as the Forest Fire Sampling algorithm with a burning
probability of around 0.7), where keeping only 15 % of the graph is then usually enough
to have a rather representative subgraph. Indeed, these methods are biased towards high
degree nodes and the sampled graphs are connected, whereas the Random Node, Random
Edge, or Random Node Edge Sampling methods cannot retain a power-law distribution,
for they are not biased towards high degree nodes.

However, Xu et al. [XLYE14] nuanced this and argued that the Random Walk Sampling
produced high correlated samples and thus may lead to a poor estimation accuracy, while
the Random Jump Sampling can be very costly in terms of iterations if the nodes’ ids
are sparsely populated (i.e., the id range is bigger than the number of nodes). They
proposed a hybrid graph sampling method between these two approaches to overcome the
disadvantage of the Random Jump Sampling. These approaches may not be practically

39

2. State of the Art

applicable on very large matrices that can be read only once [CD14].

Explorative random procedures become too costly for large graphs, because they involve
a random exploration of neighbours. They thus require several passes over the graph.
Ahmed et al. [ANK14] proposed a two-passes approach in order to effectively sample
large graphs, with the result being more representative than from simple random-based
approaches. They also proposed a streaming version, requiring only one pass over the
graph. Their two-pass algorithm is a combination of node and edge selection. In the first
pass, they select uniformly a subset of nodes. In the second pass, they take all edges
whose nodes are in the subset. It can combine properties of nodes and edges sampling
and avoids some of their drawbacks. Ahmed et al. also proposed a one-pass algorithm
called PIES, which is based on the reservoir sampling idea. They showed that PIES
preserved many network statistics and sampled particularly well if the data is sparse.
Ahmed et al. also suggested a modification of their algorithm, that will replace the node
with the minimum degree with the new incoming node. Thus, the algorithm becomes
biased towards high degree nodes, and this also preserves eigenvalues.

In a later publication, Ahmed et al. [ADNK14] presented a generic stream sampling
framework for big-graph analytics called graph Sample and Hold (gSH). For any incoming
edge, if at least one of its nodes are kept, it will also be kept with probability q. If
none of its nodes are kept, the incoming edge will also be kept with probability p. The
values p and q have an impact on the number of edges that are sampled, and should be
appropriately chosen, depending on the problem. The authors suggest to use small p and
q values (i.e, below 0.008), leading to a number of edges in the sample between 0.5 %
and 2.5 % of the initial number of edges.

Column Subset Selection and Graph Sparsification

Graph sparsification is another possibility, where the graph will be approximated by a
sparse graph (where the number of edges can reasonably be seen as proportional to its
number of nodes) with respect to some metrics [TCM16, BSST13]. The idea behind
these approaches is to keep the same number of nodes, while changing the weights of
the edges. Setting a weight of an edge to zero would thus mean that there is actually no
edge. This can be particularly relevant for connectivity matrices.

Spielman and Srivastava [SS11] proposed a graph sparsification algorithm based on
effective resistances: they see the whole graph as an electric circuit, whose edges carry
resistances. They proved that any graph with n nodes and m edges can be approximated
by a sparse graph. Their algorithm consists in sampling each edge of the initial graph
with a probability pe ∝ Reff (e), with Reff (e) corresponding to the effective resistance of
the edge.

There are various approaches in linear algebra to sample a matrix in order to get a
representative smaller version of the matrix. For instance, one can compute the SVD
of the matrix and store the SVD as sample, since it is somehow representative of the
data. However, it is computationally expensive and we will not preserve structure nor

40

2.3. Sampling Methods

sparsity. As a result, the sampled matrix is not interpretative anymore, which has to be
avoided in our case. Some authors in the literature focus on properties of linear algebra
in order to sample a matrix by a meaningful subset of its columns. This is also known as
the column subset selection problem, which is a low-rank matrix approximation, and is
linked to graph sparsification. Such a subset can maintain some interesting properties of
the initial matrix such as non-negativity, sparsity, and interpretativity [MNP17].

Uniform column sampling often fails to preserve some properties of the initial matrix,
since the columns are not sampled according to their importance [CMM17]. McCurdy et
al. [MNP17], relying on previous work from Papailiopoulos et al. [PKB14], computed
leverage scores in order to select appropriate columns from the genome-wide expression
profiles of 3.005 cells from the mouse brain. Leverage scores, particularly used in
statistics and regression, measure how far variables are from the others, and as such have
been widely used for outlier detection. Leverage scores can capture the importance of
the individual columns and are sensitive to collinearity between columns. The DCSS
(deterministic column subset selection) algorithm was described in these two papers
[MNP17, PKB14]. First of all, the leverage score τi is computed for each column. Then,
the τi values are sorted from largest to smallest and the corresponding columns are added
to a solution. These methods require the computation of the SVD approximation, as
well as the computation of the Moore-Penrose pseudo inverse, which can become costly
for large matrices.

Cohen et al. [CMP16] proposed another method on the same idea for row sampling,
but in fact it can also be used for column sampling. In their approach, each new row
is either added to the final subset or discarded, depending on the ridge leverage score.
They used the ridge leverage scores instead of the leverage score, because it provides
a regularization term, so that the scores are less sensitive to noise. They proved that
taking an approximation of the ridge leverage scores by computing the ridge leverage
score of the previously sampled rows was indeed sufficient. The algorithm adds a new
row based on a probability depending on the ridge leverage score value. However, this
requires to compute an inverse of a matrix, which can become costly. In order to speed
up their algorithm, they proposed a batch version, that stores a smaller set of columns
and gives a constant factoral spectral approximation.

Ubaru and Saad [US17] presented another approach, which is a bit different to graph
sparsification, and is called graph coarsening. It aims at finding a reduced representation
of the original graph, with both less nodes and edges. They stated that graph coarsening
methods are less expensive than sampling methods using leverage scores. They assumed
that this technique could thus be used for the column subset selection problem, but also
for graph sparsification purposes. Their algorithm basically computes the dot product
between all columns, and adds the most similar one (where the dot product is the highest)
if the dot product’s value is above a given threshold. It requires a computation of O(n2),
which is too costly for our purpose.

41

2. State of the Art

2.3.4 Sampling Evaluation

Besides the choice of the sampling method, choosing the right tradeof between sample
size and representativeness of the sample is another challenge. We want to get a sample
size as small as possible in order to be able to process it, but we also want to be able to
infer knowledge from it. The sample should be representative of the underlying data. An
evaluation is required for the sampled data in order to know if it is representative of the
initial data. Statistical tests are well adapted for this purpose, and can help to choose
the right tradeof.

The evaluation of a graph sample depends on what we are interested in, i.e., which
features we want to keep to state that the subgraph is representative of the initial graph.
Leskovec and Faloutsos [LF06] proposed to evaluate the sampled static graph based on
its in-degree and out-degree distributions, i.e., histograms of the degree values. The
hop-plot, also known as path length distribution, gives insights about how the number of
hops between nodes evolves with distance, as well as the hop-plot of the largest weakly
connected component can also be useful for this evaluation purpose. Finally, they also
suggest to compute the distribution of the clustering coefficient as well as the distribution
of singular values of the graph adjacency matrix versus the rank, or the distribution of
sizes of strongly and weakly connected components. Ahmed et al. [ANK14] also added
to this list the K-core distribution, i.e., the fraction of nodes in the graph that belongs to
a hub with minimum degree K, as well as spectral graph analysis measures such as the
adjacency matrix’s eigenvalues and eigenvectors.

Each property for both sampled and initial graph should be compared using some
distributional distance measure in order to evaluate the representativeness of the subgraph.
A possibility is to use the Kolmogorov-Smirnov D-statistic, KS(Fi, Fs) = maxx(|Fi(x)−
Fs(x)|), where Fi and Fs represent the cumulative distributions (for instance in-degree
distribution) of the initial and sampled graph respectively. Another possible evaluation
metric is the Skew Divergence SD(Pi, Ps, α) = KL(αPi + (1− αPs)||αPs + (1− αPi)).
It relies on the Kullback-Leibler divergence KL of the probability density functions of
properties between the initial Pi and sampled Ps graphs and is particularly of use if
the probability density function of the graph is skewed. This is the case for the degree
distributions in this work. Normalized distances (often L1 or L2 distances) can also be
used to compare the similarity of the different properties of the graph [ANK14]. Leskovec
and Faloutsos [LF06] also computed the visiting probability of a node in both initial
and sampled graph and used the Frobenius norm to calculate the difference in terms of
visiting probability. This probability depends on the number of times the node will get
visited if the graph is explored randomly. Ubaru and Saad [US17] also used the Frobenius
Norm in the evaluation.

In a later work, Ahmed et al. [ADNK14] proposed ways to estimate the mean and
variance of the number of edges, of the number of triangles, of the number of connected
paths of length two and of the clustering coefficients. Another often-used method to
evaluate a sampled graph, consists in comparing graph properties of the sampled graph

42

2.4. Connectivity Analysis Visualization

with the ones of a graph of the same number of nodes and the same total number of edges
picked uniformly at random. Stumpf et al. [SWM05] added that a sampled network can
only extrapolate the properties of the initial network if both of their degree distributions
belong to the same family of probability distribution.

Zalesky et al. [ZFB10] also proposed network-based statistics to identify functional or
structural differences in connectivity networks. This is based on test-statistics of interest
computed on the connectivity matrix, and can sample the network into its most relevant
subcomponents. The method aims at identifying all potentially connected structures
formed by an appropriately chosen set of edges above a given threshold, using a breadth
first search. The authors stated the complexity of the algorithm to be O(M ∗ (N + P))
with N being the number of nodes, M being the number of random permutations for the
test-statistics of interest and P being the number of edges above the given threshold.
They added that the algorithm may scale well with larger datasets.

Different sampling strategies were presented, in order to first sample the initial matrix.
This is the first step of the cleansing tool developed in this thesis. Then, the sample
should be visualised and the visual tool should provide the user with information useful
for the final cleansing of the initial matrix.

2.4 Connectivity Analysis Visualization
After sampling the matrix, a graphical user interface (GUI) is needed. The user can
visualize the sampled matrix and perform network computations on it. This allows him to
define a global threshold and a grouping scheme that can be applied to the initial matrix
in order to reduce the matrix size while preserving its most important characteristics. It
is thus important to define which informations to display and, more importantly, how to
display them in a meaningful and intuitive way. This section describes important large
graph visualization methods.

In the literature, two main types of methods exist in order to visualize graphs: node-link
diagrams, and adjacency matrices. Node-link diagrams are well adapted to show the
global structure of the network, whereas adjacency matrices can help to better visualize
communities (how similar two nodes are) [HF07, HFM07].

Connectivity graphs, as stated in Section 2.2, have intrinsic characteristics and, as most
"omics" data, are very large. As a result, specific designs have to be developed in order
to visualise them properly and to allow researchers to mine them, i.e., detect similarity
patterns, or outliers for example. Different techniques have been studied in the literature,
and Margulies et al. [MBWG13] identified six main groups of visualisations for brain
connectomics [Nyl17]. A group using

• connectivity matrices where the cells are color-coded so that they represent the con-
nection between the neurons (or brain regions), with possibly a visual representation
of the brain regions the neurons belong to.

43

2. State of the Art

• a 2D undirected weighted or unweighted node-link diagram, where the nodes
represent neurons of interest, or brain regions, depending on the scale. Here, edges
represent the connections between the neurons or brain regions.

• a 3D undirected weighted or unweighted node-link diagram superimposed with
a brain volume, where the positions of the nodes reflect their real anatomical
positions.

• a 2D undirected weighted or unweighted node-link diagram superimposed with a
brain cross-section (coronal, frontal, or sagittal plane), where the positions of the
nodes reflect their anatomical projections on the plane of interest, i.e., the chosen
cross-section.

• connectograms, which are chord diagrams between different brain regions.

• using gray scale fMRI images, coloring areas according to activity for networks of
interest.

2.4.1 Node-link Diagrams

It has been shown that node-link diagrams behave poorly for very large networks, because
of edge cluttering, i.e., there is then a large number of edge crossings. They can be
difficult to interpret and visualize. Force-based layouts can help to reduce the cluttering
of edges and display a node-link diagram in a more intuitive way. General force-based
layouts are not well suited to display small-world networks, as they result in high degree
nodes having a central position, often forming a hairball-like layout [GV16].

Bundling techniques such as Hierarchical Edge Bundles [Hol06] or node clustering can
help to reduce edge cluttering. Edge bundling is an approach to reduce edge cluttering in
graphs, parallel coordinates, or flow maps. Another possibility is to use multiple scales
and build a hierarchy in the graph to display higher level hierarchies and zoom within
the hierarchy. These techniques should maintain the context of the full graph during its
exploration. Some authors also remove weaker edges in order to help in the visualisation,
i.e., they remove edges that have a low influence on the graph. However, a threshold has
to be defined and one of the goals of this thesis is to get a feedback on how thresholding
influences the connectome. Thus, removing weaker edges in the visualisation may not be
a good approach. The challenge of such node-link diagrams is to avoid occlusion and
cluttering, while emphasizing the important characteristics of the network.

Pajek [BM98] is an important tool in the network analysis and visualisation community,
as well as being one of the oldest graph exploration software. It provides powerful
visualisation tools and subquadratic algorithms to handle large network analysis. It
can realise a recursive decomposition of networks in order to visualize them. Other
software such as Cytoscape [SMO+03], Tulip[Aub04] or Gephi [BHJ09] exist in the graph
visualisation community.

44

2.4. Connectivity Analysis Visualization

In the brain context, a big advantage of node-link diagrams is their possible 3D repre-
sentation that can preserve the brain anatomy. It can display more information about
the spatial anatomical context [All15]. According to Henry and Fekete [HF07], these
diagrams are also very intuitive for the user and allow the user to realise complex tasks
such as following a path between two non-adjacent nodes, while being very efficient and
relatively compact for small graphs.

2.4.2 Adjacency Matrices

Adjacency matrices do not clearly display the topological information of the network and
behave poorly for path-finding tasks. Most of the time, they are better suited for very
large networks, because they can represent the information using less space and avoid
cluttering. As a result, they are heavily used for visualizing large matrices.

Heatmaps are one of the most common visualisation of adjacency matrices, representing
the data in a 2D grid where the cells are color-encoded according to the edge weights.
This visualisation approach is very well suited to display adjacencies of nodes, i.e., how
every node is connected to all other nodes.

Adjacency matrices benefit from the absence of occlusion or cluttering and are thus more
readable. The are also known for their efficiency in the realisation of simple tasks such as
finding the most connected node, links between nodes, or common neighbours. They are
however not very suited to represent sparse graphs and require a rather large space to be
fully displayed, where the screen space might be too limited to display the entire matrix.
Moreover, most of the time, a random positioning of the nodes does not provide any
information, and there is a need of node reordering in the matrix in order to visualise
patterns.

There are different solutions provided by the literature in order to overcome the problem
of the large space required to display a matrix, among which are ZAME [EFD+08], or
MultiLayerMatrix [DCF16]. In these solutions, the matrix is aggregated by merging nodes
and edges based on clustering algorithms. Aggregation lowers the size and complexity of
a graph and allows the user to interact with the matrix based on different visualisation
scales.

Interactions with the graph are important to fully explore it. There exist two different
kinds of interaction techniques with either a graph displacements (panoramic displace-
ments, zooms), or lenses. The later allow the user to focus on a specific part (or on several
parts) of the graph while keeping an overview of the whole graph (context). The user
can also interact with the graph using visual parameters, such as highlighting, brushing
and linking, or semantic zooming.

ZAME (Zoomable Adjacency Matrix Explorer) [EFD+08] is a visualisation tool to explore
large graphs using multiple scale aggregation on adjacency matrices. It aims at overcoming
the problem of the large space required to display a matrix. The matrix can be explored
by zooming and panning at many levels. Aggregation is performed by first ordering the

45

2. State of the Art

elements of the matrix. The resulting aggregates are stored in a pyramidal hierarchy,
where every level of detail has half the number of nodes of the level below. It uses tiles of
2D textures to represent parts of the adjacency matrix at different hierarchy levels. A tile
management component is responsible to cache and load the individual tiles, and uses an
"imposter tile" of coarser level than the wanted one during loading of the tile in zooming
and panning interactions. This imposter tile strategy gives the user a direct feedback
and then computes the real values to display within the tile at the wanted level. The tool
aggregates the elements at different levels and aggregation should be fast and meaningful
for the user. The tool uses different representations of the aggregation through glyphs.
The aggregation can thus be represented as an average value, or as histograms. It can
also show the range of values within the aggregate.

HiPiler [LBK+18] also aims at overcoming the need of a large space to display the matrix.
It is based on a divide and conquer approach, where the region of interest is divided into
interactive snippets that can be manipulated independently of their neighbourhood. The
snippets can then be ordered, arranged, filtered, or grouped. This tool provides both a
matrix view, to display a context, and a snippet view.

PathwayMatrix [DMF15] aims at visualising relationships between proteins in biological
pathways using an adjacency matrix. In order to explore and visualize these protein
interactions, the visualization tool provides filtering, lensing, clustering, brushing, and
linking tools, as well as coloured glyphs indicating the reaction types between two proteins.
PathwayMatrix also displays a hierarchy view in order to display information about the
hierarchy in the proteins.

Later, the same authors developed MultiLayerMatrix [DCF16]. This visualisation tool
uses the leader algorithm to cluster similar nodes in order to get an aggregated global
view of the matrix. This is based on a given number of final clusters. The clusters can
be highlighted according to their within similarity, and every row and column has a
thumbnail whose colour represents its within similarity. The tool also displays outliers as
greyed out rows or columns. A lensing tool allows the user to navigate within the matrix
in order to show more details. MultiLayerMatrix provides a within similarity tool. By
hovering the clusters, a similarity matrix appears on the right, displaying the similarity
between the members of the hovered cluster and highlighting the leader member of the
cluster, i.e., the element that has the most influence on the cluster.

Net-Ray [KLKF14] is an open-source package to visualise and mine billion-scale graphs,
with two algorithms Net-Ray-Spy and Net-Ray-Scatter. Net-Ray-Spy allows the user to
visualize the adjacency matrix of very large graphs using a reordering of the nodes as
well as a scaling of the values and the axes. The matrix is projected into a small matrix
that fits on a typical screen, where an element of the small matrix is set to the number
of non-zeros in the corresponding submatrix of the big matrix. However the small matrix
will be mostly full, so the package uses SlashBurn clustering [KF11] to reorder the nodes
and scale the x and y axes using different log scales.

Hagmann et al. [HCG+08] represent the brain connections using different tools. They

46

2.4. Connectivity Analysis Visualization

display the brain structural connectivity in an adjacency matrix, where entries of the
matrix represent fiber densities between pairs of regions of interest. Finally, they also
display a 3D representation of the graph with the anatomical positions of the different
regions of interest. They use a colour and size code for the nodes and edges in order to
display different measures, such as the node strength, the network cores, the network
modularity, and hubs.

Another important aspect linked with adjacency matrices is the reordering of rows
and columns. Without any particular ordering, the adjacency matrices can be very
difficult to interpret. There exist different possibilities in the literature, such as Principal
Component Analysis, Barycenter heuristic [MS05], Optimal Leaf Ordering [BJGJ01] or
Spectral Ordering [Fek15].

2.4.3 Hybrid Approaches for Connectivity Analysis Visualization

Both node-link diagrams and adjacency matrices have opposite drawbacks. Combining
the two approaches in hybrid visualisations can help to overcome the drawbacks of each
approach.

Henry and Fekete [HF07] implemented Matlink, a hybrid representation using a matrix
view while displaying paths between nodes. Henry et al. [HFM07] also implemented
Nodetrix, another hybrid visualisation tool, using node-link diagrams and displaying
arbitrary portions of the network as adjacency matrices, which is particularly suitable
for networks with strong relations within communities and sparse relations between
communities. Even if they increase readability and scalability, these approaches are not
sufficient to visualise large-scale graphs [GCR15].

Alper et al. [ABHR+13] compare different techniques for the visualisation of weighted
graphs to assess which representation best supports weighted graph comparison tasks in
the brain connectivity analysis use case. They gathered seven common neuroscience tasks.
For functional connectivity, the main representation techniques use a 3D spatial node-link
diagram within the brain volume. 2D projections of node-link diagrams, or force-directed
node-link diagrams with a spatial representation of the actual anatomical positions of
the nodes are also common for functional connectivity. Anatomical connectivity is often
represented using fibers. The authors focused on the comparison of two techniques: an
augmented node-link diagram and an augmented adjacency matrix representation. They
proposed different visual encodings to facilitate the comparison of two connectivity graphs.
They conducted a controlled study to determine which of the two techniques is better.
The results showed that the matrices outperformed the node-link representations for the
chosen tasks, especially if the graph became dense or large. Alper et al. recommend that
adjacency matrices are used unless the graphs are small and sparse.

47

2. State of the Art

2.5 Limitations and Challenges
The matrices representing connectivity between neurons or groups of neurons are large,
high dimensional, and noisy. As a consequence, it is computationally very expensive
and sometimes even impossible to compute measurements on them in order to infer new
knowledge about how the brain works. A cleansing of the matrices could reduce their
size in memory, which could then accelerate the computations. This cleansing involves
thresholding and merging of similar rows and columns. A threshold must be defined, as
well as a similarity criterion between rows or columns, and these should not change the
important characteristics of the connectivity matrix.

As the user does not want to operate blindly, these cleansing operations should be
visualised. As the matrices are usually large and may not fit into memory, a sampling
is thus a required preliminary step. The sampled data should be representative of the
initial data and fit in the RAM of the user’s machine. The sampling is only a preliminary
step. It should not take long, and it should be performed in one pass because the reading
of some large connectivity matrices can already be time consuming.

The sampled version has to be visualised. Usually, the bigger the sampled data, the more
representative it is of the underlying data. At the same time, the bigger the sample, the
more difficult it is to compute measures on it and to visualise it, either by adjacency
matrices, which may be too large to be entirely displayed, or by node-link diagrams,
which are cluttered. The user should have an idea of how representative the sample is of
the initial matrix, and how the cleansing operations he or she performs on the sampled
version are likely to affect the initial connectivity matrix during the final cleansing on
the initial data.

2.6 Comparison and Summary of Existing Approaches
Sampling and visualisation methods were presented in Section 2.3 and Section 2.4.
Sampling aims at reducing the initial matrix size in order to get an overview of the
content of the matrix. Then, the user can visualise it with a tool providing him feedback
on some cleansing operations. The current section provides a comparison and a summary
of the different proposed sampling approaches, and of the visualisation approaches.
Constraints will be described for both approaches, as well as the applicability of the
proposed methods. Moreover, the sample, as well as the cleansed matrices should be
evaluated. Hence, evaluation approaches are also analysed.

2.6.1 Sampling

Different approaches exist in order to sample datasets. The most straightforward methods
are the ones based on random selection, or on systematic sampling. These methods can
be performed in one pass, with an O(1) update cost. Systematic sampling suffers mainly
from the fact that not all values have the same probability of being sampled. As a result
there is no guarantee that the sample actually represents the underlying data. Moreover,

48

2.6. Comparison and Summary of Existing Approaches

if there is some periodicity in the data that is the same as the frequency of the sampling,
the data will not be representative [Haa16].

Random selection improves the systematic sampling in the sense that all values have equal
probability of being chosen in a non-weighted approach. We could use an approach linked
to random node sampling, where we first sample uniformly the indices of columns and
rows, and then collect the weights at the positions from the sampled indices. Random
selection approaches include binomial sampling, or reservoir sampling [Haa16]. In
binomial sampling, an item is chosen with probability p or discarded with probability
1− p, resulting in a non-fixed sample size. Reservoir sampling implies that the size is
fixed to k, the first k elements are added to the reservoir and then a new element will
replace one element of the reservoir chosen uniformly with probability p. However, a
drawback of the random selection approach is that hubs may not be found, as the data
follows a long-tail distribution. There are not many hubs and they may not be sampled.
The sample may not have the hubs properties that a typical brain connectivity matrix
would have. Moreover, it has been shown that uniformly sampling the columns or rows
at random works for some data, but may remove some important information in other
cases.

Stratified sampling takes samples from identifiable subgroups (strata), and thus even
small groups can be represented. This sampling can be performed randomly. In an
optimal selection, the number of sampled elements per strata depends on the strata size.
This can be useful in order not to discard brain regions if a strata is defined by the
anatomical hierarchical brain structures.

The presented dimensionality reduction methods, i.e., Isomap, PCA, SVD, FA, MDS and
t-SNE (t-distributed stochastic neighbour embedding), are powerful. However the data
is projected on a lower dimensional space and as such, we will not keep the values of
the connectivity matrices. It would then not make sense to project connectivities, as we
want to keep real and meaningful values. Moreover, these algorithms are rather costly,
for instance t-SNE has quadratic computational time. Thus, these techniques cannot be
applied in our case.

Clustering is an unsupervised approach aiming at finding related vectors, in our case
columns or rows of the matrix. Through clustering, we can keep only the represen-
tatives of the found clusters. Different clustering methods exist, namely hierarchical
clustering, partitioning clustering, density-based clustering, grid-based clustering, and
micro-clustering.

Hierarchical clustering allows scientists to hierarchically refine clusters based on their
intra-cluster similarity. We can choose clusters on different hierarchical levels. How-
ever, the best hierarchical clustering algorithm applicable in our case (CURE) runs in
O(N2

samplelog(Nsample) +Nsamplek), with Nsample being the number of randomly sampled
elements before clustering, and k the number of final clusters. This complexity is too
large for the algorithm to be applicable in our case.

Partitioning clustering methods aim at grouping together vectors that are similar into

49

2. State of the Art

clusters, with a total of k clusters. These methods could then be applicable to our
case with k being the number of columns or rows that we want to select. CLARA
is a partitioning clustering method well adapted for large datasets, but still runs in
O(k(40 + k)2 + k(N − k)) steps.

Density-based clustering methods, contrary to partitioning clustering algorithms, can
find an arbitrary number of clusters based on their density. This can discard outliers and
low density clusters, as well as find clusters with shapes that are not spherical. However,
they run in at least O(NlogN) time.

Grid-based clustering methods first partition the dataset into cells, based on a grid-
structure, and then sort the cells according to their densities in order to identify clusters.
Although these algorithms can be rather fast, the data should first be divided into a grid.
Micro-clustering techniques can be applied to streaming data and thus provide a real
time summarization of these streams. An early work on micro-clustering in described by
Aggarwal et al. [APHW03], who developed an algorithm called CluStream. It runs in
two phases ; an online phase gathers summary statistics about the streaming data, and
an offline phase performs clustering on these summary statistics. In the online phase,
the algorithm uses a pyramidal time frame approach in order to store the statistics in
form of micro-clusters. Micro-clusters store the sum and sum of square of times stamps,
the sum and sum of square of the data values as well as the number of values within the
cluster. The algorithm uses then a k-means clustering on the micro-clusters in the offline
phase. There are also variants, using the same micro-clustering approach at first, and
then applying other clustering algorithms on the micro clusters, such as Denstream (a
density-based approach) [CEQZ06].

A drawback of the clustering approaches lies in the fact that not all columns can be
stored while the clustering is performed. Indeed, the computation of the new centroid in
every iteration needs the positions of the other points. As a result, clustering does not
seem to be a solution for sampling.

Another approach would be to compress the data using wavelets. Wavelets have been
widely used for compression purposes in signal processing theory. With a lossy compres-
sion, where we keep only the biggest wavelet coefficients, we can still achieve a good
reconstruction accuracy while saving a lot of space. Some approaches are applicable to
streaming data. The AWSOM framework proposed by Papadimitriou et al. [PBF16] uses
first wavelets and then estimates the correlation between the different wavelet coefficients.
It could be appropriate, as it requires only one pass over the data, and the updates when a
new element arrives is in O(1). This method provides a lossy compression and eliminates
noise, thus the final sample is not the real data any more. Moreover, this approach would
require a post-processing in our situation. The connectivity matrix has to be sampled,
and then the sampled version has to be displayed. For instance, the wavelet method
could be applied row-wise in a first step, storing the k main coefficients for every row,
and then in a second step rows with a too low maximum coefficient could be discarded.
Finally, the remaining rows should be reconstructed in order to be displayed. Moreover,
it is not convenient to compute statistics or operations on wavelet-compressed data.

50

2.6. Comparison and Summary of Existing Approaches

As an adjacency matrix represents a graph, graph-based sampling methods can also be
applied in our case. For example, Tang et al. [TCM16] proposed a method, which in one
pass realizes the summary of a graph using hash functions. In our situation, we would
need a postprocessing to recover the rows, and this method does not really help in finding
how to choose which of the connections to keep. Other traditional graph-based sampling
methods are either based on random node selection, on random edge selection, or on
exploration techniques [LF06]. As previously stated, random edge selection is not very
appropriate in our case, because of the storage conditions, while random node selection
and its variant random degree node sampling could be of use. However, while leading to
good results in terms of graph approximation, the exploration techniques are too costly to
be computed in our case, as they require several passes over the graph. The approaches
presented by Ahmed et al. [ANK14, ADNK14] are also not very well suited in our case,
because of the final matrix size, which should not be too high. A naive approach could
be to read a row with a given probability and select among this row ids of neighbouring
nodes to explore, adding these ids into a slack of nodes to examine. When a row is read,
we first need to check if its id is in the ids slack and otherwise sample it with a given
probability. The connections that we did not take into account are lost, and we would
need a second pass to gather columns that are in the id list. Moreover, all ids might be
in the id list, because the process is random, and it is biased toward order of arrival, i.e.,
a row may be discarded, while it would have been in the list later on.

Graph sparsification or matrix low-rank approximation methods could be applied in our
case. These methods aim at keeping the most important information while reducing the
storage requirement of the matrix. Not all low-rank approximations methods can be
applied. For instance, the k-SVD approximation approach is not interpretative anymore,
whereas we want to keep some of the data values. The column subset selection approach
(also generalisable in the graph sparsification context) seems well adapted to our situation,
especially the online row sampling algorithm presented by Cohen et al. [CMP16]. Some
authors proposed streaming algorithms for this very problem, and rely on leverage scores,
or on a regularized version called ridge leverage scores, of a new column to be added in
order to decide whether or not to keep the column. However, these approaches require
the computation of the inverse of a rather large matrix, as well as the product of matrices,
which can be computationally expensive. As such, these approaches are not that suited
for our purpose, even if they keep meaningful properties of the initial matrix.

Finally, matrix coarsening is another approach that is less costly than leverage score
computation. It consists in computing the dot product of a vector with all other not yet
sampled vectors, grouping together vectors that are similar, and marking these similar
vectors as visited. This approach mathematically means that we group together groups
of neurons that have rather similar firing patterns i.e., a similar out-degree distribution,
and that we will try to keep groups of neurons that have rather different firing patterns.

51

2. State of the Art

Constraints

A guided visual tool had to be developed in order to cleanse connectivity matrices. This
tool has to respect some constraints:

• the matrix can only be read once, since it takes already long to read it

• the data can only be read row-wise (rows representing outgoing connectivity)

• the chosen sampling scheme should be representative, i.e., we cannot discard entire
regions from the brain, all regions should be represented

• the sample and all results from computation should be stored in less than 12 GB
RAM, since a typical customer PC has 16 GB RAM

• there must be a consistency of the ids of the sampled rows and columns in order to
display the sampled matrix in a visual tool, i.e., there should ideally be the same
ids in the sampled rows and columns

• the computation time of both the sampling and the cleansing operations should
not be too long, i.e., the sampling should take at most a few hours

• a visual tool should guide the user in the cleansing operations, providing feedback
for all operations

• the sampled matrix should be displayed in a meaningful way

For the sampling step, we have to find a tradeof between representativeness, sampling,
size, and sampling time complexity.

Applicability

With the above constraints in mind, we will now define the applicability of all proposed
approaches. As we do not want to discard regions, a possible approach would be to sample
within the hierarchy using stratified sampling, at a level specified by the user. Thus,
stratified sampling seems a good approach. We should then define how the sampling is
realized within the regions. Compared with random sampling, systematic sampling does
not seem to offer any advantage, as a result this technique will be discarded.

Random sampling applies the same probability to all columns or rows of being selected.
We should keep in mind that the sampled ids from the rows are also included in the
ids sampled from the columns, but the approach is applicable. If it is combined with
stratified sampling, where we want to keep a certain amount of data from all strata,
reservoir sampling seems to be a better solution than simple random sampling. It ensures
a fixed size of samples taken among the strata. So both these approaches are applicable.

52

2.6. Comparison and Summary of Existing Approaches

Because of their rather high computational costs, clustering methods do not seem a
good solution for our data. Moreover, a meaningful distance would have to be defined.
However, they could be a solution for grouping together similar rows or columns later on.

Applying wavelets row by row does not seem a satisfying approach at first sight. We
cannot rely on the order of the rows or columns in our connectivity matrices. As a result,
there is no guarantee that in a row, neighbouring values would be similar. It highly
depends on the structure of the data, i.e., if the data is sparse then it could work and
would lead to very condensed representations of the rows. On the other hand, if the
data is not sparse, which seems to be the case, we cannot assume anything about the
similarity of neighbouring values. It would make more sense to compute the wavelet
coefficients between rows of the same region of interest. In this case, values can only be
compared on a one-to-one approach. As a result, row-based wavelets do not seem very
applicable in our case.

The column subset selection proposed by Cohen et al. [CMP16] involves row sampling,
and uses the already sampled rows to compute an approximate ridge leverage score of a
newly incoming row (or a bucket of l incoming rows). The authors relied on the fact that
the number of columns would be less than the number of rows, which does not hold in
our case. The approach requires the computation of the product between the transposed
sampled matrix and the initial matrix, which results in a square matrix with as many
rows and columns as the number of columns in the initial matrix. The inverse of this
matrix should also be computed, which is computationally too expensive, actually the
matrix may not even fit into memory. As a result this method will be discarded.

As we want that all indices of groups of neurons in the sampled rows to be also in the
sampled columns, the column/row subset selection is not really appropriate. We only
decide whether or not to keep the rows based on the ridge leverage scores. For instance,
there is no guarantee that the final matrix will actually be representative and preserve the
properties of the initial matrix. We would need first to sample the rows, while keeping a
rather large number of rows, and then refine this first sampled matrix by applying once
more the column subset selection column-wise. The result may not be representative,
because some important information might have been lost in the first pass, and we would
also have to get a matrix with matching column and row ids.

The graph coarsening non-modified method would be impracticable. The modified version,
where the dot product is computed among vectors that are already in the sample could
be a solution, however it would still require a rather long time to compute. A possible
solution would be to use an AMS sketch to compute the dot product, which would
accelerate the process. A drawback of this approach lies in the fact that it only discards
rows, and for instance in the case of our structural connectivity matrix, this would lead
to an even greater unbalance between the row and column numbers. Moreover, if it is
not applied in combination with stratified sampling, there is no guarantee that all brain
regions would be equally represented.

There is globally a problem with row selection approaches, since we would like to keep

53

2. State of the Art

only columns that are sampled row-wise. If we compute a value for a row in order to
decide whether or not we should keep it, we do not know which columns we should take
into account. Let us assume that we want to sample rows that are different by computing
their angle (graph coarsening approach), and that one of the rows has a rather large
angle with the others rows, meaning this row is different, but that this difference only
comes from a portion of its cells. For instance, its sampled version could be exactly the
same as another sampled row, but with some non-sampled values that are very different.
If the two rows are kept but the columns where the difference lies are discarded, then the
two rows would be very similar in the sample whereas they are not similar in the initial
matrix.

Table 2.3 provides a summary of all the presented approaches.

Algorithm type Advantages Drawbacks
Systematic sampling very fast may not be representative

exact size guaranteed
Hierarchical clustering
(CURE)

gives an a priori good partition needs two passes over the data

exact size guaranteed rather expensive
requires a number of clusters

Partitioning clustering
(CLARA)

partitions the data into k similar
clusters

k is fixed, the underlying dis-
tribution may not match the
initial distribution

exact size guaranteed (fixed k) rather expensive
Density-based cluster-
ing

discards noise based on density rather expensive

finds clusters of arbitrary shape no guarantee on the number of
found clusters
performs poorly if the density
is not even

Grid-based clustering
(FC)

fast, one pass heavily relies on initialisation

deals with noise and outliers
finds clusters of arbitrary shape

Wavelets rather fast changes the data (denoised)
rather precise reconstruction possi-
ble

requires post-processing

denoising (discards lower weigths)
compact storage

Matrix sparsification
(Leverage scores)

can be a very good approximation
and preserves important character-
istics of the matrix

rather expensive

54

2.6. Comparison and Summary of Existing Approaches

2.6.2 Visualization Cleansing Tool

Two main types of visualisation methods exist to display graphs, namely node-link
diagrams and adjacency matrices. These two approaches have advantages and drawbacks.
As a result hybrid approached were also developed. Adjacency matrices and in particular
heatmaps are more suitable to represent large matrices. As these matrices can be
very large, they also need to be aggregated in order to be displayed, such as in the
MultiLayerMatrix approach [DCF16].

Connectivity matrices are not simple matrices, as they have a biological meaning. As a
result, a spatial representation is also of interest, in order to know from where the data
comes from within the brain. This can help to infer knowledge. In a heatmap display,
the rows and columns have to be aggregated but also ordered, to be able to visualise
specific patterns. There are several ordering possibilities, such as the Barycenter heuristic
[MS05], the Optimal Leaf Ordering [BJGJ01], and the Spectral Ordering. Fekete [Fek15]
implemented the Javascript framework Reorder.js. The brain has a very specific structure,
where the connectivity within brain regions is usually higher than the connectivity between
regions. As a result, an ordering of the data by the brain regions would also make sense.

2.6.3 Evaluations of the Method and of the Sampling

Different metrics exist in the literature to evaluate connectivity matrices. Connectivity
matrices can also be seen as graphs with special properties, i.e., small-worldness, hubs,
high clustering, efficiency, modularity, small average path length, long-tail in-degree,
and out-degree distribution. The distribution of these properties could be evaluated
using Kolgomorov-Smirnov D-Statistics or Skew Divergence. For instance, Betzel et
al. [BAKG+16] based their evaluation on the Kolgomorov-Smirnov statistics of the
graph’s degree, clustering, betweenness centrality, and edge length distributions. These
are metrics of interest in order to evaluate our sampling. Some authors also mentioned
the spectral properties of a graph. Some of these metrics can be rather complicated to
evaluate, and we may not be able to evaluate them on the fly.

The different methods need to be tested and evaluated in order to decide on the final
sampling size and to analyse how well the sampled matrix is representative of the initial
matrix. We will differentiate two cases: a global evaluation of the method, and an
evaluation of the sampling. The global evaluation does not have as many requirements as
the sampling evaluation. We can perform the global evaluation using a server, whereas
the sampling evaluation should be performed on the user’s PC and keeps all memory
and time constraints. We can perform more measures in the global evaluation than in
the sampling evaluation. The Brain Connectivity Toolbox [bct] offers a lot of different
evaluation metrics. The matrices should be square to compute these measures. Some
interesting metrics require binary connectivity matrices. Our connectivity matrices are
noisy and there are not that many zeros. It follows that it is not trivial to define how to
binarize the connectivity matrix. The PAGANI Toolbox [DXZ+18] can compute some
network measures quite fast and will be used. It also requires square matrices.

55

2. State of the Art

In Table 2.2, we summarized interesting measures for brain connectivity matrices. These
measures were described by Rubinov and Sporns [RS10]. This table is based on the
neuron level, whereas in our case it would be more appropriate to speak of groups of
neurons. A local measure is defined as a measure where each node has a value, while a
global measure computes a single value for the whole graph.

56

CHAPTER 3
Methodology

The last chapter presented the literature review concerning the current topic. The present
chapter first describes the specifications, see Section 3.1. A sampling method had to be
engineered and a visual tool had to be developed. Their development is presented in
Section 3.2. The choice of programming languages is described in Section 3.3 and the
data models that were used is described in the Section 3.4.

3.1 Specifications
The specifications for the sampling are the following:

• the data and all computation should fit within 12 GB of RAM,

• entire brain regions should not be discarded,

• if a column is sampled based on his group of neurons index, the corresponding row
should also be sampled if it exists,

• the sample should be representative of the initial data.

The specifications for the cleansing are the following:

• the computation for the cleansing on the sampled matrix should also fit along with
the sampled matrix inside 12 GB of RAM,

• the user should get some visual feedback on the sampling operations,

• the user should be able to perform thresholding and merging of similar rows and
columns,

57

3. Methodology

• there should be a finalisation step where the user can get a recap of the cleansing
parameters he or she used, as well as a possibility to either get a Python script to
cleanse the initial matrix later, or directly cleanse the initial matrix.

3.2 Concepts

The current section presents the developed concepts regarding the sampling and the
visualisation methods. Based on the results of the literature review, it was decided
to implement two sampling approaches based on reservoir random sampling a "naive"
sampling approach based on reservoir sampling, detailed in subsection 3.2.1, and a more
sophisticated one based on the anatomical hierarchy, see subsection 3.2.2.

Figure 3.1 presents the three main steps of the work:

1. sample the initial matrix

2. visualize the sample and define cleansing parameters on it

3. apply the cleansing parameters on the initial matrix.

Figure 3.1: Main Concept of the Work

3.2.1 Developing the Naive Random Sampling Method

The first idea was to sample randomly using a reservoir. It would have worked as
followings, see Algorithms 3.1 and 3.2. Algorithm 3.1 describes the overall matrix
sampling process. Algorithm 3.2 summarizes the actual reservoir sampling step within

58

3.2. Concepts

the overall sampling process in order to define if a column is kept in the sample or
discarded.

Algorithm 3.1: Basic random sampling algorithm
Data: Big matrix Mm×n, desired sample storage size finalDesiredSize
Result: Sampled matrix S
// read first row: column ids

1 columnIds←M [0];
// optimization step

2 finalNumberOfColumns←
optimization(M.colNumber,M.rowNumber, finalDesiredSize);
// reservoir sampling: define which columns to keep

3 sampledIds← reservoirSampling(columnIds, finalNumberOfColumns);
// sample the matrix

4 currentIndex← 0;
5 for i← 1 to M.rowNumber do
6 if M [i][0] ∈ sampledIds then
7 if currentIndex < finalRowNumber then
8 sampledRow.append(M [i][j])∀j ∈ sampledIds;
9 sampledMatrix[currentIndex]← sampledRow;

10 end
11 else
12 randNb← rand(0, currentIndex);
13 if randNb < finalRowNumber then
14 sampledMatrix[randNb]← sampledRow;
15 end
16 end
17 currentIndex← currentIndex+ 1;
18 end
19 end
20 return sampledMatrix

However, after getting the data, further supplementary challenges also had to be taken
into account

• the matrix is not necessarily squared (and the distribution of which rows ids are
present is not uniform)

• the rows and columns ids orders may differ

• we do not know the actual number of rows

• we should not overflow the size of the reservoir during run-time

59

3. Methodology

Algorithm 3.2: Reservoir sampling algorithm (reservoirSampling)
Data: list of ids of the columns columnIds, desired number of columns

finalNumberOfColumns
Result: list of sampled ids sampledIds

1 sampledIds← [];
2 for i← 1 to finalNumberOfColumns do
3 sampledIds.append(i);
4 end
5 for i← finalNumberOfColumns+ 1 to columnIds.size do
6 randNb← rand(0, i);
7 if randNb < finalNumberOfColumns then
8 sampledIds[randNb]← i;
9 end

10 end
11 return sampledIds

• rows have different sizes (in terms of memory storage)

• we need to keep the columns corresponding to the rows we keep (all kept row ids
should be in the column ids)

• we are only allowed to read the matrix once

We do not know the ids of the rows. The matrices used for this thesis have at least as
many columns as rows. As the column number may be higher than the row number, we
have to perform sampling both row-wise and column-wise. The column-wise sampling
has to be performed at the beginning, i.e., we need to define which columns we will
keep for the whole matrix at the beginning. The problem is that we do not know which
columns should be kept in the column-wise sampling, so that the ids of the kept columns
are actually ids of rows of the initial matrix. In the structural connectivity matrix, there
are around six times more columns that rows (the ratio between the row and column
numbers is around 15 %). If the matrix was squared, it would be easy. One can simply
sample the ids by reading the first row, i.e., the column ids, and keep the corresponding
ids for both columns and rows, as presented as first idea.

However, as soon as the number of rows is largely inferior to the number of columns,
there is no guarantee that the chosen indices will be present in the rows. For instance,
the ratio between the number of rows and columns is around 15 % in the case of the
ABMA structural connectivity matrix. In the worst case there may not be a single row
kept. This worst case is highly improbable though. We can use statistics in order to
define the number of rows and columns to keep, as presented in the following subsection.

We can compute statistics in order to sample first on the columns. We want to discard as
many columns as possible, while keeping with high probability at least some portion of the

60

3.2. Concepts

initial number of rows in the remaining columns. Then, we will only store rows that are in
the remaining column indices until the reservoir is full. We can apply reservoir sampling
if some rows remain. A small program was developed to perform the estimations of the
best parameters with this method. For the structural connectivity matrix of resolution
450,000x67,500, and size 90 GB, we can discard around 300,000 columns, i.e., keep 32 %
of the initial columns, if we want to keep at least 32 % of the initial rows with a 95 %
chance.

It was decided to set the initial number of rows and columns as a user input, as he or
she knows how many rows and columns there are in the file he or she is providing to the
tool. It could have been possible to estimate the number of rows, by reading a few rows
with an estimate of the size. It is however rather imprecise.

A high-level explanation of the naive sampling method was explained here. The method
is later detailed in Chapter 4.

3.2.2 Developing the Stratified Random Sampling Method

The second idea was to sample randomly on the strata using a reservoir. For this task,
we faced the same challenges as with the simple sampling approach. However, we also
had to define what does a representative size of a strata means. We want the different
strata to be represented according to their importance in the initial matrix. We have
to choose to which extent the sampled strata size matches the initial one. We defined
the strata size as the number of groups of neurons belonging to the strata, whose ids are
among rows and columns. Having a final number of columns representative of the strata
size, i.e., the number of columns belonging to the strata, seemed to be the best approach.
Algorithm 3.3 describes the overall stratified sampling method. Algorithm 3.4 describes
the reservoir sampling step within the overall approach in order to define if a column is
kept in the sample or discarded.

Agorithm 3.3 works as following. The first line, containing the column ids, is read and
processed with the 3D position mapping file in order to get the anatomical regions for all
column ids. These anatomical regions are not necessarily at the level of interest, and
need to be processed in order to get the final regions on the anatomical level of interest.
Once the final anatomical region ids and the number of column ids per anatomical region
are computed, the optimization step needs to be performed in order to get the final
numbers of rows and columns per strata. This optimization step is described in the next
subsection. A reservoir sampling is performed on the column ids in order to define which
columns and rows should be kept. In this sampling, there is a reservoir per anatomical
region in the level of interest, and columns are sampled in the reservoir corresponding
to their anatomical region. Then, the matrix is read row by row. If a row belongs to
the sampled ids, it will be kept if the reservoir of its corresponding strata is not already
full. If it is already full, reservoir sampling will once again be performed and the row will
either be discarded or it will replace one of the currently stored rows for the strata it
belongs to.

61

3. Methodology

Algorithm 3.3: Stratified random sampling algorithm
Data: Big matrix Mm×n, anatomical level of interest levelOfInterest,

anatomical mapping anatMapping, desired sample storage size
finalDesiredSize

Result: Sampled matrix S
// read first row: column ids

1 columnIds←M [0];
// get the anatomical regions ids: list of column ids for

each anatomical region id on the level of interest
2 anatRegionsColumnIds←

getAnatRegionsIds(levelOfInterest, anatMapping, columnIds);
// optimization step

3 numberOfColumnsToKeepPerStrata←
optimization(M.colNumber,M.rowNumber, anatRegionsColumnIds, finalDesiredSize);

// reservoir sampling: define which columns to keep
4 sampledIdsPerStrata←

reservoirstrataampling(anatRegionsColumnIds, numberOfColumnsToKeepPerStrata);

5 sampledIds← flatten(sampledIdsPerStrata);
// reservoir indices for the sampled matrix

6 currentIndexStrata← [];
7 maxIndexStrata← [];
8 currentId← 1;
9 for i← 1 to sampledIdsPerStrata.size do

10 currentIndexStrata.append(currentId);
11 maxIndexStrata.append(currentId+ sampledIdsPerStrata[i].size);
12 currentId← currentId+ sampledIdsPerStrata[i].size;
13 end

// sample the matrix
14 for i← 1 to M.rowNumber do
15 currentStrata← anatRegionsColumnIds.find(i);
16 if M [i][0] ∈ sampledIdsPerStrata[currentStrata] then
17 currentIndex← currentIndexStrata[currentStrata];
18 if currentIndex < maxIndexStrata[currentStrata] then
19 sampledRow.append(M [i][j]) ∀j ∈ sampledIds;
20 sampledMatrix[currentIndex+

currentIndexStrata[currentStrata− 1]]← sampledRow;
21 end
22 else
23 randNb← rand(0, currentIndex);
24 if randNb < maxIndexStrata[currentStrata] then
25 sampledMatrix[randNb+ currentIndexStrata[currentStrata−

1]]← sampledRow;
26 end
27 end
28 currentIndex← currentIndex+ 1;
29 end
30 end
31 return sampledMatrix

62

3.2. Concepts

Algorithm 3.4: Reservoir strata sampling algorithm (reservoirstrataampling)
Data: list of column ids for each anatomical region id anatRegionsColumnIds,

list of number of columns to keep for each anatomical region
nbColsToKeepPerStrata

Result: list of column ids to keep in the sampling sampledIds
1 sampledIds← [];
2 for strata← 1 to anatRegionIds.size do
3 colIdsCurrStrata← anatRegionsIds[strata];
4 nbColsToKeepCurrStrata← nbColsToKeepPerStrata[strata];
5 sampledIds.append(reservoirSampling(colIdsCurrStrata, nbColsToKeepCurrStrata));

6 end
7 return sampledIds

However, we want to be sure that there are at least nrowStrata columns belonging to rows
left in the ncolStrata columns left for the strata. This does not scale linearly with the
size of the strata. As a result, a simple computation like the one for the simple random
sampling method cannot be derived. However, we can use optimisation tools in order to
have the best tradeof between final size and strata characteristics.

A high-level explanation of the stratified sampling method was explained here. The
method is later detailed in Chapter 4.

3.2.3 Visualizing the Sampled Connectivity Matrix

We want to visualize the connectivity matrix in an efficient and intuitive way. However,
there are several challenges for this task

• the sampled matrix is still large, the number of groups of neurons is important so
that not everything can be displayed at the same time, we have to use different
levels of detail

• we need to aggregate together the groups of neurons to get the different levels of
details

• we have to handle the exploration of the connectome (i.e., we need to keep contextual
information about the level of detail we are currently exploring)

• the computation time should not be too long

There are different required elements in the visualisation. There should be a representation
of the sampled matrix. A mapping to the hierarchy to know to which brain regions the
different groups of neurons belong is also required. Finally, there should be a spatial
mapping to know where the groups of neurons from the matrix are located. Network

63

3. Methodology

measures are interesting and should be displayed in order to see the effects of the
operations on the sampled matrix.

The results from the literature review indicate that a heatmap is more suitable than
other visualisation tools to represent large matrices. Thus the heatmap will be the
main element of the visualisation. The rows and columns should be aggregated, because
otherwise the matrix would be too large to display on a standard consumer screen. Like
with MultiLayerMatrix [DCF16], it was decided to aggregate the rows and columns based
on clustering. Hierarchical clustering seems particularly suitable to this case, because
of the hierarchical structure of the brain and because it can allow the user to navigate
in different levels of details (i.e., hierarchical levels). Two types of clustering could be
of interest. The first one is based on similarity (i.e., how similar the firing patterns of
different groups of neurons are). The second one is based on the anatomical regions and
levels. Both can be interesting for the user, so he or she should be able to switch from
one view to the other one.

3.3 Languages
A requirement for this thesis was to develop a web-based visualisation tool using ReactJS
[rea], which is a JavaScript library developed by Facebook to build user interfaces. This
library uses Components as graphical elements that have a state and should be updated
when this state changes. ReactJS can be considered as the View part in the MVC model
(Model View Controller). The Model and Controller parts can be handled through the
Redux library [red], which stores the whole state of the application. All components
only depend on one single so-called "store" where all state variables are stored. This
avoids complex and unexpected behaviours when all properties are passed from a parent
component to one of its children. As such, the front-end was developed in JavaScript
using ReactJS and Redux. The webpack library was also useful for the development.

The application is divided into two parts. The back-end, on the server side, handles
heavy computations and delivers information to the front-end. The front-end displays
these informations and constitutes the user interface.

The choice of language for the back-end was free, but due to the requirements of memory
consumption and of speed, C/C++ and Python were considered as main candidates.
C/C++ is faster and has a better memory handling. However, it is a rather complicated
language, which is not very appropriate for a proof of concept, and it does not interface
well with the web. On the other hand, Python offers many powerful open source libraries,
like SciPy[sci], NumPy[num] or Flask [fla]. The SciPy library was also used for its
clustering tools: the hierarchical clusterings were computed using the SciPy linkage
function. NumPy was the mostly used Python library for this thesis, since it offers
very powerful numerical representations and computation tools and uses arrays that are
contiguous in memory. It thus saves a lot of space compared to standard Python arrays.
Finally, Flask is a web library that was used to create the back-end part. The Cython
package [BBC+11] seemed to be a good compromise between C/C++ and Python, and

64

3.4. Data Models

was thus used for the most critical parts. It has however a drawback. It needs to be
compiled, but once compiled it can interface perfectly with Python code.

Hence, the application is divided into a web front-end (JavaScript, ReactJS, Redux,
webpack) and a back-end (Python). Most interactions with the user will require a call
from the client (front-end) to the server (back-end), using the HTTP protocol (POST and
GET requests). As a result, all computationally expensive operations will be performed
by the server, which will then send the appropriate results to the client so that the results
can be displayed for the user.

3.4 Data Models
During this thesis, a directed structural connectivity matrix of size 67,500 x 450,000
(around 90 GB) with a 100 microns resolution from the Allen Mouse Brain Connectivity
Atlas was used, as well as a lower resolution one (200 microns, 5266 x 60,009, around
1 GB size). The rows in these matrices represent the injection sites, and the columns
represent the locations in the brain. There is a non-zero value between a row and a
column if the neurons in the injection site projects to the region in the column. We
only have around 15 % of all possible injection sites. A connectivity matrix should
be squared, but in our case it is not, since we have missing rows. Thus the sampling
scheme should not consider a squared matrix. Moreover, the rows and columns have an
id corresponding to a voxel id. The order of ids in rows and columns may differ. The
voxel id corresponds to a position in a volume of 132 x 80 x 114 voxels, where the value
of each voxel references the id of a region at the lowest level of anatomical regions within
the hierarchical representation of brain regions. This volume can map the columns of the
connectivity matrix to their corresponding brain regions.

We will also use a correlated gene expression network that quantifies tissue-tissue rela-
tionships across genes [LHA+07, RAM+15] and consists of a 56,585 x 56,585 undirected
matrix, with a 200 microns resolution, and positive correlation coefficients between zero
and one. This matrix also has a corresponding 67 x 41 x 58 volume.

65

CHAPTER 4
Suggested

Solution/Implementation

The current chapter presents the suggested solution and all implementation details.
Section 4.1 describes the sampling methods, which were already mentioned in the
previous chapter. Implementation details are presented, as well as methods to define the
best row and column ratio. Section 4.2 explains the different design steps for the final
visualisation tool, and also describes the algorithms used in the visualisation tool.

4.1 Implementation of the Sampling Methods

Two sampling methods were implemented as detailed in the Concepts (see Section 3.2).
The naive random sampling is based on node sampling. The stratified random sampling
approach is based on random sampling within strata from the brain anatomical hierarchy.

Both approaches were implemented in Python, using NumPy and SciPy [JOP]. In
particular, the optimization package of SciPy with the brenth function was used to
compute the best rows and columns (as well as strata) ratios to fit within a given size.

The naive random sampling approach was the first to be developed. It was followed by
the stratified approach. Actually, the naive random sampling approach is a particular
case of the stratified approach, where there is only one strata (i.e., where the anatomical
level of interest would be 0, corresponding to the root of the anatomical hierarchy). As
such, only one method remained at the end.

As described in the Concepts (see Section 3.2), the first line, containing the column ids,
is read and processed with the 3D position mapping file in order to get the anatomical
regions for all column ids. There is a first reservoir sampling on the column ids, taking
their anatomical region into account, to decide which columns should be kept. The

67

4. Suggested Solution/Implementation

matrix is then read row by row and rows are either kept or discarded depending on their
anatomical region.

In order to facilitate the following processing, it would be convenient to have the same
order for all rows and columns, based on the ordering in the anatomical file. An ordering
of the rows and columns is thus processed. The columns can actually be ordered while
being stored in the final matrix. Indeed, the stored columns will remain until the end.
However, due to the reservoir sampling of the rows, the later can only be ordered by
strata. Then, the final rows have to be ordered, and this can take into account the
pre-ordering per strata in order not to use too much memory.

The reservoir sampling was optimized in the memory aspect using NumPy arrays of floats
stored in four bytes. It was also optimized on the time aspect, since the final user does
not want to wait too long for the sampling of the connectivity matrix. The bottleneck
was in the parsing of the rows, the Python parser was very long. The Cython package
[BBC+11] was used in order to speed up the parsing and the computation generally.

4.1.1 Computation of the Best Row and Column Ratios

The number of rows and columns of the initial matrix may differ, as for the structural
connectivity matrix. We need to decide at the beginning which columns will be kept
in the sample, based on their id. However, we do not know the row ids before reading
the matrix, and we want to keep the rows corresponding to the kept columns. We can
define the size of the sample in terms of space, but then we also need to define how many
columns and how many rows the sample will have. Here, we define strategies to define
how many rows and how many columns should be kept for a given final sample size.

Naive Sampling Method

If the number of rows and columns of the initial matrix differ, it may be interesting to
keep different ratios of the initial number of rows and columns. While discarding some
column ids, we have to take care there are still enough ids that belong to the rows. We
can use statistics for this purpose. The choice on which ids to keep and which ones to
discard is based on the columns ids, based on random for statistical validity. This is an
unordered sampling without replacement. An id will either be selected once or will not be
selected. As a result, the corresponding probability model is the hypergeometric model.
The hypergeometric model can be approximated by a binomial model if the number of
samples is under 10 % of the initial population.

Figure 4.1 summarizes the differences between the binomial sampling (green) and hy-
pergeometric sampling (blue) with a 15 % percentage of success cases. With a 10 %
sampling rate, the binomial sampling is rather well approximated by the hypergeometric
one. If the sampling rate increases, the approximation is not possible anymore.

The hypergeometric model is a Gaussian with the same mean as the corresponding
binomial model, but with a smaller variance. The mean of the hypergeometric model is

68

4.1. Implementation of the Sampling Methods

(a) 10 % sample rate (b) 30 % sample rate (c) 50 % sample rate

Figure 4.1: Differences between the binomial and hypergeometric laws with different
sample rates

µ = nhmh
Nh

and the variance is σ2 = nhmh(Nh−nh)(Nh−mh)
(Nh−1)N2

h
, with nh being the number of

trials, mh is the number of success items in the population, Nh is the total population.

We can use the standard normal distribution (Gaussian with a zero mean and a variance
of one) to approximate the p-value in order to get 95 % of confidence that there will
remain prow ∗ nrows actual row ids in the sampled column ids. Lahiri et al. [LCM07]
studied the normal approximation of the hypergeometric distribution and provided
some guidelines to approximate the hypergeometric distribution by the standard normal
distribution in finite samples. They showed that the approximation error was rather
large. The value of the absolute difference between the standardised hypergeometric
distribution P ((X − EX)/V ar(X) ≤ x) and the normal distribution is small, when the
percentage of individuals with desired characteristics is maximum and the ratio between
the initial population size and the sample size is close to 1. Lahiri et al. found that the
absolute error reaches 17.87 % in this case. In our case, the individuals with desired
characteristics corresponds to the percentage p of columns that are rows. The ratio
between the initial population size and the sample size is here the percentage of sampled
columns pc. However, in our case, pc will most certainly be smaller than 0.5, because we
want to reduce the size by at least a coefficient of 4. By reading the error table 4.2, we
can see that the corresponding error is under 10 %.

The table 4.2 comes from their publication and displays the values.

By denoting by ncols the number of columns, and p the percentage of columns that
are in the rows (i.e., nrows = pncols), we want to keep pc ratio of the columns (i.e.,
ncolumnsSample = ncolspc), and pr ratio of the rows (i.e., nrowsSample = ncolsppr). We also
want to store each value as a 4 bytes float, so that the total size of the sampled matrix is
sizef (final size), such that

sizef = 4ncolumnsFinalnrowssF inal = 4n2
colsppcpr (4.1)

Moreover, we want to be sure with high probability (95 %) that there are still nrowsSample
rows ids in the remaining ncolumnsSample columns. We can use the standard normal

69

4. Suggested Solution/Implementation

Figure 4.2: Error table between the standardised hypergeometric distribution and the
standard normal distribution from Lahiri et al. [LCM07]

distribution for this purpose (P (U ≤ u)), using the mean and variance of a hypergeometric
model µ = nhmh

Nh
and σ2 = nhmh(Nh−nh)(Nh−mh)

(Nh−1)N2
h

. nh corresponds to the number of trials,
i.e., here the number of remaining columns: nh = ncolspc . mh is the number of success
items in the population, i.e., the rows in the columns in our case: mh = ncols.p. Nh

is the total population, i.e., the number of columns so Nh = ncols. We have µ =
ncolspcncolsp

ncols
= ncolsppc and σ2 = ncolspcncolsp(ncols−ncolspc)(ncols−ncolsp)

(ncols−1)n2
cols

= n2
colsppc(1−p)(1−pc)

ncols−1 .
We also want to have more than x = ncolsppr remaining rows. The standard normal
law gives u = x−µ

σ = ncolsppr−ncolsppc√
n2

cols
ppc(1−p)(1−pc)

ncols−1

. The table of the standard normal law gives us

P (U ≤ u) = 0.95 ⇔ u = 1.65, with U following the standard normal law, and u the
z-score. In our case, we want to have P (U > u). Using the addition probability law, we
have P (U > u) = 1− P (U ≤ u) = 0.95. As a result, we want to have P (U ≤ u) = 0.05,
which z-score is the symmetric of P (U ≤ u) = 0.95 about the y axis. As a result, the
z-score we are interested in is u = −1.65. See Figure 4.3.

(a) Standard normal distribution (b) Standard normal distribution
P (U ≤ u) = 0.95

Figure 4.3: Standard normal distribution

Thus, we have

70

4.1. Implementation of the Sampling Methods

x− µ
σ

= u (4.2)

and

x− µ
σ

= ncolsppr − ncolsppc√
n2

cols
ppc(1−p)(1−pc)
ncols−1

(4.3)

u = p(pr − pc)√
p(1−p)pc(1−pc)

ncols−1

u2 = p2(pr − pc)2(ncols − 1)
p(1− p)pc(1− pc)

u2 = p(pr − pc)2(ncols − 1)
(1− p)pc(1− pc)

u2 1− p
p(ncols − 1)(1− pc)pc = (pr − pc)2

Using Equation 4.1, we have pr = sizef

4pn2
cols

pc
, we obtain

u2 1− p
p(ncols − 1)(1− pc)pc =

(
sizef

4pn2
colspc

− pc

)2

u2 1− p
p(ncols − 1)(1− pc)p3

c =
(
sizef

4pn2
cols

− p2
c

)2

u2 1− p
p(ncols − 1)p

3
c − u2 1− p

p(ncols − 1)p
4
c = p4

c − 2 sizef
4pn2

cols

p2
c +

(
sizef

4pn2
cols

)2

We finally obtain

∴

(
1 + u2(1− p)

p(ncols − 1)

)
p4
c −

u2(1− p)
p(ncols − 1)p

3
c −

sizef
2pn2

cols

p2
i +

(
sizef

4pn2
cols

)2

= 0 (4.4)

This equation was solved with the optimize library of SciPy, in order to compute pc and
then pr.

71

4. Suggested Solution/Implementation

Stratified Sampling Method

The sampled matrix size is upper-bounded by an user-defined size sizef in terms of
memory space (mega bytes). The final sampled matrix size will be defined by the number
of rows and columns in the sample. We want to define an ideal number of rows and
columns that will be kept, so that the sampled matrix size will be lower than sizef , but
the closest as possible of sizef .

We note ~N =


n1
n2
...
nS

 the vector of size S (S being the total number of strata) containing

the sizes of all strata. We note ~NbCols =


n1.pc,1
n2.pc,2
...

nS/pc,S

 and ~NbRows =


n1.p.pr,1
n2.p.pr,2

...
nS .p.pr,S

 the

vectors of size S containing respectively the number of sampled columns and the number
of sampled rows for all strata, with pc,i and pr,i respectively the percentage of kept

columns and rows for strata i. Finally, we note ~1 =


1
1
...
1

 the one-vector of size S, and

~0 =


0
0
...
0

 the zero-vector of size S.

We want to define the pc,i and pr,i for all i ∈ [0, S] such that the total size with 4 bytes
per stored value does not exceed sizef , i.e.,

∑S
i=0

~NbRowsi.
∑S
i=0

~NbColsi ≤
sizef

4 . We
also want to keep at least one column per strata (see Constraint 4.7). The number
of kept columns per strata should be representative of the size of the strata, hence
proportional to it. For very small strata, we still want to keep at least one column,
this could overestimates a bit the representativeness of the strata (see Constraint 4.8).
Moreover, we want to guarantee with a 95 % probability that the corresponding kept rows
are in the remaining columns. We can use the equation from the simple random sampling
case (see Equation 4.3), where we are only interested on the strata scale. We consider
pc,i, pr,i and ni instead of pc, pr and n respectively. Indeed, we want to be sure that
within the strata, we keep at least ni.p.pr,i columns in the rows with 95 % probability.
The simple random sampling is a particular case with one unique strata, thus we have
Constraint 4.10. Moreover, the number of rows kept will always be lower or equal to the
number of kept columns per strata (see Constraint 4.9). Finally, all values in ~NbRows
and ~NbCols should be integers, since they represent a row or columns number. The table
of the standard normal law gives us P (U ≤ u) = 0.95⇔ u = 1.65, with U following the
standard normal law, and u the z-score. In our case, we want to have P (U > u). Using
the addition probability law, we have P (U > u) = 1− P (U ≤ u) = 0.95. As a result, we

72

4.1. Implementation of the Sampling Methods

want to have P (U ≤ u) = 0.05, which z-score is the symmetric of P (U ≤ u) = 0.95 about
the y axis. As a result, the z-score we are interested in is u = −1.65.

We want to maximize the final sample size within the upper bound sizef , i.e., minimize
sizef − finalSampleSize. In our optimization, we define a minimization function that
takes as parameters independent variables. Here, ~NbCols and ~NbRows are independent
variables since they are the values we are looking for.

This leads to the following minimization function

f(~NbCols, ~NbRows) = sizef
4 −

S∑
i=0

~NbRowsi.
S∑
i=0

~NbColsi (4.5)

Subject to the following constraints:

f(NbCols,NbRows) ≤ 0 (4.6)

~1 ≤ NbCols ≤ ~N (4.7)

~NbCols ∝ ~N (4.8)

~0 ≤ ~NbRows ≤ ~NbCols (4.9)

nr,i − p.nc,i√
p.(1−p).ns.pc,i.(ns−nc,i)

ni−1

= u (4.10)

In fact, the pc,i and pr,i are linked. We can thus simplify the constraints and reduce the
number of independent variables that have to be optimized.

Constraint 4.10 can be rewritten in the following way:

(nr,i − p.nc,i)2 = u2.p.
1− p
ni − 1 .nc,i.(ni − nc,i)

n2
r,i − 2.p.nc,i.nr,i + p2.n2

c,i = u2.p.
1− p
ni − 1 .nc,i.(ni − nc,i)

n2
r,i − nr,i.2.p.nc,i + p2.n2

c,i − u2.p.
1− p
ni − 1 .nc,i.(ni − nc,i) = 0

n2
r,i − nr,i.2.p.nc,i + n2

c,i.

(
p2.+ u2.p.

1− p
ni − 1

)
− u2.p.

1− p
ni − 1 .ni.nc,i = 0

73

4. Suggested Solution/Implementation

We can solve this second order equation (∆ = b2 − 4ac with ax2 + bx+ c = 0)

∆ = (−2.p.nc,i)2 − 4.
(
n2
c,i.

(
p2.+ u2.p.

1− p
ni − 1

)
− u2.p.

1− p
ni − 1 .ni.nc,i

)
∆ = 4.p2.n2

c,i − 4.
(
p2.n2

c,i + n2
c,i.u

2.p.
1− p
ni − 1 − u

2.p.
1− p
ni − 1 .ni.nc,i

)
∆ = −4.

(
n2
c,i.u

2.p.
1− p
ni − 1 − u

2.p.
1− p
ni − 1 .ni.nc,i

)
∆ = −4.

(
u2.p.

1− p
ni − 1 .(n

2
c,i.− ni.nc,i)

)
∆ = 4.u2.p.

1− p
ni − 1 .nc,i.(ni − nc,i))

ni ≥ nc,i ⇒ ∆ ≥ 0

There are two solutions

nr,i,1 = p.nc,i + |u|.
√
p.(1− p)
ni − 1 .nc,i.(ni − nc,i) (4.11)

and

nr,i,2 = p.nc,i − |u|.

√
p.(1− p)
ni − 1 .nc,i.(ni − nc,i) (4.12)

However, we need to have pr,i ≤ pc,i ⇔ ni.pr,i ≤ ni.pc,i ⇔ p.ni.pr,i ≤ p.ni.pc,is ⇔ nr,i ≤
p.nc,i. Moreover, we have u = −1.65. As a result, we obtain

nr,i,2 = p.nc,i + u.

√
p.(1− p)
ni − 1 .nci .(ni − nc,i) (4.13)

We should also have pr,i ≥ 0. pc,i is always positive, but p.nc,i+u.
√

p.(1−p)
ni−1 .nc,i.(ni − nc,i)

may not be. We also want to have integers values, so we can take the ceil value, and
then we have

∴ nr,i,2 = max

p.nc,i + u.

√
p.(1− p)
ni − 1 .nc,i.(ni − nc,i)

 , 0
 (4.14)

We can reduce the number of independent variables. Since the pr,i and pc,i are linked, so
are ~NbCols and ~NbRows. The optimisation function becomes:

f(~NbCols) = sizef
4

−
S∑
i=0

max

(⌈
p. ~NbColsi + u

√
p.(1− p)
(~Ni − 1)

√
~NbColsi.(~Ni − ~NbColsi)

⌉
, 0
)

.
S∑
i=0

~NbColsi (4.15)

74

4.2. Development of the Tool for the Matrix Visualization

We want to have a final number of columns per strata that is proportional to the number
of initial columns per strata (see constraint 4.8). We can rewrite the ~NbCols as a function
of a global pc, such that nc,i = dmax(1, pc.ni)e. The optimisation problem becomes an
univariate optimisation problem, where the variable of interest is pc. This leads finally to
the following optimisation function 4.16:

minpcf(pc) = sizef
4

−
S∑
i=0

max

(⌈
dmax(1, pc.ni)e+ u

√
p.(1− p)
(ni − 1)

√
dmax(1, pc.ni)e.(ni − dmax(1, pc.ni)e)

⌉
, 0
)

.
S∑
i=0
dmax(1, pc.ni)e (4.16)

subject to the following constraints:

f(pc) ≤ 0 (4.17)

0 < pc < 1 (4.18)

This optimization problem was solved using the optimize library of SciPy, in order to
define the number of rows and columns to sample per strata.

4.2 Development of the Tool for the Matrix Visualization
After sampling the connectivity matrix, the sample should be displayed in a visual tool.
The purpose of this tool is to help the user in the definition of cleansing operations. The
tool should thus provide the user with feedback on cleansing operations applied to the
sample, in order to get an idea of how the defined cleansing threshold would operate
on the initial data. The current section describes the development of the design of this
visual tool.

4.2.1 Design of the Tool

While the content of the sample is interesting to display, the rows and columns ids are
also an useful information for the user. However, displaying only the ids gives a poor
information to the user. Instead, the hierarchical anatomical information linked to the id
should be displayed. The similarity between the rows and between the columns are also
interesting to display.

A similarity-based hierarchical clustering is usually displayed as a dendrogram. However,
such structures can be costly in terms of space (i.e., it may be too large to display).

75

4. Suggested Solution/Implementation

The visualisation can become quickly messy. An idea to overcome this problem was
to "flatten" the dendrogram using clusters that are on the same hierarchical similarity
level, i.e., display on the same line clusters with similarity in the same range, and on
the line below, clusters of similarity value in a higher range (with higher similarity).
As can be seen in Figure 4.4 with an anatomical hierarchical level of seven, there is a
separation between the anatomical and the similarity-based clustering. The depth of the
anatomical part represents its position within the anatomical hierarchy. The depth of
the similarity part represents the similarity level of the cluster. The deeper the bar, the
higher the similarity within the cluster represented. The hierarchical clusters (anatomical
or similarity-based) will be the row and column headers of the sampled matrix and will
be expandable by clicking on them.

It can also be of interest to see how the elements within the clusters displayed in the
similarity hierarchy relate to each other in a single cluster, i.e., how similar the cluster’s
subelements are. It was thus decided to add a similarity view (view C on the final
visualisation Figure 4.5) on the right of the matrix. It follows the same pattern as in
MultiLayerMatrix [DCF16], and will display the similarity within the selected cluster. It
should be noted that the rows and columns will not have the same hierarchical clustering,
since the clusters are based on similarity. A tree hierarchy (view A in Figure 4.5) was
also added on the left of the matrix (view B in Figure 4.5). This tree hierarchy displays
the names of the anatomical structures and associates them with the corresponding
anatomical structure’s colour in the row and column hierarchy. The chosen colours are
the ones already in use by the neuroscientists for the given anatomical brain levels.

This tool is aimed at defining parameters for matrix cleansing operations, i.e., thresholding,
merging, data imputation, and finalisation. The finalisation step corresponds to the
cleansing, i.e., the application of the cleansing operations with the chosen parameters.
An operation panel (view F in Figure 4.5) was added on the upper right corner, with
different tabs: one for each operation. By clicking on an operation tab, the corresponding
control panel appears and the current operation is defined as the clicked one. During
the thresholding step, the user can select a threshold and apply the operation using
the operation panel (view F in Figure 4.5). In order to help the user to visualise the
correspondance between the heatmap values and the chosen threshold (view B in Figure
4.5), a small square is displayed next to the threshold value and is coloured in the same
colour scale as in the matrix, according to the selected threshold value. Below the
operation control panel (view F in Figure 4.5), a 2D projection represents the spatial
location of the sampled data (view G in Figure 4.5), i.e., where the neurons represented
by the rows and columns are. The voxels on this projection can be coloured according to
different rules, either by their anatomical region colour, or by the effect of the current
operation on them. For the thresholding, the effect can be which rows or columns were
thresholded or to which extent the line or the column was thresholded. For the merging,
the effect can be which rows or columns were merged together. For the data imputation,
the effect can be the display of the initially missing values.

During the merging step, the user can select a similarity threshold and apply the operation.

76

4.2. Development of the Tool for the Matrix Visualization

Figure 4.4: Row and column headers for an anatomical level of interest of seven. The
header colors are the reference colors of the corresponding anatomical region

The same scheme as for the thresholding is used in order to give him an idea of the
similarity value: a small box is displayed next to the similarity threshold input, whose
colour is on the same green scale as the values displayed on the similarity view. For the
data imputation part, the user can select the way the data should be imputed, i.e., set
as zero or set as mean value of the values of groups of neurons belonging to the same
anatomical region.

The user can see the effects of his or her operations on the 2D spatial projection (view G
in Figure 4.5), but also on the network measures (views H and I in Figure 4.5) and on a
note under the similarity view matrix (view C in Figure 4.5) that sums up the effects of
all operations. For the thresholding, this note diplays how many voxels were thresholded.
For the merging, the note tells how many rows and how many columns were merged and
into how many rows and columns. For the data imputation part, it shows the number of
missing values (view E in Figure 4.5).

Lastly, a finalisation tab sums up the found settings (threshold, similarity threshold, and
data imputation scheme). It allows the user to apply the given settings to the initial
matrix, or to get a Python script to apply the operations on the matrix by himself later.

Finally, some network measures of interest are displayed at the bottom (views H and I in
Figure 4.5). Some network measures can be very long to compute and are not compatible

77

4. Suggested Solution/Implementation

with real time use. That is why only the simplest network measures (i.e., node degree
and strength) will be displayed in the form of histograms or scatter plots (view H in
Figure 4.5), where the colour represent the corresponding anatomical structure. The
measures for the initial matrix file, as well as for the sampled matrix and for the sampled
matrix after the operations should be displayed to allow comparison.

Several design iterations occurred to get a satisfying visualisation. On the first iteration
(see Figure 4.6), the tab bar was not separated from the matrix visualisation and the
content of the tab bar panel was rather messy. On the first subfigure (see Subfigure
4.6a), a detail view allows the user to zoom within the matrix. By clicking on a cell
on the matrix, the aggregated values of the lower hierarchical level are displayed. The
matrix headers’ colors of the detail view correspond to the clicked cell of the matrix.
However, it seemed redundant since the user can click on the row and column clusters
to expand them. A chord diagram is located below this detail view and represents the
different relations between the anatomical regions, i.e., how these anatomical regions are
connected (strong lines for strong relations). However, chord diagrams are quite heavy to
compute and might be superfluous. As such they are not present in the final iteration. In
the second subfigure (see Subfigure 4.6b), the rows and columns of the matrix are ordered
by similarity. A similarity view replaces the chord diagram, because chord diagrams do
not make sense without anatomical regions. The matrix headers’ colors of the similarity
view correspond to the clicked cluster. This similarity view displays how the clusters of
the lower hierarchical level are similar to one another. The diagonal values represent
the within similarity of each cluster. On both subfigures, the threshold and similarity
threshold are set through a slider. This was changed to an input field, since the user
most of the time expects the view to change automatically while the slider is changed,
whereas, due to the heaviness of the operations to perform this cannot be made in real
time (the similarity clustering has to be recomputed after every operation). Moreover,
the finalisation tab was missing. Finally, the spatial projection views were too large and
actually only one projection view is really needed. Thus, on the next iterations, only one
projection view remained.

The next iteration (see Figure 4.7) displays almost all features that were described above.
Minor changes were made, such as changing the matrix colour scale to a white to red
scale instead of the blue to red colour scale. Indeed, this can be misleading and make the
user think the values are negative. A checkbox allows the user to display the matrix in a
log scale colour in order to better visualise the values. It was also decided to base the
colour scale of the matrix and the corresponding legend bar based on the maximum and
minimum view of the aggregated matrix, because otherwise the colour visualization would
be poor. Indeed, the maximum value of the actual sample is way higher than the one of
the aggregated matrix since the aggregation is aggregated based on the mean. Finally, in
order to get an even better visualization colour showing more contrast, instead of taking
the maximum value of the aggregated matrix, the 95 % percentile of the sampled matrix
was used, which clearly improved the visualization: instead of having mostly almost
white cells and a few red ones, the repartition within the red scale was way better.

78

4.2. Development of the Tool for the Matrix Visualization

The final iteration (see Figure 4.8) has minor changes compared to iteration 2. The
matrix colour changes, and another 2D view is added on the network measures panel
(view I in Figure 4.5), where the measures can also be displayed on a spatial view. The
intensity of the measures are encoded in grayscale. All mockups can be found in the
annexes.

4.2.2 Clustering

As described in the previous subsection, two types of clusterings are performed in order
to aggregate columns and rows: the anatomical clustering and the similarity-based
clustering. Both are described in the next paragraphs. This clustering is used for the
aggregation of the sampled matrix in order to display it on the user screen, but also for
the display of the row and column headers.

The Anatomical Clustering

The anatomical clustering is based on the brain hierarchy and is performed to some extent
during the stratified sampling algorithm: as the strata represent anatomical structures
at the level of interest, the anatomical clustering is done until the hierarchical level of
interest. The columns can be fully ordered according to the lowest hierarchy resolution,
but the rows cannot as they are added on the strata of the hierarchy level of interest
on the fly to the reservoir. They could be if the matrix was squared or if we knew in
advance the row ids. The strata of the hierarchy level of interest are ordered, but within
these strata, the rows are not ordered according to lower hierarchical levels. A reordering
post-processing scheme was implemented to reorder the rows in the strata. However,
depending on the size of the strata, there can be a memory overhead.

Straightforward Solution for the Similarity Clustering

The most straightforward approach to cluster based on similarity would be to apply a basic
hierarchical clustering (i.e., linkage from scipy.cluster.hierarchy [lin]). The hierarchical
clustering function from the Python library fastclustering does not seem to provide better
results (in terms of computational time) than the SciPy function.

Different methods can be applied. In the nearest point algorithm, the distance between
two clusters corresponds to the minimum distance between two points belonging to
these clusters. For the furthest point algorithm, the distance between two clusters
corresponds to the maximum distance between two points belonging to these clusters.
The UPGMA algorithm [Sok58] is another option, where the distance between two clusters
corresponds to the average distance between two points belonging to these clusters. The
UPGMC algorithm [ELLS11] is another option, where the distance between two clusters
corresponds to the Euclidean distance between the centroids of the clusters, and the
centroid of the newly formed cluster is recomputed over all points of the new cluster.
The WPGMC algorithm is similar to the UPGMC algorithm [ELLS11], but the centroid
of the new cluster is computed as the average of the centroids of the merged clusters.

79

4. Suggested Solution/Implementation

Finally, the incremental algorithm uses the Ward variance minimization algorithm [WJ63]
to compute the distances between clusters. All these methods are implemented in the
linkage package.

Different metrics can be applied, such as the Euclidean or the cosine distance. The later
seems better in our case, as the rows and columns can be seen as high dimensional points.

However, a problem with the hierarchical clustering is its complexity in O(N2), which
makes it not feasible with large datasets. As an example, clustering a 350 MB reduced
matrix takes around 70 seconds. Moreover, it creates a large memory overhead (around
1200 MB of RAM are then required), while it is only the clustering part.

Thus, it is often advised to employ a two-phase clustering. A fast algorithm is used in
the first place to split the large dataset into smaller similar subsets, and then hierarchical
clustering is applied on the subsets. K-means is often used as first algorithm, because it
is rather fast. However, it still needs some time to be computed, especially if we want to
split the dataset into many subsets.

Our data has a particular structure. Indeed, it represents connectivity in the brain, and
groups of neurons within brain regions are usually more similar than to groups of neurons
of different brain regions. Instead of using a clustering algorithm, we can also rely on
the brain regions to create subsets on which to apply hierarchical clustering, and then
combine the resulting clusters in order to get a final hierarchy.

In order to speed up the computation, instead of taking a pure similarity-based clustering,
we can use a hybrid anatomical - similarity approach. The user defines a hierarchical
level on which to compute the hierarchical clustering. Above this level, we keep the
anatomical hierarchy. Below this level, we compute hierarchical clustering. This will
save computation time while also having a real meaning. Indeed, the user may not want
to merge rows or columns of the sampled matrix if they are coming from very different
regions.

During tests, it was discovered that the UPGMC algorithm is far slower than the UPGMA
algorithm, clustering 17,164 columns (558 rows around 37 MB of final size) was ten times
slower with the UPGMC algorithm as with the UPGMA algorithm. Thus, the UPGMA
algorithm should be preferred. The reason is the following (from SciPy documentation,
see [lin]): "For method ’single’ an optimized algorithm based on minimum spanning
tree is implemented. It has time complexity O(n2). For methods ’complete’, ’average’,
’weighted’ and ’ward’ an algorithm called nearest-neighbours chain is implemented. It
also has time complexity O(n2). For other methods a naive algorithm is implemented
with time complexity O(n3)".

Other Clustering Approaches

The CURE algorithm [GRS98] seemed promising at the beginning of this thesis. In fact it
is more an aggregation approach based on hierarchy than a hierarchical clustering stricto
sensu (i.e., it requires a number of final clusters and does not output the intermediate

80

4.3. Implementation of the Cleaning Operations

lower hierarchical clusters). There is a pyclustering package [Nov18]) available. However
the CURE algorithm from this package is very long to compute (20 minutes for a 350
MB matrix). It also triggers a huge memory overhead (up to almost 4 GB RAM for a 350
MB matrix). It does not output the intermediate clusters and requires a final number of
clusters. As a result, this approach did not fit our needs and was discarded.

Final Hierarchical Clustering Approach

Finally, it was decided to use the correlation distance metric. This is the Pearson
correlation, which measures the angle of expression vectors for genes or groups of neurons
A and B around their mean expression level, thus emphasizing both over- and under-
expression of genes (see the measures of similarity [sim]).

4.2.3 Final Visualisation Design

The final visualisation tool can be seen in Figure 4.9. In this example, the gene connectivity
matrix was sampled to a final size of 3 GB at the sixth anatomical hierarchical level.
The screenshot was taken at the beginning, before defining any cleansing thresholds.

4.3 Implementation of the Cleaning Operations

For all the cleaning operations, two approaches had to be developed. Rather simple
ones to apply on the sampled matrix, and more complicated ones to apply on the initial
matrix. After each cleansing operation on the sampled matrix, the hierarchical clustering
is recomputed.

4.3.1 Coding the Thresholding Methods

Thresholding the Sampled Matrix

Thresholding the sampled matrix is a trivial task. All values that are under the given
threshold need to be set to zero. The number of values that are set to zero (and were
not zeros) as well as the current number of zeros in the matrix can be of interest for the
user, in order to know how many values were changed and to evaluate how much the
initial matrix will be compressed after the cleansing.

Thresholding the Initial Matrix

Thresholding the initial matrix is not as straightforward as thresholding the sampled one,
for which we can use NumPy for the matrix stored in RAM. The initial matrix has to be
read line by line, these lines have to be parsed and thresholded before writing them back
in a new temporary file.

81

4. Suggested Solution/Implementation

4.3.2 Coding the Merging Methods

Merging the Sampled Matrix

In order to merge the sampled matrix, the user inputs a similarity threshold between zero
and one. Then, the SciPy [JOP] hierarchical row and column clusterings are explored
recursively to gather the indices of all row and column clusters with similarity above the
given similarity threshold. These clusters are then merged together by mean aggregation,
row and column wise.

Merging the Initial Matrix

Merging the initial matrix requires the computation of a hierarchical clustering, which
cannot be performed if the matrix is not completely in memory. The matrix can only be
read line by line and only a few lines can be stored in memory. Thus, a strategy had to
be developed to handle the computation of the hierarchical clustering. It is based on the
same scheme as the hybrid anatomical / similarity clustering principle: cluster according
to the anatomical hierarchy until the anatomical level of interest and then apply similarity
clustering in the anatomical hierarchy clusters of the anatomical level of interest. The
row and column indices are first preprocessed in order to get their anatomical regions. As
the matrix can only be read line by line, the row and column steps have to be performed
separately. The row ids are first grouped by anatomical regions of an adaptive level
given a maximum number of rows per region parameter. The region will be the region of
highest anatomical level that has less rows than the maximum number of rows, or the
region of lowest anatomical level if there are more rows than the maximum number of
rows. Fixing a hierarchical anatomical level can lead to way too large regions on which
the similarity computation becomes infeasible.

Once the regions and corresponding indices are computed, for each region, the matrix
will be read to gather the rows belonging to the current region. Then, the hierarchical
clustering will be computed on these rows. The merging will be applied based on this
clustering. The clustering will be used to gather the clusters with similarity above
the given similarity value. Then the rows belonging to one cluster will be merged by
mean aggregation, and the row id of the first row in the cluster will be the index of
the aggregated cluster. The row ids are stored while the merged rows are written in a
temporary file. However, the ordering of the rows is then changed, so for consistency we
keep the position of the first row of all clusters so that to reorder them according to the
initial order afterwards.

Then, in order to apply the column hierarchical clustering, the matrix is transposed, and
the same procedure is applied. The lines (representing the columns) are then reordered
according to the initial column order. The matrix is transposed again and the matrix
is ordered according to the initial row order. The ordering was chosen to be in the last
steps since as the merging reduces the size of the matrix, it is more computationally
efficient to do it this way.

82

4.3. Implementation of the Cleaning Operations

4.3.3 Coding the Imputation Methods

There was not enough time to develop a data imputation method. Moreover, the matrices
that were used for the development and for testing did not contain missing values, only
missing lines in the case of the structural connectivity.

The suggested solution was presented in the current chapter. Implementation details
were given to fully explain how the sampling was performed and how the visualisation as
well as the final cleansing work. The next chapter presents a critical reflection about the
results.

83

4. Suggested Solution/Implementation

Figure
4.5:

Finalvisualisation
tool

84

4.3. Implementation of the Cleaning Operations

(a) Anatomical hierarchy

(b) Similarity hierarchy

Figure 4.6: Mockups, Iteration 1

85

4. Suggested Solution/Implementation

Figure 4.7: Mockups, Iteration 2, after the merging of similar rows and columns, matrix
ordered by the anatomical hierarchy

Figure 4.8: Mockups, Iteration 3, after the merging of similar rows and columns, matrix
ordered by the anatomical hierarchy

86

4.3. Implementation of the Cleaning Operations

Fi
gu

re
4.
9:

Fi
na

lv
isu

al
isa

tio
n
to
ol

w
ith

le
ge
nd

87

CHAPTER 5
Critical Reflection

The tool was developed according to what was presented in Chapter 4. The current
chapter presents a critical reflection on the results of the developed tool. Section 5.1
describes how the tool was evaluated. Section 5.2 provides a discussion about the results,
and summarizes the opened issues. Section 5.3 puts the results in relation to the literature.

5.1 Evaluation

5.1.1 General method

At first, it was planned to use the brain connectivity toolbox [RS10] for evaluation.
However, some metrics took too long to compute on such large matrices. The PAGANI
Toolbox [DXZ+18] is a new tool, which uses GPU to compute some interesting measures
in the brain connectivity context, and is rather fast. As a result, this toolbox was
used for the evaluation. However, not all interesting measures are implemented in this
toolbox, so only the ones that are available were used for evaluation, namely betweeness
centrality, clustering coefficient, characteristic path length, degree and node efficiency.
The characteristic path length is inversely linked to the node efficiency. The node
efficiency seemed more interesting to explore, as it is a nodal distribution while the other
one is only a global value. As a result, the characteristic path length was not studied.

However, most of these measures require a squared matrix, and only the gene connectivity
matrix was squared. The evaluation was thus performed only on this matrix.

The evaluation was performed following for different sample sizes (namely 2 GB, 1 GB,
500 MB, and 250 MB) and with different anatomical hierarchy levels. The tool was used
in order to define a threshold and a merging criterion. Usually, the threshold and merging
criterion were rather similar for all sample sizes and anatomical hierarchy levels. Then,
cleansed versions of the sampled matrices as well as of the initial matrix were generated

89

5. Critical Reflection

using the defined threshold and the merging threshold. The network measures were
computed on all matrices: initial matrix, sampled versions, cleansed sampled versions,
and cleansed initial versions. The measures distributions were compared in order to
analyse how the tool performed. For the evaluation and the use of the PAGANI toolbox,
the cleansed versions had to be harmonized with regard to the similarity grouping. The
cleansed version contains only one row for all rows that were merged together, but this
row represents several other rows. In order to compute measures, we need to take all
these rows into account. Thus we had to duplicate the row as many times as the number
of rows represented by the current row (i.e., harmonize). However, due to time issues,
only the not-harmonized versions measures could be computed for the initial matrix.

At first, it was planned to use the Kolgomorov-Smirnov test in order to compare the
distributions. The null hypothesis is rejected for this test if Dn,m > c(α)

√
n+m
nm , with α

the required alpha level, c(α) =
√
−1

2 ln(α2), Dn,m = supx|F1,n(x)− F2,m(x)|, with F1,n
and F2,m being the empirical distribution functions of the first and second samples of size
n and m respectively. Hence, c(α) ranges between 1.22 and 1.95 for α ∈ [0.1, 0.001]. In
our case, n and m (the sizes of the samples) are very large, hence c(α)

√
n+m
nm is small and

if there is a point where the distributions are not that similar while the rest is similar, the
value of the Kolgomorov-Smirnov statistic Dn,m will reject the null hypothesis and we
would conclude that the two samples do not come from the same sample. For instance, if
we generate a random sample of 8000 elements between 0 and 1000 a and have b = a∗1.05
(hence b being very similar to a), the p-value equals 6.9267169858876584e-08 (ks_2samp
function from SciPy). Hence the hypothesis will be rejected while the two samples were
very similar (only 5 percent of difference). Thus, due to the large sample sizes, this test
was not adapted and led to wrong results.

As a result, instead of using this test, a correlation between initial and modified matrix
measures was computed. These measures are nodal, so the results of the measures are
vector of size the number of rows in the matrix. However, the correlation needs inputs
with same size, and the initial and modified matrix do not have the same number or
rows, so the measures for the initial and modified matrix do not have the same size. The
chosen solution to overcome this problem was to randomly sample the distribution vector
of the measure of interest of the initial matrix without replacement a high number of
times (1000 times) to be of the same size as the distribution vector of the measure of
interest of the sample matrix, and then take the mean of all correlation values. Then,
the Spearman correlation was computed. However, the order of the nodes in the initial
and modified matrices may differ. The values were therefore ordered before computing
the correlation. The mean and standard deviation also seemed interesting to compute
for the modified matrix.

As a result, the following procedure was applied

• apply the current measure to the initial and to the modified matrices, resulting in
the vector measures I and M for the initial and modified matrices respectively,

90

5.1. Evaluation

• if the initial matrix measure vector I is bigger than the modified matrix measure
vector M, sample randomly without replacement 1000 times the vector I to I’, with
I’ being the same size as M. Otherwise set I’=I,

• sort M to Msorted and I’ to I ′sorted according to their values,

• compute the Spearman correlation S between Msorted and I ′sorted,

• if the initial matrix measures vector I was bigger than the modified matrix measure
vector M, take the mean of all Spearman correlation for all I’ as final value,

• compute the mean and standard deviation for the initial and modified measure
vectors I and M,

• plot the normalized histograms of the vector measures M and I.

It was planned at first to evaluate the method on both the mouse’s gene connectivity
matrix and a small squared version of the mouse’s structural connectivity matrix. However,
due to lack of time and computational resources, the method was only evaluated on
the mouse’s gene connectivity matrix. The mouse’s structural connectivity matrix had
indeed several problems. First, it was not squared, so rows with zeros had to be added
to get a squared matrix for the evaluation, while these are not the real values. Second,
the matrix is not symmetric, and the PAGANI Toolkit only provides results row wise, so
the matrices should then have been transposed to also get the column-wise results, and
due to lack of time, this could not be performed.

Using the sampling tool, it was observed that a good threshold value is between 0.29 and
0.32, while a good similarity threshold is between 0.995 and 0.999. A similarity threshold
of 0.9995 led to even better results, but then only a few rows and columns were merged.
These values were thus used for generating the cleansed initial versions, as well as the
cleansed sampled versions.

The following subsections describe the different evaluation steps. First, the sampling
method should be evaluated, i.e., we want to know if the sample displayed in the tool
represents well the initial matrix. Then, the threshold and merging criterion found on the
sample should be evaluated, i.e., we want to know if the cleansed version of the sample
still represents well the initial sample data. Finally, the cleansing of the initial matrix
should be evaluated, i.e., we want to know if the cleansed version of the initial matrix
still represents well the initial data.

5.1.2 Initial Matrix - Sampled Matrix Evaluation

This subsection evaluates the sampling method. The comparison of the initial and
sampled matrix evaluates how well the sampling preserves the intrinsic characteristics of
the initial matrix, and how the sampling affected these characteristics. This evaluation
can help to define a good compromise in terms of size ratio between initial and sampled

91

5. Critical Reflection

matrices and characteristics preservation. Two parameters could be tuned, i.e., the
sample size and the anatomical hierarchy level.

According to the results, the anatomical hierarchy level was not a very important
parameter and only had a small effect. It is thus recommended to use a high anatomical
hierarchy level, so that the similarity computation is fastened.

The sample size and hence size ratio between initial and sample matrices had a rather
important effect. The bigger the sample size, the better characteristics preservation.

Betweeness Centrality

The distribution of the normalized betweeness centrality was highly similar with the
initial betweeness centrality for all sampling sizes (see Figure 5.1). Figure 5.1 plots the
normalized betweeness centrality histogram for different size ratio, i.e., the betweeness
centrality divided by the number of nodes for different sample sizes (the size ratio being
the ratio between initial matrix size and sample matrix size). The Spearman Correlation
of the betweeness centrality was rather high and lied between 0.9999999938 (250 MB
sampling size) and 0.9999999979 (2 GB sampling size). The betweeness centrality actually
depends on the current number of nodes and the matrix size is proportional to the squared
number of nodes. As can be seen on the Figure ??, there is a square root correlation
between the size and the betweeness centrality mean on the initial and sampled matrices.
The sampled and initial means were normalized so that they can be compared. The
error rate of the normalized mean was computed and is small: under 0.35 % for a sample
size of 250 MB, and a bit decreasing with the size (see Subfigure 5.2b). The variance
was also interpolated and led to a quasi linear interpolation (see Subfigure 5.2c). The
betweeness centrality distribution was divided by the number of nodes (i.e., rows) before
computing the variance (normalized variance). The results of the variance were not as
good as the ones for the mean though, and the error rate of the normalized variance led
to strange results where the error rate oscillates between 8 % and 9.5 % and was the best
for a sample size of 1 GB (see Subfigure 5.2d). These results may be due to the rather
low number of sampled matrices (for each final size, there was one sampled matrix per
anatomical hierarchical level).

Clustering Coefficient

The distribution of the clustering coefficient is also rather similar between the initial and
the sample matrices, though not being as good fitting as for the betweeness centrality
distribution. The best fit seems to be the one with the sample size of 2 GB, but the
difference is not very important (see Figure 5.3). The mean and variance of the sampled
matrices seem close to the reference one (initial matrix). The error rate of the mean lies
under 0.4 % for all values (see Subfigures 5.4a and 5.4b). The error rate of the variance
lies under 3.5 % (see Subfigures 5.4c and 5.4d). The Spearman Correlation value is not
as good as for the betweeness centrality (see Subfigure 5.4e).

92

5.1. Evaluation

(a) Sample size 250 MB (b) Sample size 500 MB

(c) Sample size 1000 MB (d) Sample size 2000 MB

Figure 5.1: Normalized betweeness centrality distribution comparison

Degree

The normalized degree distribution of the sampled matrices looks rather similar to the
initial one, though a bit right-shifted (see Figure 5.5). As for the betweeness centrality,
there is an almost square root interpolation between mean degree and sample size, which
fits rather well the initial’s mean normalized degree (see Subfigure 5.6a). The error rate
of the normalized mean lies under 0.9 %, which is not as good as for the other measures
but still rather good (see Subfigure 5.6b). However, the initial variance is not fitted that
well by the interpolation (see Subfigure 5.6c). This bad fit was also illustrated in the
error rate of the normalized variance: the error rate lies between 20 % and 24 %, which
is very high (see Subfigure 5.6d). The Spearman Correlation is rather similar to the one
of the clustering coefficient.

Node Efficiency

The node efficiency measure was normalized by the PAGANI Toolkit. However, as can
be seen on the comparisons of the node efficiency distribution with the initial matrix’s
node efficiency distribution, the sampled node efficiency distributions are right-shifted in

93

5. Critical Reflection

0 2000 4000 6000 8000 10000 12000 14000
0

5000

10000

15000

20000

25000

30000

35000

40000

45000
f(x) = 352.212531012 x^0.4993332132

Betweeness Centrality - Mean

Initial - sampled matrices

 Mean

Power interpolation

Initial mean

Sample size (MB)

M
ea

n

(a) Mean

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Betweeness Centrality - Mean's Error Rate

Initial - sampled matrices

Mean’s error rate (%)

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(b) Normalized Mean’s Error Rate

0 2000 4000 6000 8000 10000 12000 14000
0

200000000

400000000

600000000

800000000

1000000000

1200000000
f(x) = 73208.3671976985 x^1.0052764671

Betweeness Centrality - Variance

Initial - sampled matrices

 Variance

Power interpolation

Initial variance

Sample size (MB)

V
ar

ia
n

ce

(c) Variance

0 500 1000 1500 2000 2500
7.5

8

8.5

9

9.5

Betweeness Centrality - Variance's Error Rate

Initial - sampled matrices

Variance’s error rate (%)

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(d) Normalized Variance’s Error Rate

0 500 1000 1500 2000 2500
0.999999991

0.999999992

0.999999993

0.999999994

0.999999995

0.999999996

0.999999997

0.999999998

0.999999999

Betweeness Centrality - Spearman Correlation

Initial - sampled matrices

 Spearman Correlation

Sample size (MB)

C
or

re
la

tio
n

(e) Spearman Correlation

Figure 5.2: Betweeness Centrality of initial and sample matrices

94

5.1. Evaluation

(a) Sample size 250 MB (b) Sample size 500 MB

(c) Sample size 1000 MB (d) Sample size 2000 MB

Figure 5.3: Clustering coefficient distribution comparison

comparison with the initial matrix (see Figure 5.7). However, the overall distribution
shape remains very similar. This right-shift can also be found in the mean value (see
Subfigure 5.8a) and in the error rate of the mean, which lies between 1.5 % and 3 %
(see Subfigure 5.8b). As for the variance, the sampled variance is a bit higher than the
initial one (see Subfigure 5.8c). Its error rate lies between 10 % and 15 %, which is rather
high (see Subfigure 5.8d). The Spearman Correlation lies above 0.999999993 for all sizes
between 250 MB and 2 GB (see Subfigure 5.8e), and is slightly better than the one for
the degree and clustering coefficient measures.

Summary

As can be seen on the previous figures, the sampling sizes of 250 MB and 500 MB are too
small, even if the measures distributions are somehow similar to the original one. The
sampling size of 1 GB (initial size of 12 GB) is already better and 2 GB is even better
in terms of characteristics preservation. Above 2 GB sampling size, depending on the
anatomical hierarchical level, we can reach the 12 GB RAM limit that was set as criterion
for the cleansing tool. This is due to the fact that the similarity computation requires
the storage of large working matrices by the SciPy library. The higher the hierarchical

95

5. Critical Reflection

0 2000 4000 6000 8000 10000 12000 14000
0.672

0.674

0.676

0.678

0.68

0.682

0.684

Clustering Coefficient - Mean

Initial - sampled matrices

 Mean

Initial mean

Sample size (MB)

M
ea

n

(a) Mean

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Clustering Coefficient - Mean's Error Rate

Initial - sampled matrices

Mean’s error rate (%)

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(b) Mean’s Error Rate

0 2000 4000 6000 8000 10000 12000 14000
0.0058

0.006

0.0062

0.0064

0.0066

0.0068

0.007

0.0072

0.0074

Clustering Coefficient - Variance

Initial - sampled matrices

 Variance

Initial variance

Sample size (MB)

V
ar

ia
n

ce

(c) Variance

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

Clustering Coefficient - Variance's Error Rate

Initial - sampled matrices

Variance’s error rate (%)

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(d) Variance’s Error Rate

0 500 1000 1500 2000 2500
0.99999999

0.999999991

0.999999992

0.999999993

0.999999994

0.999999995

0.999999996

0.999999997

0.999999998

Clustering Coefficient - Spearman Correlation

Initial - sampled matrices

 Spearman Correlation

Sample size (MB)

C
or

re
la

tio
n

(e) Spearman Correlation

Figure 5.4: Clustering Coefficient of initial and sample matrices

96

5.1. Evaluation

(a) Sample size 250 MB (b) Sample size 500 MB

(c) Sample size 1000 MB (d) Sample size 2000 MB

Figure 5.5: Normalized degree distribution comparison

level, the smaller the working matrices and the lower is the computation time. It is thus
recommended to use a high anatomical hierarchy level of interest (six or more), with a
sampling size of at least 1 GB, 2 GB being even better.

5.1.3 Sampled Matrix - Cleansed Sampled Matrix Evaluation

This subsection evaluates how the chosen thresholds (threshold and similarity threshold)
affected the sampled matrix. The thresholding step was chosen so that it did not change
the data much, and the difference between the tested thresholds (0.29 to 0.32) was barely
visible. On the other hand, the similarity threshold (0.995, 0.999, and 0.9995) had a
large influence on the matrix. While a similarity threshold of 0.9995 did not change the
data much, a similarity threshold of 0.995 had a more tangible impact on the intrinsic
characteristics of the matrix.

All sampled matrices of the previous step were thresholded and grouped according to the
aforementioned thresholds. To compare the results, the mean and variance of the different
measures of the sampled cleansed matrices were compared with the mean and variance
of the different measures of the corresponding sampled matrices, via an error rate. The

97

5. Critical Reflection

0 2000 4000 6000 8000 10000 12000 14000
0

2000

4000

6000

8000

10000

12000

14000

f(x) = 103.5835595681 x^0.5019673938

Degree - Mean

Initial - sampled matrices

 Mean

Power interpolation

Initial mean

Sample size (MB)

M
ea

n

(a) Mean

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Degree - Mean's Error Rate

Initial - sampled matrices

Mean’s error rate (%)

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(b) Normalized Mean’s Error Rate

0 2000 4000 6000 8000 10000 12000 14000
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

f(x) = 526.7971829168 x^1.0074431416

Degree - Variance

Initial - sampled matrices

 Variance

Power interpolation

Initial variance

Sample size (MB)

V
ar

ia
n

ce

(c) Variance

0 500 1000 1500 2000 2500
18

19

20

21

22

23

24

25

Degree - Variance's Error Rate

Initial - sampled matrices

Variance’s error rate (%)

Sample size (MB)

V
ar

ia
n

ce
’s

 e
rr

o
r

ra
te

 (
%

)

(d) Normalized Variance’s Error Rate

0 500 1000 1500 2000 2500
0.99999999

0.999999991

0.999999992

0.999999993

0.999999994

0.999999995

0.999999996

0.999999997

0.999999998

Degree - Spearman Correlation

Initial - sampled matrices

 Spearman Correlation

Sample size (MB)

C
or

re
la

tio
n

(e) Spearman Correlation

Figure 5.6: Degree of initial and sample matrices

98

5.1. Evaluation

(a) Sample size 250 MB (b) Sample size 500 MB

(c) Sample size 1000 MB (d) Sample size 2000 MB

Figure 5.7: Node efficiency distribution comparison

percentage of the error rate compared to the mean and variance of the different measures
of the corresponding sampled matrices were computed, in order to have a normalized
error and to be able to compare the results.

Globally, the size and strata level of the sampled matrices did not have a big impact,
but with a 0.995 similarity threshold, the size shows a moderate effect. Globally, the
bigger the sampled matrix, the higher the mean’s and variance’s squared error rate of
the non cleansed sampled matrix. The higher the hierarchical level, the lower the mean’s
and variance’s squared error percentage. This second effect can be explained by the fact
that the higher the hierarchical level, the lower the number of grouped rows and columns
is. Indeed, if the hierarchical level decreases, there are less strata and some rows and
columns can be grouped together, while they do not belong to the same stratum in an
upper hierarchical level. There are thus more rows and columns grouped together. The
more rows and columns are grouped together, the higher is the chance that the measures
will differ from the initial matrix, especially if the grouping similarity threshold is too
low, hence the hierarchical level can have some effect.

99

5. Critical Reflection

0 2000 4000 6000 8000 10000 12000 14000
0.43

0.435

0.44

0.445

0.45

0.455

0.46
f(x) = 0.4299943995 x^0.0060217161

Node Efficiency - Mean

Initial - sampled matrices

 Mean

Power intepolation

Initial mean

Sample size (MB)

M
ea

n

(a) Mean

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

Node Efficiency - Mean's Error Rate

Initial - sampled matrices

Mean’s error rate (%)

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(b) Mean’s Error Rate

0 2000 4000 6000 8000 10000 12000 14000
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

Node Efficiency - Variance

Initial - sampled matrices

 Variance

Initial variance

Sample size (MB)

V
ar

ia
n

ce

(c) Variance

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

Node Efficiency - Variance's Error Rate

Initial - sampled matrices

Variance’s error rate (%)

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(d) Variance’s Error Rate

0 500 1000 1500 2000 2500
0.999999991

0.999999992

0.999999993

0.999999994

0.999999995

0.999999996

0.999999997

0.999999998

0.999999999

Node Efficiency - Spearman Correlation

Initial - sampled matrices

 Spearman Correlation

Sample size (MB)

C
or

re
la

tio
n

(e) Spearman Correlation

Figure 5.8: Node Efficiency of initial and sample matrices

100

5.1. Evaluation

Betweeness Centrality

The betweeness centrality was rather similar between the sampled matrices and their
cleansed versions. The similarity threshold of 0.995 seems a bit too low. The other
cleansed matrices for the 0.999 and 0.9995 similarity threshold have a betweeness centrality
Spearman Correlation of almost one (mean values of 0.9999999942 and 0.9999999953
respectively), the Spearman Correlation is not higher than 0.9999999 (see Subfigures 5.9h,
and 5.9i). The histogram distribution with sample size 1 GB and a hierarchy level of six
depicted for similarity thresholds 0.995, 0.999, and 0.9995 is rather similar to the non
cleansed corresponding sampled matrix (see Subfigures 5.9a, 5.9b, and 5.9c respectively).
It is rather clear that the distribution with similarity threshold of 0.995, while still keeping
a rather similar shape, is not as good as the ones with similarity thresholds of 0.999
and 0.9995. The error rate of the mean is always under 5 % of the expected one for all
similarity thresholds, and is even better for the 0.999 and 0.9995 similarity thresholds by
not being higher than 3 % (see Subfigures 5.9d and 5.9e). The error rate of the variance
is rather high and can reach 50 % for one sample (1 GB, hierarchy level 2) of similarity
0.995. The mean of the variance error rate for the 0.995 similarity threshold is of 24 %.
It does not exceed 30 % for the 0.999 and 0.9995 similarity threshold, with a mean of
9 % (See subfigures 5.9f and 5.9g). The sample size does not really seem to have an
important impact on the goodness of fit for the betweeness centrality measures.

Clustering Coefficient

The distribution of the clustering coefficient for the cleansed sampled matrix with
similarity threshold 0.995 is not that good, while it is good for the similarity thresholds
0.999 and 0.9995 (see Subfigures 5.10a, 5.10b, and 5.10c). This can be seen in the
Spearman Correlation graphs (see Subfigures 5.10h, and 5.10i). While the two other
thresholds have a Spearman Correlation of almost one, it can go almost as low as 0.999999
for some cases with a similarity threshold of 0.995. The value of 0.999999 is still rather
high, and the global shape is indeed rather similar. The error rate for the mean is very
low: under 0.4 %, with a mean error rate for the mean of 0.24 % for the 0.995 similarity
threshold, and under 0.15 % with a mean error rate for the mean of respectively 0.034 %
and 0.027 % for the 0.999 and 0.9995 similarity thresholds (see Subfigures 5.10d, and
5.10e). The error rate for the variance is higher but does not exceed 14 % for the 0.995
similarity thresholds. The mean error rate for the variance is around 9 %, and does not
exceed 6 % for the 0.999 and 0.9995 similarity thresholds, with a mean of 1.9 % and
1.5 % respectively (see Subfigures 5.10f, and 5.10g). The Spearman Correlation for the
0.995 similarity threshold is rather good, always exceeding 0.9999992, but not as good as
the Spearman Correlation for the 0.999 and 0.9995 similarity thresholds (mean value of
0.999999991 and 0.999999989 respectively). Once again, the sampling size does not seem
to impact the results for the clustering coefficient.

101

5. Critical Reflection

(a) Distribution similarity 0.995 (b) Distribution similarity 0.999

(c) Distribution similarity 0.9995

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

Betweeness Centrality - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(d) Mean’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

1

2

3

4

5

6

Betweeness Centrality - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchical level

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Mean’s Error Rate

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

Betweeness Centrality - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(f) Variance’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

10

20

30

40

50

60

Betweeness Centrality - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchical level

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(g) Variance’s Error Rate

0 500 1000 1500 2000 2500
0.9999993

0.9999994

0.9999995

0.9999996

0.9999997

0.9999998

0.9999999

1

1.0000001

Betweeness Centrality - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

C
or

re
la

tio
n

(h) Spearman Correlation

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.9999993

0.9999994

0.9999995

0.9999996

0.9999997

0.9999998

0.9999999

1

1.0000001

Betweeness Centrality - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchical level

C
or

re
la

tio
n

(i) Spearman Correlation

Figure 5.9: Betweeness Centrality of sample and cleansed sample matrices

102

5.1. Evaluation

(a) Distribution similarity 0.995 (b) Distribution similarity 0.999

(c) Distribution similarity 0.9995

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Clustering Coefficient - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(d) Mean’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Clustering Coefficient - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchical level

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Mean’s Error Rate

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

Clustering Coefficient - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(f) Variance’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

2

4

6

8

10

12

14

16

Clustering Coefficient - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchical level

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(g) Variance’s Error Rate

0 500 1000 1500 2000 2500
0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

1.0000002

Clustering Coefficient - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

C
or

re
la

tio
n

(h) Spearman Correlation

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

1.0000002

Clustering Coefficient - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchical level

C
or

re
la

tio
n

(i) Spearman Correlation

Figure 5.10: Clustering Coefficient of sample and cleansed sample matrices

103

5. Critical Reflection

Degree

The degree distribution looks rather similar (see Subfigures 5.11a, 5.11b, and 5.11c).
It is obviously better for the 0.999 and 0.9995 similarity thresholds than for the 0.995
similarity threshold. The error rate of the mean does not exceed 3.5 %, with a mean error
rate of 2 %, 0.84 %, and 0.79 % for the 0.995, 0.999, and 0.9995 similarity thresholds
respectively (see Subfigures 5.11d and 5.11e). The error rate of the variance is rather
similar for all similarity thresholds, always lying under 2.5 %, its mean value being 0.51 %,
0.7 %, and 0.77 % for the 0.995, 0.999, and 0.9995 similarity thresholds respectively (see
Subfigures 5.11f and 5.11g). The Spearman Correlation always exceeds 0.999999, with
mean values of 0.9999996344, 0.9999999916, and 0.9999999948 for the 0.995, 0.999, and
0.9995 similarity thresholds respectively. Once again, it is clear that the 0.995 similarity
threshold is not as good as the two others (see Subfigures 5.11h and 5.11i). Again, the
sampling size has a low impact on the goodness of fit of the cleansed sampled matrices
in comparison with their corresponding sampled matrices.

Node Efficiency

The node efficiency distribution is always very similar to the original one, as can be seen
for instance with a sample size of 1 GB and a hierarchical level of six in the Subfigures
5.12a, 5.12b, and 5.12c. Once again, the Spearman Correlation always exceeds 0.999999
and has a mean value of 0.9999996752. It is truly better with the 0.999 and 0.9995
similarity thresholds with mean values of 0.9999999922 and 0.9999999963 respectively
(see Subfigures 5.12h, and 5.12i). The error rate of the mean is low, under 0.9 %, with
mean values of 0.25, 0.044, and 0.037 for the 0.995, 0.999, and 0.9995 similarity thresholds
respectively. The error rate of the variance is rather low, always under 5 %, with mean
values of 1.52 %, 0.32, % and 0.29 % for the 0.995, 0.999, and 0.9995 similarity thresholds
respectively. Once again, the 0.999 and 0.9995 similarity thresholds clearly preserve
better the node efficiency than the 0.995 similarity threshold. The sample size has a
low impact on the goodness of fit. It is perhaps slightly better with 250 MB and 500
MB in cases of error rate for the mean and variance with similarity 0.995. It is more
dispersed for the 250 MB and 500 MB than for the 1 GB or 2 GB sample sizes, in case
of Spearman Correlation for a similarity threshold of 0.995.

Summary

As a result, the 0.999 similarity threshold seems good. Indeed, there is a very small
difference to the 0.9995 similarity threshold and the size reduction will be more important.
The sample size does not seem to have an important effect on the goodness of fit between
sampled and cleansed sampled matrices, which can be of interest when deciding the
sample size.

104

5.1. Evaluation

(a) Distribution similarity 0.995 (b) Distribution similarity 0.999

(c) Distribution similarity 0.9995

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

3

3.5

Degree - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(d) Mean’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

2.5

3

3.5

Degree - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchy level

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Mean’s Error Rate

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5

Degree - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(f) Variance’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

2.5

Degree - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchy level

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(g) Variance’s Error Rate

0 500 1000 1500 2000 2500
0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

1.0000002

Degree - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

C
or

re
la

tio
n

(h) Spearman Correlation

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

1.0000002

Degree - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchy level

C
or

re
la

tio
n

(i) Spearman Correlation

Figure 5.11: Degree of sample and cleansed sample matrices

105

5. Critical Reflection

(a) Distribution similarity 0.995 (b) Distribution similarity 0.999

(c) Distribution similarity 0.9995

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Node Efficiency - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(d) Mean’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Node Efficiency - Mean's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchy level

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Mean’s Error Rate

0 500 1000 1500 2000 2500
0

1

2

3

4

5

6

Node Efficiency - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(f) Variance’s Error Rate

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

1

2

3

4

5

6

Node Efficiency - Variance's Error Rate

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchy level

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(g) Variance’s Error Rate

0 500 1000 1500 2000 2500
0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

1.0000002

Node Efficiency - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Sample size (MB)

C
or

re
la

tio
n

(h) Spearman Correlation

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.9999986

0.9999988

0.999999

0.9999992

0.9999994

0.9999996

0.9999998

1

1.0000002

Node Efficiency - Spearman Correlation

Sampled - sampled cleansed matrices

Similarity 0.995

Similarity 0.999

Similarity 0.9995

Hierarchy level

C
or

re
la

tio
n

(i) Spearman Correlation

Figure 5.12: Node Efficiency of sample and cleansed sample matrices

106

5.1. Evaluation

5.1.4 Initial Matrix - Cleansed Initial Matrix Evaluation

This subsection evaluates how the chosen thresholds (threshold and similarity threshold)
on the sampled matrix affected the initial matrix. It should be noted that the measures
presented here were not computed on harmonized versions, because of lack of time and
computational resources.

The initial matrix was thus cleansed using the thresholds found in the sampling step.
The threshold lays between 0.29 and 0.32, and the similarity threshold lays between 0.995
and 0.999. There was no difference between the results of the different thresholdings. It
may be due to the fact that these threshold values are very close and that only a few
values in the matrices were below the given thresholds. The similarity threshold had an
important impact. A similarity threshold of 0.995 reduced the data up to 80 % of its
initial size (the final data size was around 2.4 GB). The similarity threshold of 0.997
reduced the data to 72 % of its initial size (the final cleansed matrix being around 3.25
GB big), and the similarity threshold of 0.999 reduced the data to 62 % of its initial
size (around 4.6 GB big), see Figure 5.13. This seems to be a very big size reduction, in
comparison with the sampled matrix data reduction, which barely exceeded 40 % for the
0.999 similarity threshold. This can be due to the fact that another hierarchy scheme
was used, depending on the number of rows and columns per stratum instead of fixing
a given anatomical hierarchical level of interest as in the sampling part. The lower the
hierarchy level, the more important the size reduction. Rows/columns that do not belong
to the same stratum on a given hierarchy level belong to the same on a lower hierarchy
level and can then be merged together with the same similarity threshold.

While the 0.995 similarity threshold led to rather poor results (although still preserving
some important network characteristics), the 0.997 similarity threshold was slightly better
and the 0.999 similarity threshold seems rather good. The different values for the initial
matrix were plotted with similarity threshold one for comparison purposes only. The
initial matrix was not cleansed with a similarity threshold of one.

Betweeness Centrality

Only the 0.999 similarity threshold seemed good enough to keep the important char-
acteristics of the betweeness centrality distribution (see Subfigures 5.14a, and 5.14b,
5.14c). It is the only distribution which has an error rate for the normalized variance
under 20 % (see Subfigure 5.14g) with a variance rather close to the original one (see
Subfigure 5.14f). The two other distributions have a rather similar mean compared to
the original one: under 1.2 % error rate for all three distributions, with an error rate
of around 0.6 % (see Subfigures 5.14d and 5.14e). The Spearman Correlation is always
above 0.9999999983 and reaches 0.9999999988 for the 0.999 similarity threshold cleansed
matrices (see Subfigure 5.14h).

107

5. Critical Reflection

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0

2000

4000

6000

8000

10000

12000

14000

Size - Similarity Threshold Relationship

Initial - initial cleansed matrices

Size (MB)

Initial size (MB)

Similarity threshold

S
iz

e
(M

B
)

Figure 5.13: Size

Clustering Coefficient

The clustering coefficient distribution is rather bad for all similarity thresholds, even if
the 0.999 similarity threshold is rather close to the original one, in a horizontally scaled
shape (see Subfigures 5.15a, 5.15b, and 5.15c). This can partly be explained by the fact
that the clustering coefficient is somehow normalized by the PAGANI Toolkit and that
the cleansed matrices were not harmonized. It thus appears in the plots that these results
are not as good as the ones for the betweeness centrality. The mean’s error rate can
reach almost 6 % for a 0.995 similarity threshold and is close to 1 % in the case of the
0.999 similarity threshold cleansing (see Subfigures 5.15d and 5.15e). The variance’s error
rate is rather similar to what was found for the betweeness centrality measures, i.e., it
has a high variance’s error rate, exceeding 15 % for all cleansed matrices (see Subfigures
5.15f and 5.15g). The Spearman Correlation increases with the similarity threshold, from
around 0.9999999981 to almost 0.9999999987 (see Subfigure 5.15h).

Degree

The global shape of the normalized degree distribution is rather well preserved for all
thresholds. Interestingly, the distribution for the 0.997 similarity threshold seems to fit
better the initial distribution than the 0.999 one (see Subfigures 5.16a, 5.16b and 5.16c).
This can also be found in the variance measure of the normalized degree distribution.
The variance for the distribution for the 0.997 similarity threshold is very close to the
original one, with less than 2 % error rate (see Subfigures 5.16f and 5.16g). The variance’s
error rate of the distribution for the 0.999 similarity threshold reaches 31 % and is even

108

5.1. Evaluation

(a) Distribution similarity 0.995 (b) Distribution similarity 0.997

(c) Distribution similarity 0.999

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0.688

0.69

0.692

0.694

0.696

0.698

0.7

0.702

0.704
f(x) = 0.6996599506 x^1.7626165177

Betweeness Centrality - Normalized Mean

Initial - initial cleansed matrices

Normalized Mean

Power interpolation

Initial normalized mean

Similarity

N
or

m
al

iz
ed

 m
ea

n

(d) Mean

0.995 0.996 0.997 0.998 0.999

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Betweeness Centrality - Normalized Mean's Error Rate

Initial - initial cleansed matrices

Normalized mean’s

Similarity threshold

N
or

m
al

iz
ed

 m
ea

n'
s

er
ro

r
ra

te
 (

%
)

error rate (%)

(e) Normalized Mean’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
f(x) = 0.3229019651 x^170.2106660073

Betweeness Centrality - Normalized Variance

Initial - initial cleansed matrices

Normalized variance

Power interpolation

Initial normalized variance

Similarity

N
or

m
al

iz
ed

 v
ar

ia
nc

e

(f) Variance

0.994 0.995 0.996 0.997 0.998 0.999 1
0

10

20

30

40

50

60

70

Betweeness Centrality - Normalized Variance's Error Rate

Initial - initial cleansed matrices

Normalized variance’s

Similarity threshold

N
or

m
al

iz
ed

 v
ar

ia
nc

e'
s

er
ro

r
ra

te
 (

%
)

error rate (%)

(g) Normalized Variance’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1
0.9999999981

0.9999999982

0.9999999983

0.9999999984

0.9999999985

0.9999999986

0.9999999987

0.9999999988

0.9999999989

Betweeness Centrality - Spearman Correlation

Initial - initial cleansed matrices

Spearman Correlation

Similarity threshold

C
or

re
la

tio
n

(h) Spearman Correlation

Figure 5.14: Betweeness Centrality of initial and cleansed initial matrices

109

5. Critical Reflection

(a) Distribution similarity 0.995 (b) Distribution similarity 0.997

(c) Distribution similarity 0.999

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69
f(x) = 0.6770485336 x^11.9268007812

Clustering Coefficient - Mean

Initial - initial cleansed matrices

Mean

Power interpolation

Initial mean

Similarity threshold

M
ea

n

(d) Mean

0.995 0.996 0.997 0.998 0.999
0

1

2

3

4

5

6

Clustering Coefficient - Mean's Error Rate

Initial - initial cleansed matrices

Mean’s error rate (%)

Similarity threshold

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Mean’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007
f(x) = 0.0070022276 x^226.6637135432

Clustering Coefficient - Variance

Initial - initial cleansed matrices

Variance

Power interpolation

Initial variance

Similarity threshold

V
ar

ia
n

ce

(f) Variance

0.994 0.995 0.996 0.997 0.998 0.999 1
0

10

20

30

40

50

60

70

Clustering Coefficient - Variance's Error Rate

Initial - initial cleansed matrices

Variance’s error rate (%)

Similarity threshold

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(g) Variance’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1
0.9999999978
0.9999999979
0.999999998

0.9999999981
0.9999999982
0.9999999983
0.9999999984
0.9999999985
0.9999999986
0.9999999987
0.9999999988

Clustering Coefficient - Spearman Correlation

Initial - initial cleansed matrices

Spearman Correlation

Similarity Threshold

C
or

re
la

tio
n

(h) Spearman Correlation

Figure 5.15: Clustering Coefficient of initial and cleansed initial matrices

110

5.2. Discussion and Open Issues

bigger than the variance’s error rate for the 0.995-distribution (around 27 %). However,
the mean is better fitted with the 0.999 similarity threshold than the others with an error
rate of around 0.7 %. The 0.995 and 0.997 similarity threshold distributions have an error
rate of around 2.4 % and 1 % respectively (see Subfigures 5.16d and 5.16e). Once again,
the Spearman Correlation increases with the similarity threshold. The 0.999 similarity
threshold distribution also has a better Spearman Correlation than the others, i.e., almost
0.9999999987, while the others have a Spearman Correlation of around 0.9999999984 and
0.9999999982 (see Subfigure 5.16h).

Node Efficiency

The node efficiency has a distribution rather close to the original one for all cleansed
matrices, though a bit right-shifted. The cleansed matrices with a 0.999 similarity
threshold have a better fitting distribution than the ones with lower similarity thresholds
(see Subfigures 5.17a, 5.17b, and 5.17c). The mean of the node efficiency of the cleased
versions is rather good: under 2.5 % for all similarity thresholds and around 0.7 % for a
cleansing with the 0.999 similarity threshold (see Subfigures 5.17d and 5.17e). The error
rate for the variance is globally high around 30 %, 17 %, and 18 % for the 0.995, 0.997,
and 0.999 similarity threshold cleansed matrices respectively (see Subfigures 5.17f and
5.17g).

Summary

There was no real difference between the results of the different thresholds (0.29 to 0.32),
as these thresholds were very close to another. However, the difference was significant
for the similarity thresholds. 0.995 is clearly too low for this matrix. 0.997 is slightly
better, but 0.999 is really the most appropriate similarity threshold among the three. All
of these thresholds had a rather important impact on the final matrix size. This impact
is really more important than the one on the sampled cleansed matrices. This can be
explained by the different hierarchical scheme, which can be confusing for the user but
was important since otherwise the computation of the cleansing (especially the similarity
grouping) could be infeasible depending on the stratum sizes. The results presented here
were not on harmonized matrices, where they would most certainly have been better, but
seem already promising. A 0.999 similarity threshold seems rather appropriate for the
cleansing. Another higher similarity threshold would give better results, of course, but
then the gain in memory would not be as good. It could be interesting in the future to test
with higher similarity thresholds and to define clear error margins that the results should
not cross in order to still be called "similar to the initial matrix" by the neuroscientists.

5.2 Discussion and Open Issues
A sampling and visualisation tool was presented here, in order to define good cleansing
thresholds and operations to cleanse large connectivity matrices. The sampling scheme
relies on two parameters: a sampling size (or ratio of the initial size) and the anatomical

111

5. Critical Reflection

(a) Distribution similarity 0.995 (b) Distribution similarity 0.997

(c) Distribution similarity 0.999

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0.2

0.202

0.204

0.206

0.208

0.21

0.212

Degree - Normalized Mean

Initial - initial cleansed matrices

Normalized mean

Initial normalized mean

Similarity threshold

N
or

m
al

iz
ed

 m
ea

n

(d) Mean

0.994 0.995 0.996 0.997 0.998 0.999 1
0

0.5

1

1.5

2

2.5

Degree - Normalized Mean's Error Rate

Initial - initial cleansed matrices

Normalized mean’s error rate
(%)

Similarity threshold

N
or

m
al

iz
ed

 m
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Normalized Mean’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Degree - Normalized Variance

Initial - initial cleansed matrices

Normalized variance

Initial normalized variance

Similarity threshold

N
or

m
al

iz
ed

 v
ar

ia
nc

e

(f) Variance

0.994 0.995 0.996 0.997 0.998 0.999 1
0

5

10

15

20

25

30

35

Degree - Normalized Variance's Error Rate

Initial - initial cleansed matrices

Normalized variance’s error
rate (%)

Similarity threshold

N
or

m
al

iz
ed

 v
ar

ia
nc

e'
s

er
ro

r
ra

te
 (

%
)

(g) Normalized Variance’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1
0.9999999979

0.999999998

0.9999999981

0.9999999982

0.9999999983

0.9999999984

0.9999999985

0.9999999986

0.9999999987

0.9999999988

Degree - Spearman Correlation

Initial - initial cleansed matrices

Spearman Correlation

Similarity threshold

C
or

re
la

tio
n

(h) Spearman Correlation

Figure 5.16: Degree of initial and cleansed initial matrices

112

5.2. Discussion and Open Issues

(a) Distribution similarity 0.995 (b) Distribution similarity 0.997

(c) Distribution similarity 0.999

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0.44

0.442
0.444
0.446
0.448
0.45

0.452
0.454
0.456
0.458
0.46

f(x) = 0.4556942254 x^4.1194749249

Node Efficiency - Mean

Initial - initial cleansed matrices

Mean

Power interpolation

Initial mean

Similarity threshold

M
ea

n

(d) Mean

0.995 0.996 0.997 0.998 0.999
0

0.5

1

1.5

2

2.5

3

Node Efficiency - Mean's Error Rate

Initial - initial cleansed matrices

Mean’s error rate (%)

Similarity threshold

M
ea

n'
s

er
ro

r
ra

te
 (

%
)

(e) Mean’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

f(x) = 0.0012376044 x^117.9288548217

Node Efficiency - Variance

Initial - initial cleansed matrices

Variance

Power interpolation

Initial variance

Similarity threshold

V
ar

ia
n

ce

(f) Variance

0.994 0.995 0.996 0.997 0.998 0.999 1
0

5

10

15

20

25

30

35

Node Efficiency - Variance's Error Rate

Initial - initial cleansed matrices

Variance’s error rate (%)

Similarity threshold

V
ar

ia
n

ce
's

 e
rr

or
 r

at
e

(%
)

(g) Variance’s Error Rate

0.994 0.995 0.996 0.997 0.998 0.999 1
0.9999999982

0.9999999983

0.9999999984

0.9999999985

0.9999999986

0.9999999987

0.9999999988

0.9999999989

0.999999999

Node Efficiency - Spearman Correlation

Initial - initial cleansed matrices

Spearman Correlation

Similarity threshold

C
or

re
la

tio
n

(h) Spearman Correlation

Figure 5.17: Node Efficiency of initial and cleansed initial matrices

113

5. Critical Reflection

hierarchical level of interest. If the matrices are not squared, such as in case of the
structural connectivity matrices which have a lot more columns than rows, the selection
of rows and columns to keep is based on a hypergeometrical model. This model relies on
three hypotheses. First, that the row space is a subspace of the column space (all row
ids are also in the column ids, but not all column ids may be in the row ids). This first
hypothesis was validated by our data, and would require a transposition if other custom
data is used with this tool. Second, the model is built on the assumption that the row and
column ids can be found in a volume of interest file that maps the ids to an anatomical
region id and to the position of the corresponding neuron or groups of neurons in space.
In order to be able to use this tool, this volume of interest mapping file is required. Last
but not least, it relied on the hypothesis that the row ids are equi-distributed within
the different anatomical hierarchy levels. This hypothesis is actually not always verified
in practise. Although it is rather well verified for the first hierarchy levels (1 or 2), it
becomes less and less accurate with the hierarchy level. For instance, for the structural
connectivity matrix, there are a lot of rows belonging to the cortical region and its
subregions, while the rows are not that numerous for other brain regions. This can lead
to a reserved space in the reservoir while no row will ever be stored. In any case, a
postprocessing is needed to order all rows and columns according to a complete brain
hierarchy, but if the hypothesis is not verified, it also means that the sample is smaller
than initially planed.

The visualisation tool was tested by a potential user, a computer scientist working in the
field of neuro-informatics. He found the tool rather effective and easy to use. However,
some operations can be long to compute, especially if the sampling size is large and the
hierarchy level is low. It is recommended not to have a sampling size above 2 to 4 GB with
a low hierarchical level such as one or two. It is recommended to use high hierarchical
levels such as six. The cleansing step of the initial matrix can also be confusing, since the
hierarchy scheme is not the same as in the sampled matrices and can lead to results that
are a bit different from the ones that were acquired in the sampling cleansing. It could
also have been interesting to store a sampled matrix on the hard-drive at each cleansing
step. Thus, the user would be able to come back to the cleansing step results instead of
coming back to the initial sampled matrix.

The evaluation was only performed on one initial gene connectivity matrix, because of
lack of time and computational resources. Hence, the results may not be extrapolated
to all neurobiological connectivity matrices. First of all, the sampled matrices were
evaluated with regards to the initial matrix, to be able to define good sampling sizes and
hierarchy levels. In order to get a good preservation of the characteristics of the initial
gene connectivity matrix, it is recommended to have a sampling size of at least one GB
(7.8 % of the initial size), or higher, with at least a hierarchical level of six. Otherwise the
following operations would be too costly and long to perform. It should not exceed four
GB since it would then cross the 12 GB RAM limit. However, it seems important to note
that for all sample sizes that were tested, the same cleansing thresholds (threshold and
similarity threshold) were found and the sampling size did not really impact the similarity

114

5.3. Relation to the Literature

between sampled and cleansed sampled matrices. As a result, even if a sampled matrix
with a lower sampling ratio does not fit the original matrix that well, the found cleansing
operation thresholds still seem good. A similarity threshold of 0.999 seemed a good
compromise between characteristics preservation and future matrix size, while 0.3 seemed
good for the thresholding step. Finally, the cleansed initial matrix was evaluated with
different similarity thresholds between 0.995 and 0.999. 0.999 is clearly the best choice
here, but an even higher threshold would most probably have been better. However, the
size reduction would not have been that big. These final results were not computed on
harmonized matrices, where the results would have been better most probably.

5.3 Relation to the Literature
Usually, a first cleansing step occurs when getting the initial signal (Diffusion-tensor
imaging (DTI), functional Magnetic Resonance Imaging, Diffusion-weighted Magnetic
Resonance Imaging, proton density MRI, blood flow imaging...). The signal is noisy
and needs to be thresholded. Then, the connectivity matrices need to be built. These
matrices can still be noisy with redundant data. They can be up to several gigabytes
big, and do not fit into the RAM usually. A reduction of size would lead to a higher
processing speed, for instance by querying [GKHB18]. Ganglberger et al. [GKHB18]
created a specific data structure in order to speed up aggregation queries in large brain
networks, so that the user can get the results of the queries in real time. For this purpose
the authors applied a row wise compression, in order to exploit potential sparseness of
the data, after having reordered the rows and columns by a space filling curve (Hilbert
curve) in order to preserve locality. The authors relied on the principle that local neural
nodes tend to have similar characteristics. This row wise procedure compresses the zero
values and relies on spatial relationships of rows and columns. The approach is not lossy
and keeps all data, but the gain in space is limited by the number of zeros in the graph,
and as this data structure is rather specific, the result requires adapted tools in order to
be analysed.

An important point in this work is that the data is redundant and noisy and, when
getting a new connectivity matrix, it is not trivial to define thresholds below which the
values are considered as noise. This is where the work presented here has a role to play.
Neuroscientists can use this cleansing tool in order to get an idea of which filters to apply
to reduce the size of the matrices, by using and visualizing a sample of the matrices.
This work can be inserted in the preprocessing workflow of building brain networks.

This cleansing tool provides a novel adjacency matrix representation, with aggregation
based on similarity, such as in ZAME [EFD+08] or MultiLayerMatrix [DCF16]. It
presents several similarities with the MultiLayerMatrix approach, among which the
similarity window to explore the similarity between the elements of a row or column
cluster. The approach of combining anatomical and similarity-based hierarchies is novel
though, according to the author’s best knowledge. This technique could be of use in
other contexts when visualizing large biological datasets.

115

CHAPTER 6
Summary and Future Work

Understanding the principle organization of the brain and its function is a continuing
quest in neuroscience and psychiatry. Understanding how the brain works, how it is
functionally and structurally correlated as well as how the genes are expressed in the
brains is one of the most important aims in neuroscience. Recent advances in neuro-
imaging as well as brain initiatives such as the Human Brain Project [hum] or the Allen
Institute [OHN+14] allowed the neuro-scientists to create important brain data resources
with ever increasing precision. These resources are made available for the neuroscientists
and researchers and can be used to create network graphs representing the different
connectivities in the brain. These networks, represented as connectivity matrices, can
be up to hundreds of gigabytes, and are too large to hold in current machines’ memory.
This is especially the case if one wants to fuse different connectivity matrices to better
understand the underlying processes, i.e., on anatomical, structural and functional scales.

These networks, contain noisy and redundant data. A cleansing of the networks is
required in order to be able to fit them in current machines memory. Operations can
then be performed on them in order to infer new knowledge in neurosciences. The goal
of this thesis was to realise a guided cleansing of a connectivity matrix in order to reduce
the size of the initial matrix while keeping the most important information. A visual
guided cleansing tool was thus implemented in order to reduce the connectivity data
size. Hence, the result of this work aims at being a component in the large connectivity
matrices preprocessing pipeline.

First, in order to be able to find good threshold and similarity threshold values, the
matrices needed to be sampled to relevant and representative data. This was performed
based on random sampling in the different anatomical hierarchies, with a fixed anatomical
level and a sampling size chosen by the user.

Then, the visual tool can give the user more insight into his data, as he or she can
see have a preview of how the matrix looks like thanks to the heatmap, and of how

117

6. Summary and Future Work

similar the columns and rows are. The user can also see where the neurons or groups of
neurons represented by the rows and columns are anatomically located. Thanks to all this
information, the user can define appropriate threshold and similarity threshold values. To
this end, an aggregated version of the sampled matrix is displayed. The matrix has row
and column headers displaying the anatomical hierarchy down to the chosen anatomical
level of interest. Under this level, the rows and columns are aggregated according to their
similarity. The rows and columns can be expanded by the user by clicking on them. The
user can also visualize the aggregated matrix based purely on the anatomical hierarchy.
In this case, the similarity within the different anatomical hierarchies is not displayed,
this may be a step in future work. In order to have an idea of the impact of the chosen
thresholds, the number of affected rows and columns are displayed for each cleansing
step. Measures histograms for initial and sampled versions are also displayed. A spatial
slice view is also displayed with the anatomical strata contours of the chosen hierarchy
level and the position of the sampled voxels in order to know where the sampled nodes
are spatially located.

In future work, it could be interesting to add another step before the finalisation. After
using the tool to get an idea of threshold and similarity threshold ranges, this step would
test the different range combinations in order to get the most appropriate pair. The
results would then be stored on hard-drive and the tool would provide the user with a
visual comparison of the results from the different combinations. This step would be
rather long and could also include the calculation of network measures such as betweeness
centrality, clustering coefficient or node efficiency instead of only degree, as it does not
require any user interaction during the computation.

The evaluation could not be exhaustively performed due to a lack of time and computa-
tional resources. In future work, the evaluation could also be realised on the structural
connectivity matrix, and on cleansed harmonized versions of the initial gene connectivity
matrix. It was found that a threshold of 0.3 and a similarity threshold of 0.999 are rather
good to cleanse the gene connectivity matrix. However, precisely quantifying what "good"
means in terms of error rate for end users (i.e., neuroscientists and researchers) would also
be important, with clearly defined limits that the error rates should not cross. It should
also be noted that, although small sampling sizes (i.e., 2 % or 4 % of the initial size)
were not as representative as bigger ones, they were still good enough to get an idea of
appropriate cleansing thresholds. It is also recommended to use a high hierarchical level
value such as six, to ease the computation and lower the memory costs of the similarity
computation. This seems also reasonable, since rows and columns belonging to very
different anatomical regions should not be merged together.

Due to lack of time, the imputation step to impute missing values was not implemented.
However, the available matrices did not really contain missing values. This could also be
implemented in future work.

118

Acknowledgements
This work was performed at the Competence Centre VRVis in context of the VRVis
strategic research project Integrative Visual Computing and the FFG Research Head-
quarter (852936) at IMP Vienna funded by Boehringer Ingelheim and the Austrian
Research Promotion Agency (FFG). VRVis is funded by BMVIT, BMDW, Styria, SFG
and Vienna Business Agency in the scope of COMET - Competence Centers for Excellent
Technologies (854174) which is managed by FFG.

119

APPENDIX A
Supplementary Figures

A.1 Mockups - Final Iteration

Figure A.1: Before thresholding

121

A. Supplementary Figures

Figure A.2: Before thresholding, displaying the network measures on the 2D projection
space

Figure A.3: After thresholding, colouring the 2D projection space according to the effect
of thresholding on the different brain regions, operation panel is updated

122

A.1. Mockups - Final Iteration

Figure A.4: After thresholding, colouring the 2D projection space according to the group
colour, operation panel is updated

Figure A.5: Before merging the rows and columns

123

A. Supplementary Figures

Figure A.6: After merging the rows and columns, choice of the different 2D projection
view colour scheme, operation panel is updated

124

A.1. Mockups - Final Iteration

Figure A.7: After merging the rows and columns, colouring the 2D projection space
according to the effect of merging on the different brain regions, operation panel is
updated

125

A. Supplementary Figures

Figure A.8: After merging the rows and columns, clicking on a cluster to display its
homogeneity (i.e., how the clusters of lower level are similar to each other), operation
panel is updated

Figure A.9: Before data imputation

126

A.1. Mockups - Final Iteration

Figure A.10: Before data imputation, displaying missing values from the rows (red)

Figure A.11: After data imputation, operation panel is updated

127

A. Supplementary Figures

Figure A.12: Finalisation, the user can apply the cleansing operations directly to the
initial matrix and/or get the cleansing Python script

128

List of Figures

2.1 Schema of a multipolar neuron, from Bruce Blaus [Bla] 8
2.2 The functional areas of the human brain, from Wikipedia [bra] 9
2.3 The different levels of investigation from Kennedy et al. [Spo16] 11
2.4 The different scales of the brain, from Betzel and Bassett [BB17] 12
2.5 Measures of network topologies, from Rubinov and Sporns [RS10] 16
2.6 Rich-Club Organisation within the human brain from van den Heuvel and

Sporns [vdHS11], (a): anatomical brain representation; (b): group averaged
connectome; (c): group averaged with Rich-Club connections; (d): group
averaged with Rich-Club connections connected to other regions; (e): Rich-
Club . 19

3.1 Main Concept of the Work . 58

4.1 Differences between the binomial and hypergeometric laws with different
sample rates . 69

4.2 Error table between the standardised hypergeometric distribution and the
standard normal distribution from Lahiri et al. [LCM07] 70

4.3 Standard normal distribution . 70
4.4 Row and column headers for an anatomical level of interest of seven. The

header colors are the reference colors of the corresponding anatomical region 77
4.5 Final visualisation tool . 84
4.6 Mockups, Iteration 1 . 85
4.7 Mockups, Iteration 2, after the merging of similar rows and columns, matrix

ordered by the anatomical hierarchy . 86
4.8 Mockups, Iteration 3, after the merging of similar rows and columns, matrix

ordered by the anatomical hierarchy . 86
4.9 Final visualisation tool with legend . 87

5.1 Normalized betweeness centrality distribution comparison 93
5.2 Betweeness Centrality of initial and sample matrices 94
5.3 Clustering coefficient distribution comparison 95
5.4 Clustering Coefficient of initial and sample matrices 96
5.5 Normalized degree distribution comparison 97
5.6 Degree of initial and sample matrices . 98

129

5.7 Node efficiency distribution comparison 99
5.8 Node Efficiency of initial and sample matrices 100
5.9 Betweeness Centrality of sample and cleansed sample matrices 102
5.10 Clustering Coefficient of sample and cleansed sample matrices 103
5.11 Degree of sample and cleansed sample matrices 105
5.12 Node Efficiency of sample and cleansed sample matrices 106
5.13 Size . 108
5.14 Betweeness Centrality of initial and cleansed initial matrices 109
5.15 Clustering Coefficient of initial and cleansed initial matrices 110
5.16 Degree of initial and cleansed initial matrices 112
5.17 Node Efficiency of initial and cleansed initial matrices 113

A.1 Before thresholding . 121
A.2 Before thresholding, displaying the network measures on the 2D projection

space . 122
A.3 After thresholding, colouring the 2D projection space according to the effect

of thresholding on the different brain regions, operation panel is updated 122
A.4 After thresholding, colouring the 2D projection space according to the group

colour, operation panel is updated . 123
A.5 Before merging the rows and columns . 123
A.6 After merging the rows and columns, choice of the different 2D projection

view colour scheme, operation panel is updated 124
A.7 After merging the rows and columns, colouring the 2D projection space

according to the effect of merging on the different brain regions, operation
panel is updated . 125

A.8 After merging the rows and columns, clicking on a cluster to display its
homogeneity (i.e., how the clusters of lower level are similar to each other),
operation panel is updated . 126

A.9 Before data imputation . 126
A.10 Before data imputation, displaying missing values from the rows (red) . . 127
A.11 After data imputation, operation panel is updated 127
A.12 Finalisation, the user can apply the cleansing operations directly to the initial

matrix and/or get the cleansing Python script 128

130

Glossary

Blood Oxygen Level Dependent Blood oxygenation level dependent (BOLD) imag-
ing is the standard technique used to generate images in functional MRI (fMRI)
studies, and relies on regional differences in cerebral blood flow to delineate regional
activity. 9

connectome A connectome is a comprehensive map of neural connections in the brain,
and may be thought of as its "wiring diagram". 7–9

Count Min The Count-Min sketch is a probabilistic data structure based on hash
functions to map events to frequencies, using sub-linear space. 38

degree The number of edges (or number of neighbours) for a given node. 16

Diffusion-tensor imaging Diffusion-tensor imaging (DTI) is a MRI technique that
uses anisotropic diffusion to estimate the axonal (white matter) organisation of the
brain. 9, 115

Diffusion-weighted Magnetic Resonance Imaging Diffusion weighted Magnetic Res-
onance Imaging is a form of MR imaging based upon measuring the random Brow-
nian motion of water molecules in a voxel of tissue. Basically, it estimates the
likelihood in white matter to have fiber bundles that go from one site to other parts
of the brain. 9, 115

Factor Analysis Factor Analysis is a statistical method that aims at identifying a
low-dimensional space that preserves the variance shared across the variables, thus
describing the variability among the variables. 29, 30

Force-based layouts Based on a physical model of attraction and repulsion, a force-
based layout aims at layouting the nodes of the graph in an optimal way. There are
several force-based layout algorithms, most of which are rather time consuming. 44

Fraction of Labeled Neurons (FLNe) The number of labeled neurons in one region
divided by the total number of labeled neurons less the number of labeled neurons
intrinsic to this area.. 29

131

Frobenius Norm The Frobenius Norm, in linear algebra, is a matrix norm defined as
the square root of the absolute squares of its elements. 42

functional Magnetic Resonance Imaging Functional magnetic resonance imaging
or functional MRI (fMRI) measures brain activity by detecting changes associated
with blood flow. 9, 115

Gaussian Mixture Model A Gaussian mixture model is a probabilistic model that
assumes all the data points are generated from a mixture of a finite number of
Gaussian distributions with unknown parameters. 29

hub Nodes with high degrees. 17

Meta-Analytic Connectivity Modeling Meta-Analytic Connectivity Modeling mea-
sures the coupling between brain regions during specific tasks. 13

Multi-Dimensional Scaling Multi-Dimensional Scaling aims at finding a set of low-
dimensional coordinates that best preserves pairwise distances in the original
high-dimensional space so that to provide a visual representation of similarities
within a dataset: for any pairwise dissimilarity, it reconstruct a map that preserves
distances. 29, 30

Principal Component Analysis Principal Component Analysis is a statistical method
to emphasize variation and detect strong patterns along so-called principal directions.
It thus outputs an ordered set of orthogonal directions that captures the greatest
variance in the data. 29, 30

Resting State Resting state networks are brain networks acquired through fMRI, in
order to evaluate regional interactions when the subject is not performing any
explicit task. 13

Scale Free Graph A scale-free network is a network whose degree distribution follows
a power law, at least asymptotically, i.e., the majority of nodes only have a few
connections to other nodes, whereas some nodes are connected to many others. 16

Singular Value Decomposition Singular Value Decomposition consists in the factor-
ization of any (not necessarily squared) matrix M into the form M=U S V*, with S
being a diagonal matrix whose values are the singular values. 29

132

Acronyms

dMRI Diffusion-weighted MRI. 12

FF Forest Fire. 39

LSH Locality-Sensitive Hashing. 36

RE Random Edge. 39

RN Random Node. 38, 39

RNE Random Node Edge. 39

RNN Random Node Neighbour. 39

RW Random Jump. 39

RW Random Walk. 39

133

Bibliography

[ABHR+13] B. Alper, B. Bach, N. Henry Riche, T. Isenberg, and J. D. Fekete. Weighted
graph comparison techniques for brain connectivity analysis. In Proceedings
of the SIGCHI conference on human factors in computing systems, pages
483–492. ACM, 2013.

[ABKS99] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. Optics: ordering
points to identify the clustering structure. In ACM Sigmod record, volume 28,
pages 49–60. ACM, 1999.

[ADNK14] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella. Graph sample and
hold: A framework for big-graph analytics. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1446–1455. ACM, 2014.

[AGGR98] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications, volume 27.
ACM, 1998.

[all] Allen brain atlas. http://help.brain-map.org/display/
mouseconnectivity/API. [Online; accessed 2018-12-23].

[All15] M. Allanic. Gestion et visualisation de données hétérogènes multidimen-
sionnelles: application PLM à la neuroimagerie. PhD thesis, Université de
Technologie de Compiègne, 2015.

[ANK14] N. K. Ahmed, J. Neville, and R. Kompella. Network sampling: From static
to streaming graphs. ACM Transactions on Knowledge Discovery from Data
(TKDD), 8(2):1–56, 2014.

[APHW03] C. C. Aggarwal, S. Y. Philip, J. Han, and J. Wang. A framework for
clustering evolving data streams. In Proceedings 2003 VLDB Conference,
pages 81–92. Elsevier, 2003.

[Aub04] D. Auber. Tulip—a huge graph visualization framework. In Graph drawing
software, pages 105–126. Springer, 2004.

135

http://help.brain-map.org/display/mouseconnectivity/API
http://help.brain-map.org/display/mouseconnectivity/API

[BAKG+16] R. F. Betzel, A. Avena-Koenigsberger, J. Goñi, Y. He, M. A. De Reus,
A. Griffa, P? E? Vértes, B. Mišic, J. P. Thiran, and P. Hagmann. Generative
models of the human connectome. NeuroImage, 124:1054–1064, 2016.

[Bar12] C. I. Bargmann. Beyond the connectome: how neuromodulators shape
neural circuits. Bioessays, 34(6):458–465, 2012.

[BB17] R. F. Betzel and D. S. Bassett. Multi-scale brain networks. NeuroImage,
160(August):73–83, 2017.

[BBC+11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith.
Cython: The best of both worlds. Computing in Science Engineering,
13(2):31 –39, 2011.

[BC00] D. Barbará and P. Chen. Using the fractal dimension to cluster datasets.
In Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 260–264. ACM, 2000.

[bct] Brain connectivity toolbox. https://sites.google.com/site/
bctnet/. [Online; accessed 2018-12-27].

[BHJ09] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source software
for exploring and manipulating networks. Icwsm, 8(2009):361–362, 2009.

[BJG+13] T. Blumensath, S. Jbabdi, M. F. Glasser, D. C. Van Essen, K. Ugurbil,
T. E.J. Behrens, and S.n M. Smith. Spatially constrained hierarchical
parcellation of the brain with resting-state fmri. NeuroImage, 76:313–324,
2013.

[BJGJ01] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering
for hierarchical clustering. Bioinformatics, 17(suppl_1):S22–S29, 2001.

[Bla] B. Blaus.

[BM98] V. Batagelj and A. Mrvar. Pajek-program for large network analysis.
Connections, 21(2):47–57, 1998.

[BMKK14] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming
submodular maximization: Massive data summarization on the fly. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 671–680, New York, NY, USA,
2014. ACM.

[BMP+17] R. F. Betzel, J. D. Medaglia, L. Papadopoulos, G. L. Baum, R. Gur, R. Gur,
D. Roalf, T. D. Satterthwaite, and D. S. Bassett. The modular organization
of human anatomical brain networks: Accounting for the cost of wiring.
Network Neuroscience, 1(1):42–68, 2017.

136

https://sites.google.com/site/bctnet/
https://sites.google.com/site/bctnet/

[bra]

[BRNL+10] P. Bellec, P. Rosa-Neto, O. C. Lyttelton, H. Benali, and A. C. Evans. Multi-
level bootstrap analysis of stable clusters in resting-state fmri. NeuroImage,
51(3):1126–1139, 2010.

[BS09] E. Bullmore and O. Sporns. Complex brain networks: Graph theoretical
analysis of structural and functional systems. 10:186–98, 03 2009.

[BS12] T. E.J. Behrens and O. Sporns. Human connectomics. Current Opinion in
Neurobiology, 22(1):144 – 153, 2012. Neurotechnology.

[BSST13] J. Batson, D. Spielman, N. Srivastava, and S. H. Teng. Spectral sparsification
of graphs: Theory and algorithms. 56:87–94, 08 2013.

[CD14] G. Cormode and N. Duffield. Sampling for big data: A tutorial. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 1975–1975, New York, NY,
USA, 2014. ACM.

[CEQZ06] F. Cao, M. Estert, W. Qian, and A. Zhou. Density-based clustering over
an evolving data stream with noise. In Proceedings of the 2006 SIAM
international conference on data mining, pages 328–339. SIAM, 2006.

[CGS06] G. Cormode, M. Garofalakis, and D. Sacharidis. Fast approximate wavelet
tracking on streams. In International Conference on Extending Database
Technology, pages 4–22. Springer, 2006.

[CMM17] M. B. Cohen, C. Musco, and C. Musco. Input sparsity time low-rank
approximation via ridge leverage score sampling. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 1758–1777, Philadelphia, PA, USA, 2017. Society for
Industrial and Applied Mathematics.

[CMP16] M. B. Cohen, C. Musco, and J. Pachocki. Online row sampling. In The 19th
International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems, APPROX 2016, 2016.

[CY14] J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale
neural recordings. Nature Neurosciences, 17(11):1500–1509, 2014.

[DCF16] T. N. Dang, H. Cui, and A.G. Forbes. Multilayermatrix: Visualizing large
taxonomic datasets. In Proceedings of the 7th EuroVis Workshop on Visual
Analytics (EuroVA), pages 55–59, 2016.

[DG09] J. S. Damoiseaux and M. D. Greicius. Greater than the sum of its parts:
a review of studies combining structural connectivity and resting-state
functional connectivity. Brain Structure and Function, 213(6):525–533,
2009.

137

[DMF15] T. N. Dang, P. Murray, and A. G. Forbes. Pathwaymatrix: visualizing
binary relationships between proteins in biological pathways. In BMC
proceedings, volume 9, page S3. BioMed Central, 2015.

[DXZ+18] H. Du, M. Xia, K. Zhao, X. Liao, H. Yang, Y. Wang, and Y. He. Pagani
toolkit: Parallel graph-theoretical analysis package for brain network big
data. Human brain mapping, 39(5):1869–1885, 2018.

[EFD+08] N. Elmqvist, J. D. Fekete, T. N. Do, H. Goodell, and N. Henry. ZAME:
Interactive Large-Scale Graph Visualization. In IEEE VGTC Pacific Visu-
alization Symposium 2008, 2008.

[EKSX96] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters a density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, KDD’96, pages 226–
231. AAAI Press, 1996.

[ELLS11] B. S. Everitt, S. Landau, M. Leese, and D. Stahl. Hierarchical clustering.
Cluster analysis, pages 71–110, 2011.

[Fek15] J. D. Fekete. Reorder.js: A javascript library to reorder tables and networks.
https://hal.inria.fr/hal-01214274, Oct 2015. Poster.

[fla] Flask, a python microframework. http://flask.pocoo.org/. [Online;
accessed 23-01-2019].

[For65] E. Forgey. Cluster analysis of multivariate data: Efficiency vs. interpretabil-
ity of classification. Biometrics, 21(3):768–769, 1965.

[Fre78] L. C. Freeman. Centrality in social networks conceptual clarification. Social
networks, 1(3):215–239, 1978.

[GCR15] H. Gualdron, R. L.F. Cordeiro, and J. F. Rodrigues. Structmatrix: large-
scale visualization of graphs by means of structure detection and dense
matrices. In Data Mining Workshop (ICDMW), 2015 IEEE International
Conference on, pages 493–500. IEEE, 2015.

[GH05] S. Guha and B. Harb. Wavelet synopsis for data streams: minimizing non-
euclidean error. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining, pages 88–97. ACM,
2005.

[GKHB18] F. Ganglberger, J. Kaczanowska, W. Haubensak, and K. Buehler. A data
structure for real-time aggregation queries of big brain networks. bioRxiv,
page 346338, 2018.

138

https://hal.inria.fr/hal-01214274
http://flask.pocoo.org/

[GKP+17] F. Ganglberger, J. Kaczanowska, J. M. Penninger, A. Hess, and W. Hauben-
sak. Predicting functional neuroanatomical maps from fusing brain networks
with genetic information. NeuroImage, 2017.

[GN02] M. Girvan and M. E.J. Newman. Community structure in social and biolog-
ical networks. Proceedings of the national academy of sciences, 99(12):7821–
7826, 2002.

[GRS98] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm
for large databases. In ACM Sigmod Record, volume 27, pages 73–84. ACM,
1998.

[GRS00] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for
categorical attributes. Information systems, 25(5):345–366, 2000.

[GSM+15] S. Gu, T. D. Satterthwaite, J. D. Medaglia, M. Yang, R. E. Gur, R. C. Gur,
and D. S. Bassett. Emergence of system roles in normative neurodevel-
opment. Proceedings of the National Academy of Sciences, 112(44):13681–
13686, 2015.

[GV16] H. Gibson and P. Vickers. Using adjacency matrices to lay out larger
small-world networks. Applied Soft Computing, 42:80 – 92, 2016.

[GZFA10] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi. A survey of
statistical network models. Foundations and Trends in Machine Learning,
2(2):129–233, 2010.

[Haa16] P. J. Haas. Data-stream sampling: basic techniques and results. In Data
Stream Management, pages 13–44. Springer, 2016.

[HBB+13] A. M. Hermundstad, D. S. Bassett, K. S. Brown, E. M. Aminoff, D. Clewett,
S. Freeman, A. Frithsen, A. Johnson, C. M. Tipper, and M. B. Miller.
Structural foundations of resting-state and task-based functional connectiv-
ity in the human brain. Proceedings of the National Academy of Sciences,
110(15):6169–6174, 2013.

[HCG+08] P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J.
Wedeen, and O. Sporns. Mapping the structural core of human cerebral
cortex. PLOS Biology, 6(7):1–15, 07 2008.

[HF07] N. Henry and J. D. Fekete. Matlink: Enhanced matrix visualization for ana-
lyzing social networks. In IFIP Conference on Human-Computer Interaction,
pages 288–302. Springer, 2007.

[HFM07] N. Henry, J. D. Fekete, and M. J. McGuffin. Nodetrix: a hybrid visualization
of social networks. IEEE Transactions on visualization and computer
graphics, 13(6):1302–1309, 2007.

139

[HG08] M. D. Humphries and K. Gurney. Network ‘small-world-ness’: a quanti-
tative method for determining canonical network equivalence. PloS one,
3(4):e0002051, 2008.

[HK98] A. Hinneburg and D. A. Keim. An efficient approach to clustering in large
multimedia databases with noise. In KDD, volume 98, pages 58–65, 1998.

[HK99] A. Hinneburg and D. A. Keim. Optimal grid-clustering: Towards breaking
the curse of dimensionality in high-dimensional clustering. pages 506–517,
1999.

[HMB+] M. Hinne, A. Meijers, R. Bakker, P. H. E. Tiesinga, M. Mørup, and M. A. J.
Van Gerven. The missing link: Predicting connectomes from noisy and
partially observed tract tracing data.

[Hol06] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transactions on visualization and computer
graphics, 12(5):741–748, 2006.

[HSC+09] C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli,
and P. Hagmann. Predicting human resting-state functional connectivity
from structural connectivity. Proceedings of the National Academy of
Sciences, 106(6):2035–2040, 2009.

[HTG+15] Z. R. Hesabi, Z. Tari, A. Goscinski, A. Fahad, I. Khalil, and C. Queiroz.
Data summarization techniques for big data—a survey. In Handbook on
Data Centers, pages 1109–1152. Springer, 2015.

[hum] Human Brain Project. https://www.humanbrainproject.eu/en/.
[Online; accessed 2018-01-24].

[JOP] E. Jones, T. Oliphant, and P. Peterson. Scipy: Open source scientific
tools for python. http://www.scipy.org/, 2001–. [Online; accessed
22-06-2018].

[JP17] A. P. Joshi and B. V. Patel. Issues in real time knowledge discovery through
data stream mining. International Journal of Scientific Research in Science
and Technology, 3, pages 132–135, 2017.

[Kai11] M. Kaiser. A tutorial in connectome analysis: topological and spatial
features of brain networks. NeuroImage, 57(3):892–907, 2011.

[KERKT16] K. Knoblauch, M. Ercsey-Ravasz, H. Kennedy, and Z. Toroczkai. The brain
in space. In Micro-, meso-and macro-connectomics of the brain, pages 45–74.
Springer, 2016.

140

https://www.humanbrainproject.eu/en/
http://www.scipy.org/

[KF11] U. Kang and C. Faloutsos. Beyond caveman communities: Hubs and spokes
for graph compression and mining. In Data Mining (ICDM), 2011 IEEE
11th International Conference on, pages 300–309. IEEE, 2011.

[KLKF14] U. Kang, J. Y. Lee, D. Koutra, and C. Faloutsos. Net-ray: Visualizing
and mining billion-scale graphs. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pages 348–361. Springer, 2014.

[KR90] L. Kaufman and P. Rousseeuw. Finding Groups in Data: An Introduction
To Cluster Analysis. John Wiley & Sons, 01 1990.

[KS05] S. H. Koslow and S. Subramaniam. Databasing The Brain : From Data to
Knowledge (Neuroinformatics). Wiley, 2005.

[LBK+18] F. Lekschas, B. Bach, P. Kerpedjiev, N. Gehlenborg, and H. Pfister. HiPiler:
Visual Exploration of Large Genome Interaction Matrices with Interactive
Small Multiples. IEEE Transactions on visualization and computer graphics,
24(1):522–531, 2018.

[LCM07] S. N. Lahiri, A. Chatterjee, and T. Maiti. Normal approximation to the
hypergeometric distribution in nonstandard cases and a sub-gaussian berry–
esseen theorem. Journal of Statistical Planning and Inference, 137(11):3570–
3590, 2007.

[LF06] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 631–636, New York, NY, USA, 2006.
ACM.

[LHA+07] E. S. Lein, M. J. Hawrylycz, N. Ao, M. Ayres, A. Bensinger, A. Bernard,
and A. F. Boe. Genome-wide atlas of gene expression in the adult mouse
brain. Nature, 445:168–176, 2007.

[lin] Scipy linkage hierarchical clustering. https://docs.scipy.org/
doc/scipy/reference/generated/scipy.cluster.hierarchy.
linkage.html. [Online; accessed 23-01-2019].

[LRRF11] A. Lancichinetti, F. Radicchi, J. J. Ramasco, and S. Fortunato. Finding
statistically significant communities in networks. PloS one, 6(4):e18961,
2011.

[LRU14] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets.
Cambridge university press, 2014.

[MBWG13] D. S. Margulies, J. Böttger, A. Watanabe, and K. J. Gorgolewski. Visualizing
the human connectome. NeuroImage, 80:445–461, 2013.

141

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

[MERG+14] N. T. Markov, M. M. Ercsey-Ravasz, A. R. Ribeiro Gomes, C. Lamy,
L. Magrou, J. Vezoli, P. Misery, A. Falchier, R. Quilodran, M. A. Gariel,
J. Sallet, R. Gamanut, C. Huissoud, S. Clavagnier, P. Giroud, D. Sappey-
Marinier, P. Barone, C. Dehay, Z. Toroczkai, K. Knoblauch, D. C. Van
Essen, H. Kennedy, and Henry Kennedy. A Weighted and Directed Interareal
Connectivity Matrix for Macaque Cerebral Cortex. Cerebral Cortex, 24:17–
36, 2014.

[Mir17] B. Mirzasoleiman. Big data summarization using submodular functions,
2017.

[MMF+11] N. T. Markov, P. Misery, A. Falchier, C. Lamy, J. Vezoli, R. Quilodran,
M.A. Gariel, P. Giroud, and al. Weight consistency specifies regularities of
macaque cortical networks. Cerebral Cortex, 21:1254–1272, 2011.

[MNP17] S. McCurdy, V. Ntranos, and L. Pachter. Column subset selection for
single-cell rna-seq clustering. bioRxiv, 2017.

[MORG91] J. W. McClurkin, L. M. Optican, B. J. Richmond, and T. J. Gawne.
Concurrent processing and complexity of temporally encoded neuronal
messages in visual perception. Science, 253(5020):675–677, 1991.

[MS05] E. Mäkinen and H. Siirtola. The barycenter heuristic and the reorderable
matrix. Informatica (Slovenia), 29(3):357–364, 2005.

[NH94] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, pages 144–155, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[Nov18] A. Novikov. annoviko/pyclustering: pyclustering 0.8.1 release. https:
//doi.org/10.5281/zenodo.1254845, May 2018.

[num] Numpy library. http://www.numpy.org/. [Online; accessed 23-01-2019].

[Nyl17] J. Nylén. Exploring ways of visualizing functional connectivity, 2017.

[OHN+14] S. W. Oh, J. A. Harris, L. Ng, B. Winslow, and N. Cain. A mesoscale
connectome of the mouse brain. Nature, 508(7495):207–214, 2014.

[OW14] S. C. Olhede and P. J. Wolfe. Network histograms and universality of
blockmodel approximation. Proceedings of the National Academy of Sciences,
111(41):14722–14727, 2014.

[PBF16] S. Papadimitriou, A. Brockwell, and C. Faloutsos. Adaptive, automatic
stream mining. In Data Stream Management, pages 499–528. Springer,
2016.

142

https://doi.org/10.5281/zenodo.1254845
https://doi.org/10.5281/zenodo.1254845
http://www.numpy.org/

[PCN+11] J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A.
Church, A. C. Vogel, T. O. Laumann, F. M. Miezin, and B. L. Schlaggar.
Functional network organization of the human brain. Neuron, 72(4):665–678,
2011.

[PKB14] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis. Provable deterministic
leverage score sampling. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’14,
pages 997–1006, New York, NY, USA, 2014. ACM.

[RAM+15] J. Richiardi, A. Altmann, A. C. Milazzo, C. Chang, M. Mallar Chakravarty,
T. Banaschewski, G. J. Barker, A. L.W. Bokde, J. B. Poline, M. D. Greicius,
and I. Consortium. Correlated gene expression supports synchronous activity
in brain networks. Science, 348(6240):1241–1244, 2015.

[rea] React - a javascript library for building user interfaces. https://reactjs.
org/. [Online; accessed 23-01-2019].

[red] Redux. a predictable state container for javascript apps. https://redux.
js.org/. [Online; accessed 23-01-2019].

[RRG+09] P. Roca, D. Rivì Ere, P. Guevara, C. Poupon, and J. F. Mangin. Trac-
tography - based Parcellation of the Cortex using a Spatially - informed
Dimension Reduction of the Connectivity Matrix. In Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2009, pages 935–942,
2009.

[RS10] M Rubinov and O. Sporns. Complex network measures of brain connec-
tivity: Uses and interpretations. NeuroImage, 52(3):1059 – 1069, 2010.
Computational Models of the Brain.

[Sch96] E. Schikuta. Grid-clustering: An efficient hierarchical clustering method for
very large data sets. In Pattern Recognition, 1996., Proceedings of the 13th
International Conference on Pattern Recognition, volume 2, pages 101–105.
IEEE, 1996.

[sci] Scipy library. https://scipy.org/scipylib/. [Online; accessed 23-
01-2019].

[SCKH04] O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization,
development and function of complex brain networks. Trends in cognitive
sciences, 8(9):418–425, 2004.

[SCZ00] G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: a wavelet-
based clustering approach for spatial data in very large databases. The
VLDB Journal—The International Journal on Very Large Data Bases,
8(3-4):289–304, 2000.

143

https://reactjs.org/
https://reactjs.org/
https://redux.js.org/
https://redux.js.org/
https://scipy.org/scipylib/

[SEKX98] J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Density-based clustering
in spatial databases: The algorithm gdbscan and its applications. Data
mining and knowledge discovery, 2(2):169–194, 1998.

[SHL+10] J. L. Stein, X. Hua, S. Lee, A. J. Ho, A. D. Leow, A. W. Toga, A. J. Saykin,
L. Shen, T. Foroud, and N. Pankratz. Voxelwise genome-wide association
study (vgwas). NeuroImage, 53(3):1160–1174, 2010.

[sim] Measures of similarity.

[sma] Small-world network, wikipedia. https://en.wikipedia.org/wiki/
Small-world_network. [Online; accessed 2018-06-17].

[SMO+03] P. Shannon, An. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome research,
13(11):2498–2504, 2003.

[Sok58] R. R Sokal. A statistical method for evaluating systematic relationship.
University of Kansas science bulletin, 28:1409–1438, 1958.

[Spo16] O. Sporns. Connectome networks: from cells to systems. Springer, 2016.

[SS11] D. A. Spielman and N. Srivastava. Graph sparsification by effective resis-
tances. SIAM Journal on Computing, 40(6):1913–1926, 2011.

[STK05] O. Sporns, G. Tononi, and R. Kötter. The human connectome: A structural
description of the human brain. PLOS Computational Biology, 1(4), 09
2005.

[SWM05] M. P. H. Stumpf, C. Wiuf, and R. M. May. Subnets of scale-free networks
are not scale-free: Sampling properties of networks. Proceedings of the
National Academy of Sciences, 102(12):4221–4224, 2005.

[TB13] N. B. Turk-Browne. Functional interactions as big data in the human brain.
Science, 342(6158):580–584, 2013.

[TCM16] N. Tang, Q. Chen, and P. Mitra. Graph stream summarization: From big
bang to big crunch. In SIGMOD Conference, 2016.

[TM67] J. Travers and S. Milgram. The small world problem. Psychology Today,
1(1):61–67, 1967.

[US17] S. Ubaru and Y. Saad. Sampling and multilevel coarsening algorithms for
fast matrix approximations. arXiv preprint arXiv:1711.00439, 2017.

[vdHS11] Martijn P. van den Heuvel and Olaf Sporns. Rich-club organization of the
human connectome. Journal of Neuroscience, 31(44):15775–15786, 2011.

144

https://en.wikipedia.org/wiki/Small-world_network
https://en.wikipedia.org/wiki/Small-world_network

[WJ63] J. Ward and H. Joe. Hierarchical grouping to optimize an objective function.
Journal of the American statistical association, 58(301):236–244, 1963.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’
networks. nature, 393(6684):440, 1998.

[WWZ+09] J. Wang, L. Wang, Y. Zang, H. Yang, H. Tang, Q. Gong, Z. Chen, C. Zhu,
and Y. He. Parcellation-dependent small-world brain functional networks:
a resting-state fmri study. Human brain mapping, 30(5):1511–1523, 2009.

[WYM97] W. Wang, J. Yang, and R. Muntz. Sting: A statistical information grid
approach to spatial data mining. In VLDB, volume 97, pages 186–195, 1997.

[XEKS98] X. Xu, M. Ester, H. P. Kriegel, and J. Sander. A distribution-based cluster-
ing algorithm for mining in large spatial databases. In Data Engineering,
1998. Proceedings., 14th International Conference on, pages 324–331. IEEE,
1998.

[XLYE14] X. Xu, C. H. Lee, and D. Young Eun. A general framework of hybrid graph
sampling for complex network analysis. In INFOCOM, 2014 Proceedings
IEEE. IEEE, 2014.

[XYJ+15] T. Xu, Z. Yang, L. Jiang, X. X. Xing, and X. N. Zuo. A Connectome Compu-
tation System for discovery science of brain. Science Bulletin, 60(1):86–95,
2015.

[YAC+15] A. Q. Ye, O. A. Ajilore, G. Conte, J. GadElkarim, G. Thomas-Ramos,
L. Zhan, S. Yang, A. Kumar, R. L. Magin, A. G. Forbes, and A. D. Leow.
The intrinsic geometry of the human brain connectome. Brain informatics,
2:197–210, 2015.

[ZFB10] A. Zalesky, A. Fornito, and E. T. Bullmore. Network-based statistic:
Identifying differences in brain networks. NeuroImage, 53(4):1197 – 1207,
2010.

[ZFB12] A. Zalesky, A. Fornito, and E. Bullmore. On the use of correlation as a
measure of network connectivity. NeuroImage, 60(4):2096–2106, 2012.

[ZRL96] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data
clustering method for very large databases. SIGMOD Rec., 25(2):103–114,
June 1996.

145

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	State of the Art
	Underlying Neuroanatomical Concepts
	Brain and Graph Theory
	Sampling Methods
	Connectivity Analysis Visualization
	Limitations and Challenges
	Comparison and Summary of Existing Approaches

	Methodology
	Specifications
	Concepts
	Languages
	Data Models

	Suggested Solution/Implementation
	Implementation of the Sampling Methods
	Development of the Tool for the Matrix Visualization
	Implementation of the Cleaning Operations

	Critical Reflection
	Evaluation
	Discussion and Open Issues
	Relation to the Literature

	Summary and Future Work
	Supplementary Figures
	Mockups - Final Iteration

	List of Figures
	Glossary
	Acronyms
	Bibliography

