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Kurzfassung

Wir beschreiben die Implementierung des Globally Optimal Direction Field Algorithmus
von Knöppel et al. als Plug-in für ein Geometrieverarbeitungsprogramm. Das Plug-in
erzeugt N-RoSy Felder, beliebigen Grades, durch das Lösen eines kleinsten Eigenwert
Problems. Dafür benutzen wir einen sparsen Cholesky Solver und die Inverse Potenz
Methode. Das Feld kann optional an der Hauptkrümmung, die durch die Geometrie
erzeugt wird, ausgerichtet werden. Wir haben außerdem die Möglichkeit hinzugefügt, die
Verbesserung, die von Pellenard et al. vorgeschlagen wurden zu benutzen. Diese Verbes-
serungen umfassen Constraints für bestimmte Stellen des Meshes. Ein linearer Ansatz
der kleinsten Quadrate wird dann benutzt, um das überbestimmte Gleichungssystem
zu lösen. Unser Hauptbeitrag besteht darin, Unklarheiten in diesen Werken zu klären,
besonders in Bezug auf die Constraints.

Wir haben den Algorithmus an Meshes von unterschiedlichen gängigen Größen, die
in der 3D Modellierung üblich sind, auf Laufzeit und Nutzbarkeit getestet. Obwohl
der Algorithmus sehr schnell ist, verschlechtert sich die Reaktionsfähigkeit ab etwa
6 ∗ 104 Polygonen. Wir empfehlen ihn nicht auf sehr großen Meshes oder detailierten 3D
Scans anzuwenden, wenn schnelle Ergebnisse notwendig sind. Anzupassen, wie stark die
Ausrichtung an die Oberflächenkrümmung sein soll, ist schwierig. Zusammen mit den
schnellen Ergebnissen, können die Parameter jedoch relativ schnell ausprobiert werden.

Die Ergebnisse sehen sehr gleichmäßig aus und Singularitäten liegen häufig bei geometri-
schen Merkmalen. Die Verwendung von Constraints hilft dabei, das Feld an Meshgrenzen,
scharfen Kanten oder, falls es verzerrt ist, an Hauptkrümmungsrichtungen auszurichten.
Ihre Verwendung ist sehr einfach, da die Ergebnisse vorhersehbar sind. Nur Krüm-
mungsconstraints können manchmal schwer vorhersagbar sein und werden am besten in
Verbindung mit anderen Beschränkungen verwendet.
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Abstract

We demonstrate the implementation of the Globally Optimal Direction Field algorithm
by Knöppel et al. as a plugin for a geometry processing software. The plugin constructs
N-RoSy fields of arbitrary degree by solving a smallest eigenvalue problem. For that, we
use a sparse Cholesky solver and the Inverse Power Method. The field can optionally be
aligned to the principal curvature induced by the geometry. We also added the option
to use the improvements proposed by Pellenard et al. These improvements contain
constraints imposed on certain areas of the mesh. A linear least squares approach is
then used for solving the over-constrained system. Our main contribution is to clarify
ambiguities we found in these papers, especially regarding the constraints.

We tested the algorithm using meshes of different common sizes used in 3D modeling
for the computation time and ease of usage. Although the algorithm is very fast the
responsiveness starts to decline at about 6 ∗ 104 polygons. We recommend not to use
it on huge meshes or detailed 3D scans if fast results are important. The degree of
curvature alignment can be difficult to adjust. However, together with fast results,
different parameter settings can be tested relatively easy.

The results look very smooth and singularities are often located at geometric features.
Using constraints helps to align the field to mesh boundaries, sharp edges or, if it is
warped, to the principal curvature directions. Their use is very easy because the results
are predictable. Only curvature constraints can sometimes be hard to predict and are
best used in conjunction with other constraints.
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CHAPTER 1
Introduction

Figure 1.1: Different N-Symmetry Direction fields
Two smooth direction fields produced by our implementation. Singularities are located
on triangle faces, field directions on vertices. The left one has one direction per vertex,

the right one has two that are pointing in opposite directions. Singularities are
highlighted by red (positive Singularities) and blue (negative Singularities) spheres.

A great amount of geometry processing and computer graphics methods rely on direction
fields defined over the surface of arbitrary meshes. The specific requirements for such
a field highly depend on the application. On top of that, there are multiple ways of
defining a direction field, each with its own pros and cons. This leads to a great variety
of algorithms that have been developed over the years.

In many cases, the main goal is to generate a smooth field that may also respect geometric
features of the input mesh in terms of alignment. Since many geometry processing routines
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1. Introduction

are used by highly interactive computer-assisted design software, short computation times
are needed to deliver rapid feedback to the user. In addition, it should be easy to use but
also flexible enough to allow the user to modify the result according to his or her needs.

In recent years, the globally optimal direction field algorithm by Knöppel et al. [KCPS13]
stood out by being able to meet the above requirements with an elegant solution. It
is able to produce fields of any rotational symmetry and the result is either optimally
smooth or aligned to principal curvature directions.

1.1 Problem statement
The main problem is that not on every surface a completely smooth direction field can
be defined without any visible seams or jumps. They need points from where directions
emanate or where they coincide. Those points are called singularities. In an automatic
algorithm, the optimal number of singularities, as well as their locations, have to be
computed. This looks like a difficult combinatorial problem as Knöppel et al. [KCPS13]
state in their introduction. However, they also show that it can be reduced to a quadratic
energy problem where the energy can be minimized and an optimal solution can be
found. Another problem is which energy function to use, as some of the previously used
functions tend to have local minima where the minimization could get stuck and not
end up delivering a global optimum. The resulting field should also follow the natural
curvature of the input mesh, which can be crucial for some applications like remeshing.
All of these requirements need to be fulfilled while the number of adjustable parameters
should stay minimal for it to be easy to use.

1.2 Aim of this work
The goal of this work is to implement the method by Knöppel et al. [KCPS13] as a plugin
for the geometry processing software made by InstaLOD [Ins] and use the constraint
extensions for curvature alignment proposed in the work of Pellenard et al. [POC+14].
The produced direction fields can then be used by further methods, especially remeshing
methods. Our main contribution is to fill in the gaps and clarify ambiguities we found
in those papers, particularly regarding the constraints. We will also provide a brief
evaluation of the usability, the computation times and the overall look of the resulting
fields. Specifically, we want to find out if the algorithm is able to be used interactively in
a dedicated geometry processing software.
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CHAPTER 2
Related Work

This chapter describes which work and technologies build up the basis of this thesis and
will not only cover alternative algorithms but also fundamental definitions. Also, some
examples of current applications for direction fields will be given afterward.

2.1 Definition of Direction Fields
As mentioned in the introduction, numerous methods for constructing direction fields
have been developed and the terminology that previous literature used for them was
often unclear and ambiguous up until recently. A survey by Vaxman et al. [VCD+16]
not only listed the most important methods but also tried to unify the definitions and
terminology as well. They refer to a direction field if the magnitudes of the used vectors
do not matter. Otherwise, they use the term vector field. Of special interest to them
are rotationally-symmetrical fields which are also called RoSy fields. These are used in
most applications. The common types of N-RoSy fields are the N = 1,2,4 or 6, where N
denotes the number of directions defined for each point on the surface. Those are also
the fields that Knöppel et al. [KCPS13] produced and this work will focus on.

An important choice when constructing a direction field is the type of representation.
There are currently three options according to De Goes et al. [dGDT16]: vertex-, edge-
and face-based representation. The advantages each one provides differ dramatically.
They even compare it to the choice of surface representation in Computer Aided Geometric
Design. Face based fields have the advantage of being very simple and easy to evaluate
in triangles while also having the disadvantage of being only piece-wise constant which
means that their derivatives are ill-defined. It is also why computing a smooth field
with user-specified constraints is not feasible according to De Goes et al [dGDT16].
The edge-based fields also tend to be very simple in construction and do not need any
reference frame per simplex, as they can be represented without coordinates. However,
a generalization to n-vector fields has currently not been studied. The used operators
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2. Related Work

only generate 1-direction fields. They also do not have a direction vector at vertices,
making them not suitable for some use cases like vertex deformation for example. The
vertex based fields are quite different from the other two types. They are continuous
between vertices and therefore can be interpolated. Additionally, any n-vector field can
be defined. On the other hand, they need to have a reference frame for each tangent
space, although it can be arbitrarily chosen. This also leads to the need for a concept for
simplicial connection, like parallel transport, which will be explained in section 3.3.

2.2 Smoothness Energy Function
An early use for direction fields can be found in the work by Hertzmann and Zorin [HZ00].
In order to generate a smooth cross field, they introduced the energy function

−
∑
eij∈E

cos(4((θi − ϕij)− (θj − ϕji))),

where θi and θj denote the angles between one of the crossfield directions and a fixed
tangent direction at vertices i and j respectively. E is the set of all edges of the mesh
and ϕij is the direction of the projection of the edge eij into the tangent plane, that was
chosen for vertex i. This energy has then to be minimized.

Ray et al.[RVLL08] defined an alternative energy function that includes an integer variable
called period jump. They explain that it is used to solve ambiguity in the interpolation
of angles between two tangent spaces. The system to solve after a period jump pij is
chosen for each dual edge and amounts to∑

eij∈E
(θj − θi + κ0(eij) + 2πpij

N
)2,

where κ0(eij) resembles the angle between basis directions of the two tangent spaces
adjacent to the dual edge eij , θi here resembles the angle between the field direction and
the fixed tangent basis direction at tangent space of vertex i and N denotes the field
symmetry number as described in section 2.1. Knöppel et al.[KCPS13] state that this
function resembles a mixed-integer problem and therefore its optimization is NP-hard.
Ray et al.[RVLL08] try to solve that by first treating the period jumps as real-valued
variables before rounding them. Bommes et al.[BZK09] improved upon the rounding by
a greedy rounding strategy, but both methods cannot guarantee a global optimum.

2.3 Alternative methods
An obvious main alternative to the globally optimal solution of Knöppel et al. [KCPS13]
is the algorithm by Bommes et al. [BZK09] with their mixed-integer solver. But there
are other methods, with more specific use cases.

For example, if the input mesh has a general symmetry to it, then the algorithm by
Panozzo et al. [PLPZ12] is a good alternative. The resulting field is aligned to a
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2.4. Applications

symmetry axis of the mesh. It mainly focuses on reflections as they are responsible for
most symmetries of real objects. For the overall smoothness of the field, they use an
energy function akin to Ray et al. [RVLL08] and minimize it with the mixed integer
solver of Bommes et al.[BZK09]. The main difference to these two methods, in terms
of direction field synthesis, is that Panozzo et al. [PLPZ12] formulate constraints along
the symmetry line. Their algorithm is also fully automatic and the user has only one
parameter for adjusting the importance of symmetry over smoothness.

If it is not necessary to automatically produce the singularities, i.e. the sources and sinks
of a vector or direction field, then a very fast alternative would be the algorithm, that
was introduced by Crane et al.[CDS10]. By constructing a set of basis cycles around
the mesh, which are loops of dual edges, and by calculating the angle defect within
such a cycle, they build a linear system and solve it for adjustment angles. After that,
their algorithm starts at an arbitrary face and an arbitrary starting field direction, to
traverse the other faces and compute their direction with the previously found adjustment
angles. Crane et al. [CDS10] showed that their algorithm is fast enough, to achieve
real-time intractability, which is certainly advantageous if singularities have to be picked
manually. The advantage of this method is direct control over the location and number
of singularities. On the downside, it might be tedious or even difficult for a user to create
a field, that suits his or her needs with this algorithm. This is especially the case for
users with little experience.

2.4 Applications

Many different types of applications have made use of direction fields. Most of them are
methods for generating meshes, but there have also been different uses as well. Example
applications can be found in the survey by Vaxman et al.[VCD+16] and include illustrative
rendering, architectural geometry, cultural heritage, deformation, mesh segmentation,
procedural modeling, urban planning and many more.

Let us now focus on some remeshing methods, as they are the predominant use case for
direction fields. For example, an application that uses a crossfield for mesh generation,
specifically one produced by the globally optimal direction field method of Knöppel et al.
[KCPS13], can be found in the work of Pellenard et al.[POC+14]. They use the direction
field for a quad dominant remeshing algorithm they call QMCF, which is a modification
of the original QMorph algorithm introduced by Owen et al.[OSCS99]. Advancing from
an edge front, new vertices are created by the guidance of the crossfield directions. To
find the new vertex positions, the field lines are projected onto the triangle surface of
the background mesh. After connecting them to the front edge, forming a quad, the
encased old vertices can be removed. In order to guarantee a good quality quad mesh,
they modified the crossfield algorithm as well. Pellenard et al. introduced alignment
constraints on certain vertices. These constraints will be looked at in detail in Chapter 3,
as they are part of the implementation in this thesis. They do not process singularities
specifically and only the field directions are important, although they mention that

5



2. Related Work

certain patterns arise around singularities.

Jakob et al. [JTPSH15] developed a different kind of quad remeshing method than the
one mentioned above, although they are also using direction fields as guidance for edge
alignment. To produce the needed field they have two different approaches they call
intrinsic and extrinsic smoothness. Their extrinsic smoothness formulation is different in
that it does not use any curvature based heuristics. The intrinsic approach they mention
is similar to the one of Ray et al. [RVLL08], although they specifically mention that
the method of Knöppel et al. [KCPS13] is also usable for the intrinsic smoothness. The
direction field their method produces is vertex based. An interesting note is that this
algorithm also works for meshes represented by point clouds.

6



CHAPTER 3
Method

In this chapter, we will discuss the theory behind the algorithm of Knöppel et al.[KCPS13],
which makes up the most part of our algorithm, and the extension by Pellenard et al.
[POC+14]. We start with a brief overview of the main steps of our algorithm. After that,
each section will cover one of the main concepts that are part of it.

3.1 Overview
The input mesh is required to have two-manifold edges, meaning that each edge is incident
to exactly two faces. Boundary edges are allowed.

Our algorithm consists of five major steps:

1. setup

2. matrix construction

3. solving for the smooth direction field

4. setting alignment constraints

5. solving for curvature alignment

In the setup, the preliminary parameters are calculated. These include the angle sum
around vertices, the basis directions (Section 3.2) for each tangent space and parallel
transport coefficients (Section 3.3). Afterward, the mass and energy matrices are com-
puted (Section 3.4). This step also includes the calculation of the holonomy (Section 3.3)
for each surface triangle, as they are needed for the matrices. In the third, step we solve
the linear system, that is represented by the matrices for the globally optimal smooth
solution. Here, we make use of the Inverse Power Method (Section 3.5). Step four is

7



3. Method

responsible for constraining vertices, where the field should align with specific directions
(Section 3.8). In the final step, we solve the constrained system from step four for the
final solution (Sections 3.7 and 3.8). Steps 4 and 5 are completely optional if only the
globally smooth solution is needed or one does not want to use constraints.

3.2 Complex Representation Vectors
In this algorithm, the direction field is represented by complex numbers. Because of
this, we want to clarify that in any case we use the symbol i in a formula, we mean the
imaginary number, except for index descriptions like vi.

Any vector in a given tangent field can be expressed by the product of a complex number
with a given basis direction. An example Knöppel et al. [KCPS13] give is that any point
in the complex plane can be expressed by multiplying the real unit vector with a complex
number. This gives us the following expression:

Z = zX,

where Z is a vector field described by the complex multiple z of a basis vector X. Since
the goal is to produce N-RoSy fields, the complex representation also comes in handy.
Any rotation by the angle φ on the complex plane can be accomplished by multiplying a
complex number with eiφ. If we use this for our rotational symmetry, the field can be
expressed by

e
2kπ
N ,

where k =1,2,...,N-1. If those vectors are now raised to the N th power, they become
indistinguishable, forming an n-vector u. Two of those representation vectors can now be
easily compared if they are within the same tangent plane, which is the main advantage
of this representation according to Knöppel et al. [KCPS13]. If the individual vectors are
needed again, they can be extracted by computing the N th root which will be used for
visualization. But first, a way of mapping one vector into the tangent space of another
one is needed. This operation will be explained in the next section.

3.3 Parallel Transport and Holonomy
Imagine a curved object like in Figure 3.2 where one can define a tangent vector at each
point of the surface. If one of these vectors is now to be moved along the surface from
one point to another it either stops being tangential or, if it is forced to stay tangential,
it changes direction. The latter case can be used for comparing two of our representation
vectors. Only the angle between the vector that is going to be moved and a common
geodesic, i.e. the shortest path between two points of a curved surface, is needed to
correctly map it to the new tangent space. This process is called parallel transport.

In the discrete setting, an edge between two neighboring vertices resembles a common
geodesic. For each edge, we can now measure the angles between it and the corresponding

8



3.3. Parallel Transport and Holonomy

Figure 3.1: Projection onto Tangent Plane
Basis direction Xi and edge eij are projected onto the tangent plane of vertex i using

the vertex normal ni to measure the angle θi between the projections.

arbitrarily chosen basis vectors at the connected vertices. These angles are measured
on the individual tangent spaces of the vertices, i.e. the edge and the basis vector are
projected onto the tangent plane described by the vertex normal before the angle is
calculated. Knöppel et al. [KCPS13] do not go into detail on how they do this but we
calculate vproj = v − v∗ni

||ni||2ni, where ni here denotes the vertex normal at vertex i and
the vector v stands either for edge eij or the basis Xi, depending on which one of them
is currently projected. A visualization of the projection can be found in Figure 3.1. The
difference of these angles θpq = θq − θp now maps the tangent space from a vertex p to
a vertex q. If we translate this definition to our representation where we use complex
representation vectors, the mapping from tangent space Tp to Tq is done by

Tp → Tq = eiθpqzpXq.

The difference between two vectors can now be defined as

|eiθpqzp − zq|2.

Or in the case of n-vectors,
|rpqup − uq|2,

where rpq = einθpq and up = znp .

If we trace the Parallel Transport around a closed loop over the surface, the change of
the original vector can be measured. This measure is called Holonomy and is a result of
the surface curvature. Back in the discrete setting, the curvature can only be observed on
vertices, but according to Knöppel et al. [KCPS13] it can be pushed into the surrounding
triangles by normalizing the angle sums around each vertex to be 2π. Subsequently,

9



3. Method

Figure 3.2: Parallel Transport over a Surface
A tangent vector at point A traveling around a closed loop over the surface. The

difference in angle α is a result of the curvature.

whenever an angle, that relates to a specific vertex, for example for computing the
parallel transport, is measured it has to be multiplied with the normalization factor
si = 2π∑

tijk3i αi
, where the denominator is the angle sum around the vertex i. When we

compute the holonomy Ω of a triangular face on the mesh, the mapping coefficients rij
are used. Since the holonomy is the rotation around the closed loop, i.e. following the
edges of the face, it amounts to the product

eΩijk = rijrjkrki

and further to
Ωijk = arg(rijrjkrki),

where arg(...) is the angle between a complex number and the real axis.

3.4 System To Solve
We now discuss the energy function that will define the field. A detailed derivation and
explanation of the formulas that follow in this section can be found in the appendix of
Knöppel et al. [KCPS13].

Like the methods stated in Chapter 2, the algorithm by Knöppel et al. [KCPS13] also
tries to minimize an energy function to get an optimal solution. The overall smoothness

10



3.4. System To Solve

of a function can usually be evaluated by the Dirichlet energy. We can apply it to our
field and get the expression

ED(ψ) = 1
2

∫
M
|∇ψ|2dA.

In geometry evaluation, the Dirichlet energy can measure the covariant derivative of a
field ψ over a surface M with a scalar value. To get an optimal field this energy, therefore,
needs to be minimized. On a direction field, however, where the field vectors have unit
length and singularities are present, there is a problem with this type of energy. As
Knöppel et al. [KCPS13] show, the Dirichlet energy is infinite at singularities and a
smoothest field cannot be found. They also prove that it is finite in a discrete setting.
But the result depends on the resolution around singularities and "smoother" fields end
up having higher smoothness energy if the mesh is more refined around singularities.
Because of this, fields can end up being less optimal numerically, even if they look more
desirable. In their explanation they also show that the Dirichlet energy can be written as

1
2

∫
M
|∇aϕ|2dA = 1

2

∫
M
|∇a|2 + a2|ω|2dA = 1

2〈〈(∆ + |ω|2)a, a〉〉,

where ϕ is a unit vector field, a is a re-scaling of ϕ so that ψ = aϕ, ∆ denotes the
Laplace-Beltrami operator and 〈〈., .〉〉 the L2 inner product. In this equation, ω is the
rotation speed of the field ϕ, which indicates how fast the unit field rotates along the
surface. This is important because they then state, that for a fixed unit field ϕ an optimal
scaling a ≥ 0 has to be found to evaluate its energy:

Ê(ϕ) = min
a≥0,||a||=1

∫
M
|∇(aϕ)|2dA,

enforcing ||a|| = 1 to exclude the solution a ≡ 0.

The expression 〈〈(∆ + |ω|2)a, a〉〉 can be minimized by solving the eigenvalue problem

(∆ + |ω|2)a = λa

for the smallest eigenvalue λ. The globally optimal solution to the original problem can,
therefore, be found by solving ∆ψ = λψ. Knöppel et al. emphasize that in practice it
is not needed to explicitly minimize the energy Ê(ϕ) or build the Schrödinger operator
∆ + |ω|2 and only the Laplacian ∆ is needed for the final solution.

To get more control over the field the covariant derivative in the Dirichlet energy can be
split up into a sum of Cauchy-Riemann derivatives:

∇ψ = ∂̄ψ + ∂ψ

and
∂̄ψ := 1

2(∇zψ + J∇JZψ), ∂ψ := 1
2(∇zψ − J∇JZψ),

11



3. Method

Figure 3.3: Different Energy Types
On the left, the energy parameter s = 0 was used, resulting in evenly spaced singularities

and relatively straight lines. On the right, s = 1 was used which produces no
singularities at all.

where Z is a vector field and J is a 90 degree rotation in the tangent space. An n-vector
field can be holomorphic if ∂̄ψ = 0 or anti-holomorphic if ∂ψ = 0. The Dirichlet energy
ED(ψ) now consists of two terms EH(ψ) for the holomorphic part and EA(ψ) for the
anti-holomorphic part, so that

ED(ψ) = EH(ψ) + EA(ψ) = 1
2

∫
M
|∂̄ψ|2dA+ 1

2

∫
M
|∂ψ|2dA.

In practice, the equation above is used for the smoothness energy

ES = (1 + s)EH + (1− s)EA,

where s is a variable to shift the energy towards the holomorphic (if s = 1), the anti-
holomorphic (if s = −1) or towards the standard Dirichlet energy (if s = 0). The variable
s is also a way of controlling the geometry awareness of the algorithm, as singularities
are either preferably placed in areas with high or low Gaussian curvature for s < 0 and
s > 0 respectively. It also controls the number of singularities and straightness of field
lines, where the holomorphic energy produces fewer singularities, the Dirichlet energy
provides straighter lines, and the anti-holomorphic energy is a trade-off between the
aforementioned two. An example of the difference between Dirichlet and holomorphic
energy can be seen in Figure 3.3.

After discussing the theory behind the smoothness energy it is time to turn to the
practical use. The field over the discrete surface is computed using the following finite
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element method. As we have previously looked at the case of a continuous function over
the whole surface domain, we now need to discretize the formulation. In other words,
we need to approximate the continuous energy function by a set of basis sections Ψ.
These basis sections represent the extension of the basis vectors X (see Section 3.2),
located on the tangent planes, into the adjacent triangles via the hat function. The linear
combination of these basis sections

ψ =
∑
vi∈V

uiΨi,

gives an approximation to the integral of the continuous formulation. Here u is a vector
containing the coefficients, associated with each vertex, and eventually will contain the
solution to our direction field. Typically in the finite element method, the problem is
expressed with matrices, building up a linear system. In our case, the energy matrix
A, in literature often called stiffness matrix, represents the system the resulting field
should follow, i.e. the energy function. The mass matrix describes the integrals over the
individual triangles via the hat function. For a comprehensive introduction to the finite
element method in general, we recommend the work of Larson and Bengzon [LB10].

The problem that now needs to be solved amounts to

Au = λMu,

where A is the Hermitian energy matrix of size |V | × |V |, that represents the smoothness
energy Es and is connected to the piece wise linear basis sections with

Aij = 〈〈AΨi,Ψj〉〉

and M is the Hermitian mass matrix defined by

Mij = 〈〈Ψi,Ψj〉〉.

These two matrices can be built by first computing the local 3 × 3 mass and energy
matrices for each triangle tijk and then adding their entries into the global matrices via
summation. This also accounts for boundary conditions.

The entries for local mass matrix M l are defined by

M l
ii = 〈〈Ψi,Ψi〉〉ijk = 1

6 |tijk|

and

M l
jk = 〈〈Ψj ,Ψk〉〉ijk = r̄jk|tijk|

6eiΩijk − 6− 6iΩijk + 3Ω2
ijk + iΩ3

ijk

3Ω4
ijk

,

where r̄jk is the conjugated complex of the parallel transport coefficient from j to k and
|tijk| denotes the triangle area.

13



3. Method

The terms for the local energy matrix Al are a bit more complex.

Alii = ∆ii − s
Ωijk

|tijk
|Mii

Aljk = ∆jk − s(
Ωijk

|tijk
− εjk

ir̄jk
2 ),

where ∆ in this context denote the Dirichlet terms and εjk = ±1, depending on the
orientation of edge ejk in tijk. The Dirichlet terms can be computed with

∆ii = 〈〈∆Ψi,∆Ψi〉〉ijk = 1
4|tijk|

(|pjk|2 + Ω2
ijk + |pij |

2 + 〈pij , pik〉+ |pki|2

90 )

∆jk = 〈〈∆Ψj ,∆Ψk〉〉ijk = r̄jk
|tijk|

[(|pij |2 + |pki|2)f1(Ωijk) + 〈pij , pik〉f2(Ωijk)]

where pij = pj − pi is the vector of edge eij and f1 and f2 are the following functions

f1(Ω) = 1
Ω4 (3 + iΩ + Ω4

24 −
iΩ5

60 + (−3 + 2iΩ + Ω2

2 )eiΩ)

f2(Ω) = 1
Ω4 (4 + iΩ− iΩ3

6 − Ω4

12 + iΩ5

30 + (−4 + 3iΩ + Ω2)eiΩ).

The expressions for the off-diagonal matrix entries have singularities for Ωijk → 0 that
can be removed. Knöppel et al. [KCPS13] used Chebyshev expansion to ensure precise
evaluation for these expressions and included usable C++ code in the ancillary material
of their paper for calculation. This code, contained in the file SectionIntegrals.cpp, was
adjusted to work with complex numbers from the C++ standard library and was used in
our implementation as well.

3.5 Solving the System
Finding the optimal solution, in this case, is finding the smallest eigenvector to a given
linear system. In theory, one could just compute the inverse matrix A−1 and solve the
expression for x. In practice though, this is not desirable, like Crane et al. [CDGDS13]
describe. The inverse matrix A−1 might be very dense even if A is very sparse. For large
systems, this calculation becomes numerically unstable and the memory usage drastically
increases. Because of this, an alternative route is chosen that composes of two steps.
First, a matrix factorization has to be computed. In our case, a Cholesky decomposition
is used for factorization. This operation splits a matrix into the product A = LDLT ,
where L is a lower diagonal matrix, LT its conjugate transpose and D a diagonal matrix.
Now those matrix parts are used individually for solving the linear system to improve
efficiency. In the second, the system is iteratively solved with an algorithm called Inverse
Power Method to approximate the smallest eigenvector. The basic idea for this algorithm

14
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is to solve the system Ax = Mu for x multiple times while back-substituting the resulting
vector to u until the change becomes very small. The Inverse Power Method was also
used by Knöppel et al.[KCPS13].

We start with a random initialization for u with floating point numbers for each coefficient
in the range of [−1, 1]. Then we decompose matrix A using Cholesky factorization to
efficiently solve the linear system. After each iteration, we back-substitute the solution
with u = x√

xTMx
. The solution for u will converge quickly towards the smallest eigenvector

and a fixed number of iterations is sufficient. Knöppel et al.[KCPS13] used 20 iterations
for their results. Pseudo code for reference can be found in Algorithm 3.1.

For solving linear systems, we use the Eigen library [GJ+10] for linear algebra in our
implementation. Specifically, the SimplicialLDLT solver for sparse systems is used. It
handles both the Cholesky decomposition and the solving step in Algorithm 3.1.

Algorithm 3.1: Inverse Power Method
Input: A,M
Output: u

1 factorize(A);
2 u← random();
3 for i← 1 to maximum iterations do
4 x← solve(Ax = Mu);
5 u← x√

xTMx

6 end

3.6 Triangle Index

To determine if a triangle contains a singularity, a form of label is needed. This label is
typically known as an index as described by Vaxman et al. [VCD+16]. It measures how
much the field rotates along a closed loop around a singularity. Points whose index is not
0 can be considered singular according to them. This definition does not directly apply
to surfaces in general, however, the index of a singular point p can still be calculated
via an arbitrary chart around p. As they further describe, a vector field can not have an
arbitrary number of singularities. The Poincaré-Hopf theorem, as described in Vaxman
et al. [VCD+16], dictates that the sum of all indices of a vector field have to sum up to
2− 2g = χ, where g is the genus of the surface and χ is the Euler characteristic.

Knöppel et al. [KCPS13] et al. prove a discrete version of the Poincaré-Hopf theorem
and formulate a method for calculating the index of any triangle via the rotational angles
ωij located on each edge. The rotational angles are defined such that

uj = eiωijrijui,
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where rij is the parallel transport coefficient. Together with the holonomy Ωijk, the index
of each triangle is given as the integer

index = 1
2π (ωij + ωjk + ωki + Ωijk) ∈ {−1, 0, 1}.

3.7 Principal Curvature Alignment
Up until now, the field does not necessarily follow the inherent curvature of the mesh.
Knöppel et al.[KCPS13] show that the algorithm is capable of smoothly interpolating
between the smooth setting and curvature alignment with the interpolating function

Es,t = (1− t)Es(ψ)− tEl(ψ),

where Es(ψ) is the smoothness energy from section 3.4, t ∈ [0, 1] and

El =
∫
M
Re(〈φ, ψ〉)dA = Re(〈〈φ, ψ〉〉),

φ representing the field we want ours to align with.

Minimizing Es,t can be done by solving

(A− λtI)ψ̃ = φ,

where λt ∈ (−∞, λ1) and λ1 being the smallest eigenvalue of A. In their proof, they show
an underlying connection between the interpolation factor t and the eigenvalue λt. If
λt is set to the smallest eigenvalue of A, no alignment will be performed. Knöppel et
al.[KCPS13] suggest that setting λt = 0 is often a good starting point for initial alignment
and can afterward be adjusted. An alternative we found can be the approximation of the
smallest eigenvalue of the smooth solution u via the Rayleigh quotient R(A, u) = uTAu

uTu
,

where uT is the conjugate transpose. Then the deviation from that eigenvalue towards
−∞ can be set as a parameter. We chose to implement this option to allow the user to
change the alignment strength.

The alignment field that was chosen by Knöppel et al.[KCPS13] is a piece wise linear
approximation of the Hopf differential

φ =
∑
vi∈V

qiΨi.

The Hopf differential is part of the shape operator and contains information about the
principal curvature directions, from which the directions of maximal curvature can be
found.

They argue that in the discrete setting this differential is only obtainable as a concentration
on the edges and that the coefficients in q have to be approximated with

Mq = q̃.
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3.8. Alignment Constraints

Together with the basis sections Ψi from Section 3.4 the coefficients for q̃ can be calculated
with

q̃i := q(Ψi) =
∑
e3i

qe(Ψi) = −1
4

∑
e3i

rieβe|pe|,

where rie is the transport coefficient ei2θi(Xi,e), θi(Xi, e) here being the rescaled angle
between the basis vector of vertex i and the edge e, βe resembles the dihedral angle
between faces adjacent to e and |pe| is the length of e. They suggest to use q2 for 4-
direction fields. Finally, to get the aligned field the linear system

(A− λtM)ũ = Mq

needs to be solved, where ũ holds the result. Examples of different alignment weights λt
are shown in Figure 3.4.

Detailed derivations of the formulas above can again be found in the appendix of Knöppel
et al.[KCPS13].

3.8 Alignment Constraints

Like mentioned in Chapter 2, a quad-dominant remeshing method was introduced by
Pellenard et al. [POC+14]. It uses the algorithm by Knöppel et al.[KCPS13] and is a
variant of the QMorph algorithm, but it also uses a crossfield for guidance when adding
new vertices. To use it for their purposes, Pellenard et al. first addressed a few limitations
of the original globally optimal direction field synthesis. The first one is that the direction
field does not line up with the boundary of the mesh, making the result of an advancing
front algorithm like QMorph, less optimal. The second one is distortion that sometimes
arises in areas with low curvature. It would be desirable if the flatter sections of the mesh
align better with principal curvature. A third problem is that the field should align with
sharp edges so that they can be kept intact during remeshing. The last limitation they
addressed is that it cannot properly handle non-manifold edges. In order to overcome
these limitations, they first split the mesh on edges that are part of more than 2 faces.
The affected vertices now have more than one cross assigned to them. Before solving
for the alignment, a constraint vector is defined for each vertex that falls under one of
the following conditions: a) v is on the boundary, b) v is part of an edge whose dihedral
angle is greater than 30 degrees, c) v has a mean- or Gaussian curvature that differs
from 0 or d) v is part of a non-manifold edge. We did not implement condition d) due to
the framework we are using, which does not handle the splitting of non-manifolds into
multiple meshes.

Pellenard et al. [POC+14] do not mention how they calculated the mean- and Gaussian
curvature. We chose to use the discrete Gaussian curvature operator i.e. the angle defect

KG(vi) =
2π −

∑
j θj

Avi
,
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Figure 3.4: Different Alignment Weights
The upper left bunny used λt = λ1 − 5, the top right one λt = λ1 − 15, the lower left

λt = λ1 − 30 and the lower right one λt = λ1 − 100. The eigenvalue λ1 was
approximated with the Rayleigh coefficient and q2 was used for alignment. We can see
that the further we deviate from λ1 the more aligned to local curvature the field gets,

but on the other hand the number of singularities rises.
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3.8. Alignment Constraints

where
∑
j θj is the sum of all angles around the vertex i, and the discrete Laplace-Beltrami

operator
KM (vi) = 1

2Avi

∑
vj∈N1(i)

(cotαij + cotβij)(vj − vi),

where vj ∈ N1(i) is the 1-ring neighborhood of vertex vi, αij and βij are the angles
opposite of edge eij in the faces connected by eij . The final value for the mean curvature
of each vertex can be found with 1

2 ||KM (vi)||. In both formulas above, Avi is 1
3 of the

triangle areas that are part of N1(i). A detailed description of these operators can be
found in Meyer et al. [MDSB03].

One ambiguity we want to clarify is how to get the constraint vectors. We choose a
direction according to the categories mentioned above:

a) On the boundary, each vertex has two boundary edges. We choose the vector e1
|e1| −

e2
|e2| ,

where e1 and e2 are the two boundary edges of a vertex. If those two edges are close to a
right angle, i.e. the dot product is almost zero, we choose one of them directly as the
constraint direction instead, to preserve corners.

b) Vertices that are part of at least one sharp edge get one of those incident edges assigned
as the constraint direction.

c) Constraint directions for vertices that have non-zero mean- or Gaussian curvature are
set to their principal curvature direction q̃i. We found that sometimes, we also want to
align vertices that are not completely flat but are very close to zero curvature to their
principal curvature direction. For example, if the mesh is very noisy. For these cases, we
implemented a slider to adjust the tolerance towards the mean- and Gaussian curvature.

If a vertex qualifies for more than one constraint, we prioritize boundary over sharp
edge and sharp edge over curvature constraints. Our reasoning behind this is that
constraint types a) and b) are somewhat "hard" and more clearly defined, whereas
curvature constraints are primarily there to prevent distortions that occur because of the
other two types. Pellenard et al. [POC+14] do not mention any prioritization.

After setting the constraints for vertices, Pellenard et al.[POC+14] mention that they
remove constraints from vertices whose crosses are inconsistent. They remove constraints
from triangles whose index is non-zero and from vertices whose directions differ too much
from their neighbor ones. We chose to only remove the curvature constraints. Otherwise,
boundary and sharp edge constraints would get removed very often because they tend to
differ more significantly. Additionally, we chose not to remove constraints from triangles
whose index is non-zero because most of the time this case is also covered by differing
neighbor constraint directions. As a threshold for when to remove the constraints if
neighbors differ, we chose a difference of 30 degrees which in our opinion is very liberal
but Pellenard et al [POC+14] do not go into detail at which difference they remove the
constraints. Otherwise, a lot of the time most of the curvature constraints get removed.
This happens especially if the mesh is not very well tessellated and principal curvature
directions are very inconsistent.
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The linear system for the alignment is now adjusted to incorporate the constraints

Au = α∗̄Mq,

where α is a vector of length |V | whose coefficients are 0 for constrained vertices and
their neighbors and 1 otherwise, ∗̄ describes an element-wise multiplication. The vector
α controls which vertices should influence the alignment process with their principal
curvature directions. Constrained vertices should not influence it because they should only
contribute by adding their constraint direction to the alignment. Vector u now contains
the constraint directions as components for constrained vertices. Those directions are
again expressed as complex numbers describing them in tangent space.

The problem with this adjusted linear system is that it is over-constrained and cannot
be solved like before. Instead, a linear least squares approach is used to solve it. First, A
is split up into Af , containing only columns of the free vertices, and Ac, containing only
the constrained columns. Likewise, the vector u is split up into uf and uc as well, where
uc contains the constraint directions that were previously computed and uf will contain
the result for the free vertices. Therefore let

Au = Afuf +Acuc

and
Afuf = α∗̄Mq −Acuc.

For convenience the right side of the above expression gets shortened to b = α∗̄Mq−Acuc
Now we build the conjugate transpose matrix ATf and let

ATf Afuf = ATf b.

Now
Buf = b′,

where B = ATf Af and b′ = ATf b, can be solved.
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CHAPTER 4
Results

All visual representations for direction fields in this thesis were made by converting the
directions to world coordinates and displaying them on the respective tangent planes. For
this, we used Mathematica. The machine we used was an Intel Core i7-7500 Processor at
2.9 GHz running Windows 10 Pro. Our implementation was tested with varying types of
geometries and different parameter settings.

4.1 Visuals
One key observation we made was that fields produced by the core algorithm by Knöppel
et al.[KCPS13] do not necessarily align with the mesh boundary. This is one of the
main limitations Pellenard et al. [POC+14] mention. Although this solution looks
optimally smooth, it may cause problems in remeshing algorithms where alignment with
the boundary produces the best results. For example the advancing front algorithm
of Pellenard et al. [POC+14]. An example of a flat mesh can be seen in Figure 4.1.
Using the boundary constraints alleviates those problems but at the cost of potentially
additional singularities. Figure 4.2 shows the same mesh as Figure 4.1 with boundary
constraints applied.

The results produced by using sharp edge constraints highly depend on the input mesh.
If the number of sharp edges is very high and the surface is very noisy, the field can look
very uneven with a lot of singularities. Figure 4.3 shows a very noisy mesh. If used on
more regular meshes, where sharp edges are more aligned to each other, the constraints
produce results where the number of singularities stays almost the same but with field
directions that are well aligned to the sharp edges. A comparison between a result with
and without the edge constraints can be seen in Figure 4.4.

The curvature constraints can be very useful if the field gets distorted by enforcing
other constraints. They restrict the field to the principal curvature direction in curved
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Figure 4.1: Field on a Disk
Crossfield directions on a flat disc. Notice how the field does not align with the

boundary.

areas and align the flat parts to them. Boundary constraints, in particular, have a
very high tendency to warp the direction field, even on distant parts of the mesh. This
is especially true if the boundary is curved. Figure 4.5 shows an example of how the
curvature constraints affect the result. We do not recommend using the curvature
constraints if no other constraints are enforced as well. The reason for this is that
in most cases the curvature alignment produces better-looking results than just with
added curvature constraints. Also, if the mesh is not tessellated very well, the computed
principal curvature directions are not always very accurate. Therefore they disturb the
field when using curvature constraints. Increasing the tolerance at which point we do not
constrain vertices can be very useful as noisy regions also get the chance to align better
with directions from vertices with stronger curvature.

We noticed, that for some meshes the number of singularities does not follow the discrete
Poincaré-Hopf theorem of Knöppel et al.[KCPS13]. The exact reason is not known to us.
We believe it may be due to the input mesh not being n-smooth i.e. the total curvature
pushed into each triangle does not follow |σt| < π

n , where σt is the curvature pushed into
triangle t and n is the rotational symmetry, see Appendix B of Knöppel et al. [KCPS13]
for reference.

4.2 Computation times

We tested the implementation with meshes, that resemble models produced by 3D artists
and did not test 3D scans which tend to either be non-manifolds or have extremely high
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Figure 4.2: Field on a Disk using Boundary Constraints
Crossfield directions on a flat disc aligned with the border. New singularities arise but

the field looks smooth and symmetric.

polygon counts. We also set the number of solver iterations to 30. If faster results are
needed, fewer iteration can be used, although the result might not be as smooth because
the inverse power method might not have converged. Figure 4.6 shows a comparison of
computation time and the number of polygons. At about 6× 104 polygons, the increased
computation time becomes noticeable. Larger meshes are not guaranteed to be processed
fast enough for real-time interactivity, which we assume lies below the 1-second mark.
Curvature alignment increases computation time as expected because principal curvature
directions have to be approximated. Afterward, it takes another solver iteration for the
alignment. Using the constraints adds the computation time for the constraint directions
and for splitting the energy matrix. Staying under one second can then only be achieved
by reducing the polygon count. 4.1 shows the used data for Figure 4.6.

4.3 Usability
In the case of the smooth setting without alignment, we found that the algorithm is simple
to use. This is because only the type of energy has to be chosen. The fast computation
time helps immensely because the three different results can be compared relatively easy.
When we look at the case of curvature alignment, on the other hand, it can be tedious
to find the best-suited solution. Like before, there are three different energy types to
compare, but the degree of alignment is very hard to estimate in advance. We included a
slider in the user interface to let the user control how much he or she wants to deviate
from the eigenvalue of the smooth solution, controlling the strength of alignment. In
theory there are infinite different possibilities for this value because λt ∈ (−∞, λ1) (see
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Figure 4.3: Sharp Edge Constraints used on a noisy Fandisk Mesh
This fandisk model has noisy edges that are not well aligned. Using the sharp edge

constraints adds a great amount of singularities and disturbs the field.

Section 3.7). For this reason, we have to limit it to an arbitrary maximum deviation and
we chose to set this limit to λ1 − 100. From our experience, any deviation beyond that
increases the number of singularities too much and the field loses its overall smoothness.
A further improvement may be to introduce a logarithmic slider to give more control
closer to the eigenvalue while also increasing the limit. We leave this improvement up to
future work on our implementation. Using the constraints seems straightforward to us.
In our opinion, it is easy to estimate how the result may change when using them. The
exception being the curvature constraints which can sometimes be less predictable. The
slider for adjusting the tolerance can be a bit confusing but we think that users might
get used to it after experimenting with it. A nice addition would be a parameter to set
at which angle an edge is considered sharp.
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Figure 4.4: Sharp Edge Constraints used on an Icosahedron
Edges on this icosahedron are well aligned to each other. On the left, no constraints
where used and λt is set to 0. On the right, sharp edge constraints force the field to

align with the edges.

Mesh Polygons Vertices Smooth time Alignment time Constraint time
Teapot 15704 8435 0,14 0,24 0,32
Monkey 15744 7958 0,13 0,26 0,38
Cow 22620 11339 0,19 0,35 0,55
Space Suit 30888 18153 0,25 0,44 0,6
Fandisk 31682 16784 0,41 0,75 1,06
Horse 40826 81666 0,41 0,77 1,39
High Resolution Rounded Cube 49152 24578 0,64 1,35 2,71
Bunny 69630 34817 0,99 1,96 3,22
Teddy 101018 50548 1,02 1,94 3,76
Hand 133692 66848 1,6 2,87 4,91
Deer 192350 96320 2,15 4,16 7,5
High Poly Torso with Head 234496 117250 4,78 10,78 19,03

Table 4.1: Description of used meshes and their computation times in seconds.
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Figure 4.5: Curvature Constraints used in addition to Boundary Constraints
This mesh has a large circular boundary. Using boundary constraints warps the field

across the whole mesh on the top. On the bottom, curvature constraints are added which
forces the field to align with the beveled edges and straightens it up on the flat areas.
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Figure 4.6: Computation Times
A log-log plot showing computation time compared to the number of polygons for

smooth, curvature aligned and constrained fields. On average the additional
computation time from curvature alignment makes up about 47,5% of the total

computation time. Using all constraints adds a similar amount of computation time on
top of that. The data we used for this figure can be found in Table 4.1.
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CHAPTER 5
Conclusion and Future Work

We demonstrated the implementation of the globally optimal direction fields algorithm by
Knöppel et al. [KCPS13] using the constraints introduced by Pellenard et al [POC+14],
clarified ambiguities in the explanation and have shown that it is a powerful tool for
constructing direction fields of arbitrary rotational symmetry over a mesh. It computes
either an optimally smooth or curvature aligned direction field with optional constraints
and it generates singularities automatically. The core of the algorithm is a smallest
eigenvalue problem which can be solved efficiently with a solver for sparse linear systems.
We have found that for meshes of common size in artistic modelling it is fast enough
to finish in under 1 second and stay interactive. The limit for 1 second computation
time is at roughly 6× 104 triangles. Larger meshes than that, like 3D scans, may take
significantly more time. The added computation time for constraints further decreases
the number of triangles per second.

The algorithm is easy to use but determining how strong the field should align to the
curvature is hard to estimate beforehand. Combined with the longer computation time for
large meshes, interactive changes to the parameters are not feasible. Some computation
time would be saved if transport coefficients and the system matrices could be saved
between parameter changes. However, as our implementation is a plugin, the setup must
be recomputed each time.

The results look very smooth and singularities are commonly located on geometric
features. The aligned field directions follow the natural curvature of the mesh. The
changeable deviation from the smallest eigenvalue can control the strength of alignment
and the number of singularities. Adding constraints to the field alignment gives better
control and helps aligning it with features such as the border, sharp edges or principal
curvature.

Future work on our algorithm may include its separation into a standalone application or
direct implementation into a framework to facilitate faster user interaction. The addition
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of a changeable parameter for the number of solver iterations could be a solution to allow
for larger meshes. With this, the user can decide if he or she wants faster computation or
more accuracy. A drawback may be that inexperienced users do not find a middle ground.
The addition of a remeshing algorithm to our plugin would also be of high interest in
future work.
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