
Eurographics Symposium on Rendering 2019
T. Boubekeur and P. Sen
(Guest Editors)

Volume 38 (2019), Number 4

Quantifying the Error of Light Transport Algorithms

A. Celarek12, W. Jakob3, M. Wimmer2 and J. Lehtinen1

1Aalto University, Finland 2TU Wien, Austria 3École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

250
Frequency (f)

Er
ro

r

N=4000
Metropolis light transport
Path tracing

 0 50 100 150 200

(f*) Error spectrum ensemble (ESE)(c*) Estimator for E[MSE]

(a) Short renderings

1...
N

(b) Error images

1...
N

+

0

-
(e) Fourier error power spectra

1...
N

+

0

107

108

109

1010

(d*) Standard deviation

+

0

Figure 1: Flow chart of the proposed method with outputs (*): A long rendering process is partitioned into many short runs (a) which
are used to estimate error images (b). These are used to calculate a reliable estimate of the expected mean square error (MSE, c*), that
could e.g. be used to rank a set of different rendering algorithms. The error images (b) are also used to generate a standard-deviation-per-
pixel visualization (d*), which shows which of several competing algorithms is best for a specific lighting situation. Finally, Fourier power
spectra (e) are computed and combined into the error spectrum ensemble (ESE, f*) that plots the expected error and outliers with respect to
frequency, visualizing for instance correlation between pixels.

Abstract
This paper proposes a new methodology for measuring the error of unbiased physically based rendering algorithms. The
current state of the art includes mean squared error (MSE) based metrics and visual comparisons of equal-time renderings
of competing algorithms. Neither is satisfying as MSE does not describe behavior and can exhibit significant variance, and
visual comparisons are inherently subjective. Our contribution is two-fold: First, we propose to compute many short renderings
instead of a single long run and use the short renderings to estimate MSE expectation and variance as well as per-pixel
standard deviation. An algorithm that achieves good results in most runs, but with occasional outliers is essentially unreliable,
which we wish to quantify numerically. We use per-pixel standard deviation to identify problematic lighting effects of rendering
algorithms. The second contribution is the error spectrum ensemble (ESE), a tool for measuring the distribution of error over
frequencies. The ESE serves two purposes: It reveals correlation between pixels and can be used to detect outliers, which offset
the amount of error substantially.

CCS Concepts
• Computing methodologies → Ray tracing;

1. Introduction

Physically based rendering algorithms rely on numerical integra-
tion techniques, which yield approximations that converge to an
exact solution with increasing computation budget. When limited
to a finite computational budget, the inherent rendering error of
such algorithms not only differs in magnitude, but also in terms
of their spectral characteristics. For instance, Monte Carlo (MC)

algorithms produce white noise error spectra, while correlations in
Markov chain Monte Carlo (MCMC) methods produce a dispropor-
tionate amount of error in low frequency bands. Surprisingly, there
is no established standard method for measuring error across such
methods, which limits our ability to compare them systematically.

A common approach is to first compute a reference solution,
which is then used to calculate the error image for a representa-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

(a) Normal

1...
N

(b) Proxy

Figure 2: We modify the original algorithm (a) by partitioning the
rendering process into N shorter equal-time runs that each produce
an image (b). The computation budget of those short renderings
is typically a few CPU seconds. From the resulting data, we are
able to create statistics for any error metric along with per-pixel
standard deviation or variance.

tive run of each algorithm, using an equal rendering budget to make
them comparable. Quantitative comparisons are then conducted us-
ing mean square error (MSE), or other derived quantities, e.g., root
of MSE (RMSE) or other single value metrics. Such error statis-
tics are of limited use with regard to the nature and visual impres-
sion of the error. Moreover, they are not informative when assessing
the reliability for a particular combination of scene and algorithm.
In particular, issues arise from outliers, i.e., low-probability events
that introduce a significant amount of error. This can affect individ-
ual pixels or larger correlated regions when working with MCMC
methods. Frequently, the measurements are supplemented by vi-
sual evaluation of the example renderings. However, such qualita-
tive evaluations are inherently subjective and imprecise.

To address these problems, we propose several tools based on a
simple proxy algorithm (Section 3). Instead of one long rendering,
the proxy algorithm takes the average of N short renderings with
the same overall budget (Figure 2). If the original algorithm is un-
biased, then the resulting proxy is unbiased as well. If the original
algorithm has finite per-pixel variance in addition, then it also ful-
fills the requirements for the central limit theorem (CLT). Hence,
its asymptotic convergence rate is Θ(1/

√
N) in standard deviation

and it is consistent. That by itself can be an improvement, as a con-
vergence rate of Θ(1/

√
N) is not necessarily achieved by every

algorithm.

More importantly, the proxy algorithm allows to

• estimate the expected MSE and its variance, or other measures
of reliability,
• compute standard deviation or variance per pixel images, show-

ing which light effects are problematic, and
• provide more advanced tools based on the short renders.

As one such advanced tool we propose the error spectrum en-
semble (ESE). Based on the Fourier transform of the error images,
it reveals the spatial frequency content of error as well as outliers.
An application of the ESE can be quick the deduction of the mag-
nitude and spatial extent of the correlation between pixels, or of the
spatial size and intensity of outliers.

2. Related Work

A number of researchers have investigated the properties of error
in light transport algorithms. Arvo et al. [ATS94] identified three
sources of error (input data, discretization, and computation) and
provided bounds. In contrast to their work, we are only concerned
with precise estimation of numerical error in competing integration
procedures. Szirmay-Kalos et al. [SKDP99] analyzed the start-up
bias and convergence of MLT, but a lot of their analysis is based on
very simple example scenes and does not provide a framework for
comparing MC with MCMC methods. Ashikhmin et al. [APSS01]
showed that the per-pixel variance of Metropolis light transport
(MLT) [VG97] is bounded by Θ(1/N), which is an important in-
sight, but it does not help in quantifying the error. Rousselle et
al. [RKZ12] use two buffers and the sample variance to estimate the
error in path tracing. This is comparable to our proxy using N = 2,
but their work is focused on adaptive sampling and not a general
error metric. Subr and Kautz [SK13] analyzed the error caused by
various Monte Carlo (MC) sampling patterns via Fourier analysis,
but their conclusions do not generalize. Whittle et al. [WJM17]
provided an extensive overview of error metrics for images, and
they examined the influence of poor references for computing those
measures. However, they did not investigate their variance, or sen-
sitivity to outliers.

Durand et al. [DHS*05] investigated the frequency content of
radiance and how it is influenced by various light-transport phe-
nomena. Zirr et al. [ZAD15] studied possibilities for the visualiza-
tion and editing of structured light-transport effects. Both of these
works study the effect of various physical phenomena, while our
work targets statistical estimators.

Kettunen et al. [KMA*15] used the Fourier spectrum to analyze
the superior convergence behavior of gradient domain path trac-
ing. Similarly to the proposed ESE, Lehtinen et al. [LKL*13] used
radial averages and the Fourier transform to plot error against fre-
quency. However, they used only one long rendering, and neither
studied outliers nor the overall reliability. Several other papers also
used radial averages of data derived from the Fourier transform for
the analysis of low-dimensional sampling patterns [LD08; SK13;
PSC*15].

3. Proxy Algorithm

Basics. We treat rendering as a stochastic process that estimates
the path-space integral:

〈Im〉N ≈ Im =
∫

Ω

fm(x̄)dx̄, (1)

where 〈Im〉 denotes the estimator or rendering algorithm computing
the value of a pixel m, N is the computation budget, Ω refers to the
set of all transport paths and fm to the contribution function.

Throughout the text, angular brackets 〈X〉Y refer to an estimator
X (for instance the MSE) related to a particular a rendering algo-
rithm that uses a computation budget of Y . In practice, Y will be
proportional to the number of sample evaluations performed by the
MC or MCMC scheme.

We limit ourselves to algorithms with finite per-pixel variance
that are unbiased (with one exception highlighted in Section 4.3).

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

The condition on variance is unproblematic as algorithms with in-
finite variance would not be useful in practice. Unbiasedness is de-
fined as

E [〈I〉N − I] = 0, (2)

i.e., for any algorithm 〈I〉N , the expected value of the algorithm
matches the path-space integral..

Consistent algorithms satisfy the following criterion:

lim
N→∞

〈I〉N = I. (3)

Note that not every unbiased algorithm is consistent (and vice
versa).

Proxy Algorithm. We define the result of the proxy algorithm as
the average of N short and equal-budget renderings of the original
algorithm:

〈I′〉N =
1
N

N

∑
n=1
〈In〉1 (4)

〈In〉1 is one of the N independent short renderings (Figure 2).

Central Limit Theorem. Looking at individual pixels, the pre-
conditions of the central limit theorem (CLT) are satisfied indepen-
dently of the rendering algorithm:

• The short renderings are independent.
• Corresponding pixels share common probability distributions,

because they were generated by the same scene, camera and al-
gorithm setup, only using different random numbers.
• Their expectations are defined.
• Their variance is finite.

Due to the CLT, the per-pixel value distributions in the proxy re-
sult (〈I〉N , Equation 4) tend to a normal distribution as N grows.
The distributions have Im mean and a standard deviation that varies
from pixel to pixel. We therefore propose to routinely show stan-
dard deviation per-pixel images (SDpp) (Figure 1e) to visualize the
convergence speed throughout an image. Any existing correlation
between the pixels, a characteristic property of Markov chain based
methods, is not reduced as N grows. Therefore, it would be useful
to visualize and measure that correlation – however, this task is
non-trivial and left for future work.

Convergence Rate. A direct consequence of the CLT is the
asymptotic convergence rate of Θ(1/

√
N) as measured by per-pixel

standard deviation. This is an improvement over the original al-
gorithm if Θ(1/

√
N) cannot be easily achieved using the built-

in parameters. An example is energy redistribution path tracing
(ERPT) [CTE05], where quality and rendering budget are influ-
enced by chain length, number of seed paths, and number of chains.
The number of runs N, on the other hand, is a parameter of the
proxy algorithm. In situations where methods for a better conver-
gence rate are known, e.g., sampling patterns for low dimensions
[PSC*15], the proxy algorithm will become a limiting factor. Sec-
tion 4.3 shows how methods based on the proxy algorithm can be
adapted in such cases, and Section 5.2 shows examples of the per-
formance impact in case of Markov-chain-based methods.

Unbiased and Consistent. The proxy algorithm is unbiased, be-
cause

E
[
〈I′m〉N − Im

]
=

1
N

N

∑
n=1

E
[
〈In

m〉1− Im
]
, (5)

where n is the index of the short rendering, for every pixel m,
which is a consequence of the unbiasedness of the original algo-
rithm (Equation 2). The applicability of the CLT also means that
the weak law of large numbers applies, therefore our proxy is not
only unbiased, but also consistent. This is an improvement for al-
gorithms that are unbiased, but not consistent.

In the rest of this article we will assume the original algorithm
for the short renderings and the proxy for the result and drop the
prime symbol (〈I〉N = 〈I′〉N).

Rendering Error. Commonly used error measures for a rendering
〈I〉K include the signed absolute error 〈E〉K = 〈I〉K − I or the rela-
tive error 〈E ′〉K = (〈I〉K − I)/(I + ε), where ε is a small offset that
prevents division by zero. The absolute error can become large in
brightly lit areas, despite such errors likely being imperceptible to
a human observer. In contrast, the relative error has a singularity
in dark areas that is only ameliorated by the epsilon term. Since
scenes with almost black areas are common, we deem the problem
of singularity more severe and use the absolute error throughout the
paper.

Since I is unknown, it must be estimated. One option is to esti-
mate it independently using a very high rendering budget, i.e., cre-
ate a ground truth reference image. In our case it is more efficient to
use the proxy result 〈I〉N for estimating the error of the individual
short renderings 〈I〉1:

〈En〉1 = 〈In〉1−〈I〉N . (6)

Such an estimation of signed error is unbiased as E[〈In〉1] =
E[〈I〉N]. The precision of individual observations of 〈En〉1 grows
with rising N. Estimating the per-pixel variance requires Bessel’s
correction to produce an unbiased result.

3.1. Improvements for Measuring Mean Square Error

In classical statistics, MSE is a scalar estimator property. The sta-
tistical definition using the estimator from Equation 1 is

MSE(〈Im〉K) = E
[
(〈Im〉K − Im)

2)
]
, (7)

for only one pixel, and with unknown Im. In case of unbiased esti-
mators, the statistical MSE is equivalent to (per-pixel) variance.

In contrast, MSE in the context of rendering is often defined as
a random variable averaging squared errors over the whole image,
calculated after a certain rendering budget K:

MSE(〈I〉K) =
1
M

M

∑
m=0

(〈Im〉K − Im)
2 . (8)

So while “mean” stands for “expectation” in statistics, it is used for
“average over pixels” in rendering.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

Traditional and Proposed MSE. The expectation E[MSE(〈I〉K)]
is useful to rank a set of algorithms. This quantity is traditionally
estimated (denoted by M̂SE) using a single run of a rendering al-
gorithm:

E [MSE(〈I〉N)]≈ M̂SE1(〈I〉N)

=
1
M

M

∑
m=0

(
1
N

N

∑
n=0
〈Im〉1− Im

)2

. (9)

Problems can arise due to high variance, which causes the estimates
to be far from the true expectation. We propose to use N observa-
tions instead:

E [MSE(〈I〉1)]≈ M̂SEN(〈I〉1)

=
1

(N−1)M

N

∑
n=0

M

∑
m=0

(
〈In

m〉1−〈Im〉N
)2

, (10)

where N is the rendering budget of the proxy algorithm, N− 1 ac-
counts for the Bessel correction, M is the pixel count, 〈In

m〉1 the
value of pixel m in proxy rendering n and 〈Im〉N pixel m of the
proxy algorithm result. In Equation 9, positive and negative errors
cancel each other out in the inner sum of the traditional method,
which is avoided in the proposed calculation.

Analogy to Statistical MSE. By the law of large numbers, we
know that

E [MSE(〈I〉1)] =M̂SE∞(〈I〉1)

=
1
M

M

∑
m=0

lim
N→∞

(
1

(N−1)

N

∑
n=0

(
〈In

m〉1−〈Im〉N
)2
)

=
1
M

M

∑
m=0

Var(〈Im〉1) . (11)

In case of unbiased algorithms, the proposed method converges to
the average per-pixel variance as the term within the limes brack-
ets is simply a variance estimate: If considering biased algorithms
(Section 4.3), 〈Im〉N should be replaced by a high quality reference
solution and Bessel’s correction removed. In both cases, the pro-
posed MSE converges towards the average of the classic statistical
MSEs defined in Equation 7.

Rendering Budget Scaling. Due to the CLT,

Var(〈Im〉K) =
Var(〈Im〉1)

K

applies for every individual pixel. Since the expectation of the pro-
posed MSE is a linear combination of variances (Equation 11), we
deduce for the whole image that

E [MSE(〈I〉K)] =
E [MSE(〈I〉1)]

K
.

After plugging in the proposed estimator M̂SEN(〈I〉1) for
E[MSE(〈I〉1)] we have a derived estimator for E [MSE(〈I〉K)]

E [MSE(〈I〉K)]≈
M̂SEN(〈I〉1)

X
, (12)

Figure 3: Comparison of the traditional and the proposed MSE
computation for a simple MC integration of Equation 14. The tra-
ditional method does not converge to its expectation even with a
large computation budget, which the proposed method addresses.

which will be used for a toy example in the following paragraph.
Similarly,

Var(〈Im〉1) = K×Var(〈Im〉K)

= Var
(
〈Im〉K ×

√
K
)
.

For squared error expectation, it does not matter whether we com-
pute the error for a budget of exactly 1, or for K and then scale by√

K. We use this fact to accommodate for algorithms with different
rendering costs:

〈E〉1 = 〈E〉t ×
√

t, (13)

where t is the actual render time or budget of a short rendering and
1 is the unit budget used for comparisons.

Simple Experiment. To illustrate these concepts, we perform a
simple experiment, where M = 100 related integrals are computed
and elements Im are analogous to pixels in renderings. The equation
for these elements is

Im =
∫ (m+1)/M

m/M

1
0.01+ x

dx, (14)

where m ∈ [0,M[.

The goal is to compute a MSE value for a simple MC integration
procedure using uniform sampling. Reference values for the Ims
and the exact E [MSE(〈Im〉N)] were computed using Mathematica.
We compare plots of the behavior of the traditional (Equation 9)
and proposed computation method (Equations 12 and 10). Using
M̂SEN(〈I〉1)/N, we estimate MSE as if a rendering budget of N
were used, but with a lower computation cost.

Figure 3 shows the result of the experiment. The same random
samples were reused for the traditional and the proposed method.
The proposed method converges to the exact solution. Traditional
MSE, on the other hand, converges to a normal distribution, where
both, expectation and variance are scaled by N. This is only reliable
if the MSE variance is low, i.e., when M is large and there are no
outliers.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

3.2. The Variance of MSE

The variance of the MSE is given by

Var(MSE(〈I〉K)) = Var

(
1
M

M

∑
m=1
〈Em〉K 2

)
=

=
1

M2

(
M

∑
m=1

Var
(
〈Em〉K 2

)
+

M

∑
m6=m′

Cov
(
〈Em〉K 2,〈Em′〉K 2

))
,

(15)

where MSE〈X〉 and E〈X〉 are random variables and not observa-
tions. The formula for MSE (Equation 8) and summation of vari-
ances were used.

In case of independent pixels (MC), the covariance matrix is zero
by definition, and hence the MSE variance is 1/Mth of the aver-
age pixel variance. In algorithms with dependent pixels, a positive
sum of the covariance matrix indicates that the positive correlation
among pixels is stronger than the negative one. This can potentially
increase the variance and impair the reliability of MSE estimates
for correlated algorithms like MLT.

In practice, we estimate the variance from the N MSE values of
the short renderings. Unfortunately, standard methods to compute
confidence intervals cannot be used, because the distribution is not
normal.

4. Error Spectrum Ensemble

The error spectrum ensemble (ESE) descriptor provides a new way
to characterize the frequency-space distribution of the error of un-
biased rendering algorithms.

For each of the N renderings, we compute a scaled error image
using Equations 6 and 13:

〈En〉1 =
(
〈In〉t −〈I〉tN

)
×
√

t, (16)

where n is the index of the individual short rendering and t is the
rendering time for a single short rendering. We then transform the
error images (Figure 4a) into discrete Fourier frequency space and
compute associated power spectra by squaring the amplitude of
each frequency (Figure 4b). Parseval’s theorem applies, i.e., the
sum of all power spectrum elements is proportional to the MSE,
and we thus interpret the power spectrum as a frequency-dependent
MSE statistic.

We reduce the dimensionality of the spectra by computing radial
averages on concentric rings around the DC term. This allows us
to represent every image by a vector of average frequency errors
with the DC error at the beginning (Figure 4c). Low radial frequen-
cies represent just a few 2d frequency elements, while higher radial
frequencies represent more elements. This means that higher fre-
quencies have a larger contribution to overall MSE and that low
frequency radial averages have more variance even if the power
spectrum has uniform distribution. Computing the per-frequency
mean of those vectors results in a vector that we call the ensem-
ble mean. It is a measure of how much error is to be expected on
average, per frequency.

Finally, we sort the radial averages of all images according to
MSE and divide them into six buckets for each frequency (lowest

MEMLT (RMSE:6.86, s:5.7, t:10x1.9s)
mean 00-100
mean 90-100
mean 80-90
mean 50-80
mean 20-50
mean 10-20
mean 00-10

50 100 150 200 250
frequency

0

tails
body
head

ensemble mean

N=400
50 100 150 200 250

frequency
0

1...
N

(a) Error images (b) Error power spectra

(c) Radial averages and (d) Error Spectrum Ensemble

 percentile means

1...
N

Figure 4: For each of the N short renders, we compute an error
image, and the associated radial power spectrum. We group the
entries of the spectrum into several buckets according to the asso-
ciated MSE, and use them to form the region borders of tail, body
and head of ESE. Additional data is shown in the legend (s = stan-
dard deviation of RMSE, t = samples per pixel used × cost for
one sample). The ensemble mean does not lie in the head region
because of outliers.

10%, 10-20%, 20-50%, 50-80%, 80-90%, and highest 10%). The
per-frequency means of these buckets (Figure 4c) form the borders
of the tail, body, and head regions in the descriptor (Figure 4d).
Head and body show the typical behavior of the algorithm, while
the tail shows outliers.

4.1. Implementation

The pipeline starting with rendering commands and ending with
the ESE and standard deviation per-pixel images (SDpp) was au-
tomated using MATLAB and Python. The rendering time for the
short renderings was around 10 single-core seconds on a 2018
AMD Ryzen 7 2700X, and the value of N was 4000 in most tests.
An HDR format with 32-bit floating-point was used as 16bit for-
mats cause precision issues when averaging short renderings.

Additional data available from the proxy algorithm is shown in
the legend:

• estimated expectation of the RMSE,
• estimated standard deviation of the RMSE,
• computation budget of a short rendering (samples per pixel ×

average time for a 1-sample-per-pixel image).

We decided to use the linear statistics (RMSE and standard devi-
ation) instead of quadratic ones (MSE and variance) for ease of

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

(a) RMSE as a function of time (Door)

(b) Error Spectrum Ensemble (Door)

(c) (Bathroom)

(d) (Bathroom)

Figure 5: First and second row: Different visualizations of the con-
vergence behavior acquired using the proxy algorithm. Long ESE
tails arise due to RMSE jumps because the tails are generated from
(R)MSE outliers. Typically, MC algorithms (BDPT) have a flat er-
ror spectrum while MCMC ones (MLT) contain more error in low
frequencies. Outliers influence the shape of the ensemble mean (b,
MLT) and a flat spectral dependence indicates spatially small out-
liers (d, BDPT).

interpretation. A full MATLAB implementation is provided in the
supplemental material.

4.2. Spectrum Shape and Outliers for Different Algorithms

We briefly discuss the ESE for some common rendering algorithms.

Shape. MC spectra are generally flat, while MCMC spectra con-
tain more error in low frequencies due to correlation (Figures 1g,
5b and 5d). Since the overall brightness in MLT (MCMC) is com-
puted in a separate step, the DC term is independent of all other
frequencies. Experiments with the Primary Sample Space MLT al-
gorithm [KSKAC02] (Section 5.3) show that the width of the low-
frequency peak decreases as the correlation radius (mutation size)
increases, similarly to the Fourier transform of a Gaussian curve.
We have also observed that the peak’s relative height depends on
the amount of correlation between pixels – specifically, it becomes
smaller when increasing the percentage of large mutations (which
propose an independent path).

In our experiments, we found that the shape of the upper tail
border reveals the nature of the underlying outliers: A spectrally
flat shape is caused by isolated pixel outliers (Figure 5d, PT), while
a peak in low frequencies is a sign of spatially correlated errors
(Figure 4d).

Outliers. There is a direct link between the size of the tail area in
the ESE and jumps in RMSE over rendering budget plots. RMSE
plots (examples in Figures 5a and c) are used to show the asymp-
totic behavior of algorithms, where a slope of -1 in the logarithmic
scaling indicates a convergence rate of Θ(1/time). The data stems

Figure 6: ESE of the door scene (Figure 7c) for SPPM, which is
consistent but biased (T is 10 iterations). The ensemble means per-
fectly overlap if the convergence rate is 1/T . In this instance, we
see that this is the case for low frequencies. Middle and higher fre-
quencies have a convergence rate below 1/T , because the 16T line
is on top.

from proxy algorithms with N = 4000, where the first X short ren-
derings are averaged to generate the RMSE value at the time point
of the duration of X renderings. Using this setup, jumps in the oth-
erwise straight line can be tied to particular short renderings with
large error. Those correspond to the largest outliers that go into the
computation of the upper tail border, while the bottom tail border
corresponds to the values with the smallest error. Hence, the tails’
areas correlate with the number and amplitude of jumps (Figures 5b
and d). In Figure 5b, we also see that the outliers are the reason for
the bad performance of MLT, as most of the samples (the head and
body regions) are well below the competing algorithm. Both MC
and MCMC algorithms can show this behavior (Figures 5b and d).

A large tail area, i.e., outliers, not only negatively impacts the
performance, but also

• increases the N that is needed for a faithful ensemble mean (in
some cases more than the N = 4000 that was used),
• slows the convergence of the sample mean of affected pixels to

the normal distribution,
• increases the time until SDpp converges sufficiently to provide a

good error measure.

To summarize, the ESE is capable of differentiating between al-
gorithms with varying degrees of correlation and varying amount
of outliers. That is an improvement over simple measures like
MSE and plain visual interpretation of rendering results. However,
‘catching’ outliers is still a game of luck and therefore, large values
for N should be used.

4.3. Adaptive Sampling, Consistent and Sub-Θ(1/
√

N)
Convergence Algorithms

Adaptive sampling can be used to allocate more samples to pix-
els with a large sample variance, for instance in path tracing. It is
not a problem to apply adaptive sampling within the short render-
ings, as long as the result is unbiased. However, adaptive sampling
might influence the overall convergence rate, and the proxy algo-
rithm might decrease the performance of an adaptive sampling al-
gorithm. The situation is similar for sampling patterns (QMC and
stratified), which have a better asymptotic convergence rate for the

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

(a) Box (b) Torus (c) Door

Figure 7: Illustration of the figures used in the remainder of our
evaluation (tone-mapped). The highlighted regions (a and c) are
details shown in Figures 9, 12 and 13, respectively.

low-dimensional part of the integrand [PSC*15]. The proxy algo-
rithm is not compatible with biased algorithms, even if they are
consistent. In these cases, we can use an alternative procedure to
inspect the error spectrum and how it is affected by increasing the
rendering budget:

1. Run the algorithm N times with a rendering budget of T , 4T and
16T .

2. Calculate the error images using a reference solution and mul-
tiply them with

√
T ,
√

4T and
√

16T , which ‘neutralizes’ the
typical convergence of Θ(1/T) in squared error.

3. Continue with the steps from Section 4, without rendering cost
scaling.

Our reference solutions were computed using a cluster and mil-
lions of samples per pixel – several orders of magnitude more than
were used for 〈I〉N . To put this into perspective, Whittle et al. rec-
ommended to use reference images with at least an order of magni-
tude more samples [WJM17]. If the T , 4T , and 16T curves overlap,
then the algorithm behaves like Θ(1/

√
T) in that frequency and

rendering budget range. If curves with larger T are higher, the con-
vergence rate is lower than Θ(1/

√
T). The same applies to RMSE.

A small tail area means that all the runs are approximately the same,
i.e., no outliers were found.

Figure 6 shows an example of stochastic progressive photon
mapping (SPPM), which is a biased but consistent algorithm. It
shows that SPPM converges with a speed of 1/

√
T in low fre-

quencies between 10 and 160 iterations, but with a lower speed
for higher frequencies. One would need to run tests with higher it-
eration counts to see whether the convergence stabilizes, but this
becomes more and more expensive in terms of computation re-
sources. The ESE also shows that there are little differences be-
tween runs, so it would be a possibility to reduce N and thereby
reduce the needed resources. More examples for this procedure, in-
cluding path tracing with QMC for two scenes, can be found in the
supplemental material.

5. Evaluation

We begin with ESE visualizations for various configurations of the
box scene (Figure 7a) to provide an intuition about the descriptor.
ESE, SDpp, and short rendering examples for more configurations
of the box scene, and also several more complex scenes are shown
in the supplemental material. The rest of the evaluation will cover

(a) Size 400

(b) Size 100 (c) Size 25

Figure 8: Error descriptors for the box scene with varying light
size. The scene becomes increasingly hard to render with smaller
light sizes. The impact on overall error is less dramatic for the MLT
methods. However, the amount of outliers increases.

more technical aspects. One of the goals is to test whether break-
ing up MLT chains impacts performance. This is important because
MLT relies on correlated chains of samples, which eventually cover
the whole image. Our technique, based on short renderings, parti-
tions these chains into independent runs.

We also provide more details about the link between a low-
frequency peak and inter-pixel correlation.

Figures 7a and b show the scenes used in this section. Rendering
budget scaling using time, as described in Equation 13, was used
only for Section 5.1. In the subsequent sections we tested different
configurations of the same rendering algorithm with the same num-
ber of samples, and hence wanted to eliminate unnecessary distor-
tions of the results. We show example short renderings and standard
deviation per pixel images (SDpp) where they provide additional
insight over ESE. The computation time for computing ESE and
SDpp is in the range of half an hour per scene.

5.1. Box Scene

Figure 8 shows changes of the ESE of a simple box scene (Figure
7a) when the size of the light source is varied, while keeping its
power constant. We can see that the error of all algorithms grows
when the light source becomes smaller. Path tracing is more sensi-
tive than the MLT methods when looking at RMSE. The standard
deviation of RMSE, i.e., a measure for outliers, on the other hand,
increases more in MLT methods. The same is also visible when

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

(a) 1 Chain (b) 50 (c) 500

SDpp

(d) Error Spectrum Ensemble

Figure 9: SDpp and ESEs for various chain lengths in the door
scene (Figure 7c). All strategies use the same total chain sample
count of 50 times the pixel count. The 1 chain strategy contains
most outliers but also the lowest ESE head (d). The SDpp (a - c)
shows that much of the error is in a region with complicated re-
fractions.

looking at ESE. ESE also shows, that the MLT outliers consist of
larger patches and not isolated pixels.

5.2. Impact of the Proxy Algorithm

The behavior of the original algorithm and its proxy version are
not necessarily identical. While this is the case for many MC algo-
rithms (i.e., the result computed with the original algorithm would
be equal to the result from the proxy if the same random numbers
were used), it is not the case for MLT algorithms. In the original
paper [VG97], it was proposed to maintain a single chain through-
out the rendering process (though the possibility of using multi-
ple chains was mentioned). Modern computer architectures made
it beneficial to run several shorter chains in parallel and it is even
required by our proxy algorithm. For these reasons we tested the
impact of changing chain length and pooling strategies on four test
scenes. The paper shows only a selection of them, see the supple-
mental material for the rest.

Chain Length. We tested the impact of breaking up Markov
chains by computing ESEs and SDpp for 3 different chain strate-
gies:

• 1 chain with 50×M (pixel count, 5122) samples,
• 50 chains with M samples, and
• 500 chains with 0.1×M samples each.

The results show that the strategy with the longest chain was

1 2 3 45 6 7 8 9 10

9 11 30 37 8 13 135 4 20

paths (x1 ... xM):

f(xi)/p0(xi):

seed pool

(a) 1 seed pool

1 2 3 45 6 7 8 9 10

9 11 30 37 8 13 135 4 20

paths (x1 ... xL):

f(xi)/p0(xi):

seed pool 1 seed pool 2

(b) 2 seed pools

Figure 10: Conventionally, one seed pool is used in MLT, from
which C chains are sampled proportionally to f (xi)/p0(xi)(a). It
is possible to divide the L seed paths into S pools (b) and sample
C/S starting paths from each.

Figure 11: ESEs for various seed pooling strategies in the torus
scene (Figure 7b). The total number of luminance samples is 10k,
which is partitioned randomly into 50, 10 and 1 seed pools with
1, 5 and 50 chains, each. The body and heads of the variants are
almost equal, differences in tails, ensemble mean and RMSE are
minor, indicating that the strategy plays only a minor role given
large enough pools.

never the best. In 2 out of the four scenes, it contained significantly
more outliers, an example is shown in Figure 9. We believe that this
is due to the bi-directional mutation, which is often unable to lift
the chain out of high-valued regions. The shorter chains are simply
restarted, which limits the amount of time that a chain can be stuck
in-place.

The bathroom scene (Figure 1a), which does not suffer from
MLT outliers, also does not show significant differences between
the chain lengths. This is intuitive considering that samples of a
Markov chain are virtually independent if the distance between
them is large enough, and an MLT chain should mix quickly
enough in order to reach all parts of the image within a reasonable
sample budget. In the short renderings, the chain is typically bro-
ken up only after it covered every pixel several times on average.
Therefore, it does not matter whether the samples are completely
independent by break-up or not.

Seed Pools. The strategy employed by Mitsuba [Jak10] is to sam-
ple all of the chains from a single seed pool (Figure 10a). It is not
equivalent to the proxy algorithm, having at least one seed pool
per short rendering (Figure 10b for N = 2). In the following, we

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

(a) Large mutations 0% (b) 5% (c) 50%

Example short renderings on the left and SDpp on the right

(d) Error Spectrum Ensemble

Figure 12: Changing percentage of large mutations in primary
sample space MLT (PSSMLT) in the box scene (Figure 7a): Large
mutations generate independent path proposals, reducing correla-
tion between pixels. In the renderings (a-c, left), long chains of cor-
related proposals show up as high-intensity patches. At 0%, global
proposals only occur due to the sequence of short renderings per-
formed by the proxy algorithm. SDpp shows that raising the per-
centage reduces the error in specular light effects, while ESE shows
that there is less error in low frequencies.

describe the impact of the changed strategy. The MLT implementa-
tion was modified to include an additional parameter: The number
of seeds per pool. Setting it equal to the number of chains (a param-
eter already present in our rendering system) results in Mitsuba’s
default strategy of using a single seed pool. Setting it to 1 will di-
vide the original seed pool into one separate sub-pool per chain.
This creates an algorithm which is equivalent to our proxy with N
chains and one chain per pool. Finally, we compute the ESE using
the standard procedure, a short-rendering budget of 50 samples per
pixel, 50 chains, and

• a single pool (the original algorithm),
• 10 pools with (an in-between with 5 chains per pool), and
• 50 pools with (the equivalent with 1 chain per pool).

The data for the torus scene (Figure 7b) is shown in Figure 11.
The results show that head and body are almost exactly the same.
We deem differences in the tail, ensemble mean and RMSE incon-
clusive due to the scarcity of outliers.

In summary, the analysis in this section provides preliminary evi-
dence that switching from a rendering algorithm to the correspond-
ing proxy variant can affect its numerical performance – specifi-
cally, we found that performance of the proxy algorithm was gen-

(a) Mutation size 0.01 (b) 0.10 (c) 0.50

Example short renderings on the left and SDpp on the right

(d) Error Spectrum Ensemble

Figure 13: Changing small mutation size in PSSMLT in the box
scene (Figure 7a): This parameter influences how much a path is
modified between large jumps. With very small mutations the corre-
lated chain segments barely move away from their initial pixel po-
sition (a, left), creating a very wide low frequency peak (d). Larger
path modifications cause the correlated segments to move quickly
into neighboring pixels, color patches have a larger radius (b and
c, left), creating a narrower peak in low frequencies (d). The width
of the low frequency peak decreases as the radius of correlation
increases, similarly to the Fourier transform of a Gaussian kernel.

erally superior. The chain length was particularly relevant, while
the influence of the seed pooling strategy appears to be minor (see
also the supplemental material).

5.3. Link Between Low-Frequency Peak and Inter-Pixel
Correlation

In this section, we show how the typical low-frequency MLT peak
reacts to changes in parameters that influence correlation. We use
the primary sample space MLT (PSSMLT) algorithm [KSKAC02]
and the scene shown in Figure 7a. PSSMLT is built on top of ex-
isting MC algorithms, for instance path tracing, and implements
MCMC proposals by perturbing the current state, which consists
of the “random numbers” that are supplied to the nested rendering
algorithm. There are two types of mutations: Large ones propose
independently sampled paths, and hence do not create correlation
between pixels. In contrast, small mutations only slightly perturb
the random number vector used to generate the path. Two main pa-
rameters control the behavior of these mutations: The percentage
of large mutations, and the size (radius) of small mutations in the

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

random number domain. For this experiment, we changed one pa-
rameter and kept the other one steady.

Figure 12 shows results for a varying percentage of large muta-
tions. It is not possible to reach true 0% with the proxy algorithm as
every short render necessarily starts from an independent path and
therefore acts as a ‘large mutation‘. We see that the peak is high
when there are few large mutations and becomes smaller when the
number increases. The radius, on the other hand, stays approxi-
mately the same. Setting the parameter to 100 % would result in an
algorithm without correlation between pixels and a flat spectrum,
with the only exception at the DC term.

The results for changing the size of small mutations are in Figure
13. Using a very small value of 0.01 causes the chain to stay very
close to the starting pixel as shown in the example short renderings
(Figure 13a), while higher values cause the change to propagate
farther in image space (Figure 13c). This is also visible in the ESE,
where the width of the low-frequency peak decreases as the muta-
tion size increases. There are limits to this behavior, however.

6. Conclusion

We proposed a proxy rendering algorithm that encapsulates any
unbiased method. It can be used to estimate standard deviation
per-pixel images along with RMSE expectation and RMSE stan-
dard deviation. The proxy algorithm serves as the foundation of a
tool for spectral and outlier analysis called error spectrum ensemble
(ESE). It shows the existence and magnitude of outliers and the typ-
ical error levels where the short renderings fall, that are unaffected
by outliers. We demonstrated the capabilities by changing parame-
ters of known algorithms and examining the results. To ensure the
reproducibility of our work, we provide a MATLAB implementa-
tion in the supplemental material.

Our method provides three error metrics that can be used to as-
sess the convergence of rendering algorithms in ways that consid-
erably extend simple quantities such as the overall MSE:

• Standard deviation per pixel images show the location and quan-
tity of error, which is useful for identifying problematic lighting
effects (e.g., Figures 9a through c).
• Individual short-time renderings produce information about the

robustness of the convergence process, i.e., correlation, outliers
etc. It is useful to examine them in order to gain insight into
the qualitative behavior of the given algorithm (e.g., Figure 12a
through 12c).
• Finally, ESE can be used to analyze the frequency content and

outliers. It can be used to find suitable parameters, benchmarks,
and to compare competing versions of algorithms (e.g., Section
5).

Limitations of the proposed tools are the relatively high com-
putation cost, the restriction to unbiased algorithms with a conver-
gence rate of Θ(1/

√
N), and the relatively high complexity, com-

pared to traditional scalar error metrics like MSE.

In future work, the visualization of our approach could be im-
proved. A method for visualizing local pixel correlation might also
be useful. The procedure for measuring the convergence rate of
non-Θ(1/

√
N) algorithms in Section 4.3 should be improved. In

particular, a method that is more economical with computational re-
sources and a better visualization are needed. The proposed method
can not be computed on-line, which would make it possible to
change rendering parameters on the fly. Another direction would
be to couple the tools for measuring performance more closely to
the algorithms, e.g., the mixing behavior of the Markov Chain in
different parts of the scene.

Acknowledgements

We would like the anonymous reviewers for their valuable input.
The “Door” scene was modeled after a scene by Eric Veach by
Miika Aittala, Samuli Laine, and Jaakko Lehtinen. The “Sponza”
scene is courtesy of Marko Dabrovic. The “Bookshelf”, “Kitchen”,
“Bottle” and “Bathroom” scenes have been ported to Mitsuba by
Tiziano Portenier. The “Torus” scene is based on a scene by Cline
et al. This project was partly supported by the Academy of Fin-
land, grant no. 277833 and by the EU MSCA-ITN project no.
813170. We acknowledge the computational resources provided by
the Aalto “Science-IT” project.

Notation
E [X] Expectation of X

Var(X) Variance of X (pixel-wise for images)
〈In

m〉K pixel m of image n of an array of short
renderings with budget K (m and n are
omitted in some contexts)

N,n Number of short renderings, short ren-
dering index

M,m Number of pixels, pixel index
〈E〉N singed absolute error, i.e., 〈I〉N − I,

where I is the ground truth
〈En〉1 estimated singed absolute error using

the proxy algorithm, i.e., 〈In〉1−〈I〉N
M̂SEx(〈I〉K) estimator of E[MSE(〈I〉K)] using x ob-

servations

References
[APSS01] ASHIKHMIN, MICHAEL, PREMOŽE, SIMON, SHIRLEY, PE-

TER, and SMITS, BRIAN. “A variance analysis of the Metropolis light
transport algorithm”. Computer & Graphics 25.2 (2001), 287–294 2.

[ATS94] ARVO, JAMES, TORRANCE, KENNETH, and SMITS, BRIAN. “A
framework for the analysis of error in global illumination algorithms”.
Proceedings of SIGGRAPH ’94. 1994, 75–84 2.

[CTE05] CLINE, DAVID, TALBOT, JUSTIN, and EGBERT, PARRIS. “En-
ergy redistribution path tracing”. ACM Transactions on Graphics (TOG)
24.3 (2005), 1186 3.

[DHS*05] DURAND, FRÉDO, HOLZSCHUCH, NICOLAS, SOLER, CYRIL,
et al. “A frequency analysis of light transport”. ACM Transactions on
Graphics (TOG) 24.3 (2005), 1115–1126 2.

[Jak10] JAKOB, WENZEL. “Mitsuba renderer”. http://www.mitsuba-
renderer.org (2010). URL: http://www.mitsuba- renderer.
org 8.

[KMA*15] KETTUNEN, MARKUS, MANZI, MARCO, AITTALA, MIIKA,
et al. “Gradient-domain path tracing”. ACM Transactions on Graphics
(TOG) 34.4 (2015), 123 2.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

http://www.mitsuba-renderer.org
http://www.mitsuba-renderer.org

A. Celarek, W. Jakob, M. Wimmer & J. Lehtinen / Quantifying the Error of Light Transport Algorithms

[KSKAC02] KELEMEN, CSABA, SZIRMAY-KALOS, LÁSZLÓ, ANTAL,
GYÖRGY, and CSONKA, FERENC. “A simple and robust mutation strat-
egy for the Metropolis light transport algorithm”. Computer Graphics
Forum 21.3 (2002), 531–540 6, 9.

[LD08] LAGAE, ARES and DUTRÉ, PHILIP. “A comparison of methods
for generating poisson disk distributions”. Computer Graphics Forum
27.1 (2008), 114–129 2.

[LKL*13] LEHTINEN, JAAKKO, KARRAS, TERO, LAINE, SAMULI, et
al. “Gradient-domain metropolis light transport”. ACM Transactions on
Graphics 32.4 (2013), 95. ISSN: 07300301 2.

[PSC*15] PILLEBOUE, ADRIEN, SINGH, GURPRIT, COEURJOLLY,
DAVID, et al. “Variance analysis for Monte Carlo integration”. ACM
Transactions on Graphics (TOG) 34.4 (2015), 124:1–124:14 2, 3, 7.

[RKZ12] ROUSSELLE, FABRICE, KNAUS, CLAUDE, and ZWICKER,
MATTHIAS. “Adaptive rendering with non-local means filtering”. ACM
Transactions on Graphics (TOG) 31.6 (2012), 195 2.

[SK13] SUBR, KARTIC and KAUTZ, JAN. “Fourier analysis of stochastic
sampling strategies for assessing bias and variance in integration”. ACM
Transactions on Graphics (TOG) 32.4 (2013), 128 2.

[SKDP99] SZIRMAY-KALOS, LASZLO, DORNBACH, PETER, and PUR-
GATHOFER, WERNER. “On the start-up bias problem of metropolis sam-
pling”. Winter School of Computer Graphics ’99. 1999, 273–280 2.

[VG97] VEACH, ERIC and GUIBAS, LEONIDAS J. “Metropolis light trans-
port”. Proceedings of SIGGRAPH ’97. 1997, 65–76 2, 8.

[WJM17] WHITTLE, JOSS, JONES, MARK W., and MANTIUK, RAFAŁ.
“Analysis of reported error in Monte Carlo rendered images”. Visual
Computer 33.6-8 (2017), 705–713 2, 7.

[ZAD15] ZIRR, TOBIAS, AMENT, MARCO, and DACHSBACHER,
CARSTEN. “Visualization of coherent structures of light transport”.
Computer Graphics Forum 34.3 (2015), 491–500 2.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

