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a b s t r a c t

For decades, researchers in information visualisation and graph drawing have focused on developing
techniques for the layout and display of very large and complex networks. Experiments involving human
participants have also explored the readability of different styles of layout and representations for such
networks. In both bodies of literature, networks are frequently referred to as being ‘large’ or ‘complex’, yet
these terms are relative. From a human-centred, experiment point-of-view, what constitutes ‘large’ (for
example) depends on several factors, such as data complexity, visual complexity, and the technology used.
In this paper, we survey the literature on human-centred experiments to understand how, in practice,
different features and characteristics of node–link diagrams affect visual complexity.
© 2019 ZhejiangUniversity and ZhejiangUniversity Press. Published by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

There has been much work done on designing algorithms that
can efficiently scale to create pictures of very large graphs. How-
ever, what remains a more open question, is whether pictures
of very large and complex networks require a mental effort that
exceeds the capabilities of an average human brain.

Eick and Karr (2002) define the term visual scalability as the ca-
pability of visualisation tools to effectively display large data sets.
They also discuss factors affecting visual scalability, like human
perception, monitor resolution, visual metaphors, interactivity,
data structures and algorithms, as well as the computational in-
frastructure. Amore recent discussion of these, and similar factors,
are presented by Jankun-Kelly et al. (2014). They also distinguish
perceptual and cognitive scalability: ‘‘though elements may be
perceivable, they may still exhaust cognitive resources’’.
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In cognitive psychology, Miller’s ‘seven plus or minus two’
(Miller, 1956) is commonly accepted as a rule-of-thumb for the
limitation on peoples’ working memory. Working memory is an
example of one of the ‘cognitive ceilings’ that might affect peoples’
ability to reason about large networks. Do working memory and
other cognitive limitations have implications for the size and com-
plexity of graphs that we should be trying to visualise?

Huang et al. (2009b) propose a framework for cognitive load in
the context of graph visualisation. Based on results from cognitive
psychology, they sketch a model that relates cognitive load during
graph analysis tasks tomental effort and task performance in terms
of response time and accuracy. They discuss a number of other
factors affecting cognitive load: the domain (e.g. a highly technical
and specific domain requires the user to relate their knowledge
to the visual); the data itself (e.g. structure of the graph); the task
(does it require deepunderstanding of the graph structure?); visual
representation (does it follow best practice layout and design prin-
ciples); demographic (e.g. the experience of the users); and time
pressure. They report on one study of cognitive load that confirms
some of these effects, but their model which suggests step changes
in performance due to load,while compelling, is not fully validated.

In a more general evaluation of effect of display type on visual-
isation cognition, Yost and North (2006) demonstrated that more
pixels make it possible to show more data without considerable
loss of performance. Going from2 to 32mega pixels led to a 20-fold
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increase in displayed data: the task completion times tripled,while
accuracy only decreased from 95% to 92%. However, the data, visu-
alisations and tasks considered (such as search and comparison)
are relatively simple compared to networks and associated tasks
involving understanding of connectivity. It cannot be assumed that
such results carry over, or that display size is the only – or even
most – significant limitation. The goal of this survey is to better
understand these cognitive limitations. To differentiate this human
aspect of scalability of node–link diagrams from technological or
technique specific limitations, we use the term cognitive scalability.

This topic is important for our field, as such insights can guide
the design of future techniques. For example, we are attempting
to find tacit knowledge in past studies concerning the numbers
of nodes and edges that are too difficult to work with in a single
view. If we can establish such numbers, then it might suggest that
we need to direct efforts away from algorithms and rendering
techniques that can scale to huge numbers of network elements.
Instead, for such large networks, we could focus on interactive
ways to explore neighbourhoods (e.g. Dwyer et al. (2008) and van
Ham and Perer (2009)) or abstractions (e.g. Abello et al. (2006),
Archambault et al. (2008) and Dunne and Shneiderman (2013))
instead of attempting to display the full set of nodes and links.

Thus, we survey a large number of papers reporting empirical
studies of node–link diagrams, being exhaustive within the cor-
pora of core visualisation proceedings and journals. We aim to
establish a consensus for definitions of adjectives like ‘large’ or
‘dense’ for node–link diagrams that are too complex to be easily
comprehensible or useful for standard graph analysis tasks. We
also provide an overviewof the types of networks and tasks, aswell
as experimental design of these experiments.

In general, we find that the limits of scalability of the node–
link network visualisation paradigm are rarely addressed directly.
Rather, there seem to be tacit assumptions (or possibly unreported
pilot findings) about what size node–link diagrams are useable for
different tasks, and experiments stay within these bounds while
testing specific techniques.

Our key findings are that only a small range of graph sizes
and structures have been used in experimental evaluations of
graph visualisation techniques, mostly limited to small and sparse
graphs. In particular, three quarters of studies use graphs with
100 nodes and 200 edges or less and, the remaining studies test
interactive techniques, such that only a small portion of the graph
is shown on the screen at a time. These findings are discussed
further throughout the paper and listed in full in the conclusion.

The paper is structured as follows: Section 2 discusses related
surveys, primarily in graph visualisation; Section 3 outlines our
scope, methodology, and describes our categorisation framework;
then we present the results of our survey in Sections 4–6, followed
by a discussion on trends in the network visualisation community
in Section 7.

2. Related work

In the fields of graph drawing and visualisation, a number of
surveys have considered scalability from different perspectives.
In particular, there has been much discussion of the scalability
of algorithms and computer hardware to compute node–link dia-
gram layout. Such papers tacitly acknowledge that very ‘large’ and
‘dense’ graphs are difficult to read and hence propose interaction
techniques to navigate aggregated graphs. They may even report
on studies of the readability of networks using different layout,
interaction or rendering techniques. Yet, rarely do they explicitly
address the question ofwhat is the largest (most complex) diagram
that people can usefully comprehend.

Many past surveys characterise the techniques available for
graph visualisation. The surveys of Herman et al. (2000) and von

Landesberger et al. (2011) are both of this type, focusing on tech-
niques for graph visualisation and their strengths and weaknesses.
Elmqvist and Fekete (2010) characterise techniques in information
visualisation that use hierarchical representations as a form of data
abstraction. Recent surveys have also focused on specific areas
of network visualisation including multi-faceted graph visualisa-
tion (Hadlak et al., 2015), group structures in graphs (Vehlow
et al., 2015, 2017), matrix reordering techniques (Behrisch et al.,
2016), edge bundling (Lhuillier et al., 2017), and networks in social
media (Chen et al., 2017).

These surveys organise graph visualisationmethods at the tech-
nique level, or specialise in a particular technique and present a
survey of research in the area in-depth. These surveys do not focus
on questions about how scalable these representations are from a
human-centred perspective.

In the area of dynamic graphs, surveys have been conducted
on dynamic networks (Beck et al., 2017) and dynamic data in
information visualisation in general (Bach et al., 2017a). There have
also been reviews focused on the human-centred effectiveness
of animation, small multiples, and drawing stability (mental map
preservation) by summarising experimental results and providing
guidelines for visualisation designers. One such work by Archam-
bault and Purchase (2013) summarises empirical results that relate
to mental map preservation in dynamic graph drawing. In a later
work (Archambault and Purchase, 2016a), based on the results
of new studies, they review the conditions where animation and
small multiples are effective and present new results for diagrams
of low drawing stability. These papers focus on dynamic network
visualisation and do not consider network visualisation in general.
While providing a survey of human-centred effectiveness of visual-
isations to some degree, they do not consider cognitive scalability
of the representations directly.

In this paper, we review evaluations of node–link visualisations
of static and dynamic graphs. What is unique to our survey is
that it examines cognitive scalability of node–link visualisations
of graphs through the lens of human-centred experiments, to gain
bounds on the sizes of graphs that have been displayed to the
human while still usefully supporting analysis tasks. We seek to
answer this question by surveying the literature of controlled ex-
periments involving human participants to test node–link diagram
representations of networks. Our summary information about the
networks, techniques and tasks considered in these studies also
presents an up-to-date snapshot of the evolution and state-of-the-
art of controlled network visualisation evaluation.

3. Methodology

In this section, we clarify the scope of this survey, including
the venues that we examined, and describe our categorisation
framework. We have tried to be as systematic as possible in cover-
ing complete conference and journal venues with clearly defined
constraints, as detailed below.

3.1. Scope of survey

To the best of our ability, we have sought to include in this
survey all papers with a human-centred experiment (formal user
study) where at least one of the conditions is a node–link repre-
sentation. Both static and dynamic graph drawing studies were
considered. For much of our analysis we focus on individual stud-
ies, where papers could contain multiple studies. Throughout the
survey, ‘paper’ refers to the publication that presents the study,
while ‘study’ refers to an individual experiment.

Our time range begins with the earliest formal human studies
in network visualisation of which we are aware (Purchase et al.,
1995) and ends on the 31st of March 2018. We consider the major
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Table 1
Venues considered in this survey.
Venue First paper Studies Papers References

ACM CHI 2006 16 13 Zhao et al. (2015), Dunne and Shneiderman (2013), Alper et al. (2014), Moscovich et al.
(2009), Alper et al. (2013), Lee and Archambault (2016), Zhao et al. (2016), Song et al.
(2010), Holten and van Wijk (2009), Ezaiza et al. (2016), Schöffel et al. (2016),
Nekrasovski et al. (2006) and Chang et al. (2017)

Diagrams 2006 5 5 Yoon et al. (2006), Purchase and Samra (2008), Novick and Catley (2006), Chivers and
Rodgers (2014) and Ware et al. (2008)

EuroVis & CGF 2009 16 13 Okoe et al. (2014), Saket et al. (2016), Ghani et al. (2011), Okoe and Jianu (2015), Saket
et al. (2015), Ghani et al. (2012), Ziemkiewicz and Kosara (2009), Shin et al. (2011),
Archambault et al. (2010), Bae et al. (2017), Cypko et al. (2017), Tanahashi et al. (2016)
and Didimo et al. (2018)

GD 1995 25 23 Hu and Shi (2014), Meulemans and Schulz (2015), Bridgeman and Tamassia (2000),
Kobourov et al. (2014), Archambault et al., Zimmer and Kerren (2015), Burch et al.
(2011b), Federico and Miksch (2016), Giacomo et al. (2013), Marner et al. (2014),
Purchase et al. (2006), Huang et al. (2005), Archambault and Purchase (2012b), Barth
et al. (2015), Purchase et al. (2012a), Blythe et al. (1995), Purchase et al. (2000), Purchase
et al. (1995), Greffard et al. (2011), Purchase (1997b), Kindermann et al. (2017), Okoe
et al. (2017) and Ballweg et al. (2017)

IVJ 2002 19 14 North et al. (2011), Dawson et al. (2015), Robertson et al. (2002), Ware et al. (2002),
Farrugia and Quigley (2011), Keller et al. (2006), Huang et al. (2009b), Archambault and
Purchase (2016b), Ghoniem et al. (2005), Ware and Bobrow (2005), Liu et al. (2017),
Verspoor et al. (2018), Koylu and Guo (2017) and Hoque and Carenini (2018)

PacificVis 2008 7 6 Huang et al. (2009a), Holten et al. (2011), Huang et al. (2008), Archambault and Purchase
(2012a), Burch et al. (2013) and Huang et al. (2016a)

InfoVis & TVCG 2003 61 47 Archambault et al. (2011), Purchase et al. (2012b), Dwyer et al. (2009), Xu et al. (2012),
Netzel et al. (2014), Bae and Watson (2011), Rufiange and McGuffin (2013), Borkin et al.
(2013), Burch et al. (2011a), Wong et al. (2006), Bach et al. (2013), Kieffer et al. (2015),
Jianu et al. (2014), Yuan et al. (2012), Marriott et al. (2012), Saket et al. (2014), van Ham
and Rogowitz (2008), Cohe et al. (2015), Alper et al. (2011), Tennekes and de Jonge
(2014), Lee et al. (2006a), Hlawatsch et al. (2014), Dwyer et al. (2013), Shi et al. (2015),
Kwon et al. (2016), Guo et al. (2015), Huang et al. (2016b), Tan et al. (2007), Tu and Shen
(2008), Giacomo et al. (2007), Henry et al. (2008), Ziemkiewicz and Kosara (2008),
Kadaba et al. (2007), Wu et al. (2017), Cordeil et al. (2017), Yang et al. (2017a), Bach et al.
(2017b), Srinivasan and Stasko (2018), Yang et al. (2017b), Kwon et al. (2018),
Yoghourdjian et al. (2018), Walny et al. (2018), Zhao et al. (2018), Hu et al. (2018), Pienta
et al. (2018), Ghoniem et al. (2004), Wong et al. (2005) and Wong et al. (2003)

Other 3 3 Huang and Huang (2010), Huang (2007) and Huang et al. (2010)

Total 152 124

conferences and journals listed in Table 1, and examine all publi-
cations from this date, or the founding of, the conference/journal.
This date is based on the above limit and accessibility of the venue.
Well-known articles outside these venues are also included and
listed under ‘Other’.

Each author examined a venue that they were familiar with.
Another author double checked the encoding, thus having at least
two authors check each venue and encoding.

For most venues, we were able to read all titles and further
examine the abstracts of papers that were relevant to our survey.
The only exception was ACM CHI, where there were far too many
papers: CHI accepts up to 600 papers in total each year. Instead, we
found relevant papers at CHI using theHCI Bibliography.2 Aquery of
this database, limited to the CHI conference and using search terms
‘(network | graph) visuali* study’, returned 25 results,
of which close inspection revealed 12 to be relevant, as detailed in
Table 1.3

3.2. Categorisation framework

Information about each paper was collected and coded accord-
ing to a number of criteria. Section 4 reports our findings on the
sizes of graphs used in experiments. We identified the number
of nodes and edges used within each study and computed the
density of the graphs. If the study was on dynamic graphs, we
counted the number of timeslices. We noted if this information
was explicitly stated or whether it needed to be derived or inferred

2 http://hcibib.org/bs.cgi.
3 We also provide our curated bibliography as an online Tableau story http:

//vahany.com/media/networkSize.html.

(only nodes, only edges, or both). Exact numbers were sometimes
unavailable, but we estimated the sizes based on figures of the
stimuli (e.g. Huang et al. (2010) and Huang and Huang (2010)).
If authors provided the algorithm and parameters used to gener-
ate the graphs, we computed the size based on this information
(e.g. Holten and van Wijk (2009), Holten et al. (2011), Ware and
Bobrow (2005) and Xu et al. (2012)).

Section 5 discusses other factorswe found relating to scalability
and, as such, is divided into three parts: HCI factors, graph drawing
factors, and study design. The first part presents our findings on
factors relative to human–computer interaction and scalability.
We coded and described the types of tasks (Lee et al., 2006b) and
interaction (Yi et al., 2007) used in each study. Application areas –
if any – and the challenges they pose were also collected and are
discussed in this section. The second part presents graph drawing
factors related to scalability. We gathered information about the
types of graphs, whether they were static or dynamic, and if they
had attributes.We recorded information about the graph structure
and noted if the data was real or generated. We also coded the
layout algorithm used in the experiment. The third part discusses
factors with respect to study design, including the number and
nature of participants and whether the studies were within or
between subject. In addition, we discuss the results of the study,
and present the studies that are interesting in this data set.

Section 6 presents information about how the authors of ex-
periments decide how large a graph should be presented to a
participant. In particular, it discusses pilot studies and justification
for using graphs of a certain size. In Section 7, we discuss the
evolution of studies and their design over time in our community.
Information about how studies have evolved and their venues is
presented here also. The final sections of this paper include a dis-
cussion, recommendations for our community, and a conclusion.

http://hcibib.org/bs.cgi
http://vahany.com/media/networkSize.html
http://vahany.com/media/networkSize.html
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4. Basic measures of complexity

In this section, we consider measures of size that can be used to
describe the graphs used in studies.

There are numerous measures that could be used when con-
sidering complexity of graph visualisations. However, we have
found that in reports on graph study design and methodology,
typically, few are considered. The number of nodes is the most
commonly reportedmeasure. The number of edges and/or density,
on the other hand, is less frequently provided — although it is
known to be a significant factor (Ghoniem et al., 2005). More
edges, inevitably lead to more edge crossings, which is known to
affect readability (Purchase, 1997a). When the data changes over
time (i.e. dynamic graphs) additional measures, such as number of
timeslices, become similarly important to gauge complexity.

Since our interest is primarily in findings regarding the scalabil-
ity of network visualisation, we report on the distribution of graph
sizes consideredwithin studies. Table 2 summarises theminimum,
maximum, average, median, and upper/lower quartiles for these
metrics.While there is a large range across all thesemetrics, in each
case themedian is closer to theminimum. This skeweddistribution
implies that the majority of studies use small graphs.

In order to have a better understanding of the range of sizes
of graphs used across and within user studies, we plotted for
each study the number of nodes against the number of edges
for both the smallest graph used in each study and the largest
(Figs. 1, 2). Each minimum and maximum pair is connected by a
link showing the range of graph sizes evaluated in that study. The
circles are: hollow if the number of nodes and edges was not
mentioned by the authors; double enclosed if only the number
of nodes was mentioned; full if both number of nodes and edges
were mentioned, or both metrics were otherwise apparent (e.g. if
number of nodes n was given and the graph type was a tree, we
assumed n−1 edgeswere present). In caseswhere the information
was not mentioned we estimated the graph sizes from the figures
(e.g. Zhao et al. (2016), Schöffel et al. (2016), Okoe and Jianu (2015),
Ziemkiewicz and Kosara (2009), Bridgeman and Tamassia (2000),
Burch et al. (2011a), Kieffer et al. (2015), van Ham and Rogowitz
(2008), Tennekes and de Jonge (2014), Giacomo et al. (2007),
Ziemkiewicz and Kosara (2008) and Tanahashi et al. (2016)). We
also used the hue of the circles to differentiate between static
and dynamic graphs.

Where precise sizes were not provided, we did our best to infer
approximate sizes. For example, in some cases we were able to
estimate the graph sizes from the figures (Zhao et al., 2016; Schöffel
et al., 2016; Okoe and Jianu, 2015; Ziemkiewicz and Kosara, 2009;
Bridgeman and Tamassia, 2000; Burch et al., 2011a; Kieffer et al.,
2015; van Ham and Rogowitz, 2008; Tennekes and de Jonge, 2014;
Giacomo et al., 2007; Ziemkiewicz and Kosara, 2008; Tanahashi
et al., 2016).

The following subsections discuss each of the four measures of
Table 2 in more detail.

4.1. Number of nodes

The number of nodes in a graph is an important, but incomplete
indicator, of complexity. It is clear that, for most tasks, difficulty
is affected by introducing more nodes to a connected graph. We
would assume that most experimenters pilot, or at least consider,
graphs with different numbers of nodes to avoid tasks that are too
trivial or impossible. Yet out of the 152 studies covered in this
survey, 28 studies do not mention node count at all.

Among the studies that are included in our survey, 15 studies
use graphs with more than 1000 nodes (Marner et al., 2014; Wong
et al., 2006; Borkin et al., 2013; Nekrasovski et al., 2006; Dunne
and Shneiderman, 2013; Archambault et al., 2010; Zimmer and

Kerren, 2015; Ware and Bobrow, 2005; Tu and Shen, 2008; Wu
et al., 2017; Liu et al., 2017; Kwon et al., 2018; Yoghourdjian
et al., 2018) and another nine that use graphs with more than 500
nodes (Moscovich et al., 2009; Lee and Archambault, 2016; Okoe
et al., 2014; Jianu et al., 2014; Yuan et al., 2012; Purchase et al.,
2012b; Yoghourdjian et al., 2018; Srinivasan and Stasko, 2018).

Among these studies, the majority aim is to evaluate tools that
use interactive exploration to extract parts (e.g. neighbourhoods)
of the graph (20/24 studies, 83%). Some of these studies evaluate
aggregation techniques, thus they would require graphs with a
large number of nodes, in order to highlight the benefits of com-
pressing several nodes into fewer representations.

It is problematic to infer cognitive scalability of graph visualisa-
tion in the presence of interactivity because most of these studies
donot ask the participants to perform the tasks on thewhole graph.
Rather, only a part of the graph is visible. When the authors do
not report the precise number of nodes actually visible to the user,
there is little that can be inferred about cognitive scalability. Eight
of these 24 studies also use smaller networks with fewer than 100
nodes in their evaluations. This is shownby the long lines (Figs. 1, 2)
that connect different graph sizes used by the same studies.

In order to understand the selection of number of nodes, we
plotted a histogram of the number of nodes. Fig. 3 shows a number
of spikes around specific numbers of nodes: 20, 50, and 100. The
biggest spikes are at graphs with 50 nodes, which were used
by 18 studies, followed by 20 and 100, used in 16 and 14 stud-
ies respectively. We believe that spikes at these round numbers
suggest experimenters choose the number of nodes arbitrarily.
These round numbers were not identified by empirical research
and a formal study on ceiling and floor effects for graph cognitive
scalability might lead to a better selection of number of nodes.

Nine additional studies use graphs with more than 200 nodes.
Similar to the above, some of these studies only show subparts of
the network (Ware et al., 2008; Cypko et al., 2017; Kwon et al.,
2016; Okoe et al., 2017), while some evaluate tools that scale well
with large networks (Ware et al., 2008; Cypko et al., 2017; Kwon
et al., 2016; Holten et al., 2011; Giacomo et al., 2013; Burch et al.,
2011a, 2013; Greffard et al., 2011). Four out of these nine studies
have also used networks with less than 100 nodes.

To conclude, only 56 out of 152 studies use graphs with more
than 100 nodes. Most of the studies that use a large number of
nodes, use abstractions or aggregation to show only parts of the
graph at a time, but do not report on the number of nodes seen at
a given abstraction. In general, it is not clear whymost researchers
choose to use graphswith 100 nodes or less (121/152 studies, 80%).
Some authors mention pilot studies where they discovered ceiling
or floor effects,which could be seen as indications of cognitive scal-
ability.We discuss these in Section 6.1; however to our knowledge,
controlled studies were not conducted to verify or explain these
effects.

4.2. Number of edges

The number of edges in a graph is also an important indicator of
complexity, especially in node–link diagrams, where the edges are
drawn as lines. A large number of edges necessitate an increased
number of crossings and overlap (collinear and therefore ambigu-
ous lines). An excessive number of links often lead to what are
known as ‘hairball’ visualisations. Among the 152 studies covered
in this survey, 124 explicitly mention the number of nodes, while
only 87 specify the number of edges.

There are only 28 studies that use graphs with 1000 edges
or more. Most of these allow the participants to look at parts of
the network instead of performing the task on the whole net-
work (Nekrasovski et al., 2006; Dunne and Shneiderman, 2013;
Archambault et al., 2010; Ware and Bobrow, 2005; Liu et al., 2017;
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Table 2
Summary of graph sizes used in usability studies of graph visualisation. We used |E|

|V |(|V |−1) to calculate density, and |E|

|V |
to

calculate linear density.
Measure Minimum Maximum Average Median Lower quartile Upper quartile

Nodes 2 113 M. 457,242 49.5 18.5 116.5
Edges 1 1.8 B. 7.87 M. 73 23 242.5
Density 0.014 115.5 10 5 1.7 10
Linear density 0.38 102.8 3.5 1.5 1 2.4
Timeslices 2 15 6 6 3 7

Fig. 1. The size of graphs used in user studies. The x-axis shows the number of nodes, while the y-axis shows the number of edges. Both axes have a log scale. The grey
circles represent static graphs, while the blue shows dynamic graphs.

Fig. 2. The section, marked by red dotted lines in Fig. 1, magnified for better readability.

Verspoor et al., 2018; Lee et al., 2006a; Okoe et al., 2014;Moscovich
et al., 2009; Kwon et al., 2016; Zimmer and Kerren, 2015; Giacomo
et al., 2013; Okoe et al., 2017; Tu and Shen, 2008; Yuan et al., 2012;
Henry et al., 2008; Pienta et al., 2018;Wong et al., 2006; Srinivasan

and Stasko, 2018; Shi et al., 2015). Similar to studies that use a
large number of nodes to highlight the benefits of aggregation or
interaction methods, some studies use a large number of edges to
show the benefits of edge compression, bundling, or highlighting
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Fig. 3. Histogram of the minimum (light blue) and maximum (dark blue) number of nodes of graphs used in studies.

Fig. 4. Histogram of the minimum (light blue) and maximum (dark blue) number of edges of graphs used in studies.

techniques. Many evaluate tools or techniques, by design, scale
well to handle graphs with a large number of edges. For example,
a study by Giacomo et al. (2013) evaluates a technique that high-
lights edges in order to enhance the readability of graphs that have
many edge crossings. Another category of studies that use a large
number of edges, evaluate visualisations (e.g. adjacency matrices)
that scale well with a large number of edges in comparison to
node–link diagrams (Ghoniem et al., 2005; Bae andWatson, 2011;
Henry et al., 2008; Yang et al., 2017b; Kwon et al., 2018; Okoe et al.,
2017).

Again, just as we saw spikes in frequency at round numbers
of nodes used for study graphs (Fig. 3), in Fig. 4 we see spikes
particularly at 10, 20, 60, and 100 edges. However, the spikes
are less pronounced: only ten, seven, seven, and eight studies,
respectively. The smaller spikes for number of edges compared
to number of nodes, tend to suggest that experimenters choose a
specific number of nodes first, then adjust the density, presumably
to control the difficulty level for their specific tasks. We found that
97 studies use graphs with less than 100 edges, while 75 studies
use graphs with 100 edges or more.

In summary, we were surprised that about half of the studies
do not report the number of edges. We would argue that without
this information, graph evaluations are difficult to reproduce. The
majority of studies use graphs with less than 1000 edges (126/152
studies, 83%). The 28 studies that use graphs with 1000 edges or
more, either evaluate tools that require dense community struc-
tures, aim to show that node–link diagrams fail to performwell on
graphs with a large number of edges, or highlight the benefits of
aggregation and interaction techniques.

4.3. Density

The previous section mentions studies that use graphs with a
large number of edges. Nonetheless, most of these graphs have
very low densities (relatively few edges to the number of nodes).

In this section we focus on studies that explicitly consider the
effect of density on readability. We used |E|

|V |(|V |−1) to calculate
density. This represents the ratio of the number of existing edges E
to the number of all possible edges for the number of nodes V . For
simplicity, we multiply this ratio by 100 to achieve percentages.

There are also other ways to derive density. The so-called linear
density |E|

|V |
is often used to compare the number of edges E to the

number of nodes V . In this measure, tree-like graphs will have
density close to 1. Ghoniem et al. (2004) suggest using square-root
density

√
|E|

|V |2
, since its range is bounded to the interval [0, 1

√
2
).

Any of these definitions can be used; the choice depends on util-
ity (Melancon, 2006).

Fig. 5 shows the density of real and generated graphs used in
studies.Most studies use graphswith densities of 50% or less. There
are only three studies that use graphs with densities higher than
50% (Verspoor et al., 2018; Yang et al., 2017a; Hlawatsch et al.,
2014). All three studies evaluate methods that are tailored to scale
well for dense networks.

In fact, all studies that use graphs with ten nodes or more and
a density of more than 20% evaluate matrix-like visualisations
that scale well for dense graphs (Zhao et al., 2016; Keller et al.,
2006; Ghoniem et al., 2005; Yang et al., 2017b) or evaluate edge-
compression and edge-bundling tools (Dwyer et al., 2013; Bach
et al., 2017b).

In summary, in the surveyed studies, dense graphs are mostly
small and have less than ten nodes. The only studies that evaluate
visualisations using dense graphs (>20% density) with more than



270 V. Yoghourdjian, D. Archambault, S. Diehl et al. / Visual Informatics 2 (2018) 264–282

Fig. 5. The density of graphs used in the studies. Out of 152 studies, 129 studies use sparse graphs with densities of less than 20%, while 119 studies use graphs with less
than 10% density.

a trivial number of nodes, tend to be those testingmatrix diagrams
or edge compression techniques.With the exception of these types
of studies, all studies that use graphs with more than 50 nodes,
choose to use sparse graphs with a density of less than 10%. 119
out of 152 studies (78%) use graphs with a density of less than 10%,
while 129 out of 152 studies (85%) use graphs with less than 20%
density.

4.4. Number of timeslices

In the case of dynamic graphs or static graphs with dynamic
attributes, and in addition to the number of nodes, and the number
of edges or density, the number of timeslices is an important
measure of cognitive scalability.

Among the 152 studies (described in 124 papers) covered in
this survey, 22 use dynamic graphs. Compared to the reporting of
size metrics discussed above, it seems dynamic graph evaluation
papers are reasonably consistent about reporting the number of
timeslices.

Fig. 6 shows a histogram of the number of timeslices. For pre-
vious metrics, we used the minimum and maximum values to
derive the charts, but since there are only a few studies that use
dynamic graphs, we included all the values. There is no visible
difference between odd and even numbers. There is, however, a
clearly visible spike at six timeslices. Seven studies, out of the total
22, use dynamic graphs with six timeslices.

We suggest that six timeslices are typically chosen as it is
small enough for a small multiples representation of a dynamic
graph to fit on a screen with each timeslice being at a reason-
able scale. Farrugia and Quigley (2011) conduct two studies in
order to compare animated displays to static ones. They used two
graphs with six timeslices each. For the static view, they placed
the six timeslices next to each other on a 2 × 3 grid. Similarly,
Archambault and Purchase (2016b) conduct a study that evaluates
the effects of three factors—static versus animated presentation of
dynamic attribute values, force-directed versus hierarchical layout
of constant graph structure, and ‘with history’ versus ‘without
history’ persistence, for displaying graphswith dynamic attributes.
They use six timeslices, with each covering one-sixth of the screen.

Shi et al. (2015) conduct the only study that tests a variety
of time slice counts. They demonstrate the scalability of various
aggregation techniques against the more typical small multiples
display of timeslices. They use four dynamic graphs with different

Fig. 6. Histogram of the number of timeslices of dynamic graphs used in the
surveyed studies.

numbers of timeslices. They use graphs with 15, 12, 4, and 5 times-
lices and 674, 109, 298, and 16 nodes respectively. For their small-
multiples condition, they use either a 6 or 24-cell grid to make
the full set of timeslices for each graph visible. Unlike the studies
above, where the number of timeslices was chosen to fill the small
multiplies grid, in this study the odd numbers of timeslices would
have left part of the screen unused.

Others choose the number of timeslices according to the norms
of specific application areas. North et al. (2011) use a directed graph
with 46 nodes, 36 edges, and 12 timeslices in their evaluation
of three existing visualisation methods for dynamic graphs. They
claim that this is a typical size of pathways used by Biologists.

In addition to the number of timeslices, the number of graph
elements that change from one timeslice to another is important.
Authors report these values in different ways. For example, some
state the maximum number of changed elements (Archambault
andPurchase, 2012b),while others report on the average (Purchase
and Samra, 2008; Purchase et al., 2006).

In summary, the number of timeslices for dynamic graphs is
often small. Most studies use less than ten timeslices (except
for North et al. (2011); Shi et al. (2015)). Moreover, they often
consider only a fixed number of timeslices (except Shi et al. (2015)
who use four variations). Some studies pick the number of times-
lices to best fit their visualisations on screen. Others choose what
is common in the respective application area.

5. Other factors and scalability

In addition to the basic measures of the previous section, other
factors and their interplay influence the cognitive scalability of
graph visualisations. In the following sections, we discuss HCI,
graph drawing, and study design factors.
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5.1. HCI factors

Graph visualisations are often tailored to efficiently serve
domain-specific tasks. Modern visualisation tools are equipped
with heavy interaction. Such Human–Computer Interaction (HCI)
factors play a key role in allowing graph visualisations to scale to
larger data sets. They were rarely investigated in earlier visualisa-
tions, but have been widely discussed in recent times.

In this section, we discuss the interplay between different types
of tasks, interaction techniques and application areas on one hand,
and the basic measures of graph size on the other.

5.1.1. Tasks
To analyse and understand the trend, as well as the impacts

of scalability in relation to tasks, we classified the various tasks
used in studies into fourmain categories based on the taxonomy of
Lee et al. (2006b). Fig. 7(a) shows a summary of tasks investigated
in our survey: Topology-based tasks allow participants to detect
node adjacency, accessibility, common connection, and connec-
tivity. Attribute-based tasks support identification of nodes and
links by the data attributes associated with them. Browsing tasks
include following or revisiting a path. High-level or deliberately
more abstract tasks were classified as Overview tasks. Note that we
considered tasks that asked the participants to find the shortest
path to be in the Topology-based category, even if they required
some paths following. We categorised path following tasks as
Browsing, only if participants were explicitly asked to follow a
certain path.

Table 3 shows how the different tasks were used in the 152
studies (noting that several studies used more than one task).
Topology-based tasks were the most common (47%), followed by
Attribute-based (22%) and Overview (21%). Three quarters of the
studies (114 studies) used tasks that are categorised as Topology-
based.

This might be an indication that researchers perceive tasks
concerned with understanding the structure of the graph as good
evaluationmeasures for graph visualisation. However, the number
of studies that use Topology-based decreases as graph size in-
creases, while Overview tasks become more popular. They become
equally popular (37%) in studies that use graphs with 300 nodes
or more. For graphs with 1000 nodes or more, Overview tasks are
used excessively (43%), while Topology-based tasks become less
common (30%). We believe that this is expected, since Overview
tasks do not require a detailed understanding of the graph, but deal
with general properties and estimates.

In order to understand the combinations of tasks in each study,
we plot these as composite nodes in Fig. 8. Six studies use only
Topology-based tasks when using graphs with 500 nodes or more
(Burch et al., 2013, 2011a; Nekrasovski et al., 2006; Okoe et al.,
2014;Wong et al., 2006). The first three studies (Burch et al., 2013,
2011a; Nekrasovski et al., 2006) use graphs with a simpler struc-
ture, i.e. trees. Moreover, the trees they use have less than 1000
nodes. The other three studies (Wong et al., 2006; Nekrasovski
et al., 2006; Pienta et al., 2018), which use graphs with more than
5000 nodes, allow participants to interact with the graphs and
show only parts of the graph at a given time. This implies that tasks
and interactions aremutually reinforcing each other in large graph
visualisation.

Marner et al. (2014) use a large graph with 7885 nodes and
427,406 edges in their study. They project the graph on a wall-
sized display and ask participants to untangle it until they achieve
a better overview. We believe that even though their process
allowed for anOverview task, itwould have been almost impossible
for the participants to perform more complex tasks, such as path-
finding or counting triangles. Similarly, Kwon et al. (2018) use
graphs of up to 113 million nodes and 1.8 billion edges in their

study, but only ask the participants to rate the similarities between
the graphs. Note that among all tasks, Topology-based tasks have
beenwidely used inmost of the studies since the connectivity plays
a key role for understanding graph structures. Path finding is the
most common task (66 over 114 in our survey) among Topology-
based tasks, and therefore can serve as the primary task for demon-
strating the usability of graph visualisation. For example, following
the investigation by Bae and Watson (2011), and Ghoniem et al.
(2004), it is reasonable to use node–link diagrams for path-finding
purposes when the graph is less than 200 nodes.

Another interesting study using Topology-based tasks is con-
ducted by Moscovich et al. (2009). They use two graphs with
1000 nodes. The sparser one has 1485 edges, while the denser
one has 2488 edges. We believe that they wanted a graph large
enough to make the task difficult, especially when finding the
immediate neighbours of a given node. The authors propose an
interactive navigation technique Bring-and-Go, which aids this task
by bringing all adjacent nodes closer to a selected node. This study
demonstrates the complexity of these tasks on graphs with a large
number of edges. Both error rates and performance times increase
significantly from the sparser graph to the denser graph.

Some authors discuss the choice of graph sizes in relation to
the results of their studies. Huang et al. (2009b) justify the in-
crease in errors by explaining that human perception and cognitive
systems become overburdened when dealing with large graphs,
even with 25 nodes and 98 links. Okoe et al. (2014) use a graph
with 900 nodes and 2500 edges. However, they mention a high
error rate of more than 50%. They associate this to the difficulty
of the tasks. They explain that the large number of edges voided
the highlighting advantage of the evaluated technique. Wong et al.
(2006) mention that they tried to use graphs that were not too
complex, but their attempts were not successful for all the tasks.

Only nine out of the 53 studies that require participants to
perform Attribute-based tasks, use more than 200 nodes (Dunne
and Shneiderman, 2013; Lee and Archambault, 2016; Archambault
et al., 2010; Cypko et al., 2017; Borkin et al., 2013; Jianu et al.,
2014; Srinivasan and Stasko, 2018; Pienta et al., 2018; Zimmer
and Kerren, 2015). Two of these studies aggregate multiple nodes
into singular representations: motifs (Dunne and Shneiderman,
2013) and metanodes (Archambault et al., 2010). It is natural to
assume that Attribute-based taskswould be difficult on graphswith
too many elements, since Attribute-based tasks are related to data
attributes associated to nodes and links.While this is backed by our
survey for number of nodes, the number of edges ranges between
10 and 1000 for most studies using Attribute-based tasks.

For Browsing tasks, we assumed that experimenters would use
sparse graphs. This is backed by our findings as shown in Fig. 9.
Also, in addition to the density of the graphs, studies that require
performing Browsing tasks use graphs with few number of nodes
(≤200), with the exception of five outliers (Moscovich et al., 2009;
Archambault et al., 2010; Ware and Bobrow, 2005; Kwon et al.,
2016; Srinivasan and Stasko, 2018). Four of these outliers use
interactive highlighting to assist the participants in performing the
task (Moscovich et al., 2009; Ware and Bobrow, 2005; Kwon et al.,
2016; Srinivasan and Stasko, 2018), while the fifth (Archambault
et al., 2010) usesmetanodes andmetaedges, which are aggregations
of multiple nodes and edges into singular representations. As seen
in Fig. 8, Browsing tasks are only used on very sparse graphs
(<10%), except for one study by Zhao et al. (2016) that uses graphs
with 40% and 42.9% densities. The latter allows participants to
highlight specific nodes and their connections, thus showing small
subsets of edges at a given time.

In summary, Topology-based tasks are the most common tasks
to evaluate graph visualisation; nonetheless, the number of
Topology-based tasks is relatively reduced when using graphs with
more than 300 nodes. In such cases, Overview tasks become more
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Fig. 7. Task and interaction taxonomies. Task taxonomy (a) proposedby Lee et al. (2006b),whichmainly includes Topology,Attribute,Browsing, andOverview tasks. Interaction
types (b) introduced by Yi et al. (2007), which include Select, Explore, Reconfigure, Encode, Abstract/Elaborate, Filter, and Connect. However, Create is newly added in our
taxonomy.

Fig. 8. Types of different categories of tasks used in studies with relation to the number of nodes (on the x-axis) and the number of edges (on the y-axis). The areas of the
circles reflect the count of studies that use similar values. Both axes have log scales.

common, especially when the tasks are assisted with multiple
interaction techniques. Sparse graphs (<10%) with few nodes
(≤200) are used when asking the participants to perform Browsing
tasks. Similarly, Attribute-based tasks are not common in studies
that use graphs with more than 200 nodes.

5.1.2. Interaction
Early graph experiments did not makemuch use of interaction;

their focus being on the interpretation of static graph drawing—
often being simply presented on paper (e.g. Purchase (1997b),

Purchase et al. (2000) and Purchase et al. (1995)). In more recent
years, several experiments have tested the worth of node–link
diagrams using interactive systems that permit more extensive
exploration of the relational information. In such cases, the use of
interaction techniques is often a crucial component of the study
design.

We used the interaction taxonomy of Yi et al. (2007) as a
means of classifying the different types of interaction used in the
experimental studies: Select allows users tomark objects on screen
as interesting; Explore enables users to navigate a hidden subset
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Table 3
The type of tasks used within the studies.
Task References # of studies

Attribute Zhao et al. (2015), Dunne and Shneiderman (2013), Lee and Archambault (2016), Zhao et al. (2016), Song et al. (2010), Ezaiza
et al. (2016), Schöffel et al. (2016), Tanahashi et al. (2016), Chivers and Rodgers (2014), Saket et al. (2016), Saket et al. (2015),
Ghani et al. (2012), Shin et al. (2011), Archambault et al. (2010), Bridgeman and Tamassia (2000), Archambault et al., Zimmer
and Kerren (2015), Federico and Miksch (2016), Huang et al. (2005), North et al. (2011), Robertson et al. (2002), Keller et al.
(2006), Archambault and Purchase (2016b), Ghoniem et al. (2005), Wong et al. (2005), Borkin et al. (2013), Bach et al. (2013),
Jianu et al. (2014), Saket et al. (2014), Tennekes and de Jonge (2014), Lee et al. (2006a), Hlawatsch et al. (2014), Guo et al. (2015),
Huang et al. (2016b), Tan et al. (2007), Giacomo et al. (2007), Ziemkiewicz and Kosara (2008), Kadaba et al. (2007), Srinivasan
and Stasko (2018), Zhao et al. (2018), Pienta et al. (2018), Koylu and Guo (2017); Hoque and Carenini (2018), Bae et al. (2017)
and Cypko et al. (2017)

53

Browsing Alper et al. (2014), Moscovich et al. (2009), Zhao et al. (2016), Song et al. (2010), Saket et al. (2016), Archambault et al. (2010),
Archambault and Purchase (2012b), Barth et al. (2015), Ware and Bobrow (2005), Huang et al. (2009a), Huang et al. (2008),
Dwyer et al. (2009), Netzel et al. (2014), Bae and Watson (2011), Wong et al. (2003), Cohe et al. (2015), Lee et al. (2006a), Kwon
et al. (2016), Srinivasan and Stasko (2018), Zhao et al. (2018), Hu et al. (2018), Hoque and Carenini (2018) and Kindermann et al.
(2017); Didimo et al. (2018)

26

Overview Dunne and Shneiderman (2013), Alper et al. (2014), Alper et al. (2013), Zhao et al. (2016), Saket et al. (2015), Ziemkiewicz and
Kosara (2009), Archambault et al. (2010), Archambault et al., Zimmer and Kerren (2015), Federico and Miksch (2016), Marner
et al. (2014), Purchase et al. (2006), Huang et al. (2005), Purchase et al. (2000), Greffard et al. (2011), North et al. (2011),
Ghoniem et al. (2005), Ware and Bobrow (2005), Archambault and Purchase (2012a), Archambault et al. (2011), Netzel et al.
(2014), Borkin et al. (2013), Bach et al. (2013), Kieffer et al. (2015), Jianu et al. (2014), Yuan et al. (2012), Tennekes and de Jonge
(2014), Hlawatsch et al. (2014), Shi et al. (2015), Guo et al. (2015), Tu and Shen (2008), Henry et al. (2008), Wu et al. (2017),
Srinivasan and Stasko (2018), Yang et al. (2017b), Kwon et al. (2018), Yoghourdjian et al. (2018), Liu et al. (2017), Verspoor et al.
(2018), Koylu and Guo (2017), Okoe et al. (2017) and Ballweg et al. (2017)

52

Topology Dunne and Shneiderman (2013), Alper et al. (2014), Moscovich et al. (2009), Alper et al. (2013), Lee and Archambault (2016),
Zhao et al. (2016), Song et al. (2010), Holten and van Wijk (2009), Ezaiza et al. (2016), Nekrasovski et al. (2006), Huang (2007),
Tanahashi et al. (2016), Yoon et al. (2006), Purchase and Samra (2008), Novick and Catley (2006), Chivers and Rodgers (2014),
Ware et al. (2008), Okoe et al. (2014), Saket et al. (2016), Ghani et al. (2011), Okoe and Jianu (2015), Saket et al. (2015),
Ziemkiewicz and Kosara (2009), Shin et al. (2011), Archambault et al. (2010), Hu and Shi (2014), Meulemans and Schulz (2015),
Bridgeman and Tamassia (2000), Kobourov et al. (2014), Archambault et al., Burch et al. (2011b), Federico and Miksch (2016),
Giacomo et al. (2013), Purchase et al. (2006), Huang et al. (2005), Purchase et al. (2012a), Blythe et al. (1995), Purchase et al.
(1995), Purchase (1997b), North et al. (2011), Dawson et al. (2015), Robertson et al. (2002), Ware et al. (2002), Farrugia and
Quigley (2011), Keller et al. (2006), Huang et al. (2009b), Ghoniem et al. (2005), Ware and Bobrow (2005), Huang et al. (2009a),
Holten et al. (2011), Huang et al. (2008), Archambault and Purchase (2012a), Burch et al. (2013), Huang et al. (2016a),
Archambault et al. (2011), Purchase et al. (2012b), Dwyer et al. (2009), Xu et al. (2012), Netzel et al. (2014), Rufiange and
McGuffin (2013), Wong et al. (2005), Burch et al. (2011a), Wong et al. (2006), Kieffer et al. (2015), Jianu et al. (2014), Marriott
et al. (2012), Saket et al. (2014), van Ham and Rogowitz (2008), Alper et al. (2011), Tennekes and de Jonge (2014), Lee et al.
(2006a), Hlawatsch et al. (2014), Dwyer et al. (2013), Shi et al. (2015), Kwon et al. (2016), Tan et al. (2007), Henry et al. (2008),
Ziemkiewicz and Kosara (2008), Kadaba et al. (2007), Huang and Huang (2010), Huang et al. (2010), Chang et al. (2017), Cordeil
et al. (2017), Yang et al. (2017a), Bach et al. (2017b), Srinivasan and Stasko (2018), Yang et al. (2017b), Walny et al. (2018), Zhao
et al. (2018), Hu et al. (2018), Pienta et al. (2018), Liu et al. (2017), Verspoor et al. (2018), Hoque and Carenini (2018),
Kindermann et al. (2017), Okoe et al. (2017), Ballweg et al. (2017), Didimo et al. (2018), Bae et al. (2017) and Cypko et al. (2017)

114

Fig. 9. Types of different categories of tasks used in studies with relation to the number of nodes (on the left) and the density (on the right). The areas of the circles reflect
the count of studies that use similar values.

of data; Reconfigure changes spatial arrangement; Encode allows
users to transform data values to their preferred visual language
(e.g. colour, size, or shapes); Abstract/Elaborate enables users to
adjust the level of detail of a data representation; Filter allows

users to prevent the display of data fulfilling given conditions,
and Connect allows the highlighting of relationships between data.
For the purposes of this survey, we added an additional category:
Create, which allows users to generate graph drawings.
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Fig. 10. Types of different interaction used in studies with relation to the number of nodes and the number of edges. Both axes have log scales.

Of the 152 studies, 80 used no interaction at all. Table 4 shows
how the remaining 72 used interaction (noting that several studies
used more than one interaction technique). Of all the occasions
when interaction techniques were used, Abstract/Elaborate was
most common (20%), followed by Select (19%), Explore (16%) and
Reconfigure (16%). Thus, there is no single category that dominates
(unlike our finding with the task category).

Fig. 10 shows the different types of interaction used in the
studies, with respect to graph size. We note that 25 of 60 studies
(42%) use a single interaction type for those graphs with 500 nodes
or fewer, while for those studies using graphs with more than 500
nodes, this ratio drops to 32% (6 out of 19 studies).

Tiny graphs (e.g. 4 nodes and 5 edges) are easy to understand
without the support of interaction (see lower dashed lines shown
in Fig. 11), although even studies that used graphs with as few as
ten nodes and ten edges used interaction. The majority of studies
that do not use any interaction use graphs with 100 nodes or less
(70/80 studies, 88%) and 500 edges or less (71/80 studies, 89%)
(upper dashed lines in Fig. 11). These bounds allow us to group the
interaction techniques into two sets: techniques used on graphs
with greater than 100 nodes and 500 edges: Abstract/Elaborate,
Connect, Explore,Reconfigure, Select; and techniques used on graphs
with fewer than 100 nodes and 500 edges: Encode, Create, and
Filter . If we consider the degree of effort required by the user in
applying these techniques, the first set can be considered relatively
straight-forward—the techniques are usually tested by having par-
ticipants apply the built-in functionality to look at the data in a
different way until the answer is obvious. By contrast, Encode and
Create require more effort on the part of the users, since (possibly
creative) decisions need to be made.

Interaction tasks can come with a time trade-off, however, for
example, finding labels inside an abstract node (which represents
a set of aggregated nodes), could be more time consuming due to
the interaction, than the task of finding labels outside of it, which
is always completed faster (Dunne and Shneiderman, 2013). Care,
therefore, needs to be taken in the interpretation of the timing data
collected (especially if participants are allowed unlimited time to
perform their task), since such data might include superfluous
interaction.

To conclude, the combination of multiple interactions can im-
prove the visualisation of large graphs, and this is more significant
as graph size increases. Based on the studies we analysed, the floor
effect of interaction lies at the boundary of nodes equal to 4 and
edges equal to 5, with ceiling effect at 100 nodes and 500 edges.

5.1.3. Application areas
There are several domain-specific studies where the aim is

enhanced understanding of the content, and so the tasks were
clearly focused on the domain knowledge (e.g. Robertson et al.
(2002); Novick and Catley (2006)). For example, Tanahashi et al.
(2016) performed a comparative study of four different ways of
presenting data for the purposes of introducing information vi-
sualisation to novices, where a graph drawing was one of the
visualisation types. Their analysis not only considered the efficacy
of the visualisations, but also looked at two different types of
learning (active and passive), and two different teaching methods
(top-down and bottom-up). They were therefore able to propose
guidelines for writing effective information visualisation tutorials.
North et al. (2011) compared two different types of evaluation
(benchmark and insight) using three different visualisation alter-
natives depicting gene expression data, and all tasks were related
to understanding of the data.

While some application areas have well defined and restricted
characteristics for the networks under investigation, in others
there can be a large range of impacting factors that potentially
affect scalability. In the life sciences, a variety of network types
are investigated, ranging in size from a few dozen to a few million
nodes, and showing a similar variety in other network character-
istics, e.g. density or diameter. In addition, the required tasks can
differ significantly between use cases, e.g. from deciding reacha-
bility to the detection of dynamic patterns, which affects the limits
of readability. RNA sequence graphs, like the ones used in Marner
et al. (2014), can have up to several million nodes and edges, and
dense local structures, but they often have a very sparse global
structure, making the visual detection of so-called repeats (loops
that indicate repetitive structures in RNA sequences), a feasible
task. On the other hand, metabolic pathways like the ones used
in Zimmer and Kerren (2015) are often planar or near-planar
graphs with low local and global density, but require that the
semantics associated with the metabolic flow is incorporated in
the layout and the visual representation.While these pathways are
parts of a large and complex network of metabolic reactions in an
organism, the visual analysis is often restricted to such sparse sub-
networks that have a specific functionality, e.g. the synthesis of a
particular biomolecule.

5.2. Graph drawing factors

For several decades now, the field of Graph Drawing has led to
the development of efficient algorithms for layout computation as
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Fig. 11. Interaction types used in studies with relation to the number of nodes (on the left), and the number of edges (on the right).

Table 4
The type of interaction used within the studies.
Interaction References # of studies

None Alper et al. (2014), Alper et al. (2013), Holten and van Wijk (2009), Schöffel et al. (2016), Huang (2007), Tanahashi et al. (2016),
Yoon et al. (2006), Purchase and Samra (2008), Chivers and Rodgers (2014), Okoe and Jianu (2015), Ziemkiewicz and Kosara
(2009), Hu and Shi (2014), Meulemans and Schulz (2015), Bridgeman and Tamassia (2000), Archambault et al., Burch et al.
(2011b), Giacomo et al. (2013), Purchase et al. (2006), Huang et al. (2005), Archambault and Purchase (2012b), Purchase et al.
(2012a), Blythe et al. (1995), Purchase et al. (2000), Purchase et al. (1995), Greffard et al. (2011), Purchase (1997b), North et al.
(2011), Dawson et al. (2015), Ware et al. (2002), Farrugia and Quigley (2011), Keller et al. (2006), Huang et al. (2009b),
Archambault and Purchase (2016b), Huang et al. (2009a), Holten et al. (2011), Huang et al. (2008), Archambault and Purchase
(2012a), Burch et al. (2013), Huang et al. (2016a), Xu et al. (2012), Kieffer et al. (2015), Jianu et al. (2014), Alper et al. (2011),
Tennekes and de Jonge (2014), Hlawatsch et al. (2014), Dwyer et al. (2013), Guo et al. (2015), Tan et al. (2007), Ziemkiewicz and
Kosara (2008), Kadaba et al. (2007), Huang and Huang (2010), Huang et al. (2010), Wu et al. (2017), Yang et al. (2017a), Bach
et al. (2017b), Yang et al. (2017b), Kwon et al. (2018), Yoghourdjian et al. (2018), Hu et al. (2018), Verspoor et al. (2018), Koylu
and Guo (2017), Ballweg et al. (2017), Didimo et al. (2018) and Bae et al. (2017)

80

Abstract–Elaborate Dunne and Shneiderman (2013), Alper et al. (2014), Moscovich et al. (2009), Song et al. (2010), Ezaiza et al. (2016), Nekrasovski
et al. (2006), Ware et al. (2008), Okoe et al. (2014), Ghani et al. (2011), Shin et al. (2011), Archambault et al. (2010), Kobourov
et al. (2014), Zimmer and Kerren (2015), Purchase et al. (2012b), Netzel et al. (2014), Wong et al. (2005), Wong et al. (2003),
Borkin et al. (2013), Wong et al. (2006), Yuan et al. (2012), Saket et al. (2014), Cohe et al. (2015), Lee et al. (2006a), Shi et al.
(2015), Tu and Shen (2008), Giacomo et al. (2007), Srinivasan and Stasko (2018), Pienta et al. (2018), Liu et al. (2017), Okoe et al.
(2017) and Cypko et al. (2017)

32

Connect Zhao et al. (2015), Moscovich et al. (2009), Lee and Archambault (2016), Zhao et al. (2016), Ezaiza et al. (2016), Ware et al.
(2008), Okoe et al. (2014), Federico and Miksch (2016), Ghoniem et al. (2005), Ware and Bobrow (2005), Bae and Watson
(2011), Yuan et al. (2012), Lee et al. (2006a), Huang et al. (2016b), Henry et al. (2008), Chang et al. (2017), Cordeil et al. (2017),
Srinivasan and Stasko (2018), Walny et al. (2018), Zhao et al. (2018), Pienta et al. (2018), Liu et al. (2017), Hoque and Carenini
(2018), Kindermann et al. (2017), Okoe et al. (2017) and Cypko et al. (2017)

29

Create Novick and Catley (2006), Purchase et al. (2012b), Marriott et al. (2012) and van Ham and Rogowitz (2008) 4
Encode Ezaiza et al. (2016), Huang et al. (2016b) and Zhao et al. (2018) 4
Explore Ezaiza et al. (2016), Nekrasovski et al. (2006), Okoe et al. (2014), Saket et al. (2016), Ghani et al. (2011), Saket et al. (2015), Ghani

et al. (2012), Shin et al. (2011), Archambault et al. (2010), Kobourov et al. (2014), Federico and Miksch (2016), Archambault et al.
(2011), Purchase et al. (2012b), Rufiange and McGuffin (2013), Wong et al. (2005), Borkin et al. (2013), Wong et al. (2006), Saket
et al. (2014), Lee et al. (2006a), Shi et al. (2015), Kwon et al. (2016), Huang et al. (2016b), Srinivasan and Stasko (2018), Pienta
et al. (2018) and Okoe et al. (2017)

26

Filter Ezaiza et al. (2016), Robertson et al. (2002), Bach et al. (2013), Srinivasan and Stasko (2018), Pienta et al. (2018) and Cypko et al.
(2017)

9

Reconfigure Alper et al. (2014), Moscovich et al. (2009), Lee and Archambault (2016), Ezaiza et al. (2016), Nekrasovski et al. (2006), Zimmer
and Kerren (2015), Marner et al. (2014), Robertson et al. (2002), Dwyer et al. (2009), Wong et al. (2005), Wong et al. (2006),
Bach et al. (2013), Kieffer et al. (2015), van Ham and Rogowitz (2008), Shi et al. (2015), Srinivasan and Stasko (2018), Zhao et al.
(2018), Pienta et al. (2018), Okoe et al. (2017) and Cypko et al. (2017)

25

Select Lee and Archambault (2016), Okoe et al. (2014), Archambault et al. (2010), Barth et al. (2015), Robertson et al. (2002), Ghoniem
et al. (2005), Purchase et al. (2012b), Dwyer et al. (2009), Netzel et al. (2014), Wong et al. (2005), Borkin et al. (2013), Burch et al.
(2011a), Kieffer et al. (2015), Cohe et al. (2015), Shi et al. (2015), Kwon et al. (2016), Huang et al. (2016b), Cordeil et al. (2017),
Srinivasan and Stasko (2018), Zhao et al. (2018), Liu et al. (2017), Kindermann et al. (2017), Okoe et al. (2017) and Cypko et al.
(2017)

30

well as graph visualisation metaphors, and has also investigated
the impact of the resulting visualisations on readability and task
performance. For some years, a main focus has been on the com-
putational complexity and scalability of algorithms, but since the
development of methods that scale to several million nodes and

edges, the focus has shifted to the visual complexity and human
interpretability of the resulting layouts (Eades et al., 2017).

As layout methods differ in computational scalability, in their
performance on certain graph classes, and also in the features
and characteristics of the resulting layouts, the interplay between
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graph structure and layout method used in studies will strongly
impact the limits of cognitive scalability. Comparisons between
different methods are rare, as the selection is often motivated
by real-world application requirements. While constraint-based
methods can create high-quality layouts, which might be of in-
terest for studying the limits of cognitive scalability, the methods
do not scale well regarding the computational complexity. Thus,
for large graph sizes, researchers have to resort to fast heuristics,
e.g. multi-level force-based methods.

5.2.1. Graph type and structure
While the number of nodes and the density can give a first

indication on the complexity of a graph with respect to cogni-
tive scalability, a more fine-grained description of the structure
is necessary to investigate its impact. Certain graph classes might
result in layouts with minor quality, e.g. low diameter graphs like
friendship networks can lead to hairball drawings when standard
force-directed methods are applied. On the other hand, graphs
with a globally sparse structure like the ones used by Marner et al.
(2014) are well suited for untangling and structure identification
tasks, even when the number of nodes is huge, as the global and
local structures simply scale with the size.

A further distinction can be made regarding the use of directed
and undirected graphs. While 103 of the studies used undirected
graphs, only 33 of them used directed graphs, and 15 used trees.
With the exception of the two near-tree sparse graphs from the
OnGrax study (Zimmer and Kerren, 2015), and one graph from a
study on directed edge representations (Holten et al., 2011), all
graphs with more than 200 nodes are either undirected or trees.
Some studies based their graph selection on real world examples.
In some cases, the graphs were taken from specific application
areas. Most commonly: social networks (Alper et al., 2014; Lee and
Archambault, 2016; Ezaiza et al., 2016; Hu and Shi, 2014; Federico
and Miksch, 2016; Huang et al., 2005; Blythe et al., 1995; Farrugia
andQuigley, 2011;Huang et al., 2009b; Archambault and Purchase,
2016b), followed by co-authorship networks (Zhao et al., 2016;
Bach et al., 2013; Alper et al., 2011; Shi et al., 2015; Henry et al.,
2008) and biological networks (Nekrasovski et al., 2006; Zimmer
and Kerren, 2015; Marner et al., 2014; North et al., 2011; Kieffer
et al., 2015). (Shi et al., 2015) use four dynamic graphs from two
domains—communication and co-authorship networks.

Other studies used extractions of real graphs, which were
closely related to ones in practice. For example, North et al. (2011)
used graphs that represented a subset of a biological data set, while
others generate graphs with similar size to graphs that commonly
appear in usage. Tan et al. (2007) use two treeswith 127nodeswith
the number of nodes chosen to be typical of tournament brackets
considered in fantasy football leagues.

5.2.2. Layout method
The distribution of layout methods in the investigated stud-

ies shows the expected dominance of force-directed methods.
Variants of this class of methods scale well computationally, and
appear to be the preferred method used in a variety of publicly
available graph visualisations and systems. Together, with the lin-
ear time tree layoutmethods, thesemethods are the only ones used
for studies with more than one thousand nodes. More than 50%
of the studies used a force-directed layout to draw the networks,
followed by multiple types, indicated in around 18% of the studies.
Note that our classification of layout methods specifies the initial
layout of subjects presented with, and does not consider whether
the subjects could manually, or by means of an algorithm, change
the layout in an interactive interface.

While the practical computational scalability of many methods
changed due to improved algorithms and implementations, the
relative performance stayed the samewith force-directed and tree

layouts being by far the fastest, and methods that require solvers,
e.g. constraint-based methods, being slowest.

Borkin et al. (2013) present a radial-based tree layout to display
file system provenance and motivate their choice, with the failure
of node–link diagrams to show a high-level summary for the large-
scale provenance data graphs. Their study results indicate that
users were more efficient with the interactive radial layout rep-
resentation than with an existing conventional node–link diagram
tool.

The range of the basic graph size metrics for each of the layout
methods fits the expectation. Manual layouts are only performed
on graphs of 120 nodes or less, with the notable exception of the
study on the collaborative graph visualisation systemOnGrax (Zim-
mer and Kerren, 2015). In this system, however, an initial layout
was given, which was manually created by domain experts, and
the user could simply rearrange this layout manually.

5.3. General study design factors

Just over half the studies (92/152 studies, 61%) follow a typi-
cal design of asking participants to perform graph reading tasks
under different conditions (the independent variables — often
different layouts, different visualisations or different interaction
techniques) and collecting response time and accuracy data as
the dependent variables (with some also collecting preference
choices). Most studies rely on these three dependent variables to
measure the efficiency of the visualisations at hand.

With respect to graph size, there is no discernible difference in
the sizes used for typical graph reading studies and the others—
both categories have similar distribution of graph sizes.

Some experiments collected process data as the main depen-
dent variable (e.g. Burch et al. (2011a) and Burch et al. (2013)). Oth-
ers collected eye-tracking data (Yoghourdjian et al., 2018; Chang
et al., 2017; Netzel et al., 2014;Ware et al., 2008).Wong et al. (2005)
counted the number of mouse actions (click, move, zoom, pan, and
turn) as a measure of extent of interaction with different forms
of visualisation of labelled graphs, while Nekrasovski et al. (2006)
looked particularly at the mouse drag action.

There were 129 studies that used a within-participants study
design, 22 used between-participants, and one used a mixture of
both. Within-participants studies are popular because they have
the advantage of eliminating any effects relating to variability be-
tween the participants, and,while theymay be subject to the learn-
ing effect, the effects of this are easilymitigated by appropriate ran-
domisation. They do, however, tend to take longer than between-
participants experiments, where the participants can have more
time to work with only a selected few of the stimuli (rather than
all of them, as it is in the within-participants case). Thus, the tasks
for within-participants studies tend to be smaller and simpler than
those used in between-participants studies.

We might expect that there would be more between-
participants’ experiments in recent years, since such experiments
are more suitable for crowd-sourcing: within-participant experi-
ments tend to take too long to be appropriate for crowd-sourced
participants. However, this is not the case — there is a similar
publication year profile for both categories of study.

6. Size rationale

In the previous sections we discussed how different metrics
could affect scalability. This was mainly done based on what we
could gather from the aim and the results of the studies. In Sec-
tion 4, we reviewed the range of number of nodes and edges for
graphs used in studies, and discovered that most studies using
large numbers of nodes and edgeswant to highlight the advantages
of using specific techniques. However, in some cases, the authors
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explicitly mention the reasons for picking a specific number of
nodes or edges. Some authors performed pilot studies which al-
lowed them to determine the size of graphs that would best suit
their evaluation. Others were based on the authors’ experiences
and understandings of the requirements. We discuss these further
in the following sections.

6.1. Pilot studies

The papers in our survey rarely mention pilot studies that de-
termine the impact of ceiling or floor on scalability.We believe that
many conduct pilot studies do not mention them explicitly. In this
section, we discuss selected few studies that provide the reasoning
for their pilot studies and the decisions made with regards to
factors that affect cognitive scalability.

Archambault et al. (2010)mention that the largest graph size for
their study was determined by pilot studies. They start with small,
medium and large sized graphs; however the pilot participants
could not complete the tasks on the large graphs. Thus, instead of
the large graph, they use a smaller graph. The largest graph they
use has 3351 nodes and 4083 edges. Archambault and Purchase
(2016b) use a pilot study to find a reasonable graph size. They use
a maximum of 50 nodes and 100 edges. Similarly, Dawson et al.
(2015)mention a pilot study to balance density and difficulty. They
use graphs with 75 nodes and 150 edges.

Some design their pilots to find reasonable graph densities to
allow the participants to finish the tasks in a restricted time limit.
Kobourov et al. (2014) find 120 nodes and 2.5 density asmaximum
measures to complete the tasks under two minutes, while others
use pilot studies in order to explore different layouts and graph
structures for specific tasks; e.g. Netzel et al. (2014) aim at finding
thresholds for assisting tasks of finding the longest link and biggest
cluster.

Saket et al. (2014) mention a pilot study where they chose 50
nodes as minimum and 200 nodes as maximum. They also chose
three density levels N , 2N , and 4N . Borkin et al. (2013) conducted
a pilot study to determine the boundaries between the easy and
difficult tasks. They mention that graphs of 10s, 100s, 1000s, and
10,000s of nodes were compared. They classified trees with 42
to 346 nodes as easy, while trees with 1192 to 5480 nodes as
hard. Similarly, Marriott et al. (2012) note that their pilot study
showed that larger graphs beyond 6 nodes were too difficult to
be memorised. Conversely, Xu et al. (2012) rely on a pilot study
to choose 100 as the maximum number of nodes for their graphs.
They further increase this to 200 in their second study, due to the
lack of a ceiling effect in their first study.

6.2. What is small? what is large?

Testing the boundaries of readability/scalability may generally
not be a primary goal for experimental studies. Instead, researchers
might pick a size range that they consider acceptable in order not to
have scalability as a confounding factor in their results. In addition,
technical limitations, (e.g. screen size and resolution, and also
typical requirements from application areas, like characteristics of
occurring networks of interest),might play an important role in the
determination of graph sizes, but are often not reported explicitly
and will also change over the years. Furthermore, there might be
standard benchmark sets used, or simply graphs picked based on
availability, instead of using graphs that allow one to investigate
scalability effects.

Some studies do not mention pilots, but justify their choices of
graph size as an attempt to meet a particular requirement for their
studies. Archambault et al. (2011) use real graphs, with the largest
having 60 nodes and 68 edges. They explain that they chose two
data sets each consisting of graphswith realistic size and structure.

Sometimes, the rationale is task-oriented. For example, Kieffer
et al. (2015) justify their use of small graphs to allow the partici-
pants tomanually draw the graphs in a reasonable amount of time.
Similarly, Purchase et al. (2012b) use two graphswith 10 nodes and
11 and 18 edges, to make it manageable for the task of drawing
the networks. Blythe et al. (1995) note that they use a small graph
in order not to overwhelm the participants with the amount of
information. They use a small graph with 12 nodes and 24 edges.

Others, such as Hlawatsch et al. (2014), justify using small
graphs to avoid the need for interaction. They use ten graphs with
eight nodes and 22 to 40 edges. They also use ten graphs with 20
nodes and 147 to 264 edges. Similarly, Alper et al. (2011) chose not
to vary the graph size drastically in order to avoid the requirement
of zooming.

Zhao et al. (2015) justify their size selection to fit the diagrams
to screen. They use graphs with 167 nodes and 902 edges in
their evaluation of a visualisation calledMatrixWave. Kadaba et al.
(2007)mention that they needed graphs thatwere small enough to
be memorisable. They use a daisy-structured graph with 11 nodes.
In a second study they use smaller graphswith 3 nodes and 2 edges.
Holten and van Wijk (2009) explain that they wanted to generate
graphs with an adequate number of vertices, without causing a
large amount of visual clutter caused by an excessively high edge
density.

In contrast, some studies use large graphs in order to highlight
the benefits and improvements of some techniques with respect
to scalability. Lee et al. (2006a) justify their selection of graphs
with 200 nodes as complex graphs. They also state that 200 nodes
are considered to be an upper bound for currently studied food
webs. Huang et al. (2016a) mention that they choose graphs with
a density ranging from 10% to 20%, and their drawings have the
same crossing ratio of 40% in order to have reasonably complex
graphs. The largest graph they use has 50 nodes and 245 edges.
Dwyer et al. (2009) state that the graphs they used were larger in
size (50 nodes), than ones (17 nodes) used in another study which
inspired their work, while Okoe et al. (2017) justify their selection
of a graphwith 258 nodes and 1090 edges as larger than previously
used graphs, yet sufficiently small to be evaluated in a browser.

To conclude, someauthors provide a rationale for their selection
of graphswith a specific range of node and edge counts. These often
resemble our discussions and hypotheses, nonetheless, wewanted
to keep a clear separation between what constitutes our opinions
and the rationale provided by the experimenters.

7. Research trends

By analysing our survey data from a historical perspective, we
tried to gain some insights about the development of the research
community, including trends with respect to graph sizes, partici-
pants, tasks, and interaction types used in the studies.

Of the studies surveyed in this paper, 40% were published
in TVCG/InfoVis, 16% at Graph Drawing, 13% in the Information
Visualisation Journal, and another 11% at CHI. Historically, the first
seven studies (Blythe et al., 1995; Purchase et al., 1995; Purchase,
1997b; Bridgeman and Tamassia, 2000; Purchase et al., 2000) were
all published at Graph Drawing between 1995 and 2000. The first
study (Robertson et al., 2002) in the Information Visualisation
Journal appeared in 2002. The first one (Wong et al., 2003) in
TVCG/InfoViswas in 2003,whereas the first one (Nekrasovski et al.,
2006) at CHI in 2006, and the first one (Ziemkiewicz and Kosara,
2009) at EuroVis in 2009.

The seminal papers (Blythe et al., 1995; Purchase et al., 1995)
of 1995 focused on static graphs and were followed by another ten
papers (with a total of 16 studies) on static graphs. The first study
on dynamic graphs (Purchase et al., 2006) was published in 2006,
more than ten years after the first one on static graphs. Aswe cover
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Fig. 12. The number of nodes of static versus dynamic graphs used in studies for the period from 1995 to 2016.

a period of 24 years from1995 to 2018 in this paper, it is reasonable
to compare the first and second half of the studied period, with
the first half ending in 2006, and the second half starting in 2007.
Whilst during the first half, the average publication frequency was
around two studies per year, it considerably increased to 11 studies
per year for the second half. Of these studies, on average, 9 focused
on static and 2 on dynamic graphs.

Fig. 12 shows the number of nodes of static and dynamic graphs
used in studies in different years. While for static graphs the num-
ber of nodes increased from below 20 in 1995 to several thousand
ten years later, the graph size of dynamic graphs stayed 100 or
below (with one exception (Shi et al., 2015) in 2015).

Since we observed a considerable increase in the graph size
for static graphs, we expected that researchers would also try to
recruit more participants for their studies. It turns out that there
was actually a big difference, if we compare the first and the second
half of our studied period. In the first half the median number of
participants, the number of studies that used static graphs, was
14. In the second half it increased to 21. Interestingly, a closer
look at the first half of the studied period reveals a dramatic drop
of the median number of participants. It decreased from 75 for
the original 7 studies (Blythe et al., 1995; Purchase et al., 1995;
Purchase, 1997b; Bridgeman and Tamassia, 2000; Purchase et al.,
2000) (all published at GD) of the period from 1995 to 2000 to 9
for the subsequent 11 studies (Robertson et al., 2002; Ware et al.,
2002; Wong et al., 2003; Huang et al., 2005; Ghoniem et al., 2005;
Ware and Bobrow, 2005; Wong et al., 2005) from 2001 to 2005
(mostly published in the Information Visualisation Journal).

8. Summaries of findings and discussion

8.1. Author personal experiences

Several of the authors of this paper have conducted experimen-
tal studies included in this survey; we therefore have our own
insights into the problem of choosing an appropriately-sized graph
for an empirical study. In many cases (e.g. (Purchase and Samra,
2008; Purchase et al., 2000, 1995; Archambault et al., 2010)), the
original graph chosen was found to be too large during piloting,
and scaled down. This was not because it was thought that the
participants would not be able to complete the task correctly, but
simply because it was necessary to keep the tasks short in duration
so that the experiment did not take too long, especially when
using a within-participants’ study design. Even in cases where

real-world data was used (e.g. Archambault and Purchase (2016b,
2012a)), these graphswere filtered tomake themof an appropriate
manageable size for within-participants experiments. On the one
occasion when a complex UML diagram was used in a between-
participant study, the variability between subjects was so great
that no sensible results were achieved: one of the many times
when data was simply discarded.

Another commonwaywe selected our graph sizes (and, in some
cases, graph structure) was with reference to published work,
particularly if the study was deliberately building on prior experi-
ments — even our own. The size and structure of the graphs used
in Dwyer et al. (2009) and Purchase et al. (2012b) were based on
those used by van Ham and Rogowitz (2008); the number of slices
in the dynamic graph used in Archambault and Purchase (2012b)
was based on the number used in our own priorwork Archambault
et al. (2011). Evidence that the choice of size of graph has proven
successful in prior work is a clear pointer as to an appropriate size
to choose for experiments that are similar in scope.

A further way to define graph characteristics for experimen-
tal studies is based on the requirements from application areas.
InMarner et al. (2014), the graphswere provided by biologists that
used the graphs in a previous publication to analyse sequencing
data by applying network analysis and visualisation. The graph
set was chosen to exploit and test the affordances of a wall-sized
display.

8.2. Recommendations for experimenters

Here we present our recommendations, based on our findings,
for future design and reporting of studies.

We recommend that authors of study papers report precisely
the number of nodes and edges used in studies, as well as the num-
ber of timeslices for dynamic graphs. In the case of interactivity,
such as semantic zooming or neighbourhood browsing, the num-
ber of nodes visible on screen should also be clearly recorded to dif-
ferentiate between scalability due to interaction versus cognitive
and perceptual scalability. Similarly, studies that use aggregation
to collapse parts of the network into less numerous glyphs, should
report on the number of glyphs visible.

Authors of papers describing studies on network analysis tasks
should explicitly state how they controlled the size and density
of the network data tested. This needs not entail extra work.
Simple recording of observations during piloting could be greatly
informative to the kind ofmeta-analysis we have performed in this
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survey. Alternatively, if the choice of size is arbitrary or based on
previous studies, explicitly stating the provenance of the choice
can help readers to better reason about size effects.

We would call for studies that explicitly test scalability of net-
work visualisation by testingmore than a couple of different graph
sizes to search for ceiling and floor effects and controlling for other
variables. Moreover, we call for the reporting of whatever ceiling
and floor effects that are found.

9. Conclusions

9.1. Key findings on graph properties

• There are some clear ‘default’ numbers of nodes and edges used
by most studies. At a maximum, most studies use graphs with 100
nodes, followed by 50 nodes and 100 edges, while their smallest
graphs have 20, followed by 50 and 10 nodes, and 10 edges. The
round numbers used by most studies suggest the choice of size to
test is somewhat arbitrary, as opposed to being based on empirical
evidence of cognitive limitations.
• 80% of studies (121 / 152 studies) use graphs with 100 nodes or
less, while only 37% (56 / 152 studies) use graphs with more than
100 nodes.
• 74% of studies (113 / 152 studies) use graphs with 200 edges or
less, while only 34% (52 / 152 studies) use graphs with more than
200 edges.
• 70% of studies (23 / 33 studies) that use graphs with more than
200 nodes use interaction and aggregation techniques to show
only parts of the network to the participants at a given time.
• Most of the studies that use graphs with more than 1000 edges
evaluate tools that are intended to be able to cope with a substan-
tially large number of edges, or are oriented towards performing
well for networks of specific structure, e.g. densely connected
communities.
• Only 12% (18 / 152 studies) of the studies surveyed use graphs
with a density of more than 20%.
• Studies that use graphs with more than 20% density either use
small graphs (< 10 nodes), evaluate matrix representations, or
evaluate edge bundling and compression techniques.
• 32% of studies (7 / 22 studies) that use dynamic graphs use six
timeslices. This is often to best fit small multiples representations
to screen.

9.2. Key Findings on Task Types

• The most common type of tasks is Topology-based (114 / 152
studies, 75%), however for graphswith 1000nodes ormore,Overview
tasks prevail (13 / 18 studies, 72%).
• Attribute-based tasks are commonly used for graphs with 200
nodes or less (47 / 53 studies, 89%) and less than 10% density (42 /
53 studies, 79%).
• Browsing tasks are commonly used for graphs with 200 nodes or
less (24 / 26 studies, 92%) and less than 10% density (25 / 26 studies,
96%).

9.3. Key Findings on Interaction Types

• Studies with larger graphs (> 500 nodes) tend to use multiple
types of interaction, while using a single type of interaction ismore
common in studies with smaller graphs (≤ 500 nodes).
• Themajority of studieswith no interaction used graphswith 100
nodes or less (70 / 80 studies, 88%) and less than 10% density (57 /
80 studies, 71%).

Table 5
Four categories of graph size based on number of nodes.

# of nodes # of studies # of studies
with no
interaction

# of studies
with overview
tasks

Small ≤20 62 (41%) 39 (63%) 19 (31%)
Medium [21, 50] 50 (33%) 31 (62%) 12 (24%)
Large [51, 200] 56 (37%) 27 (48%) 16 (29%)
V. large >200 33 (22%) 10 (30%) 19 (58%)

Table 6
Four categories of graphs based on linear density.

Linear density # of studies # of studies
with no
interaction

# of studies
with overview
tasks

Tree-like &
disconnected

[0, 1.0] 49 (32%) 20 (41%) 15 (31%)

Sparse [1.01, 2.0] 67 (44%) 40 (60%) 20 (30%)
Dense [2.01, 4.0] 31 (20%) 18 (58%) 7 (23%)
v. dense >4.0 26 (17%) 12 (46%) 13 (50%)

• The interaction types of Abstract/Elaborate, Connect, Explore, Re-
configure, and Select were used on larger graphs, while Create,
Encode, and Filter were used on smaller graphs (≤ 100 nodes and
< 10% density).

9.4. Discussion

While there has been a significant focus on computational scala-
bility of node–link diagrams layout and rendering, in a race to visu-
alise the largest networks, it seems researchers have understudied
human cognitive limitations in understanding such diagrams. A
better knowledge of cognitive scalability in this regard would
have several benefits. In tools that allow the user to interactively
explore a large network through neighbourhood or aggregated
views, tool developers couldmore intelligently control the number
of elements in these views. Furthermore, if our community could
give clear and informed guidance to users of graph visualisation
it would help them to select the right tool for their purpose. For
example, in creating figures for papers, biologists reporting on the
interactions of particular proteins may be better off showing a
focused neighbourhood around those specific proteins rather than
providing a hairball. Similarly, if the users were experimenters,
theywould choose their corpora, design their tasks and pick layout
methods based on these well-defined limits.

Thus, the aim of this survey was to explore factors that would
affect cognitive scalability via reviewing existing empirical studies
that have used node–link diagrams. We have noticed that con-
trolled experiments tend to focus on graph data sets of size within
a fairly limited window (tens to a few hundred nodes and low
density). We also discovered that even though the most common
type of tasks performed on a network, in general, is related to the
topology of the network, overview tasks become more popular
for larger networks. Similarly tasks related to detailed attributes
associated to the nodes or edges and browsing are not common on
networks withmore than a couple hundred nodes.With regards to
interaction, studies with large graphs tend to allow for more than
one type of interaction. Furthermore, we discovered that some
interaction types, such as Create, Encode and Filter are only used on
small graphs,while others, e.g.,Abstract/Elaborate, Connect, Explore,
Reconfigure, and Select are also used on large graphs.

This survey has also helped identify some weaknesses in the
design and reporting of empirical studies that use node–link di-
agrams. For example, several studies do not report on the sizes
of the graphs used, while others do not report on the number of
elements visible to the participants at a given time. We provide a
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list of recommendations to overcome these weaknesses in future
studies.

A motivation for this work was to identify or validate terms
that are used to categorise ranges for graph size. Table 5 presents
four categories with respect to number of nodes. According to the
surveyed studies, there are clear cuts at 20, 50, and 200 nodes.
We categorise these into ranges that represent small, medium,
large and very large graphs. Following significant thresholds of
linear density, which have been identified byMelancon (2006), we
categorise sparse, dense, and very dense graphs in Table 6. Hope-
fully this breakdown gives future researchers a clearmotivation for
selecting different graph sizes for their studies. For example, there
are only seven studies that use dense graphs with overview tasks.

Our findings, indicate a threshold at 200 nodes and 10% den-
sity. This threshold is respected by empirical studies that include
tasks requiring a detailed analysis of the network. Nonetheless, we
believe that this threshold is a result of the expert intuition of the
researchers, rather than empirical research. A controlled study is
needed to validate and refine this threshold.
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