Technical Report / Preprint: TR 193-2-2019-4.
In submission to a peer reviewed venue.

Progressive Real-Time Rendering of One Billion Points Without
Hierarchical Acceleration Structures

Markus Schiitzl, Gottfried Mandlburgerz, Johannes Otepkaz, Michael Wimmer!

ITU Wien, Institute of Visual Computing & Human-Centered Technology
2TU Wien, Department of Geodesy and Geoinformation

Reproject

Fill

Prepare Repeat

(holes after transformation) (using random points) (create vertex buffer for reprojection) (until convergence)

k Previous Framen - 1) k Current Frame n) k Framen + 7)

Figure 1: The progressive rendering of point clouds via reprojection and filling allows us to maintain real-time frame rates by distributing
the rendering of large point clouds over multiple frames, without the need to generate acceleration structures in advance. Filling holes with
randomized subsets of the full data set leads to higher quality convergence patterns, and the duration to convergence can be adjusted by the
amount of random points that are rendered in the fill pass. Rezz point cloud courtesy of Riegl.

Abstract

Research in rendering large point clouds traditionally focused on the generation and use of hierarchical acceleration structures
that allow systems to load and render the smallest fraction of the data with the largest impact on the output. The generation
of these structures is slow and time consuming, however, and therefore ill-suited for tasks such as quickly looking at scan data
stored in widely used unstructured file formats, or to immediately display the results of point-cloud processing tasks.

We propose a progressive method that is capable of rendering any point cloud that fits in GPU memory in real time, without
the need to generate hierarchical acceleration structures in advance. Our method supports data sets with a large amount of
attributes per point, achieves a load performance of up to 100 million points per second, displays already loaded data in real
time while remaining data is still being loaded, and is capable of rendering up to one billion points using an on-the-fly generated
shuffled vertex buffer as its data structure, instead of slow-to-generate hierarchical structures. Shuffling is done during loading
in order to allow efficiently filling holes with random subsets, which leads to a higher quality convergence behavior.

CCS Concepts
o Computing methodologies — Rendering; Rasterization;

1. Introduction & Problem Statement

Point clouds, i.e., 3D-models that consist of potentially colored
points, are usually obtained by scanning the real world with var-
ious types of 3D-scanners or by image-based reconstruction meth-
ods [Weil6]. Unlike mesh-based models, which can represent ad-

Technical Report / Preprint: 7R 193-2-2019-4

ditional detail between vertices cost-effectively with textures, ba-
sic point-cloud models represent all surface details with individ-
ual points. Points have no connectivity, which can easily lead to
noticeable gaps in-between, unless they are filled with even more
points or covered up by larger points. As a consequence, even seem-
ingly small scenes are made up of millions of points, and larger

2 Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer /

(¢) Hierarchical

(a) Low Complexity

(b) High Complexity (d) Progressive

Figure 2: Depth-complexity denotes the amount of occluded surface layers in a given viewpoint. A high complexity results in wasteful ren-
dering of invisible data. (a) Low-complexity models feature few occlusions — e.g. individual objects, buildings without interiors and terrain
without vegetation. (b) A highly complex scan of a building with interiors. (c, d) Rendering a detailed scan of a tree. Green: Rendered points
that are visible from viewpoint. Red: Rendered points that are occluded from green points. (¢) Hierarchical methods without progressive
approach waste their point budget on rendering occluded points. (d) Progressive rendering performance is largely unaffected by depth com-
plexity. Occluded points are rendered, but only varying random subsets that can be rendered in real time, while previously rendered data is

preserved through reprojection.

models can consist of hundreds of billions of points. Due to the
lack of a standard hierarchical point-cloud file format with support
for levels of detail (LOD), point clouds are distributed in sequen-
tial formats such as LAS [ASP19] and its compressed counterpart,
LAZ [Isel3]. Point-cloud processing and rendering applications
may build their own hierarchical structures, but this takes time, and
support for a particular hierarchical format is usually limited to the
application that created it.

The data structures used to render large point clouds often differ
from data structures that are used to process large point clouds.
Rendering requires data structures that provide quick access to
varying levels of detail of the model, based on the position and
direction of the viewer. Processing, on the other hand, usually re-
quires data structures that provide quick access to all points in a
certain region without considering levels of detail. The point-cloud
processing framework OPALS [OP; PMOKI14], for example, uses
a kd-tree where all points are stored in the leaf-nodes. This pro-
vides no access to level-of-detail data, but efficient access to data
within a chosen region. While OPALS can quickly modity, filter
and augment all the data in a region, it cannot quickly display the
results. With state-of-the-art methods, rendering the results would
require lengthy preprocessing steps to generate a hierarchical struc-
ture whenever new results are generated. Several issues complicate
the use of hierarchical structures for point clouds:

Number of Point Attributes. Most point clouds contain at least
an XYZ coordinate and either a color value or a scalar value with
various meanings. This basic format consumes at least 16 bytes per
point. However, some use cases require a large amount of addi-
tional per-point attributes. Possible attributes include intensity, re-
flectance, classification, return number, scan angle, GPS-time, echo
ratio, beam direction, surface normals, etc., which can increase the
storage requirements to more than 100 bytes per point. Storing all
these attributes negatively affects load-, processing- and rendering
times, even if only a small amount of attributes is actually needed.
Section 3.5 describes how we deal with attributes in our progressive
rendering method.

Depth Complexity. One of the main problems of hierarchical
structures for point clouds is that they do not address models with
high depth complexity — Treddinick et al. [TBP16] being a notable
exception. A high depth complexity means that the model consists
of multiple layers of surfaces that occlude each other, as shown
in Figure 2. Occluded points use up a large portion of the avail-
able point budget without contributing to the image. As a conse-
quence, the model will either be rendered at a lower level of detail
because there is no more budget left for higher levels, or the bud-
get is increased, which reduces performance. Examples for models
with high complexity include scans of buildings with their interiors,
dense vegetation, and data with a high amount of noise. In case of
buildings with interiors, most rooms are occluded by walls, floors
and ceilings. All these occluded rooms still need to be rendered be-
cause they may be partially visible through gaps between points or
holes in the scan. Adapting point sizes to close gaps is problematic
because of irregular point densities, especially along and between
scan lines of laser scanners, and because a lot of gaps are a result
of missing data that the scanner did not obtain.

LOD Build-Up Times. Generating LOD structures requires time,
and the lack of a standard format means that each application that
supports LOD structures uses its own format. Two of the most
widely used formats for distribution, LAS and LAZ, are non-
hierarchical. Building hierarchical structures happens at rates of
around 50 thousand to 1 million points per second (see [Schl4;
WBB*07] and Table 2), which means it takes 300 to 6000 seconds
before we can explore a point cloud with 300 million points. With
our method, we are able to fully load and render 300 million points
in 3 to 10 seconds, depending on the file format. 3 seconds refer to
an ideal format that matches the vertex buffer, and 10 seconds are
required for the the widely used LAS format.

Our main contributions are as follows:

e We introduce a progressive method that renders point clouds that
fit in memory in real time without hierarchical structures, tested
with up to one billion points.

e In each frame, our progressive method fills holes by rendering

Technical Report / Preprint: TR 193-2-2019-4

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer / 3

a random subset of the point cloud, which results in a relatively
uniform and pleasant convergence to the full image.

e We show how to create these random points incrementally and in
parallel on the GPU using a prime number based pseudo-random
number generator that generates unique integer values in a given
range.

e Our method allows real-time rendering of already loaded data,
while remaining data is still being loaded from disk.

o It achieves disk to GPU transfer rates of up to 37M points/s or
1GBY/s for the widely used LAS point cloud file format, and up to
100M points/s or 1.6GB/s for a simple binary file that matches
the GPU vertex buffer format.

e [t is tailored to and supports point clouds with large amounts
of attributes — tested with up to 50 attributes and 107 bytes per
point.

2. Related Work

Previous work related to our method includes progressive — or in-
cremental — rendering algorithms in various domains, especially
those using reprojection, but also hierarchical rendering algorithms
for large point clouds. While we do not use hierarchical structures,
or any other spatial acceleration structure, we consider these to be
related because they are, to the best of our knowledge, the only
other option to render large point clouds at rates higher than 60
frames per second.

Temporal coherence denotes the similarity of a scene or rendered
image over time. Badt [Bad88] already suggested to take advantage
of temporal coherence in ray tracing by reprojecting the pixels in
the previous frame to the current one. This saves a considerable
amount of work because most of the surfaces that are visible in the
current frame were already visible in the previous frame. Walter
et al. [WDP99] proposed a point-based structure for reprojection,
the Render Cache, which is used to reproject previously rendered
data to the new frame, and to keep track of possibly outdated re-
gions of the image that need to be updated. The goal of the Render
Cache is to maintain interactive frame rates during motion or when
editing a scene in ray or path tracers, but to make sure the frame
eventually converges if there is no further change to the scene or
camera. Jevans [Jev92] exploits temporal coherence in object space
by tracking objects that move so that only animated parts of the
scene need to be retraced. In a state-of-the-art report on temporal-
coherence methods from 2011, Scherzer et al. [SYM*11] discuss
a wide range of algorithms that exploit coherence, with a special
focus on reprojection algorithms

Most of the work on rendering large point clouds focuses on
creating and rendering hierarchical level-of-detail structures. These
structures have the additional advantage that they can also be used
in an out-of-core fashion, but they require time to generate in ad-
vance. QSplat [RLOO] was the first one to use a point-based hi-
erarchical structure to render large meshes. It uses a hierarchy
of bounding-spheres that is traversed during rendering. Sequential
Point Trees [DVS03] and Layered Point Clouds [GMO04] improve
this concept and offer GPU-friendly structures. The former is sim-
ilar to QSplats but sequentialized into a single sorted array, and the
latter groups points into tree nodes of varying resolution and size.
This grouping of points into a multi-resolution tree structure, where

Technical Report / Preprint: 7R 193-2-2019-4

each node stores a subset or a representative model of the original
model, is the key breakthrough that allowed for efficient render-
ing of arbitrarily large point clouds on the GPU. Further work then
explores various ways to generate, modify and render hierarchi-
cal structures similar to the layered point clouds [WS06; Schl14;
APS*14; WBB*07; GZPG10; Sch16; PTC17].

Tredinnick et al. [TBP16] and Ponto et al. [PTC17] proposed
a progressive rendering method for point clouds that is related to
ours. The previous frame is reprojected to the current one and holes
are filled by rendering additional points. Their work focuses on hi-
erarchical methods, however, and in each frame they render a dif-
ferent set of octree nodes within the view frustum. Even though
only part of the data is rendered in each frame, the image converges
to the full amount of detail after a few frames. Our method differs
in that we focus on progressively rendering unstructured data for
which no hierarchical structure was generated in advance, which
allows us to look at unstructured data up to two orders of magni-
tudes faster than methods that require hierarchical structures. An-
other similar technique by Futterlieb et al. [FTB16] renders cached
results during movement and accumulates details when the camera
doesn’t move.

3. Progressive Rendering

In the context of our paper, progressive rendering means that we
distribute the task of rendering the full point cloud over multiple
frames, instead of doing all the work in a single frame. The goal is
to maintain real-time frame rates and keep the application respon-
sive at all times. The basic idea to achieve this goal is to repro-
ject the previous frame, since most of the previously visible points
are likely to be visible again in the current frame, and then fill
holes that appear due to disocclusions with randomly selected ad-
ditional points to obtain a high-quality convergence behavior. Over
the course of multiple frames, the result converges to an image of
the full model.

In this section, we will describe the necessary data structures,
how we load points, an efficient way to incrementally shuffle points
during loading, the actual rendering pipeline, how we adaptively
select the point budget to minimize the duration to convergence
while maintaining real-time frame rates, and how to switch between
different point attributes.

3.1. Data Structure

Our method employs two data structures in order to stream new
attribute data to the GPU, and to quickly render a certain amount
of random points in each frame.

On the CPU side, point attributes are stored in a struct-
of-arrays fashion, i.e., one array stores exactly one attribute:
[RRR]|[GGG][BBB]. This allows us to stream specific attributes from
CPU to GPU with minimal usage of memory bandwidth, since ac-
cessing a value of an attribute array will load a whole cache line
of subsequent values into the CPU cache [Dre07]. An interleaved
array, on the other hand, would result in loading various different
attributes of a point into the CPU cache, which is not useful if only
one attribute of a point is needed.

4 Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer /

On the GPU side, we use a shuffled interleaved vertex buffer with
16 bytes per point as our rendering data structure, which is created
by (inserting points at pseudo-random locations. Due to the maxi-
mum buffer size of 23! bytes on modern GPUs, the shuffled Vertex
Buffer Object (VBO) may actually consist of multiple buffers — one
for every 231 /16 ~ 134 million points. Shuffling is done because it
reduces the problem of rendering a batch of N random points to ren-
dering N consecutive points. Each point contains 12 bytes for XYZ
coordinates, and another 4 bytes for attribute data. The attribute
data may contain a single 4 byte float, or four unsigned bytes. The
former is used to visualize single scalar attribute values, and the
latter is used to visualize vectors of attributes, such as colors and
normals. It is up to the vertex shader to interpret the data as needed.
Newly loaded batches of points or new batches of attributes are not
directly uploaded to the shuffled VBO. Instead, they are uploaded
to a separate Distribute buffer that holds a single batch of 500k
points. A compute shader then inserts the points or attributes to the
respective shuffled location in the VBO. The Distribute buffer re-
ceives 16 byte XYZRGBA during the initial loading from disk, but
only 4 bytes per point, i.e., just the attribute data, when switching to
a new attribute. Finally, the Reproject buffer contains all the points
that are visible at the end of a frame. In addition to position and
attribute data, it also stores the index of that point inside the shuf-
fled VBO, which is needed during reprojection to write the point
indices along with point colors to the framebuffer.

3.2. Loading

One of the objectives of our method is that intermediate results
are shown in real time while remaining data is being loaded. In
order to achieve this, files are loaded and transformed to GPU-ready
buffers in parallel, and the task of the main thread is simplified to
sending batches that are ready to the GPU. Figure 3 illustrates this
process in a time line. The load thread is dedicated to reading binary
data in batches of 500k points from disk. Three additional parser
threads transform the binary batches and separate the interleaved
point data into one array per attribute, which are then appended to
the struct-of-arrays structure in main memory. During the start of
the next frame, the main thread sends the XYZRGBA attribute of
all batches that were fully loaded and parsed in the previous frame
to the GPU. The composite XYZRGBA array is a special case that
gets assembled by the parser threads after all other attributes are
stored in separate arrays, because this is the initial data that we
send to the GPU.

3.3. Incremental Parallel Shuffling

Rendering randomly selected points improves the perceived visual
quality during convergence to the final image, compared to render-
ing points in their original and potentially sorted order. Points are
shuffled during loading so that we can efficiently render N random
points by rendering a subset of N consecutive points from the ver-
tex buffer. Since we want to display the points with our progressive
method while additional points are still being loaded from disk,
we need to use a shuffling method that is capable of incrementally
shuffling points as they become available. The Fisher-Yates shuffle
[FY38; Dur64] is a well-known shuffle algorithm that is unbiased
(each permutation is equally likely), has an optimal complexity of

Threads
Load I D (I (D (S (D s

Parse | L - — . —)

Parse Il ' - 3 -)

CPU

Parse Il 0))
Main [[I

Shuffle

GPU

@ Load Batch ([ParseB. (@ ShuffleB. @ Frame (J vertex buffer

Figure 3: The load pipeline. One thread is dedicated to reading
batches of binary data from disk. Three threads are used to trans-
form the loaded binary batches into the structure-of-arrays mem-
ory layout. At the start of each frame, the main thread uploads
fully parsed batches to the GPU and executes a compute shader
that moves each point to its shuffled location in the vertex buffer.

O(n), and can operate incrementally. However, it is not paralleliz-
able because each step of the loop depends on the result of the
previous step, and it cannot keep up with the speed at which points
are read with sequential file I/O from an SSD.

Random number generators are an essential component of
many shuffle algorithms, including the aforementioned Fisher-
Yates shuffle, and prime numbers are the basis of some generators
with useful properties. Blum Blum Shub [BBS82], for example, is
a random-number generator in the domain of cryptology that uses
the input M = P- Q, where P and Q are primes that are congruent to
3 (mod 4). M is then used to generate a sequence of pseudo-random
bits. Similarly, a single prime P that is congruent to 3 (mod 4) can
be used to generate a sequence of unique integers in the interval
[0,P) [Prel2]. This type of pseudo-random number generator es-
sentially provides a permutation of input to target indices that we
use to move points from their original position to their position in-
side a shuffled array. The target indices are computed as:

#modP, ifi<?
permute(i) = ¢ P—i*modP, ifi<P (D
i otherwise
targetindex(i) = permute(permute(i)) ?2)

Equation 1 maps each number in [0,1,2,...,P — 1] to another
number in the same range without producing duplicates. Due to the
condition that P must be a prime and P = 3 (mod4), we can only
shuffle points with indices in interval [0, P). For any given number
of points N, we compute the next smaller prime P < N that satisfies
the condition, permute all the points from index O to P, and leave
the remaining points at their original positions. The number of un-
shuffled points is negligible because the gap between consecutive

Technical Report / Preprint: TR 193-2-2019-4

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer / 5

(2) (b) ()

(e) f(i) = permute(permute(i))

Figure 4: (a) Points colored by RGB. (b+c) Points colored by indices. (b+d) One pass of Equation 1 produces noticeable patterns in the
mapping of input indices to target indices — some patches of points preserve locality after the shuffle. (c+e) Applying Equation 1 twice results

in a sufficiently random permutation of input to target indices.

primes is small. The largest gap between two consecutive primes
P = 3(mod4) for up to 500 million points is 532, between primes
184007671 and 184008203. This means that for up to 500 mil-
lion points, at most 532 may not be shuffled. Trying to shuffle them
as well results in extra work with insignificant improvement. Al-
ternatively, one could find the next larger prime, shuffle the entire
data set, and leave a negligible amount of vertex buffer elements
empty. The big advantage of the prime number-based method over
other methods like the Fisher-Yates shuffle is that it can be applied
to each input index i individually, without depending on the state
from previous calculations and with no collisions. It is therefore in-
herently parallelizable and can be implemented in a compute shader
on the GPU without synchronization between threads.

A disadvantage of the prime number-based method is the rel-
atively low quality of the permutation after only one pass, which
manifests as noticeable patterns, as shown in Figure 4. Since Equa-
tion 1 is bijective — each element of the input set [0,1,2,...,P — 1]
maps to exactly one distinct element of the same set — we can sim-
ply apply it multiple times and still obtain the same number of
unique target indices. Applying it a second time results in a ran-
domness that is not necessarily of high quality, but sufficiently ran-
dom for our progressive rendering method. With “not high-quality”
we mean that there are certain patterns, and some random numbers
may be predictable from previous random numbers. For example,
Equation 1 is monotonically increasing for the first v/2 numbers
and Equation 2 is monotonically increasing for the first v/P num-
bers. The former is immediately obvious in Figure 4 (d), and the
same patterns are visible repeatedly throughout the function graph.
The latter is not noticeable in Figure 4 (e). As long as patterns aren’t
immediately obvious visually, we consider a random number gen-
erator sufficiently random for our method.

3.4. Rendering Pipeline

The progressive rendering method reprojects the previous frame
to the current frame, and then fills in missing data by rendering
a certain number of random points. Over the course of multiple
frames, the result will converge to the same image that we would
get by rendering all points at once, not accounting for render order
and z-fighting issues. This method is realized in three render passes:

1. Reproject: Render all the points that were visible in the previ-
ous frame, reprojected to the current frame.

2. Fill: Render a batch of random points to fill holes. This is done
efficiently by rendering subsets of a shuffled vertex buffer.

Technical Report / Preprint: 7R 193-2-2019-4

3. Prepare: Create a new vertex buffer from all points that are vis-
ible in the rendered image. This vertex buffer will be used in
pass one of the next frame.

Figure 6 shows the ratio of time spent on passes of a standard
brute-force approach, a basic fixed fill-budget approach, and an
adaptive fill-budget approach.

The idea of reprojection is that most of the data that was visible
in the previous frame will also be visible in the current frame, so
it may make sense to reuse it. However, during movements, pre-
viously occluded parts of the surface and parts that were outside
of the frustum may become visible, but since this data is missing
from the previous frame, holes and empty regions will appear, as
shown in Figure 1. The Fill pass attempts to fill missing areas by
adding random points. We chose to fill using randomly selected
points because it results in a relatively uniform convergence to the
final result over the whole image with no apparent pattern, and be-
cause it looks relatively pleasant compared to filling with sorted
chunks of points. If points are in some way sorted or structured, it
will result in unpleasant flickering artifacts during motion because
in each frame, parts of the image will fully converge, while other
parts will see no progress at all until later frames.

Depending on hardware capabilities, we render between S =
[1M,30M] random points each frame during the Fill pass. The se-
lection of random points is achieved by rendering subsets of the
shuffled vertex buffer. In the first frame, points from [0, S) are ren-
dered, then in the next frame [S,2-S) and so on. Once we have
looped through all the points in the vertex buffer, we repeat again
from the beginning. Without camera motion, the image converges
to the full result after looping through all points once. During mo-
tion, the whole buffer must be repeatedly looped through in order
to keep filling new holes.

The third and final pass — Prepare — creates the Reproject vertex
buffer out of all currently visible points, which is then used in the
Reproject pass of the next frame. Note that instead of reprojecting
the points directly from the framebuffer, which would lead to in-
accuracies, we identify the original point projected to a pixel and
reproject it from its original coordinates. This requires that the Re-
project and Fill passes both write point indices into an additional
index-color attachment on the framebuffer. A compute shader it-
erates over all pixels, reads the point indices from the index-color
attachment, and copies the respective points from the shuffled ver-
tex buffer into the Reproject vertex buffer. In addition to XYZ and
the 4-byte attribute value, all points in the Reproject buffer also
store the shuffle point index, which is needed by the Reproject pass

=)}

Frame 1 Frame 2 Frame 3 Frame 4

unshuffled

shuffled

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer /

Frame 5 Frame 6 Frame 7 Frame 15

Figure 5: Convergence behavior of unshuffled and shuffled point clouds. First and third rows: Varying subsets of 10 million points that the
Fill pass will render in that frame. Second and fourth rows: The image that is displayed to the user after reprojecting the previous frame to
the current one, and filling missing data with the selected subsets. The unshuffled version renders localized batches, and sometimes no data
at all if the subset is completely outside the view frustum. The shuffled version quickly covers the entire screen. Both versions converge to

the same image after 15 frames.

to write the correct index of a point inside the shuffled vertex buffer
into the index-color attachment.

3.4.1. Adaptive Fill Budget

A basic implementation of the Fill pass renders a fixed amount of
random points to fill gaps, e.g., 1 million points. To improve con-
vergence times, we want to render as many points as possible in
each frame while maintaining real-time frame rates. Since render
times vary greatly depending on viewpoints, we cannot reliably
use past frames to estimate the fill budget for the current frame.
Instead, we measure render timings of the current frame directly
on the GPU and then estimate the number of additional points we
can render. If 60fps are desired, the frame must be fully rendered
within 61*0 = 16.6ms. To estimate an adaptive fill budget, we mea-
sure the time since the beginning of the frame, and the time it took
to render the first 1 million points. From this, we compute the num-
ber of rendered points per millisecond, which we then multiply by
the milliseconds we have left to finish the frame. Due to the margin
of error of this estimate and time consumed by additional render
passes and GPU tasks, we suggest to assume the available time to
be well below 16.6ms, e.g., around 10ms.

An advantage of the adaptive fill budget is that it implicitly ac-
counts for points that are outside the view frustum. While rendering
the first 1 million points, points that are outside the view frustum

take less time to render and the adaptive budget will be correspond-
ingly larger. For the subsequently rendered remaining points, due to
the randomization, roughly the same percentage will be outside the
view frustum. The first step essentially provides a representative
percentage of the amount of points that will be outside the view
frustum during the second step. Due to this, the adaptive budget
can vary from 20 million points per frame in viewpoints where all
points are within the view frustum, up to 100 million points for
close-up viewpoints within the point cloud, when a large portion of
points is outside the view frustum (Measured on an RTX 2080 TI).

Implementations of an adaptive budget have to take care to
avoid CPU-GPU sync-points. In OpenGL, we suggest to use timer
queries that write timestamps directly into GPU buffers, and use
compute shaders to estimate the remaining budget directly on the
GPU. The compute shader then writes the estimated number of
points we can render in the remaining time into another buffer that
is used as an argument to an indirect draw call.

3.4.2. Convergence

Progressive point-cloud rendering methods distribute the render-
ing process over multiple frames until the result converges to the
final image. We can calculate the number of frames until conver-
gence, but the actual time to convergence has to be measured. We
can also differentiate convergence behaviour that progresses in lo-

Technical Report / Preprint: TR 193-2-2019-4

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer / 7

Standard Bruteforce Method
L Render All Points 1
I 119 ms y

Progressive (fixed budget)

L Reproject | Fill I Prepare 1
[1 ms |
Progressive (adaptive budget)
Reproject
Fill (1 million)
Estimate Remaining
Prepare

Fill (Remaining)
!

1 1 1l L1
I 8 ms |

Figure 6: Proportion of time spent on the passes of three render-
ing approaches for 302M points. The brute-force approach signifi-
cantly exceeds the limit of 16.6ms. The fixed fill budget approach
with a budget of 1M points is well below the limit but has little
progress per frame, and only 33% of the time is spent on the Fill
pass that drives progress. The adaptive fill budget renders a fixed
amount of points first, and then an estimated additional amount that
can be rendered in the remaining time based on the time it took to
render the fixed amount. It spends 90% of the rendering time on
filling holes and progressing towards convergence.

calized batches, or uniformly over the whole model, as shown in
Figure 5. The advantage of convergence in localized batches is that
the GPU often (but not always, see Table 4) renders vertices faster
if they are sorted by locality. The disadvantage, however, is that it
results in severe flickering artifacts since some regions converge
immediately, and others don’t converge at all until later frames.
Rendering randomly selected points may be slower, but it results
in a uniform and pleasant convergence over the whole model.

When motion stops, the framebuffer converges after all points
were rendered at least once during the Fill pass, i.e., after #ZZ;’;Z}Y
frames. With a fixed fill budget of 1 million points, it will take
100 frames to finish rendering 100 million points. The actual time
until convergence isn’t easily predictable, since it varies between
GPUs, number of points in view-frustum, number of overlapping
points, etc. The rate of time spent on the Reproject, Fill and Pre-
pare passes also affects time to convergence, since only the Fill
pass keeps progressing further whereas the other two passes con-
sume time without driving progress. If all three passes consume
the same amount of time, we end up with one third of the avail-
able performance spent on progressing to convergence. However,
if 0.19 ms are spent on reprojection, another 0.34 ms on preparing
a new vertex buffer, and 3.34 ms on filling holes, then we are uti-
lizing 3.34/(0.19+43.34 4+ 0.34) =~ 86% of the render time towards
progressing to convergence while still maintaining real-time frame
rates (timings taken from Table 3).

Technical Report / Preprint: 7R 193-2-2019-4

3.5. Streaming Point Attributes

Our data sets consist of point clouds with hundreds of millions of
points, and up to 50 different attributes for up to 107 bytes per
point. Figure 7 shows various attributes that a point cloud can con-
tain. Assuming 10GB of GPU memory and 107 bytes per point, we

could store at most % = 100M points on the GPU. In most
cases, we only need the coordinates plus one to 4 attributes at any
time, so the remaining attributes consume memory unnecessarily.
In addition to that, our rendering pipeline is also strongly affected
by memory bandwidth because vertex buffers are recomputed each
frame. The more bytes a vertex has, the slower it will be to generate
a new vertex buffer. Due to this, we only keep 16 bytes per point
in GPU memory, comprising of 3 -4 = 12 bytes for the XYZ co-
ordinates and another 4 bytes encoding one to four attributes. This

allows us to store up to % = 671M points in 10GB of GPU
memory, although the actual amount will be lower since other parts
of the application, as well as other applications and the OS, also
require some GPU memory.

In order to be able to visualize all available attributes, we keep
them in main memory and stream them to the GPU once a user asks
to see another attribute. At the start of each frame, the main thread
sends multiple batches of attributes to the GPU. A compute shader
distributes the vertex attribute data to the respective vertices with
the same pseudo-random target index computation that is used dur-
ing the initial loading step, thereby overriding the previous vertex
attribute data. Streaming a new attribute from CPU to GPU hap-
pens at rates of 300 to 800 million points per second on an RTX
2080 TI, depending on whether the attribute is a single scalar or a
vector of up to 4 values. For the Vienna data set with 124 million
points, switching attributes takes 0.155 to 0.356 seconds. While a
new attribute is streamed, the application remains interactive, but
the amount of attribute batches that are uploaded to the GPU in
each frame increases frame times up to 200ms. However, imple-
mentations may place a limit on how many batches they will upload
in each frame in order to maintain real-time frame rates.

4. Evaluation

In this section, we provide background information on the widely
used LAS point-cloud file format that we use, followed by an in-
troduction to our test data sets, and conclude with an evaluation of
load and rendering performances.

4.1. LAS File Format

Two of the most widely used binary point-cloud file formats are
LAS [ASP19] and its compressed counterpart, LAZ [Isel13]. We
use the LAS format due to its compatibility with a wide range of
applications, and because the simple but strict file format makes it
easy to develop custom file loaders. The LAS format stores points
in an interleaved fashion, i.e., each point is stored one after the
other. Points consists of a set of attributes, and various predefined
point data record formats describe which combination of attributes
are stored. Some attributes, such as XYZ, intensity, return number
and classification are present in all available formats, whether they
are needed or not. Others are only present in specific formats, such
as RGB in formats 2 and 3, or GPS-time in 1 and 3. Since version

8 Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer /

-

(a) RGB

(b) Normal (c) Echo Ratio

(d) Amplitude (e) Sphericity

(f) Deviation (g) Return Nr. (h) vRange

Figure 7: Various attributes of a point cloud. Each attribute increases the bytes per point, which in turn increases memory requirements. We
keep only one attribute at a time in GPU memory to maximize the number of points we can store. New attributes are streamed to GPU and

replace old ones on demand. Vienna point cloud courtesy of Riegl.

1.4, the spec also allows a standardized definition of custom extra
attributes in addition to the fixed set of attributes. Our point-cloud
application makes heavy use of these extra attributes, and some of
our data sets use 50 attributes that require up to 107 bytes per point.
The large amount of information for each individual point leads to
challenges such as increased memory requirements and memory
bandwidth usage.

4.2. Data Sets

Screenshots and descriptions of our test data sets are provided in
Figure 8 and Table 1. Vienna and Morro Bay were captured with
airborne laser scanners that provide a relatively uniform but low
density over a large area. Retz was scanned with a combination of
airborne and terrestrial laser scanning. The former provides a low-
density model of the town and the surrounding area, and the latter
augments it with higher detail at the center of the town.

4.3. Performance

This section lists and discusses performance results for loading un-
structured data from LAS files, how to achieve 100M points per
second by loading from an optimal file format, performance of the
rendering pipeline, and a comparison to hierarchical structures.

The following test systems are used throughout the paper:

e 2080: A desktop system with an AMD Ryzen 2700X CPU, an
NVIDIA RTX 2080 TI with 11GB GPU memory, a 1TB Sam-
sung 970 PRO SSD, and 32GB RAM.

e 1660: A notebook system with an Intel i7-9750H CPU, an
NVIDIA GTX 1660 TI Max-Q with 6GB GPU memory, a
256GB SSD, and 16GB RAM.

e 940: A notebook system with an Intel Core 17-7500U CPU, an
NVIDIA 940MX with 2GB GPU memory, a 1TB SATA HDD,
and 16GB RAM.

In addition to that, we confirmed the claim that our method
works for up to one billion points within an expected margin of
performance during temporary access to a system with an NVIDIA
RTX Titan with 24GB GPU memory. The data set is fully loaded in
around 25 seconds, and an average adaptive fill budget of around 20
million points per frame is rendered in real time. However, specific
benchmark numbers are limited to the aforementioned systems that
we had unrestricted access to.

4.3.1. Loading LAS Files

In this section, we discuss the time it takes to Load LAS files
from disk, and the time it takes to fully parse and Upload the
data to the GPU, as shown in Table 2. Loading from disk and
uploading to the GPU happen in parallel, as shown in Figure 3.
The timings for the latter are therefore the total time of doing
both. The Upload column shows that parsing and uploading fin-
ishes tenths of a second after the last batch of binary data was
loaded from disk. For these benchmarks, we deactivated OS-level
file caching under Microsoft Windows by calling CreateFile with
the FILE_FLAG_NO_BUFFERING flag on the LAS file, before
loading it with the standard C FILE API using fopen.

4.3.2. Loading 100 Million Points Per Second

The evaluated LAS load performance is limited in bandwidth for
multiple reasons: First, all LAS formats store various attributes
that may not actually be needed. Second, the interleaved (Array-of-
Structures) layout needs to be transformed to a Structure-of-Arrays
layout during loading to allow for efficient switching between at-
tributes. And third, attributes are encoded in a way that is not di-
rectly useful for rendering, e.g., RGB values are stored in 2 bytes
each, and coordinates are stored as 32-bit fixed-precision integers in
order to maximize the precision of 32-bit values while avoiding the
additional disk-space cost of 64-bit data types. During loading, the
coordinates are transformed to a floating-point type, usually double
values for accurate processing, or origin-centered floats for render-
ing. An ideal file format with respect to low loading times would
need few bytes per point and require little to no transformation of
the attribute values.

We are able to achieve load performances of up to 100 million
points per second by limiting ourselves to XYZ and RGBA val-
ues, storing points in the same format on disk as we use in the
GPU vertex buffers, and directly transferring buffers from disk to
GPU without any modifications. Coordinates are stored as single-
precision floating-point values and colors as unsigned bytes. Each
point requires 16 bytes. The resulting transfer rate from disk to
GPU is 1.6GB/s. These numbers also include the times for shuf-
fling the transferred data. The achievable read performance of the
utilized SSD is 2.5 GB/s according to the UserBenchmark test
suite. This puts the disk-to-GPU performance of our implementa-
tion (1.6GB/s) at 64% of the theoretically achievable disk-to-RAM
performance (2.5GB/s).

Technical Report / Preprint: TR 193-2-2019-4

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer / 9

(a) Heidentor

(b) Retz

(c) Arbegen

(d) Vienna (e) Morro Bay

Figure 8: Data sets used in this paper. The same viewpoints were used in the rendering benchmarks in Table 3.

2

Data Set File Size #points #attributes bpp pt/ m’ km Acquisition Method ~ Sensor

Heidentor 0.7 GB 258 M 12 26 - - Photogrammetry Nikon D300 + Photoscan

Retz 49GB 1455M 13 34 56.43 258 ALS+TLS RIEGL LMS-Q1560 + VZ-400i
Arbegen 6.7GB 258.0M 12 26 - - TLS Zoller + Frohlich Imager 5006h
Vienna 29.6GB 276, 7TM 50 107 57.52 481 ALS RIEGL VQ-1560i

Morro Bay 13.8GB 407.0 M 13 34 22.06 1845 ALS Leica ALS70 + Optech Orion

Table 1: Key parameters of used data sets. ALS: Airborne Laser Scanning. TLS: Terrestrial Laser Scanning. bpp: bytes per point.

4.3.3. Comparison to Hierarchical Structures

One of our claims is that our method allows users to quickly look
at large point-cloud data that would otherwise require a relatively
slow generation of hierarchical structures. In order to put this claim
into perspective, we show how long it takes for state-of-the-art con-
verters Potree [Sch16], Entwine [ENT], and Arena4dD [A4D] to
generate these acceleration structures out of our test data in Table 2.

We acknowledge that this is not an entirely fair comparison be-
cause these converters spend time reading data, writing it back
to disk and potentially reading it again, whereas our progressive
method does not have to write data back to disk. However, the data
structures required to generate hierarchical acceleration structures
also need additional memory during conversion, so the converters
would not be able to hold as many points in memory as our pro-
gressive method during the conversion without flushing data back
to disk.

4.3.4. Rendering

Table 3 shows the performance of our progressive approach, in-
cluding the time it takes to render a single frame and the time it
takes until the image converges. We also compare these timings to
a brute-force approach where all the points are rendered in each
frame. For the brute-force approach, shuffling is deactivated for
two reasons: First, because brute-force approaches usually render
the data in their original order. And second, because in the ma-
jority of cases we tested, rendering shuffled data was slower than
rendering the same points in their original order that exhibited a
certain amount of locality between consecutively stored points. A
notable exception is the Morro Bay data set, where the shuffled
vertex buffer renders faster from the chosen viewpoint in Figure 8,
with almost all 407 million points located inside the view frustum.
Once the user zooms in, the situation reverses and rendering the
shuffled data becomes slower again. Table 4 illustrates these differ-
ences in performance. This difference in rendering times of shuffled
and unshuffled buffers contributes to the fact that the convergence
times for our progressive method are usually significantly higher
than the rendering times of the brute-force approach, except for

Technical Report / Preprint: 7R 193-2-2019-4

Morro Bay where the duration to convergence can be lower than
the time needed to render the unshuffled data set with the brute-
force approach.

A notable observation is made in Table 3 regarding the Vienna
data set on system /660. If all 277 million points are rendered, the
Prepare pass takes almost seven times as long as when only the first
230 million points are rendered. Similarly, the brute-force method
requires more than double the time if all 277 million points are
rendered, instead of only the first 230 million points. This is be-
cause at some point, the GPU will allocate shared system memory
instead of dedicated GPU memory to our buffers. Average render-
ing times for the Fill pass do not change much because we render
small subsets at a time and because most of the data is still rendered
from GPU memory — only a subset that did not fit is rendered from
system memory. The Prepare pass, on the other hand, slows down
drastically because it now has to also read randomly shuffled point
data from shared system memory as well. The total rendering time
still remains below 16.6ms, which means even data sets that do not
fit in GPU memory can be rendered in real time, but the time to
convergence increases by a multiple.

Regarding depth complexity, we tested various viewpoints inside
and outside the Arbegen point cloud. This data set consists of se-
lected scan positions of the interior and parts of the exterior of a
house with multiple rooms, an attic, a cellar and a hallway to the
cellar. With the octree system of Potree, the point budget has to be
increased to values of around 20 to 25 million points per frame to
obtain a resolution of 1 point per 2x2 pixels, or as high as 55 mil-
lion points to obtain a resolution of 1 point per pixel. The reason
for this is because points that are hidden behind floors, ceilings,
walls and noise have to be rendered due to the lack of occlusion
culling. As a result, occluded points consume the majority of the
render time, without contributing to the image. In the worst case,
55 million points were rendered but at most 2 million points were
visible at a time on a 2 megapixel screen. Our progressive method,
on the other hand, converges to the full image with a point budget
as low as 1 million points per frame, plus the amount of points that
are reprojected.

10

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer /

Hierarchical Progressive

Model Points File Size bpp Converter ~ Duration Points/s Format Load Upload Points/s
Potree 36s 0.72M

Heidentor 258M 07GB 26 | Entwine 40s 0.60M bg% 8'28 : 8'1(1) . 2; ig ﬁ
Arenad4D 43 s 0.65M ’ ’ '
Potree 611s 0.45M

Vienna 2767M 29.6GB 107 | Entwine 301s 092M bg% 3?;2 . 35'22 . 82"3‘2 ﬁ
ArenadD 306 s 0.90 M ’ ’ '
Potree 776 s 0.52M

Morro Bay ~ 407.0M 13.8GB 34 | Entwine 5645 0.72M]\;’gf) 11.(3); : 11.(3)2 Z lgg'ig ﬁ
ArenadD 391s 1.04 M ’ ’ ’

Table 2: Load Performance. Time needed to create a hierarchical LOD structure in advance, compared to the time needed to directly load and
render the non-hierarchical data with our progressive method. Points/s: Number of points per second processed. LAS: Load, parse and upload
LAS files. VBO: Load and upload files in the same format as the vertex buffer. All benchmarks are done on system 2080 and its NVMe SSD.

Brute-force Progressive
Model Points System MSAA Budget Reproject Fill Prepare Total Converges In (ms)
Heidentor 25.8M 2080 1x 6.87 1M 0.10 0.33 0.15 0.71 18.3
2080 1x 6.87 10M 0.10 3.19 0.15 3.56 9.2
1660 1x 10.10 1M 0.20 0.96 0.29 1.68 43.5
940 1x 44.02 1M 1.27 8.39 267 1272 328.7
Vienna 276.TM 2080 1x 84.84 1M 0.35 0.45 0.62 1.54 427.2
276.7TM 2080 1x 84.84 10M 0.35 4.49 0.72 5.68 157.1
276.TM 1660 1x 233.30 1M 0.72 1.72 9.04 11.71 3239.8
230.0M 1660 1x 107.81 1M 0.72 1.84 1.35 4.31 992.0
Morro Bay 407.0 M 2080 1x 295.92 1M 0.19 0.34 0.31 0.94 384.2
2080 1x 295.92 10M 0.19 3.34 0.34 3.99 162.3
2080 4x - 10M 1.09 8.20 092 10.35 421.2
2080 16x - 10M 4.01 19.39 3.09 26.60 1082.5

Table 3: Rendering performance. (Brute-force) Time to render all points in a single frame. (Progressive) Time spent on the passes and the
total time of a progressively rendered frame. (Budget) Number of points rendered in the Fill pass. All timings in milliseconds.

Model Brute-force Progressive Shuffled?
Heidentor 9.69 ms 3.56 ms yes
6.87 ms 2.62 ms no

Vienna 143.27 ms 5.68 ms yes
84.84 ms 4.43 ms no

Morro Bay 150.97 ms 3.99 ms yes
295.92 ms 7.59 ms no

Table 4: Performance difference of rendering shuffled and unshuf-
fled vertex buffers. Progressive method rendered with 1x MSAA
and a budget of 10M points per frame.

4.3.5. Virtual Reality

Our progressive method is able to maintain 2 X 90 frames per sec-
ond in different viewpoints required by the HTC VIVE, at a reso-
lution of 1448 x 1608 per eye on an RTX 2080 TI with 4xMulti-

sample anti-aliasing (MSAA) and a fixed fill budget of 3 million
points per frame after the data was fully loaded. For the Vienna
data set, the frame rate targets are also achieved during loading if
the fixed fill budget is lowered to one million points. In VR, the en-
tire progressive rendering pipeline is executed twice, once for each
eye. Since the frame rate is locked at 90fps and the fill-budget at 3
million points, the image converges at a rate of 180 million points
per second. The number of points of the model affects time to con-
vergence, but it does not affect rendering performance because we
render at most numRepro jected + fillbudget points per eye in a
frame. Since the pose of the head-mounted display always changes
from frame to frame — even if it sits on a table, due to tracking
noise — the result will closely approach but never truly reach con-
vergence.

5. Limitations, Discussion and Future Work

In this section, we list and discuss some of the limitations of our
current approach.

Technical Report / Preprint: TR 193-2-2019-4

Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer / 11

e Our method is currently in-core only. The complete data set must
fit into CPU memory, and the position data and chosen attribute
must fit into GPU memory. The GPU needs to store 16 bytes
per point, but the CPU needs to store all the attributes to enable
fast switching of attributes. However, implementations can also
choose to keep attribute data in separate files on disk to quickly
stream them to the GPU without the need to hold them in RAM.

Shuffled vertex buffers as used in our method often render sig-

nificantly slower than vertex buffers that are ordered by locality.

The GPU may render 10 million ordered points in the same time

as 7 million shuffled points. One could use non-shuffled buffers

to reduce the duration to convergence, but the resulting flick-

ering artifacts severely reduce visual quality. However, Table 4

also shows that there are cases where rendering shuffled buffers

is faster.

e Our progressive method is developed for data without spatial
acceleration structures. However, not having acceleration struc-
tures increases the duration to convergence since we cannot use
frustum culling or culling by LOD to reduce the amount of points
to the most viable candidates. Future work may explore the pos-
sibility of creating simple acceleration structures during loading,
or afterwards in parallel to improve performance and quality dur-
ing runtime.

e We currently do not offer a cost-effective method for quality
improvements. MSAA works, but effectively acts as costly su-
persampling. The Prepare pass automatically treats each MSAA
sample in the rendered image as if it was a separate pixel.

e Regions with higher point density will progress quicker than re-
gions with low density, because the random subsets rendered by
the Fill pass will also have a higher density in these regions.

e If points occupy more than one pixel or MSAA sample, then the
Prepare pass will add them multiple times into the dynamically
generated vertex buffer for reprojection. We tested an alternative
implementation of the Prepare pass that operates on 2x2 frame
buffer samples (= 4 pixels with no MSAA, 1 pixel with 4xM-
SAA) and only adds those points that are unique within that 2x2
sample grid. This form of approximate prevention of duplicates
increased performance up to 10% for point sizes of 2x2 pixels
and 4xMSAA. No performance improvements and sometimes
performance losses of up to 5% were observed with smaller point
sizes or without MSAA, because the duplicate prevention cost
roughly as much time in the Prepare pass as it saves in the Re-
project pass.

As part of future work, we would like to investigate suitable anti-
aliasing strategies that are targeted specifically at this progressive
approach.

6. Conclusion

We have shown a method that can render any point cloud that fits
in GPU memory in real time without the need to generate accel-
eration structures in advance. This is achieved by distributing the
task of rendering a large data set over the course of multiple frames
by reprojecting the previous frame to preserve already rendered de-
tails, and then adding a random subset of points to drive progress
until convergence. We believe that it has the potential to replace the
brute-force rendering approach (all points in each frame) used in

Technical Report / Preprint: 7R 193-2-2019-4

point cloud renderers that do not support LOD rendering, but also

some LOD approaches as long as the point cloud fits into memory.

Progressive rendering allows us to efficiently render point clouds

with high depth complexity, which hierarchical structures alone do
not handle well. We believe that progressive rendering methods,

such as ours for non-hierarchical data and Tredinnick and Ponto et
al. [TBP16; PTC17] for hierarchical data, will prove to be essential

to render increasingly complex scan data in real time.

Code and videos are available at github.com/m-schuetz/skye and

www.cg.tuwien.ac.at/research/publications/2019/schuetz-2019-
PPC/.

7. Acknowledgements

The authors with to thank the Ludwig Boltzmann Institute for Ar-

chaeological Prospection and Virtual Archaeology for providing

the Heidentor data set, Riegl Laser Measurement Systems for pro-

viding the data sets of Vienna and the town of Retz, PG&E and
Open Topography for funding and hosting the data set of San
Simeon, including the Morro Bay area, and TU Wien, Institute of

History of Art, Building Archaeology and Restoration for providing
the Kirchenburg Arbegen (Figure 2 (b)) data set.

This research was enabled by the Doctoral College Computa-

tional Design (DCCD) of the Center for Geometry and Computa-
tional Design (GCD) at TU Wien.

References

[A4D] Arena4D. http://veesus.com/. Accessed 2019.10.02. URL:
http://veesus.com/ 9.

[APS*14] ARIKAN, MURAT, PREINER, REINHOLD, SCHEIBLAUER,
CLAUS, et al. “Large-Scale Point-Cloud Visualization through Local-
ized Textured Surface Reconstruction”. IEEE Transactions on Visualiza-
tion & Computer Graphics 20.9 (Sept. 2014), 1280-1292. 1SSN: 1077-
2626. URL: https://www.cg.tuwien.ac.at/research/
publications/2014/arikan-2014-pcvis/ 3.

[ASP19] ASPRS. LAS Specification 1.4 - R14. Rev. 14. The American
Society for Photogrammetry & Remote Sensing (ASPRS). Mar. 2019 2,
7.

[Bad88] BADT JR, SIG. “Two Algorithms for Taking Advantage of
Temporal Coherence in Ray Tracing”. The Visual Computer 4 (May
1988), 123-132. DOI: 10.1007/BF01908895 3.

[BBS82] BLUM, LENORE, BLUM, MANUEL, and SHUB, MIKE. “Com-
parison of Two Pseudo-Random Number Generators”. Advances in
Cryptology: Proceedings of CRYPTO ’82. Plenum, 1982, 61-78 4.

[Dre07] DREPPER, ULRICH. “What Every Programmer Should Know
About Memory”. (2007) 3.

[Dur64] DURSTENFELD, RICHARD. “Algorithm 235: Random Permuta-
tion”. Commun. ACM 7.7 (July 1964), 420—. 1SSN: 0001-0782. DOI:
10.1145/364520.364540. URL: http://doi.acm.org/
10.1145/364520.364540 4.

[DVS03] DACHSBACHER, CARSTEN, VOGELGSANG, CHRISTIAN, and
STAMMINGER, MARC. “Sequential point trees”. ACM Transactions on
Graphics 22 (July 2003), 657. DO1: 10.1145/1201775.882321 3.

[ENT] Entwine. https://entwine.io/. Accessed 2019.10.02. URL:
https://entwine.io/ 9.

[FTB16] FUTTERLIEB, JORG, TEUTSCH, CHRISTIAN, and BERNDT,
DIRK. “Smooth visualization of large point clouds”. IADIS Interna-
tional Journal on Computer Science and Information Systems 11.2
(2016), 146-158. URL: http : / /publica . fraunhofer . de/
dokumente/N-453338.html 3.

https://github.com/m-schuetz/skye
https://www.cg.tuwien.ac.at/research/publications/2019/schuetz-2019-PPC/
https://www.cg.tuwien.ac.at/research/publications/2019/schuetz-2019-PPC/
http://veesus.com/
http://veesus.com/
https://www.cg.tuwien.ac.at/research/publications/2014/arikan-2014-pcvis/
https://www.cg.tuwien.ac.at/research/publications/2014/arikan-2014-pcvis/
http://dx.doi.org/10.1007/BF01908895
http://dx.doi.org/10.1145/364520.364540
http://doi.acm.org/10.1145/364520.364540
http://doi.acm.org/10.1145/364520.364540
http://dx.doi.org/10.1145/1201775.882321
https://entwine.io/
https://entwine.io/
http://publica.fraunhofer.de/dokumente/N-453338.html
http://publica.fraunhofer.de/dokumente/N-453338.html

12 Markus Schiitz & Gottfried Mandlburger & Johannes Otepka & Michael Wimmer /

[FY38] FISHER, RONALD and YATES, FRANK. Statistical Tables for Bio-
logical, Agricultural and Medical Research. 1938 4.

[GMO04] GOBBETTI, ENRICO and MARTON, FABIO. “Layered Point
Clouds: A Simple and Efficient Multiresolution Structure for Distribut-
ing and Rendering Gigantic Point-sampled Models”. Comput. Graph.
28.6 (Dec. 2004), 815-826. 1SSN: 0097-8493. DOI: 10.1016/j.cag.
2004.08.010. URL: http://dx.doi.org/10.1016/7j.cag.
2004.08.010 3.

[GZPG10] GoswAaMI, P., ZHANG, Y., PAJAROLA, R., and GOBBETTI,
E. “High Quality Interactive Rendering of Massive Point Models Us-
ing Multi-way kd-Trees”. 2010 18th Pacific Conference on Computer
Graphics and Applications. Sept. 2010, 93-100. po1: 10 . 1109 /
PacificGraphics.2010.20 3.

[Ise13] ISENBURG, MARTIN. “LASzip: lossless compression of LiDAR
data”. Photogrammetric Engineering & Remote Sensing 79 (2013). DOTI:
10.14358/PERS.79.2.2092,7.

[Jev92] JEVANS, DAVID A. “Object Space Temporal Coherence for Ray
Tracing”. Proceedings of the Conference on Graphics Interface ’92. Van-
couver, British Columbia, Canada: Morgan Kaufmann Publishers Inc.,
1992, 176-183. ISBN: 0-9695338-1-0. URL: http://dl.acm.org/
citation.cfm?id=155294.1553153.

[OP] OPALS - Orientation and Processing of Airborne Laser Scanning
data. https://opals.geo.tuwien.ac.at/html/stable/
index.html. Accessed 2019.06.26. URL: https://opals.geo.
tuwien.ac.at/html/stable/index.html 2.

[PMOK14] PFEIFER, N., MANDLBURGER, G., OTEPKA, J., and KAREL,
W. “OPALS - A framework for Airborne Laser Scanning data anal-
ysis”. Computers, Environment and Urban Systems 45 (2014), 125-
136. 1SSN: 0198-9715. DOI: https : / /doi .org/10.1016/
j . compenvurbsys . 2013 . 11 . 002. URL: http : / /
www . sciencedirect . com / science / article / pii /
S0198971513001051 2.

[Pre12] PRESHING, JEFF. How to Generate a Sequence of Unique Random
Integers. Accessed 2019.09.16. 2012. URL: https: //preshing.
com /20121224 /how—-to - generate — a - sequence — of —
unique-random-integers/ 4.

[PTC17] PoNTO, KEVIN, TREDINNICK, ROSS, and CASPER, GAIL.
“Simulating the experience of home environments”. 2017 International
Conference on Virtual Rehabilitation (ICVR). June 2017, 1-9. DOI: 10.
1109/ICVR.2017.8007521 3, 11.

[RLOO] RUSINKIEWICZ, SZYMON and LEVOY, MARC. “QSplat: A Mul-
tiresolution Point Rendering System for Large Meshes”. Proceed-
ings of the 27th Annual Conference on Computer Graphics and In-
teractive Techniques. SIGGRAPH ’00. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000, 343-352. 1SBN: 1-58113-
208-5.D01: 10.1145/344779.344940. URL: http://dx.doi.
org/10.1145/344779.344940 3.

[Sch14] SCHEIBLAUER, CLAUS. “Interactions with Gigantic Point
Clouds”. PhD thesis. Favoritenstrasse 9-11/186, A-1040 Vienna, Aus-
tria: Institute of Computer Graphics and Algorithms, Vienna University
of Technology, 2014. URL: https://www.cg.tuwien.ac.at/
research/publications/2014/scheiblauer-thesis/ 2,
3.

[Sch16] ScHUTZ, MARKUS. “Potree: Rendering Large Point Clouds in
Web Browsers”. MA thesis. Austria: TU Wien, 2016. URL: https :
//www.cg.tuwien.ac.at/research/publications/
2016/SCHUETZ-2016-P0OT/ 3,9.

[SYM*11] SCHERZER, DANIEL, YANG, LEI, MATTAUSCH, OLIVER, et
al. “A Survey on Temporal Coherence Methods in Real-Time Render-
ing”. Jan. 2011 3.

[TBP16] TREDINNICK, R., BROECKER, M., and PONTO, K. “Progressive
feedback point cloud rendering for virtual reality display”. 2016 IEEE
Virtual Reality (VR). Mar. 2016, 301-302. DO1: 10.1109/VR.2016.
75047732,3,11.

[WBB*07] WAND, MICHAEL, BERNER, ALEXANDER, BOKELOH,
MARTIN, et al. “Interactive Editing of Large Point Clouds”. SPBG.
2007 2, 3.

[WDP99] WALTER, BRUCE, DRETTAKIS, GEORGE, and PARKER,
STEVEN. “Interactive Rendering using the Render Cache”. Rendering
Techniques’ 99. Ed. by LISCHINSKI, DANI and LARSON, GREG WARD.
Vienna: Springer Vienna, 1999, 19-30. 1SBN: 978-3-7091-6809-7 3.

[Weil6] WEINMANN, MARTIN. Reconstruction and Analysis of 3D
Scenes: From Irregularly Distributed 3D Points to Object Classes.
Springer International Publishing, 2016. ISBN: 978-3-319-29244-1. DOI:
10.1007/978-3-319-29246-51.

[WS06] WIMMER, MICHAEL and SCHEIBLAUER, CLAUS. “Instant
Points: Fast Rendering of Unprocessed Point Clouds”. Proceedings Sym-
posium on Point-Based Graphics 2006. Eurographics. Boston, USA: Eu-
rographics Association, July 2006, 129—136. ISBN: 3-90567-332-0. DOI:
10.2312/SPBG/SPBG06/129-136. URL: https://www.cg.
tuwien.ac.at/research/publications/2006/WIMMER—
2006-1IP/ 3.

Technical Report / Preprint: TR 193-2-2019-4

http://dx.doi.org/10.1016/j.cag.2004.08.010
http://dx.doi.org/10.1016/j.cag.2004.08.010
http://dx.doi.org/10.1016/j.cag.2004.08.010
http://dx.doi.org/10.1016/j.cag.2004.08.010
http://dx.doi.org/10.1109/PacificGraphics.2010.20
http://dx.doi.org/10.1109/PacificGraphics.2010.20
http://dx.doi.org/10.14358/PERS.79.2.209
http://dl.acm.org/citation.cfm?id=155294.155315
http://dl.acm.org/citation.cfm?id=155294.155315
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://opals.geo.tuwien.ac.at/html/stable/index.html
http://dx.doi.org/https://doi.org/10.1016/j.compenvurbsys.2013.11.002
http://dx.doi.org/https://doi.org/10.1016/j.compenvurbsys.2013.11.002
http://www.sciencedirect.com/science/article/pii/S0198971513001051
http://www.sciencedirect.com/science/article/pii/S0198971513001051
http://www.sciencedirect.com/science/article/pii/S0198971513001051
https://preshing.com/20121224/how-to-generate-a-sequence-of-unique-random-integers/
https://preshing.com/20121224/how-to-generate-a-sequence-of-unique-random-integers/
https://preshing.com/20121224/how-to-generate-a-sequence-of-unique-random-integers/
http://dx.doi.org/10.1109/ICVR.2017.8007521
http://dx.doi.org/10.1109/ICVR.2017.8007521
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940
http://dx.doi.org/10.1145/344779.344940
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2014/scheiblauer-thesis/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
https://www.cg.tuwien.ac.at/research/publications/2016/SCHUETZ-2016-POT/
http://dx.doi.org/10.1109/VR.2016.7504773
http://dx.doi.org/10.1109/VR.2016.7504773
http://dx.doi.org/10.1007/978-3-319-29246-5
http://dx.doi.org/10.2312/SPBG/SPBG06/129-136
https://www.cg.tuwien.ac.at/research/publications/2006/WIMMER-2006-IP/
https://www.cg.tuwien.ac.at/research/publications/2006/WIMMER-2006-IP/
https://www.cg.tuwien.ac.at/research/publications/2006/WIMMER-2006-IP/

