
Point Clouds can render up to 10x faster
with compute shaders instead of glDraw

Rendering Point Clouds with Compute Shaders
Markus Schütz, Michael Wimmer, TU Wien

Abstract
Regular point rasterization with
glDrawArrays(GL_POINT,...)
can be slow due to the overhead
of the rendering pipeline. Com-
pute shaders with atomicMin
and atomicAdd are often a faster
alternative.

Method 1: Compute

Custom Rasterization with atomicMin

A compute shader transforms
points to pixel coordinates, and
then encodes linear depth and
color into a 64 bit integer. With
atomicMin, we store the frag-
ments with the lowest depth in a
pixel buffer. A second compute
shader transfers the pixel buffer
into a texture.

References / Related Work
[1] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. 2005. High-quality surface splatting on

today’s GPUs. In Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graph-
ics, 2005. 17–141. https://doi.org/10.1109/PBG.2005.194059

[2] Christian M Günther, Thomas Kanzok, Lars Linsen, and Paul Rosenthal. 2013. A GPG-
PU-based Pipeline for Accelerated Rendering of Point Clouds. Journal of WSCG 21 (2013),
153–161.

[3] Michael Kenzel, Bernhard Kerbl, Dieter Schmalstieg, and Markus Steinberger. 2018. A
High-performance Software Graphics Pipeline Architecture for the GPU. ACM Trans. Graph.
37, 4, Article 140 (July 2018), 15 pages. https://doi.org/10.1145/3197517.3201374

Acknowledgements
The authors wish to thank Riegl LMS for the
point cloud of Retz, PG&E and Open Topog-
raphy for funding and hosting the point cloud
of San Simeon (Morro Bay), and the Ludwig
Boltzmann Institute for Archaeological
Prospection and Virtual Archaeology for the
point cloud of the Heidentor.

Method 2: High-Quality
Results

First, create a depth buffer with
method 1. Then, use atomicAdd
to sum up and count color values
of points at most 1% behind
depth buffer. Finally, divide sum
of colors by number of fragments
to get an average color value of
overlapping points in a pixel.
Compute shader implementation
of Botsch et al. [1].

• Our compute and the classic GL_POINTS method produce the same
result • The basic compute method is up to 2x to 10x faster than
GL_POINTS • The high-quality method is up to 2x to 4x faster than
GL_POINTS • Evaluated for point sizes of 1 pixel • GL_POINTS still faster
for point sizes larger than 2x2 pixels
Dataset: San Simeon, 117M points, courtesy of PG&E
Code: github.com/m-schuetz/compute_rasterizer
Video: bit.ly/2nv48gI

SIGGRAPH

BRISBANE
ASIA 2 19

Transform
to pixel coord

Depth Buffer
using method 1

R
et

z
co

ur
te

sy
 o

f R
ie

gl
 L

M
S

M
or

ro
 B

ay
 c

ou
rte

sy
 o

f P
G

&E

Attribute Buffer
sum of colors and fragment

counts with atomicAdd

Normalize
Divide sum of colors by

number of fragments

Encode
5 byte depth, 3 byte RGB

Write to Pixel Buffer
atomicMin keeps point with smallest depth,

RGB in least significant bits → largely ignored

D e p t h R G B
(int64_t)

at
om

ic
M

in

High-Quality Rendering with atomicAdd

GL_POINTS
60.26 ms

Compute
5.87 ms

Regular High-QualityHigh-Quality
15.48 ms

H
ei

de
nt

or
 c

ou
rte

sy
 o

f L
BI

 A
rc

hP
ro

