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Fig. 1. We introduce a new nonlinear subdivision surface model, which is based on a control-mesh representation encoding Gaussian covariances in its

vertices (a). Our surface definition relies on a refinement using Gaussian products, providing enhanced shape control on the smooth limit surface. This

significantly widens the space of possible shapes stemming from a given control mesh, enabling better modeling features, (semi-)sharpness and concavities

without changing the base connectivity (b). In addition, our representation naturally integrates into surface-reconstruction pipelines, recovering high- and

mid-frequency structures even from a low-resolution control mesh (c).

Probabilistic distribution models like Gaussian mixtures have shown great

potential for improving both the quality and speed of several geometric

operators. This is largely due to their ability to model large fuzzy data using

only a reduced set of atomic distributions, allowing for large compression

rates at minimal information loss. We introduce a new surface model that

utilizes these qualities of Gaussian mixtures for the definition and control

of a parametric smooth surface. Our approach is based on an enriched

mesh data structure, which describes the probability distribution of spatial

surface locations around each vertex via a Gaussian covariance matrix. By

incorporating this additional covariance information, we show how to define

a smooth surface via a nonlinear probabilistic subdivision operator based on

products of Gaussians, which is able to capture rich details at fixed control

mesh resolution. This entails new applications in surface reconstruction,

modeling, and geometric compression.
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1 INTRODUCTION

For the efficient processing of fuzzy geometric data like noisy point

sets, probabilistic distribution models such as Gaussian mixtures

have recently shown great potential for tasks like registration, filter-

ing or resampling. This is largely due to their ability to model large

fuzzy data using only a reduced set of atomic distributions, allowing

for large compression rates at minimal information loss. Due to this

compactness, it is desirable to be able to define a surface directly

on such a sparse model, and avoid the need to expand to larger

representations (e.g., meshes or point clouds) for further processing

and rendering. In fact, such a sparse representation is also highly

interesting for modeling applications, which aim at defining com-

plex shapes using simple base representations. So far, there have

been some attempts to define a probabilistic surface along the ridge

contour of the probability density function (pdf) of a dense Gaussian

mixture. However, this contour degenerates when the mixture is

compressed to large anisotropic Gaussians, where discontinuities

appear; also, the resulting surface definition is not amenable for

further processing or modeling tasks.

In this paper, we introduce a new probabilistic surface representa-

tion that allows defining continuous, artifact-free surfaces even for

a sparse set of Gaussians, while still closely resembling the ridge of

their pdf. Our surface definition is based on a polygonization of the

individual Gaussian components, resulting in a new, enriched mesh

model that carries anisotropic covariance information at its vertices,

called covariance mesh. The key idea to turn this representation

into a continuous surface is to depart from the linear combination

of individual Gaussians used in mixture models, and instead con-

sider their joint probability, leading to a new interpolation method

between Gaussians based on a product formulation. To apply this
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(a) Sampled ground truth ( |P | = 108) (b) ridge ( |M | = 108) (c) ridge ( |M | = 12) (d) Probabilistic Subdivision Curve

Fig. 2. (a) Surface contour (dashed white) sampled with normal distributed noise (σ = 1.6% of the shape diagonal). Convolving the Dirac distribution of the

samples with a Gaussian kernel (σ = 3.2%) results in a kernel density estimate of their pdf (blue height field). Note that the ground-truth contour runs closely

along the ridge of this pdf, where the density is maximial. (b) The actual ridge contour contains spurious ridges (red), and discontinuities at highly curved

features (black). (c) A maximum-likelihood simplification of the pdf to fewer anisotropic Gaussians generally smoothes the ridge contour, but reinforces

discontinuities and the appearance of spurious ridges. (d) Gaussian-product subdivision curve interpolating the set of simplified Gaussians in (c).

idea to covariance meshes, we introduce a new family of subdivi-

sion operators, generalizing existing subdivision-surface algorithms

by incorporating the anisotropic covariance information of the in-

dividual vertices (Fig. 1a). In particular, we define the subdivided

vertex in a refined covariance mesh according to the new Gaussian

interpolation method.

Despite representing a nonlinear subdivision scheme, the pro-

posed subdivision operation based on Gaussians can actually be

shown to be dual to traditional linear ones: We introduce a smooth

map between covariance meshes and ordinary meshes in a dual

space, such that all findings and tools developed for linear subdivi-

sion can be applied to our proposed Gaussian-product subdivision

through these maps. Thus, one can use existing subdivision schemes

like Loop or Catmull-Clark to define smooth probabilistic surfaces

for covariance meshes of arbitrary complexity. In fact, our subdi-

vision formulation is a generalization of traditional subdivision

modeling methods: by modifying the covariances at the vertices of

a covariance mesh, a user can achieve complex shape variations,

including concavities and sharp creases, without increasing the

complexity of the base mesh (Fig. 1b). Covariance meshes therefore

provide a powerful new representation for modeling applications

where subdivision surfaces have been used so far.

In order to compute the initial covariance mesh, we provide two

different techniques: one based on a pure Gaussian mixture where

we probabilistically triangulate its components ś to be used to con-

vert noisy point clouds into the new representation; and one based

on an ordinary mesh, where covariances are inferred based on the

locally surrounding geometry ś usable in standard modeling sce-

narios where the user defines a coarse base mesh. We illustrate

the power of covariance meshes and our new subdivision scheme

with applications in interactive shape modeling (Fig. 1b) and surface

reconstruction (Fig. 1c).

2 BACKGROUND AND RELATED WORK

2.1 Background

Gaussian Mixtures have been widely used in various scientific fields

to describe the distribution of large complex data by a superposition

of a sparse, tractable set of Gaussian components. In point-based

processing, they have been used for registration [Danelljan et al.

2016; Jian and Vemuri 2011], filtering [Calderon and Boubekeur

2014] and resampling [Preiner et al. 2014]. For a given set P of

discrete points sampled from a surface, Expectation Maximization

(EM) [Dempster et al. 1977] or its faster hierarchical variants [Vas-

concelos and Lippman 1999] can be used to compute a Gaussian

mixtureM = {wi ,Θi } modeling their pdf

fM (x) =
∑

i

wi f (x|Θi ) (1)

via a set of anisotropic Gaussians Θi = (µi , Σi ), where µi denotes

the mean, Σi the covariance,wi the prior weight, and

f (x|Θi ) = |2πΣi |
− 1

2 e−
1
2 (x−µi )

T
Σ
−1
i (x−µi ) (2)

the Gaussian pdf of the i-th mixture component.

Our principal aim is to define a continuous, smooth surface S that

faithfully resembles the shape of the original surface solely based

on this compact probabilistic representation M. Intuitively, an opti-

mal reconstruction with respect to the probability density of M is

one that places the surface S along the ridge of the pdf landscape

fM , where the probability value is maximal. Various methods exist

that extract this ridge by finding local maxima in the pdf along

trajectories that are given by the smallest negative eigenvector of

its Hessian [Li et al. 2010; Ozertem and Erdogmus 2011; Süßmuth

and Greiner 2007]. However, general Gaussian mixture pdfs can

exhibit discontinuities in the smallest Hessian eigenvector field, de-

teriorating this ridge contour. Figure 2a depicts a dense mixture pdf

(blue iso-lines) of a noisy point set, produced by convolving each

point with an isotropic Gaussian kernel. As shown in Figure 2b,

this ridge formulation leads to discontinuous ridge contours (black

lines), and the occurance of secondary, spurious ridges (red lines),

which have to be dealt with. Moreover, processing such dense mix-

tures is quite inefficient, and becomes infeasible for large input data.

In contrast, we strive for a sparse surface model that exploits the

compactness of compressed Gaussian mixtures. Figure 2c shows

that a maximum likelihood compression of the dense mixture to

only few anisotropic Gaussians still faithfully resembles the origi-

nal pdf. However, while the resulting ridge contour is expectedly

smoothed, the increased sparseness and anisotropy of the Gaussians
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even increases the appearance of discontinuities and spurious ridges

(Figure 2c).

Our proposed surface model follows an alternative approach that

directly works on a compact, sparse set of anisotropic Gaussians:

By explicitly defining the connectivity between the Gaussian com-

ponents, we can apply a new probabilistic subdivision operator,

producing limit contours that closely resemble the ridge of the

Gaussians’ pdf while maintining its continuity (Figure 2d).

2.2 Related Work

Subdivision surfaces. Subdivision surfaces generalize spline sur-

faces by using any 2-manifold surface mesh as base control net.

They are defined by a recursive process of applying a subdivision

mask to a mesh and are often analyzed by the properties of its limit,

i.e., the geometry defined by an infinity of subdivision steps. These

properties include the continuity order, the approximation or inter-

polation level and the regularity/curvature distribution. Subdivision

surfaces are often classified regarding their control mesh polygon

type, triangles [Loop 1987] and quads [Catmull and Clark 1978]

being the most common flavors. A complete overview of subdivi-

sion surfaces is given in the course by Zorin and Schröder [2000],

and we refer the reader to the work of Brainerd et al. [2016] and

Karčiauskas and Peters [2018] for a survey of recent evolutions.

To account for extra surface properties such as sharp creases and

prescribed tangents, Hoppe et al. [1994] proposed alternative sub-

division masks in the presence of tagged sharp edges and vertices

for the Loop subdivision scheme [Loop 1987]. Later on, DeRose et

al. [1998] introduced semi-sharp creases for Catmull-Clark subdivi-

sion surfaces, allowing modeling a continuum of features between

smooth and sharp edges using a single scalar per edge. Other control

mechanisms have been proposed, such as the method by Biermann

et al. [2000] who prescribe the local tangent plane at the limit sur-

face using a per-base-vertex normal vector. Introducing the idea

of łguidingž the subdivision process to achieve certain properties,

Levin [2006] proposed to use a polynomial function at extraordinary

points to recoverC2 continuity, while Karčiauskas and Peters [2007]

enabled the use of any piecewise smooth function as a guide.

Nonlinear subdivision schemes. In our work we build on a par-

ticular class of subdivisions that replace linear averaging rules by

nonlinear refinement operators. It can be shown that such nonlin-

ear refinements can be achieved by performing a linear averaging

after certain locally invertible nonlinear mappings [Schaefer et al.

2008], both of which pass on their differentiability properties to the

resulting nonlinear scheme. This constitutes a basic recipe for the

construction of a large spectrum of both interpolatory and approx-

imative nonlinear subdivision operators. For instance, Vaxman et.

al [2018] recently constructed a nonlinear subdivision scheme by

applying a linear subdivision after mapping the one-ring of each

vertex to a canonical form using a Möbius transformation.

In general, the analysis of smoothness and convergence of such

nonlinear schemes is much more elaborate than those of linear sub-

division models. Wallner and Dyn [2005] and Grohs [2009; 2010]

analyze these properties for nonlinear schemes on manifolds and in

Lie groups based on their proximity relation to the linear schemes

from which they are derived. Other work by Wallner analyzed uni-

variate interpolatory schemes generalized to Riemannian manifolds

via a log/exp mapping [Wallner 2014], and investigated the con-

vergence and smoothness properties of subdivision operations in

symmetric spaces [Wallner et al. 2011]. The latter contains the space

of positive definite symmetric matrices, such as the Gaussian co-

variance matrices, that is of particular interest for the subdivision

of our covariance meshes. Subdivision schemes for this class of

matrices have been studied by Itai and Sharon [2013]. The appli-

cation of subdivision to the interpolation of such manifold-valued

functions over smooth two-manifolds has been demonstrated by

Weinmann [2010], who showed convergence and C1 smoothness of

nonlinear subdivision schemes on irregular meshes.

Instead of merely interpolatingmatrix-valued functions over man-

ifolds, we refine covariance kernels located in 3d space to define the

shape of an intrinsic two-manifold via subdivision. Using matrix

weights for subdivision surfaces was pioneered by Yang [2016] and

used to provide normal control. Our work expands on these methods

and introduces a more powerful control mechanism, using Gaussian

kernels to model sharp features, concavities, and more accurately

control curvature without changing the control mesh topology. By

applying concepts from nonlinear subdivision theory to contour

the probability density of a Gaussian mixture, we thereby build a

bridge between a probabilistic and a geometric view on the data.

Gaussian triangulation. Generating a covariance mesh from a

sparse Gaussian mixture that is computed from an input point

cloud requires establishing connectivity between the Gaussians. A

straightforward strategy is to greedily and locally generate connec-

tivity among samples. Lower-dimensionalmeshing techniques [Gopi

et al. 2000; Linsen and Prautzsch 2003] or front-propagation meth-

ods [Cohen-Steiner and Da 2004] typically work well on dense

enough data sets, are able to capture non-manifold regions, and are

usually very fast to compute. Although they are based on heuristics

and cannot guarantee manifoldness, their flexibility makes them

good candidates for triangulating anisotropic Gaussian sets that

model the potential space occupancy of a surface, particularly when

the set is not guaranteed to be sampled under strict feature-size

conditions. However, to the best of our knowledge, existing greedy

meshing methods are solely based on point sets. In our case, each

sample comes as an anisotropic Gaussian, for which a dedicated

meshing method can exploit the richer information carried by the

distribution, accounting for the underlying anisotropy to favor a

specific local connectivity structure.

3 OVERVIEW

Our new surface representation is defined on a manifold mesh

Π = (V, E,F ) that encodes individual Gaussians Θi = (µi , Σi ) in

its vertices V = {Θi }, and defines their topological connectivity

via edges E and faces F . Since this mesh definition extends the

positional information µi stored in a vertex by a covariance matrix

Σi , we call Π a covariance mesh, or covmesh (Fig. 3).

Given such a covmesh, we introduce a family of nonlinear subdivi-

sion schemes that uses the covariance information for a refinement

based on the product of vertex Gaussians, leading to a continuous

limit contour that closely approximates the ridge of their associated
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Fig. 3. Overview of our surface model. Its central representation is a co-

variance mesh (center), a mesh structure that extends vertices by Gaussian

covariances and can be generated from a given mesh, or from a Gauss-

ian mixture (left). They define smooth surfaces via a nonlinear subdivision

operator, which corresponds to linear subdivision in a dual space (right).

probability density (Section 4). This new probabilistic subdivision

scheme exhibits several interesting properties (Section 5): it corre-

sponds to given linear schemes in a dual space via a smooth map,

is thus easy to implement and integrate into existing subdivision

tools, and produces limit surfaces exhibiting the same continuity

order as their corresponding linear schemes, while modeling more

complex features at the same base-mesh complexity.

We will discuss ways to generate a covmesh both from given

classical meshes, by inferring the required covariance information,

and from Gaussian mixtures, via a heuristic triangulation method

that is guided by the covariances (Section 6). Finally, we demonstrate

the merits of our new surface definition for applications such as

interactive modeling of sharp features using sparse control meshes

(Section 7.1), and highly efficient surface reconstruction from points

via Gaussian mixtures (Section 7.2).

4 PROBABILISTIC SUBDIVISION SURFACES

In this section we develop a smooth surface definition for sparse

covariance meshes by introducing a probabilistic subdivision op-

erator that acts on the individual Gaussian distributions stored at

its vertices. This results in a new family of subdivision surfaces,

which extend existing linear schemes like Loop or Catmull-Clark

subdivision in a simple and elegant way.

Probabilistic Refinement. We first assess the basic example of two

topologically connected Gaussians Θi and Θj shown in black in Fig-

ure 4a. Our aim is to define a smooth contour between their means

describing a continuous path of highest possible probability density.

While the ridge of their common pdf (blue contour) would have

maximum density along its path, it has problems to meet the conti-

nuity requirement, especially close to where the Gaussian kernels

overlap. Therefore, in contrast to a ridge-based curve formulation

based on the mixture distribution, our strategy is to recursively

refine the mesh by inserting a new Gaussian that models the proba-

bilistic overlap of the original Gaussians. To this end, we employ

the Gaussians’ joint distribution, which is given by the (normalized)

θi

θj

θij

(a)

θij

θij
‚‚

‚

(b)

cij
µi

µj

µij

µij

µij

‚‚

‚

(c)

Fig. 4. (a) Two Gaussians Θi and Θj and their common product Gaussian

Θi j . Dots indicate means, ellipses the unit-variance isocontours of their

kernels. Blue lines represent the ridge of their common mixture pdf, exhibit-

ing a discontinuity near their pdf overlap. (b) Movement of the product at

double (resp. half) the kernel of Θi (resp. Θj ) (upper image) and vice versa

(lower image). (c) Continuous contour ci j interpolating the means of the

product Gaussians shown in (a) and (b).

product of their individual pdfs,

f (x|Θi j ) = ω−1 f (x|Θi ) f (x|Θj ), (3)

and results in the pdf of a new, subdividing Gaussian Θi j (red

dashed). Here, the term ω =
∫
Rd

f (x|Θi )f (x|Θj ) dx only accounts

for the fact that this product is generally not a pdf that integrates

to 1, but does not influence the location or shape of the resulting

product Gaussian. In the following, we will always use a term ω−1

to indicate respective pdf normalizations.

Figure 4a shows that the mean µi j = E[x|Θi j ] of this product

Gaussian gives a suitable location for a refinement point of high

joint probability density, even in a region where the continuity of

the analytic pdf ridge tends to break down. By further subdividing

the new edge between Θi and Θi j , we get

f (x|Θii j ) = ω−1 f (x|Θi ) f (x|Θi j ) = ω−1 f (x|Θi )
2 f (x|Θj ).

By repeating this process, any resulting Gaussian can be expressed

as a weighted product of the two base Gaussians, where the weights

modify the power of their pdfs:

f (x|Θi j ) = ω−1 f (x|Θi )
αi f (x|Θj )

α j . (4)

Increasing the power of a Gaussian pdf results in a downscaling

of its covariance kernel Σi by α−1i . As shown in Fig. 4b, this also

causes Θi j to shift towards the Gaussian with higher power, or

similarly, smaller kernel. The set of all weighted product means µi j ,

for weights αi ≥ 0,

µi j =
(
αiΣ

−1
i + α jΣ

−1
j

)−1 (
αiΣ

−1
i µi + α jΣ

−1
j µ j

)
, (5)

describes a curve ci j connecting theGaussians’means, as theweights

are invariant to any scaling and can thus be expressed using a sin-

gle parameter t = αi
αi+α j

. This curve closely resembles the ridge

of the common pdf and thus gives a robust definition of a proba-

bilistic surface contour (Fig. 4c). To extend this refinement strategy

to covariance meshes embedded in R3, we generalize Eq. (3) to a

weighted product of n > 2 topologically connected Gaussians Θi ,
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which is given by their joint pdf

f (x|ΘJ ) = ω−1
∏

i ∈J

f (x|Θi )
αi (6)

with weights αi ≥ 0. Eq. (6) can now be used to guide the insertion

of new (odd) face and edge vertices as well as the update of existing

(even) vertices in a covariance mesh. What remains to be ascertained

is a choice of weights αi that ensures that the limit mesh of the

resulting probabilistic subdivision is in fact a smooth surface.

Choice of Weights. For linear subdivision schemes, analyzing their

corresponding subdivision matrices makes it comparatively easy to

determine suitable weights for the linear combination of adjacent

vertices in a subdivision computation, such that the limit surface ex-

hibits a particular smoothness. In general, however, the smoothness

analysis of nonlinear subdivision schemes, as the one introduced

above, is much more elaborate, making it difficult to directly deter-

mine similarly suitable weights αi for our probabilistic refinement

scheme. In the following, however, we will show that by using a

particular mapping of the Gaussians to a higher-dimensional space,

we can reformulate the nonlinear subdivision operator from Eq. (6)

to an ordinary linear subdivision scheme, from which we can di-

rectly adopt both its definition of weights αi and its corresponding

smoothness properties of the resulting limit surface.

To this end, we reformulate the pdf of a Gaussian Θi in Eq. (2),

by expressing the quadratic form in its exponent by a quadratic

polynomial basis b(x) and a corresponding coefficient vector qi ,

f (x|Θi ) = c · e
− 1

2 b(x)
T qi , (7)

where we let c collect all non-exponential factors. This way, we can

identify every Gaussian Θi with a point qi encoding the elements

of µi and Σ
−1
i via a bijective map F : Θi 7→ qi to a space Q of

quadratic functions with basis b. By substituting Eq. (7) into Eq. (6)

and simplyfing, the pdf of the product Gaussian ΘJ can be defined

as a single exponential,

f (x|ΘJ ) = c · e
− 1

2 b(x)
T
∑
i αiqi = c · e−

1
2 b(x)

T q J . (8)

The right side of Eq. (8) now makes apparent that inQ , the point q J
corresponding to the product ΘJ is defined by a linear combination

q J =
∑

i ∈J

αiqi (9)

of the individual Gaussian images qi . This indicates that if we map

a covariance mesh Π = ({Θi }, E,F ) to a corresponding hypermesh

M∗
= ({F (Θi )}, E,F ), then applying a linear subdivision with given

weight coefficients αi toM
∗ corresponds to a probabilistic subdivi-

sion of Π with identical weights. Thus, for our probabilistic subdivi-

sion scheme defined in Eq. (6), we can adopt the weights αi provided

by any given linear scheme L that suits the topology of Π.

Whether these weights actually result in a probabilistic limit

surface S ⊂ Rd with similar smoothness properties than the limit

hypersurface S∗ ⊂ Q resulting from L depends on the properties

of the inverse map F−1: If S∗ is Cn continuous in its points q, then

S is Cn continuous in the means of their image Gaussians F−1(q)

provided the inverse mapping function F−1 is smooth over the

domain of S∗. Next, we will show that for αi ≥ 0 this is the case.

Mapping Function. The definition of the mapping F : (µ, Σ) 7→ q,

satisfying b(x)Tq + cq = (x − µ)T Σ−1(x − µ), depends on the choice

of the polynomial basis b, which, to our convenience, we define as

b(x)T = ( vech( 2 xxT − diag(x)2 )T , −2xT ), (10)

where the first and second part represent the bases of the qua-

dratic and linear coefficients, respectively. Here, vech is the half-

vectorization operator linearizing the lower triangular part of a

symmetric matrix. Using the above basis, the map F (µ, Σ) is given

by the vector q = (q̆T , q̄T ), consisting of quadratic and linear sub-

coefficient vectors:

q̆ = vech(Σ−1) q̄ = Σ
−1µ (11)

Note that it is not necessary for this basis to model the constant

term cq = µT Σ−1µ of the quadratic polynomial, since being in

the exponent of the pdf in Eq. (7), it only affects the scale c of

its amplitude. For covmeshes defined over Rd , their image space

Q thus has dimensionality k =
(d+2
d

)
− 1 (number of linear and

quadratic polynomials in Rd ). To perform the inverse mapping

F−1 : q 7→ (µ, Σ), we first restore its covariance, which is then used

to restore its mean:

Σ = F−1
Σ

(q) = [q̆]−1 µ = F−1µ (q) = Σ q̄ (12)

where we use [·] to denote the inverse half-vectorization operator

vech−1 restoring a symmetric matrix. Note that using Eq. (9), (11)

and (12), we can also directly express the refined Gaussian parame-

ters by the Gaussians from the coarser level:

ΣJ =
[
q̆ J

]−1
=

[∑

i

αi q̆i

]−1
=

(∑

i

αiΣ
−1
i

)−1
,

µ J = ΣJ

(∑

i

αi q̄i

)
=

(∑

i

αiΣ
−1
i

)−1 (∑

i

αiΣ
−1
i µi

)
,

(13)

which extends the product definition in Eq. (5) to n Gaussians.

5 PROPERTIES

This section discusses the smoothness and the shape control pro-

vided by Gaussian-product subdivision. Differential geometric prop-

erties like tangents and curvature are analyzed in Appendix B.

Smoothness. By definition, the Gaussian covariances Σi stored in

a covmesh Π are positive-definite matrices, and so are their inverses

Σ
−1
i . Within the subspace Q̆ of quadratic coefficients spanned by the

first part of the basis b defined in Eq. (10), their images q̆i therefore

all map to a conical region Q̆pd ⊂ Q̆ known as the positive-definite

cone [Hill and Waters 1987]. The boundary ∂Q̆pd of this cone repre-

sents a set of singular, i.e., non-invertible symmetric matrices, for

which both the map F in Eq. (11) and its inverse F−1 in Eq. (12)

are undefined. Discontinuities in the probabilistic limit subdivision

surface S will thus occur at the intersection S∗ ∪ ∂Q̆pd of its cor-

responding limit hypersurface with this singular cone boundary.

However, such intersections can be avoided if the linearly refined

hyperpoints q J resulting from Eq. (9) are ensured to stay within the

convex hull of the input hypervertices qi ∈ Qpd , which is the case

for any convex set of weights αi . Besides affinity (
∑
i αi = 1), which

is a requirement for non-diverging subdivision schemes anyway,
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Fig. 5. Reflection lines for the standard Catmull-Clark (left) and Gaussian-

product Catmull-Clark limit surface (right) shown in Fig. 1a.

this implies the usage of non-negative weights αi ≥ 0, as provided

by approximative schemes like Loop or Catmull-Clark subdivision.

For a probabilistic subdivision of a given covmesh Π, we can

therefore adopt the weights αi ≥ 0 of such an approximative scheme

L and obtain a continuous limit surface S = {F−1µ (q) : q ∈ S∗}. Since

within Qpd the inverse map F−1µ given by Eq. (12) is well defined

and C∞ differentiable, the resulting probabilistic surface adopts the

smoothness properties of S∗, that is, the continuity orders at regular

and extraordinary points defined by the associated linear scheme

L. This is demonstrated in Figure 5 by comparing reflection lines

between linear and Gaussian-product Catmull-Clark subdivision.

Covariance Shape Control. Given our new probabilistic mesh rep-

resentation and subdivision-surface definition, we are interested

in the effect of individual Gaussian covariance configurations on

the resulting limit subdivision surface. In general, the anisotropy

of the covariance kernels attached to the control vertices, that is,

the ratio of their eigenvalues, directly affects the smoothness (i.e.,

the curvature) of the local subdivision contour. Figure 6a illustrates

this feature by successively reducing the anisotropic extent of the

Gaussians from Figure 4a (dashed). With decreasing anisotropy, the

contour c ′i j becomes smoother (red), until they are both isotropic,

where the resulting curve c ′′i j reduces to a straight line (blue).

This behavior also lets the subdivision contour intuitively reflect

the level of uncertainty encoded in the Gaussians. In a sparse mix-

ture representing a noisy point set, stronger noise will cause larger

surface-orthogonal variance, resulting in reduced anisotropy and

smoother contours (Fig. 6b). In contrast, a low level of noise will

create thinner, more anisotropic Gaussians, allowing for a more pre-

cise definition of sharp features (Fig. 6c). This suggests that we can

control the smoothness of the contour by reducing the anisotropy

of the covariances, as can be achieved by convolving the mixture

with an isotropic Gaussian smoothing kernel (blurring). Eq. (13)

reveals two further properties of the influence of the covariance

kernels on the surface shape. First, applying a global scale factor

s to the covariances Σi does not change the shape of the curve, as

this scale factor cancels out in the definition of µ J . Second, using

a globally constant covariance Σi = Σc and convex weights αi , the

subdivision Gaussian ΘJ reduces to

ΣJ = Σc , µ J =
(∑

i

αiΣ
−1
c

)−1 (∑

i

αiΣ
−1
c µi

)
=

∑

i

αi µi , (14)

which equals a linear subdivision of the vertices µi , with stationary

covariance Σc . Thus, our probabilistic subdivision is in fact a true

generalization of ordinary linear subdivision schemes. An example

c
ij

c
ij

‚

‚‚
c

ij

(a)

c
ij

c
ij

‚

(b)

c
ij

c
ij

‚

(c)

Fig. 6. Influence of the shape of two Gaussian kernels on their common

subdivision contour ci j . (a) Successively reducing their tangential variance

straightens out the curve up to the point where ci j is a straight line. (b)

Increasing the surface-orthogonal variance produces smoother contours as

well, while (c) reducing the variance results in sharper features.

is given by the two isotropic kernels in Fig. 6a (blue), leading to a

straight line c ′′i j .

6 COVMESH GENERATION

In this section, we discuss different ways for generating a covariance

mesh depending on the type of input and considering two comple-

mentary scenarios. In the first one, we start from an existing surface

mesh, and enrich its vertices with anisotropic Gaussian covariance

information; in the second one, we start with a set of anisotropic 3d

Gaussians, and infer topological connectivity among them to form

a covmesh. While the former strategy adresses modeling scenarios,

the latter allows for probabilistic point-based reconstruction.

6.1 Gaussian Inference

For a given sparse input mesh Π = (V, E,F ), we would like to have

means for complementing its vertices with expressive anisotropic

covariance information that produces a plausible subdivision sur-

face shape while being able to model inherent features encoded in

the mesh. Different approaches are conceivable for automatically

inferring Gaussian covariances Σi at its vertices vi ∈ V . An intu-

itive and straightforward way is to employ a vertex-based estimate,

given by the sample covariance of the local mesh umbrella vertices,

Σ
v

i = cov (vi ∪ N(i)) + σ 2
0 I , (15)

where the right term biases the diagonal by some variance σ 2
0 to

prohibit rank-deficient matrices in flat areas. However, we propose

a more feature-preserving, face-based variant that makes use of the

sameGaussian product formulation that is central to our subdivision-

surface definition. Our idea is to model the area of each neighboring

face ∆j of a vertexvi by a ‘face Gaussian’Θ∆j
and define the inferred

tensor as the covariance of their product

Σ
f

i = cov
(∏

j

f (x|Θ∆j
)
)
=

(∑

j

Σ
−1
∆j

)−1
. (16)

Here, the face covariance is given by the sample covariance of the

face vertices, biased by some bandwidth as before:

Σ∆j
= cov (v ∈ ∆j ) + σ

2
0 I . (17)

The probabilistic limit subdivision surface of the covmesh resulting

from such an automatic Gaussian inference allows modeling inher-

ent surface features in the input mesh much more faithfully than
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(a) Covmesh (b) Loop (c) GPS Loop

Fig. 7. Loop and Gaussian-product Loop subdivision surface on a covmesh.

standard linear subdivision schemes. Figure 7 shows an example of

a coarse triangle mesh of the Tweety model, where Gaussians were

inferred using Eq. (16). In comparison to its standard Loop subdivi-

sion surface, the resulting GPS surface creates a more characteristic

neck line and beak.

6.2 Topological Inference

For tasks like surface reconstruction, covariance meshes can be

used to directly define a reconstructed probabilistic surface based

on a sparse Gaussian mixture that has been computed from a po-

tentially very large input point cloud for efficient processing. In

contrast to the previous section, such applications require us to

solve the inverse problem, that is, for a given mixture, finding a

manifold polygon mesh that connects its individual components

to a topological surface. We propose a simple yet efficient way to

obtain a triangulation of such a set of Gaussians, thus resulting in a

triangular covariance mesh.

An ordinary Delaunay-based triangulation, as used for simple

point sets, is obviously unsuitable for our purpose, as the anisotropic

extent of the individual Gaussian kernels calls for different metrics

for the assessment of local distance relations. Oneway is to approach

this problem as general Delaunay triangulation for a Riemannian

manifold, whose local metric is stretched according to the Gaussians’

covariance tensors [Budninskiy et al. 2016; Rouxel-Labbé et al. 2016].

However, such strategies lead to volume meshes, from which the

extraction of a surface structure relies on input sampling guarantees

we cannot provide in practice, and ends up being even harder than

the triangulation problem itself [Amenta et al. 2001]. Therefore,

instead of resorting solely to such geometric interpretations of the

mixture model, we use a triangulation approach that makes use of

the probabilistic information encoded in the Gaussians.

Greedy triangulation. Our method is based on a simple greedy

front-growing triangulation of point sets [Cohen-Steiner and Da

2004], which starts with an initial seed triangle and then iteratively

advances its edge front by adding the next connected candidate

triangle ∆i jk that is optimal with respect to a certain plausibility

grade P(∆i jk ). For point sets, Cohen-Steiner and Da [2004] measure

this grade of a candidate triangle geometrically by the reciprocal ra-

dius of the smallest empty circumsphere. To avoid the appearance of

0.24

0.26

0.100.07

(a) (b)

Fig. 8. (a) Thin sheets modeled by 4 anisotropic Gaussians. Simple distance-

based criteria fail to express their topological connectivity. We therefore

measure the overlap of their probability extent (numbers over red arrows).

(b) Faithful triangulation of a cuboid mixture, where the distribution of

Gaussian means does not meet the sampling criterion.

slivers, where a newly added triangle creates a fold, candidate trian-

gles ∆i jk are discarded if their dihedral angle βi jk with a connected

existing triangle falls below a certain threshold βmin.

Probabilistic plausibility grading. For triangulating a set of aniso-

tropic Gaussians describing the probability distribution of surface

points, such a Delaunay-based criterion is unsuitable, as the mere

Euclidean distance between Gaussians is inconclusive about their

topological connectivity. Figure 8a demonstrates this on the example

of two twin density sheets, represented by 4 Gaussians. While two

horizontally aligned Gaussians can have a larger distance between

their means, they are still more plausible to be connected, since

their individual probability distributions partially model the same

region of the surface, i.e., they overlap to a considerable degree.

Our intuition therefore is to use a grading that assesses exactly this

overlap of their probability distributions. To this end, we use the

Bhattacharyya coefficient [Kailath 1967]

BCi j =

∫

R3

√
f (x|Θi ) f (x|Θj ) dx (18)

between two Gaussians Θi and Θj as a basic measure of connectiv-

ity. This coefficient quantifies the amount of overlap between two

statistical populations, has a closed-form expression for Gaussians,

BCi j = |Σ̃|−
1
2 |ΣiΣj |

1
4 e−

1
8 (µi−µ j )

T
Σ̃
−1(µi−µ j ), (19)

with Σ̃ = (Σi + Σj )/2, and has a tractable range 0 < BC ≤ 1, where

1 indicates maximal overlap in case of coinciding distributions. The

Bhattacharyya coefficients shown for pairs of Gaussians in Figure 8a

indicate that they provide a robust measure of topological closeness

even for difficult configurations like these thin sheets.

To grade the plausibility of a triangle connecting three Gaussians

Θi , Θj and Θk , we request each respective pair of Gaussians to pro-

vide sufficient mutual overlap. We thus measure their probabilistic

plausibility by

Pprob(∆i jk ) = BCi j · BCjk · BCik (20)

and consider a candidate triangle valid only if all its three pairwise

coefficients exceed a minimal threshold BCmin. A higher value for

BCmin is more restrictive and skips triangles in areas where the

common density overlap of its Gaussians is very low, indicating a

higher probability for an actual hole in the surface, but might also

leave more undesired holes in the triangulation, while smaller values
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are more prone to produce incorrect triangulations. In practice, we

found values around BCmin = 0.01 to produce best results.

In addition to the probabilistic grade, our intuition is that at

similar probability overlaps, the candidate triangle with the larger

dihedral angle is more plausible to provide a good triangulation.

Therefore, we add a geometric weight

Pβ (∆i jk ) = βi jk/π (21)

based on the smallest dihedral angle βi jk between ∆i jk and its

neighboring triangles. Our final plausibility grade is thus given by

P(∆i jk ) = Pprob(∆i jk ) · Pβ (∆i jk ). (22)

To initialize the triangulation, we use the seed triangle with the

highest probabilistic plausibility Pprob amongst all candidates. We

experienced a single seed triangle to be sufficient in our examples,

however, several seeds can be used to provide increased robustness

for larger, more complex models, especially if comprising several dis-

tinct parts. To avoid the appearance of slivers, we adopt the dihedral

angle threshold βmin from Cohen-Steiner and Da [2004], and only

consider triangles with βi jk > βmin. As suggested in their original

paper, we typically use βmin = π/6 for our models. The algorithm

stops if no open boundary edge is left to advance, in which case

a watertight mesh was produced, or if no valid candidate triangle

satisfying the βmin and BCmin thresholds is left for triangulation.

Figure 8b shows the inside of a triangulated mixture representing

a thin cuboid, where the average distance between neighboring

Gaussians lies above the distance between its upper and lower faces.

7 EXPERIMENTS AND COMPARISONS

7.1 Surface Modeling

Wewill now analyze the capabilities of our surface representation for

shape modeling, and investigate the effect of different covariance

configurations in a covmesh on the resulting Gaussian-product

subdivision surface (in the following denoted GPS for short).

Shape variability. Our surface definition allowsmodeling complex

shapes using sparse control meshes. Figure 9 shows different shapes

Fig. 9. Shape variations of the limit surface of a cubic covariance mesh under

different covariance combinations (blue ellipsoids) vs. standard Catmull-

Clark limit surface (upper left).

Fig. 10. GPS shape variations achieved by manipulating the covariance

at the apex of a cone (f.l.t.r): ordinary Loop (isotropic), pointy apex (sin-

gular), concave ridge (vertically anisotropic), smooth plateau (horizontal

anisotropic) and sharp plateau (horizontal flat).

produced by a cubic control covmesh with fixed vertex positions and

varying covariances. The first cube at the top left shows the stan-

dard Catmull-Clark limit surface on an ordinary mesh (blue frame).

The second cube represents a covmesh with uniform isotropic co-

variances at all vertices. As discussed in Eq. (14), this reduces to

the linear case and thus produces the exact same surface. Further

shape variations are achieved via different orientations, scales, and

levels of anisotropy of the Gaussians, leading to complex shapes

exhibiting high-curvature creases and various concavities.

For modeling subdivision surfaces using covmeshes, the funda-

mental difference to standard subdivision is the interpretation of

a control vertex location. While in ordinary subdivision surfaces,

cusps and creases are modeled via special constructs like semi-

sharp creases, covariance meshes intrinsically encode such features

through the shape of the associated Gaussian. Figure 1b shows a

pointed tip at the end of a concave ridge modeled through a single

covmesh vertex, a combination that cannot be achieved in such a

compact way by standard subdivision methods without resorting

to both explicit crease modification and control-mesh refinement.

Figure 10 shows the wide range of shape variations that are possible

by manipulating just the covariance at the apex of a cone. Moreover,

covmeshes not only help to explore a wider space of subdivision

surfaces, but can also be used to significantly reduce typical artifacts

stemming from traditional subdivision schemes, such as the many

bumps appearing in the helix in Figure 11.

(a) Control Mesh (b) Catmull-Clark (c) GPS Catmull-Clark

Fig. 11. Thin quads in (a) create crease artifacts in subdivision surfaces (b),

while in covmeshes, surface geometry is mostly encoded in the covariances,

making its surface less susceptible to the mesh geometry (c).

Interactive modeling. The extra degrees of freedom induced by

covariances offer great flexibility when designing local shape struc-

tures, making it possible to quickly create stylized shapes without

adding additional control vertices. In Figure 12, we inferred Gaus-

sians to a sparse control mesh of an axe and sharpened its blade

by interactively flattening the two covariances at its cusps along
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(a) Covmesh (b) linear CC (c) Creases

front side

(d) GPS CC

Fig. 12. Interactive modeling using linear and GP subdivision surfaces.

their smallest eigendirections (red handles). Supported by automatic

inference, this process allows quickly generating interesting shapes,

comparable to ordinary subdivision surfaces using crease edges.

7.2 Reconstruction

Building on a sparse probabilistic description of geometry, our repre-

sentation offers new applications in efficient surface reconstruction.

For ordinary subdivision surfaces, the geometric quality depends

solely on the quality of the control mesh, which is mostly the result

of a careful, topology-aware modeling process. They are thus rarely

applied to meshes resulting from a reconstruction process, unless

their topology is suitably consolidated in a postprocess. Covmeshes,

however, encode most of the local geometric information around a

vertex in its covariance, allowing for more flexible subdivision-based

surface modeling even in cases of problematic topology. A recon-

struction process that preserves this covariance information along

with the topological information of the mesh makes it thus feasible

to apply our nonlinear subdivision even for meshes of coarse and

irregular topology. Fig. 1c shows a sparse triangular covmesh recon-

structed from a set of points by first converting them to a Gaussian

mixture (see Appendix A) and then triangulating the Gaussians as

described in Section 6.2. As shown in the closeups, the resulting

GPS is able to model crisp features and rich detail, whereas an ordi-

nary Loop subdivision surface defined on the same sparse triangle

structure suffers from a significant loss of detail.

Reconstruction performance. To assess the quality and efficiency

of a reconstructed covmesh for surface reconstruction, we com-

pare its accuracy, speed and memory requirements against screened

(a) SPS-8 (b) GPS
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Fig. 13. Reconstruction error of screened Poisson (a) compared to the

Gaussian-product surface of a reconstructed covmesh (b), along with error

histograms and performance measures for comparable reconstructions (c).
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Fig. 14. (a) Timings for screened Poisson reconstruction (red) vs. covmesh

computation (blue) for surfaces of different accuracy, controlled by octree

depth and kernel size σ0, respectively. Dashed flags indicate the used work-

ing memory. (b) and (c) Surface error of two comparable reconstructions,

where GPS exhibits superior performance values.

Poisson reconstruction [Kazhdan and Hoppe 2013]. To this end, we

use a point scan of the Gargoyle model (303K points), which was

virtually scanned to exhibit realistic scanner artifacts, holes and

registration errors [Berger et al. 2013] and consolidated via a robust

projection operator [Preiner et al. 2014], producing an unorganized

point set exhibiting holes and realistic residual imperfections. We

have produced two reconstructions of comparable quality and re-

construction time, shown in Fig. 13. After normal estimation for the

input points, the screened Poisson surface (SPS) was reconstructed

at octree depth 8, using code version 10.05. The resulting mesh is

shown in Fig. 13a. For our covmesh reconstruction, we converted

the point cloud to a mixture of 38K Gaussians, which was again

triangulated to a covmesh. Note that this method does not require

properly oriented surface normals. Fig. 13b shows the resulting

Gaussian-product limit surface (GPS).

To measure the reconstruction error for each method, we com-

puted the distance of each input point to the resulting surfaces.

Surface colors depict the error values of the closest point. Fig. 13c

plots the histogram of point errors for our GPS surface as well as SPS

at depth 7 and 8. The inset table gives the used reconstruction time

and working memory (sec and build MB) as well as the vertex and

face counts and the memory footprint of the resulting mesh repre-

sentation. Note that the additional covariance information requires

another 6 floats per vertex. The graph shows that our reconstructed

GPS surface (black) allows for a much more accurate representation

than SPS at depth 7, while exhibiting only a slightly higher memory

footprint. At the same time, it almost matches the quality of SPS at

depth 8, while using a much more efficient representation, which

overall requires only less than a third of the memory.

Fig. 14 compares the reconstruction performance of both SPS and

GPS at the example of the Lincoln mask model, analyzing the trade-

offs between quality and processing time/memory requirements. For

Gaussian-product surfaces, the quality can be influenced by varying

the kernel size σ0, which controls the bandwidth used for initializing

the Gaussian mixture based on the input points (see Appendix A).

A larger kernel produces mixtures of higher variance, resulting in

a stronger mixture compression and thus a smoother surface. As

before, at comparable RMSE values, GPS is faster, and for lower
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Fig. 15. Left: defects of ridge surfaces in high curvature regions, where a tip

collapses to one sheet (green) or a spurious ridge merges with the main one

(red). Right: Robust continuous surface provided by our surface model.

RSME values also requires less working memory. For higher kernel

sizes, GPS working memory increases due to larger neighborhood

queries, requiring larger spatial search structure caches. Note that

RMSE values are only rough indicators of apparent visual quality,

since they are not robust against strong noise and outliers. Finally,

Fig. 15 demonstrates the defects of ridge-based reconstruction [Süß-

muth and Greiner 2007] as discussed in Section 2.1, and the ridge

approximation quality of our proposed surface model.

8 DISCUSSION

Limitations and future work. Our experiments on reconstruction

do not overcome state-of-the-art techniques, but can be the basis

of more advanced topological inference. For instance, a covariance

mesh topology could be pre-defined using a low-resolution Poisson

reconstruction, and its vertices then enriched with Gaussians com-

puted from the original data. For interactive modeling, directly ma-

nipulating Gaussian covariances may at times be counter-intuitive

to adjust to a particular aim. Sophisticated mappings of these param-

eters to intuitive interaction paradigms could be investigated, for

instance, solving an inverse problem under user-prescribed features

(e.g., sketch) to optimize the covariance mesh. Furthermore, the

mapping we introduced in Section 4 allows for directly using the

vast directory of tools already developed for linear subdivision, such

as GPU real-time rendering [Nießner et al. 2012] or exact parametric

limit evaluation [Stam 1998]. Finally, we plan to study how to sim-

plify high-resolution meshes to low-resolution covariance meshes,

reproducing features in real-time Gaussian-product subdivision.

Conclusion. Gaussians are naturally capable of modeling uncer-

tainty in data and compactly representing large surface regions. Our

key idea is a new interpolation between Gaussians based on a prod-

uct formulation, which we use to define a family of novel nonlinear

subdivision operators for meshes extended with per-vertex Gaus-

sians, i.e., covariance meshes. We derive a mapping to a dual space

where each of our nonlinear operators corresponds to a linear one,

from which it inherits properties like smoothness. Using a covari-

ance mesh, subdivision modeling can be performed both with vertex

positions and covariances. Concavities, creases and curvature can

be controlled using simple modifications of the covariances without

requiring a denser control mesh, widening the space of limit sur-

faces. When reconstructed from points, our surfaces compete with

state-of-the-art, e.g., screened Poisson surface reconstruction, while

being independent of orientable normal information and reducing

the reconstruction time thanks to its sparsity.
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A FROM POINTS TO GAUSSIANS

We review the process of converting a given input point setP = {pi }

to a geometry-preserving sparse mixture of anisotropic Gaussians

M = {Θs } using a geometrically regularized variant of hierarchical

expectation maximization (HEM) [Preiner et al. 2014]. First, each

input point pi is converted to a small Gaussian Θi = (wi , µi , Σi ),

either by computing anisotropic covariances via local PCA, or by

using isotropic covariances σ 2
0 I , with σ0 chosen according to the

input point density. These Gaussians constitute an initial level-0 mix-

ture, which is then hierarchically reduced by applying alternating

EM-steps optimizing an objective log-likelihood function

Lloд(M
′ |M) =

∑

i

loд
∑

s

wsL(Θ′
s |Θi ).

Here, the likelihood of a componentΘ′
s in the next level representing

a component Θi in the current level is given by

L(Θ′
s |Θi ) =

[
f (µi |Θ

′
s ) exp(−

1
2 tr (Σ

′
s
−1
Σi ))

]wi |P |
.

In the E-step, the convex responsibilities of each Θ
′
s for the current

Θi are defined as

ris = wsL(Θ′
s |Θi )

/∑

s ′

ws ′L(Θ′
s ′ |Θi ).

In the M-step, these responsibilities are used to distribute the mass

of the current Gaussians among the Gaussians of the next levelM ′:

(w ′
s , µ

′
s ) =

∑

i

(riswi , ωis µi ), Σ
′
s =

∑

i

ωis (Σi + µi µ
T
i ) − µ ′s µ

′T
s

with weights ωis = riswi/
∑
i′ ri′swi′ . To ensure convergence and

avoid too strong degeneration of geometric features modeled by

the mixture, responsibilities between components Θi and Θ
′
s are

clamped to zero if their Kullback-Leibler divergenceDKL(Θi ∥Θ
′
s ) ex-

ceeds a certain threshold α2/2. A larger α allows merging more dis-

tant and dissimilarly oriented Gaussians and thus achieving stronger

compressions. Values for α between 1.5 and 2.5 have proven to yield

good compression rates without too strong geometric degeneration.

B DIFFERENTIAL GEOMETRIC ANALYSIS

We are interested in the differential geometric properties of our sub-

division surface S , in particular, the analytic definition of the surface

normal and curvature in any surface point µ ∈ S . We derive these

quantities from the geometric properties of the limit hypersurface

S∗ resulting from an associated linear subdivision scheme L. Tan-

gent vectors for S∗ are typically extracted through an eigenanalysis

of the local subdivision matrix associated with L. Reformulating S∗

locally as a parametric surface q(u,v) [Stam 1998, 1999] also allows

deriving second-order derivatives used for curvature analysis.

Tangent plane. Let q(u,v) = (q̆, q̄) be a parametric hyperpoint on

S∗, qu = (q̆u , q̄u ) =
∂

∂u
q a known tangent to q, and (µ, Σ) = F−1(q)

the surface point and associated covariance of S corresponding to q.

Then the tangent µu in µ, mapping back the tangent direction of qu
to the probabilistic surface S , is given by

µu =
∂

∂u
F−1µ (q) = ∂

∂u
([q̆]−1 q̄)

= −[q̆]−1[q̆u ][q̆]
−1q̄ + [q̆]−1q̄u = −Σ [q̆u ] Σ q̄ + Σ q̄u

= Σ (q̄u − [q̆u ] µ).

Any pair of linearly independent hypertangents qu ,qv can thus be

mapped to surface tangents µu , µv , yielding an analytic expression

of the surface normal in µ solely via known quantities in Q .

Curvature. Both the mean and the Gaussian curvature are entirely

defined via the first and second fundamental forms of S in µ. While

the former is determined by the tangents µu and µv , the latter also

requires knowledge of the second-order derivatives in µ. Denote

by (quu ,quv ,qvv ) =
(
∂
2

∂u2 ,
∂
2

∂u∂v
, ∂

2

∂v2

)
q the known second-order

derivatives of q. Then we have

µuu =
∂
2

∂u2 F
−1
µ (q) = ∂

∂u
µu

=
∂

∂u

(
[q̆]−1

)
(q̄u − [q̆u ] µ) + Σ

∂

∂u
(q̄u − [q̆u ] µ)

= −Σ [q̆u ] Σ (q̄u − [q̆u ] µ) + Σ (q̄uu − [q̆uu ] µ − [q̆u ] µu )

= Σ (q̄uu − [q̆uu ] µ − 2 [q̆u ] µu ),

µvv is defined accordingly, and

µuv =
∂
2

∂u∂v
F−1µ (q) = ∂

∂v
µu

= −Σ [q̆v ] Σ (q̄u − [q̆u ] µ) + Σ (q̄uv − [q̆uv ] µ − [q̆u ] µv )

= Σ (q̄uv − [q̆uv ] µ − [q̆u ] µv − [q̆v ] µu ).
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