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Kurzfassung

Photometrische Flächenlichtquellen sind Lichtquellen mit einer Abstrahlcharakteristik,
die denen von Leuchten aus der echten Welt gleicht. Sie haben eine wichtige Rolle im
Lichtdesign und der Lichtplanung, wo mit ihrer Hilfe Beleuchtung durch Echtweltleuchten
simuliert wird. Um akkurate Ergebnisse zu erhalten, können offline Algorithmen wie Path
Tracing verwendet werden, um die globale Beleuchtung durch diese Lichter fehlerfrei
auszuwerten. Um jedoch Lichtdesignern eine interaktive Arbeitsweise zu ermöglichen,
ist es notwendig, photometrische Lichter auch in Echtzeit auswerten zu können. Ak-
tuelle Echtzeit-Lösungen sind jedoch fehlerbehaftet, wenn eine Lichtquelle zu nah an
beleuchteten Objekten ist.

In dieser Diplomarbeit präsentieren wir eine neue Technik zur Auswertung von photome-
trischen Flächenlichtquellen in Echtzeit. Die Technik basiert auf der Kombination von
zwei Sampling Methoden, die derzeit in modernen Game Engines zur Approximation von
diffusen Flächenlichtquellen verwendet werden. Flächenlichtquellen werden zuerst mit
der kombinierten Sampling Methode gesampelt, danach wird die Beleuchtung mit einer
Kubatur Technik basierend auf der Delaunay Triangulation berechnet. Um diese Berech-
nung in Echtzeit durchzuführen, haben wir unsere Technik auf der GPU implementiert
und dazu eine kompakte Dreieck-Datenstruktur entwickelt, welche es ermöglicht, eine
Delaunay Triangulation effizient auf der GPU zu generieren.

Das Ergebnis dieser Diplomarbeit ist eine neue Technik, welche photometrische Flächen-
lichtquellen visuell plausibel in Echtzeit annähern kann, wenn die Lichtquelle nah bei
beleuchteten Objekten ist.
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Abstract

Photometric area light sources are modeled after real-world luminaires and are used in
lighting design to accurately simulate lighting. An accurate evaluation of their illumination
can be computed with offline global-illumination algorithms. However, such algorithms
take time to compute a solution. Therefore, real-time approximations are required to
enable an interactive lighting-design workflow. However, currently used techniques are
prone to errors when the light source is close to illuminated objects.

In this thesis, we present a new technique to approximate photometric area lights in
real time. This new technique is based on combining two sampling strategies that are
currently used in game engines to approximate the illumination from diffuse area lights.
Our technique samples the photometric area light with this combined sampling strategy
and then computes the illumination with a cubature technique based the Delaunay
triangulation. To do this in real time, we implemented our method on the GPU and
developed a compact triangle data structure that enables an efficient generation of a
Delaunay triangulation.

The result of this thesis is a new technique for photometric area lights that creates
visually plausible approximations in real time when the light source is close to illuminated
objects.
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CHAPTER 1
Introduction

1.1 Motivation

Lighting Design is a part in the planning process of buildings and entertainment shows,
and poses a challenge both in technical and artistic terms. It is the process of placing
luminaires in a building such that lighting requirements are met, while keeping energy
consumption and costs low. Modern lighting design software tools like HILITE, DIALux
and Relux are used to create lighting solutions with light sources that have the emission
characteristics of real-world luminaires. Such light sources are referred to as Photometric
Light Sources, and the emission characteristics are provided by a Photometric Report,
which describes how radiance is emitted by a luminaire. An example for a photometric
light source with its radiance emission visualized is shown in Figure 1.1.

The lighting design tools discussed above render images with physically accurate global
illumination, such that a designer can evaluate whether the illumination meets given
requirements in the real world. For this task, offline rendering techniques like radiosity
or photon mapping are used to simulate light transport. Having a correct and accurate
light-transport simulation technique guarantees the correct evaluation of complex light
interactions.

However, these offline techniques take time to compute a solution which slows down
the working process of lighting designers. Even slight position changes of a light source
require a costly reevaluation of the lighting in a scene. Providing a solution that allows
accurate previews in real time improves the workflow of the designers, as it allows them
to receive feedback instantly, which facilitates rapid prototyping.
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1. Introduction

Figure 1.1: Scene rendered in Hilite, where the emission profile of a photometric light
source is visualized as a yellow volume.

1.2 Problem Statement
The problem with evaluating photometric light sources in real time is rooted in them
being based on real-world luminaires. Real-world luminaires are complex light sources,
which means that light is generally emitted not uniformly and that the emission is not
centered at a point but distributed over an area or a volume. Luminaires may define a
light-emitting object (LEO), which describe the geometric object from which the light
is emitted. While evaluating photometric point light sources is possible in real time,
non-zero dimensional photometric light sources currently prove to be a problem.

Techniques exist to evaluate the irradiance by planar, polygonal light sources (area
lights). These techniques are accurate and efficient enough to be used in applications
with real-time constraints. The existing methods, however, are limited to area lights with
a diffuse or Phong-like emission profile. Photometric area lights, where the emission can
be arbitrary, are not taken into account by these techniques.

To still provide an interactive workflow for lighting designers, HILITE, DIALux and
Relux use various approximations to provide real-time previews of scenes illuminated by
photometric light sources. The currently used approximations, however, suffer either from
inaccuracies when the light source is near an object it illuminates, or are more accurate
but evaluable in real time and just interactive. An example for the approximation used
by Hilite and DIALux is shown in Figure 1.2. To provide a real-time preview, the
photometric light is replaced with a single photometric point light, which is placed at
the center of the photometric light’s LEO. While this approximation is visually plausible
for large distances between the light source and the illuminated surfaces, errors become
noticeable as soon as the distance decreases.

2



1.3. Contributions

Figure 1.2: DIALux approximates a luminaire in real time by placing a single photometric
area light in the center of the light’s LEO.

Hilite addresses these problems by using more photometric point lights at smaller distances.
Patterns, however, remain visible as the number of point lights that can be used is limited
in real-time applications. Relux generally uses many photometric point lights to avoid
these artifacts as long as possible. Yet, the high number of used photometric point
lights does not allow them to evaluate the illumination in real time. After changing
a photometric light in the scene, the software requires a short time to reevaluate the
lighting setup.

As current real-time area-light evaluation techniques are designed for area lights with
diffuse or Phong-like radiance emission, and approximations used by lighting design
software have either artifacts when they are close to an illuminated surface or do not
provide real-time performance, there is currently no technique which returns accurate
approximations for photometric light sources close to illuminated surfaces.

1.3 Contributions

The main contribution of this diploma thesis is a novel real-time approximation for
photometric area lights that can be used in interactive lighting design, but also other
real-time systems like games. This new approximation emulates the diffuse light transport
and handles rotationally symmetric and asymmetric photometric lights with only a small
number of samples. Approximations rendered with this new technique are visually more
plausible than solutions presented by modern lighting design software.

Given the option to have plausible illumination from photometric area lights during
the design process, designers can develop new lighting systems even faster and more
intuitively. The possible new lighting design process will be inspired by the established
interactive workflows provided by modern game-engine editors, and thus reduce the

3



1. Introduction

development time for new lighting systems and prototypes.

Visibility is out of scope of this thesis, meaning that the focus is on unblocked direct
lighting, which describes the light transport from the light source to the camera with
exactly one light bounce in the scene with a light source which is not occluded. Occlusions
of the light source, and therefore shadows, are not addressed. This thesis also only
considers the illumination of diffuse surfaces. The illumination of glossy or specular
surfaces will be left for future work.

The presented approximation addresses only photometric lights with polygonal, planar
LEOs, to which we refer to as photometric area lights. While LEOs can by definition be
volumetric objects like boxes or cylinders, volumetric LEOs are not common. Lighting
design software like Hilite approximates volumetric LEOs with planar LEOs, which makes
providing a solution for planar LEOs sufficient.

1.4 Structure of the Work
Starting in Chapter 2, general information regarding lighting design, photometry and
direct lighting is given. The chapter explains the quantities used in lighting design,
what information photometric reports contain and what information is required to use
photometric lights in a scene. This section also provides a mathematical formulation
for direct lighting, as this is the form of light transport our work focuses on. Besides
the mathematical formulation, it is also explained how it can be computed efficiently
with Monte Carlo integration. Following in Chapter 3 the related work is described. It
provides a concise overview of global-illumination algorithms, which handle area lights
implicitly, and then explains past and current work regarding the evaluation of area lights.
Chapter 4 goes into more detail regarding real-time direct lighting by area lights and
explains two sampling techniques currently used in game engines for diffuse area lights,
on which our presented technique is based. Chapter 5 presents our new approach, which
we named scattered sampling. The results are presented in Chapter 6, where we analyze
scattered sampling with a variety of luminaires. This thesis concludes in Chapter 7.
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CHAPTER 2
Background

This chapter provides an introduction to two core topics of this thesis: Photometry and
direct lighting. Starting with photometry, Section 2.1 gives an overview on the common
terms, units and quantities. Following, Section 2.2 concisely explains photometry and
its role in the context of luminaires. Section 2.3 explains how photometric data is made
available for rendering and light evaluation and Section 2.4 describes how photometric
lights are used in lighting design software.

Then, before this chapter goes on to direct lighting, it provides an introduction to Monte
Carlo integration in Section 2.5. Monte Carlo integration provides the mathematical basis
for sampling-based rendering techniques and has an important role for the sampling-based
direct-lighting algorithms which are discussed in this thesis. Then, direct lighting is
explained in Section 2.6. The section provides a mathematical formulation for direct
lighting, and explains how it can be computed accurately with Monte Carlo integration.

2.1 Quantities and Units in Lighting Design
In terms of physics, light sources emit Radiant Energy Qe, which is measured in Joule.
Radiant Flux Φe is used to measure the rate of flow of radiant energy. Its definition is
shown in Equation 2.1. The unit of radiant flux is Watt (Joule per second). [DHMS11]

Φe = dQe
dt

(2.1)

While these quantities can be used to describe radiant power transfer, they are not
suitable to describe radiant power as it is perceived by the human eye. For one, the
photoreceptors in our eyes (rods and cones) only react to wavelengths in the interval of
approximately [380, 780] nm. Moreover, the magnitude of the photochemical reaction
varies in this interval, meaning that the same spectral power at different wavelengths can
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2. Background

be perceived unequally. How the human photoreceptors react to certain wavelengths is
defined by an Action Spectrum. This action spectrum provides information about the
photochemical effect of optical radiation at a certain wavelength. The action spectrum
for humans is defined by a standard observer response curve, which was developed by the
Commission Internationale de l’Eclairage (CIE) [DHMS11]. This response curve is given
as the Luminous Efficiency Function V (λ). The luminous efficiency function for daylight
vision is plotted in Figure 2.1. More information about the function is provided by [dl90].

Figure 2.1: The luminous efficiency function for daylight for the standard observer. Plot
generated with the data provided by [web18a].

Radiant power that was evaluated by the human visual system is referred to as Light.
Since the physical radiation quantities described above are not defined for light, other
quantities are used to describe and measure it [DHMS11]. Following, the photometric
units used to describe and measure light are listed with their radiometric counterparts
given in the parentheses:

Luminous Flux Φ (Radiant Flux) is the base unit to measure light in lighting
design. It is measured in Photopic Lumen (lm) [DHMS11]. Luminous flux is derived by
weighting the spectral power distribution with the luminous efficiency function as shown
in Equation 2.2 [iec18a]. Km is the luminous efficacy of radiation for daylight vision. It
is a constant with the value 683 lm ·W−1. [iec18b]

Φ = Km

∫ ∞
0

dΦe(λ)
dλ

V (λ)dλ (2.2)

Illuminance E (Irradiance) measures the incident luminous flux on a surface point
from all directions and is defined as shown in Equation 2.3. It provides no information
regarding the direction of the incoming luminous flux (example shown in Figure 2.2).
The unit of illuminance is Lux (lumens per square meter). [DHMS11]

6



2.1. Quantities and Units in Lighting Design

E = dΦ
dA

(2.3)

Figure 2.2: Illustration of illuminance. Both areas, dA1 and dA2, have the same illumi-
nance, despite receiving the luminous flux from different directions.

Average Illuminance E defines the incident luminous flux over an area A (see
Equation 2.4)

E = Φ
A

= 1
A

∫
A
EdA (2.4)

Exitance M and Average Exitance M are defined equivalently to illuminance and
average illuminance for exitant luminous flux. [DHMS11]

Solid angle ω is the extension of radians into the 3D space. It provides a measure for
a spatial extend (the perceived size of an object observed from a point) and is measured
in Steradians (sr).

The mathematical definition is given in Equation 2.5, where A is the surface and dA
a surface point, D is the distance from this surface point to the point of regard and θ
is the angle between the normal vector at dA and the vector from dA to the point of
regard. The corresponding illustration is shown in Figure 2.3. The solid angle is used to
formulate flow of luminous flux in space. [DHMS11]

dω = dA cos θ
D2 ; ω =

∫
A

cos θ
D2 dA (2.5)

Luminous Intensity I (Radiant Intensity) is defined as the amount of luminous
flux in a certain direction in space. It is measured in Candela (cd), and the direction is
specified by spherical coordinates. The mathematical definition is given in Equation 2.6.
[DHMS11]

I(θ, ψ) = dΦ(θ, ψ)
dω

(2.6)
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2. Background

Figure 2.3: Illustration of a solid angle with x as point of regard.

Luminance L (Radiance) is defined as the luminous intensity per unit area as shown
in Equation 2.7. Its unit is candela per meter-square (nit). Luminance is used in lighting
design to describe the luminous flux emitted by a surface. The mathematical definition
for the Average Luminance L is shown in Equation 2.8. [DHMS11]

L(θ, ψ) = dI(θ, ψ)
dA cos θ = d2Φ

dω dA cos θ (2.7)

L =
∫
A

dI(θ, ψ)
dA cos θ (2.8)

2.2 Photometry

Photometry is the measurement of light. It is a branch of radiometry that is concerned
with the measurement and observation of optical radiation. Photometry is used to
evaluate, describe and characterize the photometric performance of luminaires. This is
crucial information for lighting design and illumination engineering. [DHMS11]

The performance of a luminaire is described in a Photometric Report. In general, the
following information is provided [DHMS11]:

Luminous Intensity Distribution describes the light distribution characteristics
of a luminaire. Luminous intensity is listed for various directions, which are specified
in spherical coordinates: θ (altitude) and ψ (azimuth). There exist three methods to
measure and describe a luminous intensity distribution of which two are described in
more detail because of their relevance for lighting design:

• Type B Goniometry
Type B is generally used to describe outdoor lights. The spherical coordinates are
referred to as V and H. Both have their origin in the main axis of the luminaire.
The coordinate system is orientated such that the main axis lies in the horizontal

8



2.2. Photometry

(a) Type B Goniometry (b) Type C Goniometry

Figure 2.4: Type B goniometry (a): The main axis varies per luminaire. It is aligned
in the coordinate system such that the main axis lies in the horizontal plane. Type C
goniometry (b): The main orientation is downwards, which is also the origin of θ. The
origin of ψ depends on the specific luminaire.

plane. Angle ranges and increments are variable and depend on the luminaire. An
illustration is shown in Figure 2.4a.

• Type C Goniometry

Is usually used for indoor lights. The origin of θ is downwards and ψ is orientated
along an axis of the luminaire. The ranges of the angle θ depends on the luminaire.
Whether it emits light downwards (0◦ ≤ θ ≤ 90◦), upwards (90◦ ≤ θ ≤ 180◦) or
both (0◦ ≤ θ ≤ 180◦). The step size is by default 5◦ or 10◦, but it can be more
granular. If the luminous intensity is rotationally symmetric, all data is given for
ψ = 0◦. Otherwise, depending on the symmetry, various ranges of ψ can be listed.
In latter case, the usual step size of ψ is 22.5◦. An illustration is provided in Figure
2.4b.

The measurements of the luminous intensity distribution are taken with a Goniophotome-
ter, a combination of a photometer and a goniometer. Luminous intensity is measured
from different positions around a light source. The measurement distance is large relative
to the measured light source, such that the luminaire can be seen as a point light source
and its geometry can be neglected. As a result, the goniophotometric measurements are
always considered for point lights. Besides providing the raw values, photometric profiles
also present the data in a polar plot. An example is shown in Figure 2.5. [DHMS11]

9



2. Background

Figure 2.5: Luminous intensity distribution as shown in a photometric report. The
left side shows the luminous intensity distribution in a polar plot. The disk encodes
the altitude angle θ and the colored lines encode ranges of the azimuth angle ψ. The
exact candela measurements for the various directions are listed in the table to the right.
Photometry of LINETIK (see Section 6.3). Image taken from [Zum18].

Average Luminance is sometimes provided for indoor luminaires. It gives a general
idea of the light’s characteristics, but is only useful for rotationally symmetric lights.
Moreover, if the luminous intensity of a light varies strongly, the average luminance gives
a false impression.

Zonal Lumens show the amount of lumens per zone, which is the result of discretizing
and dividing of the solid angle around a luminaire.

Efficiency is the ratio of the lumens emitted by the luminaire to the lumens emitted
by the lamp in the luminaire. It provides a measure for how effectively the system of the
luminaire works (how the reflectors and the geometry influence the performance of the
lamp inside the luminaire).

Other Components Some reports provide Coefficients of Utilization, which describe
how effectively lumens are distributed on a horizontal work plane. A Spacing Criterion
states the distance between luminaires to provide a uniform horizontal illuminance. There
are some more specialized components like Glare Assessment and Illumination Pattern.
A complete and more detailed list is provided by [DHMS11].

10



2.3. Photometric Data for Rendering

2.3 Photometric Data for Rendering
To render a scene illuminated by a photometric light source, the luminous intensity
distribution is required. It is used to retrieve the luminous intensity of a light source
when the brightness of a surface point is calculated. The luminous intensity distribution
measurements are categorized into two classes [Ash95]: Near-field photometry and far-field
photometry.

Far-field photometry, which is described in Section 2.2, is the current industry standard.
A luminaire is measured from a distance large enough such that it can be seen as a point
light source. When using this data for computations, exact results are only given when
the distance of a surface in a computation to the light source matches the measuring
distance. It was observed, however, that when the distance to the light source is five
times larger than the largest dimension of the luminaire, the error in the calculated
illumination can be neglected. This is referred to as the Five-Times Rule. If the distance
is lower, the computation is most likely inaccurate. [DHMS11]

Currently, there are two standards for storing far-field photometric profiles [Zal12]. The
first standard, IESNA LM-63 (IES), was defined and is maintained by the Illuminating
Engineering Society of North America (IESNA). The second one, EULUMDAT (LDT),
is the European standard format. It has no official documentation and was not updated
since its introduction in 1990. Both standards store the photometric profiles in ASCII
format.

Both standards provide in general the same information, although there are some minor
differences regarding the provided data. Both start with meta information about the
luminaire: Name, product number, the manufacturer, type of the luminaire and so on.
Then, some technical details are provided like the type and number of lamps used in the
luminaire. More importantly, the dimensions (length, width, height) of the luminous area
1 can be provided. The luminous area is the part of the luminaire where light is exiting.
It can either be rectangular or circular. Finally, both standards contain the luminous
intensity distribution of the luminaire.

Near-field photometry provides data that allows accurate computations for short distances.
One solution to derive it is to measure the light at distances that occur in the computation.
Near-field photometry data, which is generated with this process, often provides data for
several distances. [DHMS11]

Another approach is Luminance-Field photometry introduced by Ashdown [Ash93]. This
solutions measures the luminance distribution around a luminaire at fixed points that
sit on a convex hull around the luminaire. The luminance is measured with a camera,
which takes images of the luminaire at the measurement positions. The resulting images
describe a field of light that describes the luminance for every point in space [Ash95].
While the measurements are taken at a constant distance, the resulting data can be used
for any distance as the field of light accurately describes the leaving flux of the luminaire

1Also referred to as luminous opening [Lag].
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2. Background

for any direction. The cost of this solution, however, is the size and complexity of the
resulting data.

2.4 Luminaires in Lighting Design Software

Modern lighting design software like Hilite [web18b], Relux [web18d] and DIALux [Gmb18]
are a combination of CAD software and a toolset to render and evaluate lighting. Using
such software, a lighting designer can import CAD plans of buildings (or create them
inside the software) and place light sources in the scene. Then, he can evaluate the
quality of the lighting and whether certain criteria are met (e.g., if an area is uniformly
lit).

There are several possibilities to use a measured luminaire in lighting design software.
All of the prior mentioned products can import IES and LDT files. The stored lighting
profiles are used to generate a photometric light.

Figure 2.6: Scene with photometric lights rendered in Hilite. Image taken from [web18b]

Alternatively, Hilite, Relux and DIALux each support custom file formats that provide
additional information about the luminaire. These custom file formats store, inter alia, a
CAD model of the luminaire. As a result, the imported photometric lights look like their
real world counterparts. The CAD model, however, has no influence on how the light is
evaluated. It is only used to represent the photometric light.

The evaluation during the rendering process is done with an auxiliary geometry, which is
generated based on the luminous area. This auxiliary geometry is referred to as Light
Emitting Object (LEO). It is not rendered, but used to define the area/volume from
which light is emitted.

12



2.5. Monte Carlo Integration

Each of these software products uses a different rendering technique to create realistic,
high-quality images to show the designed lighting system. DIALux uses photon shooting
[Wit], Relux uses radiance [web18c] and Hilite uses a many-light global-illumination
solution [LTH+13], where virtual polygon lights describe the illumination in a scene. An
example for a scene rendered in Hilite with a complex lighting setup is shown in Figure
2.6.

Because creating high-quality renderings takes time, Hilite, Dialux and Relux also support
interactive previews to provide a faster workflow for the lighting designer during the
planning process:

Relux renders preview images of the scene if the camera was not moved for some time.
The photometric light sources are approximated as a collection of photometric point lights
that are distributed inside the LEO. This approach creates accurate preview images, but
does not work in real time. An example of the approximation is shown in Figure 2.7.

Figure 2.7: Relux approximates photometric light sources by using a collection of point
lights. While this enables accurate previews, the interaction is not real time and requires
the user to wait for a short time after something in the scene has changed.

Dialux supports real-time previews for a single photometric light. It is approximated
with a single photometric point light in the center of the LEO. Hilite uses a combination
of these techniques, where depending on the distance, one or more point lights are used.
While this technique is fast, the violation of the Five-Times Rule becomes apparent for
lights with larger LEOs. A light approximated with this technique in DIALux is shown
in Figure 1.2 in the introduction.

2.5 Monte Carlo Integration
Monte Carlo integration is a numerical method used to solve integrals which are complex
and cannot be solved analytically. It provides the mathematical foundation for sampling-
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based rendering techniques as it describes how integrals, e.g., the rendering equation, can
be evaluated accurately with sampling.

As some of the techniques discussed in this thesis and our reference solution utilize
sampling to evaluate direct lighting as presented in Section 2.6, we provide a concise
introduction to Monte Carlo integration with a short overview of the used statistic tools
in this section. If not otherwise stated, the following explanations are based on [KW08].

2.5.1 Estimator

X is a continuous random variable which takes on selection a possible value x ∈ R. The
probability P{X ≤ x} that a random selection of X gives a value less than x is given by
the Cumulative Distribution Function (CDF) F (x), which is a nondecreasing function of
its argument.

Assuming that F (x) is differentiable, the Probability Density Function (PDF) is given by

f(x) ≡ dF (x)
dx

≥ 0. (2.9)

The PDF is always positive and has a normalization property:

∫ ∞
−∞

f(x)dx = 1. (2.10)

Using a PDF, the probability P{x1 ≤ X ≤ x2} with x1 < x2, can be computed:

P{x1 ≤ X ≤ x2} =
∫ x2

x1
f(x)dx = F (x2)− F (x1). (2.11)

The PDF of a random variable can be used to derive some properties of the random
variable, such as the Expected Value and the Variance.

The expected value E[X] is the stochastic mean of a random variable X with a PDF
f(x). Given is a random variable Y = g(X), which is defined as a function on X. The
expected value E(Y ) is defined by

E[Y ] = E[g(X)] =
∫ ∞
−∞

g(x)f(x)dx. (2.12)

Using the expected value, the variance V [Y ] can be defined:

V [Y ] = E[(Y − E[Y ])2] = E[Y 2]− E[Y ]2. (2.13)

The following rules apply for the variance and the expected value:
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E[aY ] = aE[Y ], (2.14)

V [aY ] = a2V [Y ], (2.15)

E

[
N∑
i=1

Yi

]
=

N∑
i=1

E[Yi]. (2.16)

For a set of independent random variables Yi, the following rule also applies for the
variance:

V

[
N∑
i=1

Yi

]
=

N∑
i=1

V [Yi]. (2.17)

Finally, the Estimator is defined. A function GN of a set of N random variables
X1, X2, . . . , XN is an estimator of a quantity Q (e.g., the result of an integral), if the
mean E[GN ] is a useful approximation for that quantity. An estimator is random. A
concrete value derived from GN is called an Estimate. The quality of an estimator
depends on several criteria:

Bias An estimator GN is unbiased if Equation 2.18 is valid. An unbiased estimator
guarantees that the expected error will be 0. If an estimator is biased, it is not excluded
that the expected error will also be 0, but it is also not guaranteed.

E[GN ] = Q for all N > 0 (2.18)

Consistency An estimator GN is consistent, if the estimator converges to Q with a
probability 1 as N →∞, as shown in Equation 2.19. It does not state when exactly the
estimator converges to the right solution. An unbiased estimator can be inconsistent
and a biased estimator can be consistent. A biased estimator is consistent as the bias
converges to 0 with more samples.

P{ lim
N→∞

GN = Q} = 1 (2.19)

Mean Squared Error Another criteria for an estimator is that it minimizes the mean
squared error shown in Equation 2.20. The first term of the decompositioned expected
value is the variance of the estimator, meaning that a small variance is a good quality
measure of an estimator since it minimizes the error. The second term is minimized when
the estimator is unbiased.
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2. Background

MSE = E[(GN −Q)2] = E[(GN − E[GN ])2] + (E[GN ]−Q)2 (2.20)

2.5.2 Monte Carlo Estimator

The basic idea of Monte Carlo integration is to approximate an integral with an estimator.
Given is the integral I shown in Equation 2.21, where Ω is a subset of Rm, and set of N
independent, identically distributed (i.i.d.) random variables X1, X2, . . . , XN ∈ Ω drawn
from a uniform probability function:

I = E[g(x)] =
∫

Ω
g(x)dx. (2.21)

A naive Monte Carlo estimator for that integral is given by

I ≈ GN = Φ 1
N

N∑
i=1

g(Xi) (2.22)

where Φ is the volume of Ω:

Φ =
∫

Ω
dx. (2.23)

The estimator is consistent and unbiased. Since the estimator is unbiased, the behavior
of the expected error depends solely on the variance of the estimator. The variance is
shown in Equation 2.24. It can be seen that the variance decreases as the number of
samples increases. Hence, the expected error becomes smaller as the number of samples
grows. The estimator converges towards the solution.

V [GN ] = V

[
Φ 1
N

N∑
i=1

g(Xi)
]

= Φ2 1
N
V [g(X)] (2.24)

2.5.3 Importance Sampling

While increasing the number of samples decreases the variance, the magnitude of the
variance cannot be estimated generally but depends on the function g(x) in Equation
2.21. This means that, depending on the function g(x), the Monte Carlo estimator could
have a larger or smaller variance, which again has influence on the convergence speed.
An example for a function with a large variance would be a function that is zero in many
regions.

Generally, a uniform PDF as assumed in the prior section is not guaranteed to be the
best PDF for the estimator. Another PDF f̃(x) can be used to draw random samples,
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which may results in a smaller variance and therefore in a faster shrinkage of the error.
The PDF can be added to the integral:

I = E

[
g(x)
f̃(x)

]
=
∫

Ω

g(x)
f̃(x)

f̃(x)dx. (2.25)

The Monte Carlo estimator has to be adopted as shown in Equation 2.26, where
X1, X2, . . . , XN are drawn from f̃(x). This is the general form of the Monte Carlo
estimator. The form shown in Equation 2.22 is a special form, which is derived by using
a uniform PDF.

GN = 1
N

N∑
i=1

g(Xi)
f̃(Xi)

(2.26)

When f̃(x) is chosen such that f̃(x) ∝ |g(x)|, the variance of the estimator will be
minimized. This can be easily shown for a function g(x) where g(x) > 0 ∀x ∈ Ω.
Assuming that g(x) is known (which is usually not the case when Monte Carlo integration
is required), a PDF f̃(x) ∝ |g(x)| can be chosen such that αf̃(x) = g(x) where α is
constant. This means that g(x)/f̃(x) = α as is the expected value E[g(X)/f̃(X)]. As a
result, the variance is 0. (Proof taken from [And99]).

Because g(x) is normally not known or integrateable, a PDF f̃(x) is chosen that is
approximately proportional to g(x). This already reduces the variance. Using such a
PDF for Monte Carlo integration is called importance sampling.

2.5.4 Random Variable Generation

An important issue of Monte Carlo integration is the generation of random variables
[Nie92]. The issue arises with computers, which cannot generate true random variables
and use deterministic algorithms instead. Random variables generated this way are
referred to as Pseudorandom Variables (PRVs). The success of a Monte Carlo integration
depends on the quality of such PRVs, where the quality is measured by how well the
variables approximate the behavior of real random variables.

Current random sample generators can create high-quality uniform PRVs. The PDFs
used for importance sampling, however, are often non-uniform. A common approach to
generate non-uniform PRVs is to transform uniform PRVs.

One way to achieve such a transformation is the inversion method [Nie92], which is
defined as follows [Dev86]: Given is a CDF F , with an inverse F−1(u) = inf{x : F (x) =
u, 0 < u < 1}. If U is a uniform random variable, then F−1(U) has the CDF F . This
means that if F−1(u) is known, random variables with the CDF F can be generated
using uniform random variables.
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2. Background

This method can also be used for two-dimensional random variables [SWZ96], e.g.,
directions. For a two-dimensional random variable (X,Y ), the CDF for each dimension
is separately inverted and used. The PDF p(x, y) : [x1, x2]× [y1, y2]→ R+ of (X,Y ) first
has to be integrated over the y domain to receive the marginal density function pX(x):

pX(x) =
∫ y2

y1
p(x, y′)dy′. (2.27)

Then, given a fixed value x for X, the PDF for Y , pY |X(y|x) can be computed:

pY |X(y|x) = p(x, y)
pX(x) . (2.28)

The CDFs for both PDFs are then derived by using Equation 2.9. Then, the inversion
method can be applied. More information regarding the inversion method and actual
inversion techniques can be found in [Dev86].

A simple example for the application of the inversion method in the context of rendering
is importance sampling (see Section 2.5.3) the cosine falloff, which occurs in the rendering
equation (see Section 2.6), by transforming uniform random samples such that they have
the cosine distribution.

Given is a integral of a function f(ω) defined over the unit hemisphere multiplied with
the cosine of the polar angle θ (i.e., cosine falloff):

∫
Ω
f(ω) cos θ dω. (2.29)

This function integral can be importance sampled by using samples which have the cosine
distribution

p(ω̂i) = p(θ, φ) = cos θ sin θ
π

> 0 ∀θ ∈ [0, π2 ]. (2.30)

The term sin θ occurs because the solid angle dω is expressed in spherical coordinates,
which is given by dω = sinθ dθ dφ:

∫
Ω
g(ω) cos θ dω =

∫ 2π

0

∫ π
2

0
g(θ, φ) cos θ sin θ dθ dφ. (2.31)

The division by π is required such that the PDF satisfies the normalization property:

p(θ, φ) =
∫ 2π

0

∫ π
2

0

cos θ sin θ
π

dθ dφ = 1. (2.32)
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2.5. Monte Carlo Integration

Instead of drawing samples from the cosine distribution directly, the inversion method is
used to transform uniformly drawn samples. The first step is to compute the individual
PDFs for the angles. The marginal distribution for θ is computed by integrating the PDF
p(θ, φ) over the domain of φ

pΘ(θ) =
∫ 2π

0

cos θ sin θ
π

dφ = sin(2θ). (2.33)

Using pΘ(θ), the probability pΦ|Θ(φ|θ) can be calculated:

pΦ|Θ(φ|θ) = p(θ, φ)
pΘ(θ) =

cos θ sin θ
π

sin(2θ) = sin θ cos θ csc(2θ)
π

. (2.34)

Given the corresponding PDFs, the CDF for θ and the CDF for φ can be derived:

PΘ(θ) =
∫ θ

0
pΘ(θ′) dθ′ =

∫ θ

0
sin(2θ′) dθ′ = sin2 θ, (2.35)

PΦ|Θ(φ|θ) =
∫ φ

0
pΦ|Θ(φ′|θ) dφ′ =

∫ φ

0

sin θ cos θ csc(2θ)
π

dφ′ = φ

2π . (2.36)

These CDFs have to be reversed. One approach is to pick two variables ξ1 and ξ2, which
represent uniform random variables, and inverse the CDF through rearrangement:

PΘ(ξ1)−1 : ξ1 = sin θ → θ = arcsin
√
ξ1, (2.37)

PΦ|Θ(ξ2)−1 : ξ2 = φ

2π → φ = 2πξ2. (2.38)

After transforming the inverse CDFs to the Cartesian space, random samples with the
cosine distribution can be generated by transforming two uniform random variables ξ1
and ξ2:

x =
√
ξ1 cos(2πξ2),

y =
√
ξ1 sin(2πξ2),

z =
√

1− ξ1.

(2.39)
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2.5.5 Low-Discrepancy Sampling

Discrepancy is a measure for how uniformly distributed a sequence is. A high discrepancy
means that a sequence has several clusters and empty spaces. A discrepancy of 0 means
that a sequence is perfectly equidistributed, which also means that there is no randomness.
Samples drawn from a uniform PDF usually have a high discrepancy. An example is
shown in Figure 2.8.

Figure 2.8: Random samples drawn from a uniform PDF. There are several clusters and
empty spaces, which is a result of the high discrepancy.

Instead of creating uniformly distributed random variables, low-discrepancy methods are
concerned with creating sequences and variable sets with a uniform distribution over the
sample domain. Such samples are not random, but quasi-random, and integrating with
such samples is referred to as Quasi-Monte Carlo integration [Nie92].

Niederreiter [Nie92] demonstrates that using samples with a low discrepancy reduces
the error of Monte Carlo integration. One often used low-discrepancy sequence is the
Halton Sequence [Hal64]. Given a set of co-prime bases b1, . . . , bs, the Halton sequence
x1, x2, . . . is defined as

xn = (φb1(n), . . . , φbs(n)) ∈ [0, 1]s ∀n > 0 (2.40)

where φb is the radical-inverse function:

φb(n) =
∞∑
j=0

aj(n)b−j−1 ∀n ≥ 0. (2.41)

Here, aj is in Zb = {0, 1, . . . , b − 1} for j ≥ 0 and aj = 0 if j > b − 1. The input n is
given by its digit expansion
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2.6. Direct Lighting

n =
∞∑
j=0

aj(n)bj . (2.42)

Figure 2.9 shows 100 samples generated from a Halton sequence generated from base 2
and 3. The samples are more uniformly distributed over the domain than the random
samples in Figure 2.8.

Figure 2.9: 2D Halton sequence for the bases 2 and 3. The samples are relatively uniformly
distributed over the domain and appear random, although they are deterministic.

2.6 Direct Lighting
The focus of this thesis is the direct light transport, which is described by direct lighting.
This section presents the mathematical formulation for direct lighting, which describes the
light a surface reflects directly to the camera that it received directly from light sources,
i.e., there is exactly one light reflection between a light source and the camera [SWZ96].
The section starts with explaining the rendering equation, which is the fundamental
framework for rendering, and then goes on to derive the direct lighting formulation as
demonstrated by Shirley, Wang and Zimmerman [SWZ96]. This section concludes by
showing how direct lighting can be computed with Monte Carlo integration (see Section
2.5) and how importance sampling can be utilized in that context.

The rendering equation was first presented by Kajiya [Kaj86] as a base framework for
global-illumination algorithms:

Ls(x, ω̂o) = Le(x, ω̂o) +
∫

Ω
fs(x, ω̂o, ω̂i)Ls(xω̂i ,−ω̂i)(ω̂i · n̂x)dω̂i. (2.43)

It describes the shading of every surface point in a scene. The outgoing radiance Ls from
a point x in direction ω̂o is given by a sum of two terms: An emitting term Le(x, ω̂o),

21



2. Background

which describes the emitted radiance of the surface point x in direction ω̂o (e.g., x is
on a light source), and reflecting term, which is given by the integral. It integrates the
incoming, reflected radiance of all directions ω̂i over the unit sphere Ω centered at x.
It is the union of two hemispheres: An upper hemisphere Ω+ aligned to the normal of
x n̂x, and a lower hemisphere Ω− aligned to −n̂x. The hemispheres have the relation
−Ω+ = Ω−. All directions ω̂• occurring in the equation are, if not otherwise stated, given
as infinitesimal solid angles. The corresponding illustration is shown in Figure 2.10.

Figure 2.10: Illustration of the vectors used in the rendering equation.

The term fs(x, ω̂o, ω̂i) is the Bidirectional Scattering Distribution Function (BSDF),
which describes how light from direction ω̂i ∈ Ω is scattered at a surface point x into the
direction ω̂o ∈ Ω. It is the union of two functions, where one handles the reflectance and
the other one handles the transmittance.

The Bidirectional Reflectance Distribution Function (BRDF) fr describes how light is
reflected at surface point. It is derived by restricting ω̂i and ω̂o to the upper hemisphere
Ω+. It has some important properties. The first one is the Hemlholtz reciprocity shown
in Equation 2.44, which states that the function is symmetric. The second constraint is
energy conservation, meaning that not more energy can leave a surface point than energy
comes in. [Vea97]

fr(x, ω̂o, ω̂i) = fr(x, ω̂i, ω̂o) ∀ ω̂i, ω̂o (2.44)

The Bidirectional Transmittance Distribution Function (BTDF) ft describes how light at
the point x is transmitted. It is derived by restricting ω̂i to ΩA and ω̂o to ΩB, where
ΩA = −ΩB and ΩA = Ω+ or ΩA = Ω−. The properties of the BRDF do not always apply
for the BTDF. [Vea97]

Ls(xω̂i ,−ω̂i) describes the radiance emitted from the point xω̂i into the direction −ω̂i.
xω̂i is another surface point in the environment that is derived by casting a ray starting at
x into the direction ω̂i. The function Ls is solved by the rendering equation, which means
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the rendering equation is a recursive function and the contained integral is infinitely
dimensional.

An alternative form to write the rendering equation, which was also first used by Kajiya,
is to define the integral over all surfaces in the scene:

Ls(x, ω̂o) = Le(x, ω̂o) +
∫
x′∈S

g(x, x′)fr(x, ω̂o, ω̂i)Ls(x′,−ω̂i)(ω̂i · n̂x)(−ω̂i · n̂x′)
‖x′ − x‖2

dA(x′).

(2.45)

Figure 2.11: Illustration of the vectors used in the rendering equation defined over the
surfaces of the scenes.

The integral domain changes to S, the collection all surface points in the scene where
a single scene surface point is denoted as x′ with a normal n̂x′ and an infinitesimal
area A(x′). The term g(x, x′) describes the visibility between x and x′, which is 1 if
there is no occluder between the two points and 0 otherwise. Additionally, the weight
(−ω̂i · n̂x′)/‖x′−x‖2 is added which is the subtended solid angle of x′. The corresponding
illustration is shown in Figure 2.11.

Direct lighting Ld can be formulated based on the rendering equation defined over
directions (Equation 2.43) by discarding the emitting term Le(x, ω̂o) and ignoring the
reflected radiance at xω̂i [SWZ96]:

Ld(x, ω̂o) =
∫

Ω
fs(x, ω̂o, ω̂i)Le(xω̂i ,−ω̂i)(ω̂i · n̂x)dω̂i. (2.46)

This integral can be computed with Monte Carlo integration by using the estimator given
in Equation 2.47. [SWZ96]

Ld,N (x, ω̂o) = 1
N

N∑
i=1

fs(x, ω̂o, ω̂i)Le(xω̂i ,−ω̂i)(ω̂i · n̂x)
p(ω̂i)

. (2.47)
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Direct lighting can be derived equivalently from the rendering equation defined over
surfaces [SWZ96]:

Ld(x, ω̂o) =
∫
x′∈S

g(x, x′)fr(x, ω̂o, ω̂i)Le(x,−ω̂i)(ω̂i · n̂x)(−ω̂i · n̂x′)
‖x′ − x‖2

dA(x′). (2.48)

The corresponding estimator is given by Equation 2.49. [SWZ96]

Ld,N (x, ω̂o) = 1
N

N∑
i=1

g(x, xi)fr(x, ω̂o, ω̂i)Le(xi,−ω̂i)(ω̂i · n̂x) (−ω̂i · n̂xi)
p(xi)‖xi − x‖2

(2.49)

Given these estimators, the direct lighting for a surface point in a scene can be computed.
The PDF p, which governs how the samples are created, is important for the convergence
speed of the estimators (see Section 2.5.3). It is reasonable to use a PDF which creates
samples with a higher probability of hitting light sources when computing direct lighting,
as these are the only samples which return a non-zero value for Le. Otherwise, many
samples return zero for Le, which results in a high variance and a slow convergence speed.
Using a PDF that favors samples on the light source, or on the subtended solid angle of
the light source, is called light-source importance sampling.

The perfect PDF would be

p(ω̂i) = Cfs(x, ω̂o, ω̂i)Le(xω̂i ,−ω̂i)(ω̂i · n̂x) (2.50)

or

p(x′) = Cg(x, x′)fr(x, ω̂o, ω̂i)Le(x′,−ω̂i)(ω̂i · n̂x)(−ω̂i · n̂x′)
‖x′ − x‖2

(2.51)

where C is a normalization constant, as it is zero everywhere except on the light source.
However, the value of the integral must be known to compute C, which means that using
such a PDF is not feasible [SWZ96]. Instead, it is more reasonable to use a PDF which
is proportional to only some terms in the integral.

To derive a fitting PDF, Shirley, Wang and Zimmerman [SWZ96] propose to classify the
terms in the integrand either as low variation (LO), high variation (HI) or unknown
(UN), depending on how much the term varies in the integration domain, and try to
find a PDF which is proportional to the high-variation terms. They classify the terms in
Equation 2.48 as follows, if no information regarding the light source is given:

g(x, x′)︸ ︷︷ ︸
UN

fr(x, ω̂o, ω̂i)Le(x′,−ω̂i)︸ ︷︷ ︸
LO

(ω̂i · n̂x)(−ω̂i · n̂x′)
‖x′ − x‖2︸ ︷︷ ︸
HI

. (2.52)
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This is the general classification, which can vary depending on the scene and the light
source. Depending on the type of the light source (spherical, planar, disc), its dimension
and location, terms defined as highly varying can be low-variation terms. For example,
if the light is far away, the term ‖x′ − x‖2 will not vary much. Or if the light source is
planar, the term (−ω̂i · n̂x′) will not change much. For some lights, e.g., small planar
lights, all terms except the geometry term may be classified LO.[SWZ96] If all terms are
classified as low-variation terms, Shirley et al. [SWZ96] suggest to use a constant PDF.
Although a PDF proportional to the low-variation terms can be designed, they deem
the computational cost of evaluating such a PDF not worth the slightly lower variance.
Moreover, the geometry term could have a high variance, making every improvement by
the low-variation PDF irrelevant.

Given a light source and a classification of the terms in the integral, a PDF proportional
to the high-variation terms can be designed. Wang [Wan94] demonstrates this for various
light sources (e.g., spherical, rectangular, polygonal, etc.). Samples can then be created
for the used PDF by transforming uniform samples with the inversion method (see
Section 2.5.4), assuming that it is possible for the light source. If it is not possible, an
approximation might be developed. For a more detailed explanation see Wang [Wan94]
and Shirley et al. [SWZ96].

For planar polygonal lights, Shirley et al. [SWZ96] suggest to create the samples on the
light source and use the constant PDF p(x′) = 1/SL, where SL is the area of the light
source L. They generate the samples on the bounding rectangle and reject them if they
are not inside the light’s polygon. While a PDF

p(x′) ∝ (ω̂i · n̂x)(−ω̂i · n̂x′)
‖x′ − x‖2

(2.53)

can be used for polygonal lights (see Wang [Wan94]), they deem the evaluation too
complex and expensive.

An improvement to p(x′) = 1/SL would be to use Equation 2.47 with

p(ωi) = 1
ΩL
∝ (−ω̂i · n̂x′)
‖x′ − x‖2

, (2.54)

as areas on the light with a larger subtended solid angle are more likely to be sampled,
which noticeably reduces the variance if the light source is close. [Wan94]

This can be done efficiently by uniformly sampling the subtended solid angle of a light
source. Arvo [Arv95b] presents a mapping that allows generating uniformly distributed
random samples on a spherical triangle T . The mapping function M : [0, 1]× [0, 1]→ T
takes two uniformly distributed random variables as input and outputs a uniformly
distributed random sample inside of a spherical triangle. Ureña, Fajardo and King
[UnFK13] extended this method such that it can also be used for spherical rectangles.
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To create the reference solution for this thesis, we implemented the approach proposed
by Shirley et al. [SWZ96] for our reference renderer (see Section 6.1), because it does
not require the solid angle for the evaluation. Being independent of the solid angle is
important for artifact-free approximations when evaluating photometric area lights, as
the solid angle and the photometry may be conflicting. Some luminaires emit light inside
the light plane where the solid angle is by definition zero, which means that there cannot
be any illumination. Using a technique which utilizes the solid angle leads to divisions
by very small numbers when evaluating the illumination for points near or inside the
light plane, which results in visible numerical artifacts. Our reference renderer avoids
this contradiction and creates reference images without numerical artifacts by using the
approach proposed by Shirley et al. [SWZ96].
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CHAPTER 3
Related Work

This chapter starts with an overview on important publications regarding Global Illu-
mination algorithms in Section 3.1. Global Illumination algorithms are concerned with
solving the rendering equation (see Section 2.6) correctly. They handle photometric
lights implicitly. Section 3.2 focuses specifically on research regarding the illumination
by area lights. The presented techniques provide different approaches of which some are
currently used in real-time applications. The final Section 3.3 presents work concerned
with approximating lights with near-field characteristics of real-world luminaires.

3.1 Global Illumination Algorithms
In 1984, Goral et al. [GTGB84] introduced Radiosity, the first rendering technique that
approximates global illumination in a scene consisting only of diffuse surfaces. The
algorithm is based on a discretized representation of the scene, where each surface is
subdivided into a set of patches. The light transport in the scene is then derived by
computing the light transport between all patch pairs, which is given by the form-factor
between them. The radiosity in a scene can be precomputed, since only the diffuse light
transport is calculated. This, however, assumes that the scene is static. The accuracy
of the method depends on the size of the patches. The smaller the patches, the more
accurate the solution.

Another approach which can compute the light transport in scenes with diffuse, glossy
and specular surfaces was introduced by Kajiya [Kaj86] in 1986: Path Tracing. Path
tracing is based on Monte Carlo integration, where the integral of a function is computed
by averaging over a set of samples taken from the function. This converges to the right
solution as the number of samples grows. In the context of path tracing, Monte Carlo
integration is implemented by shooting rays originating from the viewer into the scene.
When a ray hits a surface point, it is reflected in a random direction and continues. This
creates a path. The path ends as soon as a light source is hit. It is then propagated
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backwards, accumulating the energy depending on the materials of the path’s surface
points. Instead of reflecting the ray in a random direction, the new direction can also
be derived by Importance Sampling, where rays are shot into directions with a higher
contribution to the integral. Doing this, the algorithm converges faster towards the
solution.

In 1993, Lafortune and Willems [LW93] improved the technique and developed Bi-
Directional Path Tracing. Additional to the path originating from the viewer, a second
path is traced starting from a light source. After both paths have reached a certain depth,
all hit points from each path are connected, which results in many paths between the
camera and the light source. This technique converges faster than simple path tracing.

Metropolis Light Transport was presented by Veach and Guibas [VG97] in 1997 as a
further improvement on path tracing. Instead of generating new paths at random (or
with importance sampling), they are derived by mutating existing paths slightly. The
paths to mutate are selected by the magnitude of their illuminance contribution. This
results in a stronger sampling of brighter paths, while darker paths with less contribution
are left aside. The algorithm can handle complex lighting situations (e.g., light coming
only through a small hole) better than prior mentioned techniques.

Jensen [Jen96] first described Photon Maps in 1996. Before the rendering process, photons
are emitted from light sources and distributed throughout the scene based on path tracing.
At each hit point, a photon is stored in a map that represents all surfaces of the scene:
the photon map. After the photon map is generated, the scene is rendered with a ray
tracer. The illuminance at a surface point is derived by estimating the photon density
at that point. Photon mapping can handle diffuse, glossy and specular surfaces. Since
many photons are required for highly glossy and specular surfaces, Jensen proposes to use
Monte Carlo ray tracing for such surfaces additionally to photon mapping to reduce the
memory consumption. Using this approach, complex lighting situation like caustics can
be rendered efficiently. For caustics, a second photon map is used storing only indirect
illumination.

Hachisuka, Ogaki and Jensen [HOJ08] further improved photon mapping in 2008 with
Progressive Photon Mapping. Instead of computing a single, dense photon map only once,
several, less dense photon maps are generated throughout the rendering process. The first
pass is a ray tracing pass where rays are casted into the scene and reflected until a non-
specular surface is hit. From the second pass onward, photon maps are generated, which
are evaluated using the endpoints of the first pass as it is done with photon mapping.
At each photon mapping pass, the photon map from the previous pass is discarded.
The gather radius is reduced during the rendering process. Using this technique, the
memory consumption of photon mapping is reduced significantly. Moreover, the quality
of the resulting image is more controllable since the rendering process becomes iterative.
The technique was further improved with Stochastic Progressive Photon Mapping by
Hachisuka and Jensen [HJ09] in 2009, which allows to render effects like depth-of-field or
motion blur using photon maps.
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Georgiev et al. [GKDS12] introduced a novel approach in 2012 called Vertex Connection
and Merging, where they combined bi-directional path tracing and photon mapping using
Multiple Importance Sampling [VG95]. This is achieved by reformulating photon mapping
as a path sampling technique, where various light paths starting at a light source are
sampled throughout the scene. The resulting photons in the photon map represent the
endpoints of these light-paths. As soon as the scene is rendered, a path is traced from
the camera until a certain depth is reached. Following, photons within a certain merging
radius of the camera-path’s endpoint are searched. Each of these photons is merged with
the camera-path endpoint, creating a direct path from the light to the camera, which
is then used to evaluate the illuminance. This approach creates paths that would not
exist otherwise, resulting in a bias of the algorithm. But by reducing the merging radius
during the rendering process, the bias disappears. Using this technique, complex light
paths can be evaluated efficiently.

Keller [Kel97] presents Instant Radiosity, a Quasi-Monte Carlo technique for global
illumination, in 1997. Light sources emit particles, which are reflected when they collide
with a surface in the scene. This creates a path, which is continued until a certain number
of reflections occurred. The starting points as well as each hit point of the path are then
used as Virtual Point Lights (VPLs). When the scene is rendered, it is illuminated with
every VPL. Indirect light is handled implicitly. The quality of the result depends on the
number VPLs.

Instant Radiosity was the initial publication of a new type of global-illumination rendering:
Many-Light Global Illumination (MLGI). The research in this field is concerned with the
generation of VPLs, rendering and scalability. One approach to generate VPLs more
efficiently is presented by Georgiev and Slusallek [GS10]. Their approach is to discard
VPLs that do not contribute much to the final image. This is achieved by generating
candidate VPLs, where for each candidate the contribution to the image is estimated.
The ratio of this contribution to a desired average distribution (derived e.g., by some
initial VPLs) results in a probability that decides whether the light will be rejected or not.
The algorithm converges regardless of the used average distribution. Another approach
for efficient VPL generation is given by Segovia, Iehl and Péroche [SIP07], who present
a technique based on Metropolis Light Transport: Metropolis Instant Radiosity. New
VPLs are generated by slightly mutating the light paths of existing ones, as it is done in
the Metropolis Light Transport technique.

The research regarding lighting in MLGI algorithms is mainly focused on handling
singularity, which can occur as bright light spots when a surface point and a VPL are
very close. The singularity is caused by the geometry term of the Instant Radiosity
equation (see [Kel97]), where a division by the distance between the shaded point and
the VPL happens. A common solution to handle this is to provide an upper bound for
the geometry term. This, however, creates a bias. One approach to handle this bias is
proposed by Kollig and Keller [KK06], who handle it by adding a compensation term.
This term equals the Instant Radisotiy equation, but has a different geometry term that
accounts for the lost energy. Another approach is to avoid singularities in the first place.
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An example for such a technique is given by Hašan et al. [HKWB09], who introduce
Virtual Spherical Lights (VSL). The usage of a VSL replaces the point to point evaluation
between a shaded point and a VPL with an evaluation over the solid angle of a VSL. By
doing this, singularities are avoided.

Various techniques have been developed to improve scalability such that a high number of
VPLs can be handled efficiently. One such technique is given by Walter et al. [WFA+05],
called Lightcuts, where the illumination of many point lights is approximated by clustering
them using a Light Tree. Latter one is a binary tree, where the leaves are VPL and the
interior nodes represent clusters. The final clustering during the rendering process is
defined per surface point by a lightcut through the tree that is given by a set of nodes
where every path from the root to a leave of the tree has to pass exactly one of these
nodes. The lightcut depends on a user-defined threshold that defines an upper limit
for an allowed error of a cluster. Another clustering approach is Matrix Row-Column
Sampling presented by Hašan, Pellacini and Bala [HPB07]. The technique is based on
a matrix representation of the scene, where the rows represent surface points and the
columns represent VPLs. Each entry stores the contribution of a light to a surface point.
This matrix is then subsampled by selecting a set of rows. The resulting subsampled
matrix equals a matrix representing a smaller version of the scene. Clustering is then
performed on the columns of the subsampled matrix, where each final clusters holds
VPLs with similar contribution to the image. The final clustering is then used on the
full scene matrix. For the rendering process, a representative column is used per cluster,
which is scaled such that it accounts for the energy of the whole cluster.

3.2 Calculating Light Transport from Area Lights
An early approximation for photometric area lights in computer graphics is given by
Verbeck and Greenberg [VG84]. They numerically integrate a photometric area light by
using a collection of photometric point light sources. The point lights are evaluated with
diffuse Phong shading, specular reflections are not support. Verbeck’s and Greenberg’s
method is computationally expensive and not suitable for real-time applications because
many point lights are required per photometric area light. If too few point lights are
used, artifacts appear because the single point lights become noticeable.

Drobot [Dro14] does not use multiple point lights, but presents instead an importance
sampling approach with a single sample to approximate the illumination from an area
light. This single sample is taken from the most representative point (MRP) of an area
light, which is the sample with the highest contribution to the illumination integral. The
computation cost is independent of the complexity of the area light in both approaches.

The Frostbite Engine (Lagarde and De Rousiers [LR14]) provides two approaches to
evaluate diffuse area lights in real time. One approach is the MRP solution of Drobot for
Lambertian rectangular area lights. The other technique is structured sampling, where
they use few, well chosen samples to compute the irradiance by a diffuse area light. Latter
approach can lead to banding artifacts and depends, in contrast to the MRP approach,
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on the form of the area light. The Unreal Engine (Karis [KG13]) uses an MRP approach
for sphere lights that also addresses energy conservation for glossy reflections.

Another method is given by Wang et al. [WLWF08]. They approximate area lights with
pruned disk lights, which are generated by intersecting the approximated area lights
with disk lights which are derived per shading point. The disk lights are positioned in a
location of the approximated area light that contributes more to the illumination of the
shaded point than the rest of the light. The radius is computed such that the illumination
from the disk light matches the illumination from the area light. This method is efficient
enough for real-time applications because the exitance of the disk lights is precomputed
for various radii.

The first analytic solution to evaluate the illumination from a diffuse area light is given by
Baum et al. [BRW89]. They present an analytic formula to compute the form-factor of a
surface. It allows to determine the irradiance for a Lambertian (diffuse) polygonal light
in O(k), where k is the number of vertices of the light. This solution returns accurate
results and is nowadays usable in real-time applications.

Arvo [Arv95a] introduces Irradiance Tensors. Using them, he presents a closed-form
expressions for area lights with a Phong-like emission (cosine with an exponent that
controls the directionality). The expression can be evaluated in O(n ∗ k), where k is
the number of the edges of the polygon and n is the directionality of the luminaire.
Through further development by Chen and Arvo [CA00], Irradiance Tensors can be used
to evaluate area lights with linearly-varying exitance with a complexity of O(n2 ∗ k).

Lecocq et al. [LDSM17] further improve Arvo’s solution. Approximating the complex
integral of Arvo’s method that is responsible for the dependency of the time complexity
on the directionality with an accurate analytic function, they are able to reduce the
computation time from O(n ∗ k) to O(k). Moreover, they extend the technique such
that the illumination of surfaces with microfacet Bidirectional Reflectance Distribution
Functions (BRDFs) by such lights can be approximated.

Heitz et al. [HDHN16] introduce Linearly Transformed Cosines (LTC) which, using the
form-factor computation introduced by Baum et al., allow to analytically evaluate an
arbitrarily formed area light in O(k) for surfaces with microfacet BRDFs. Before the
illumination of a light is computed, it is linearly transformed according to a prior fitting
process, where a light transformation is found that minimizes the illumination error
for a given BRDF. This solution returns accurate results and is simpler to implement,
but requires precomputation steps in contrast to the solution presented by Lecocq et al.
[LDSM17].

3.3 Illumination by Complex Light Sources
The work presented in this section is concerned with complex light sources, which are light
sources that have the near-field characteristics of real-world luminaires. The following
techniques are not focusing on being usable for real-time applications, but much rather
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improving the computation time and memory consumption of offline global-illumination
algorithms for which the reflective interior of luminaires can be problematic due to the
high path depth.

Ashdown and Rykowski [AR98] developed a compression for the images of a near-field
photometric dataset (see Section 2.3) such that they can require less memory. Their
method reaches a file compression ratio of up to 37.9, while still being efficiently decodeable
in a few milliseconds.

Mas et al. [MMP08] also developed a compression for near-field measurements. They
compress the rayset representation of the data into a set of point lights. A rayset is a set
of particles on a bounding surface with a position and direction. Mas et al. cluster the
rays depending on the particle positions and orientations. The degree of the clustering is
variable and depends on the particle density. For each cluster, they create an anisotropic
point light on a virtual bounding surface. Depending on the number of used clusters, they
can reduce the required memory by a compression ratio of up to ~54. Besides this high
compression ratio, they present an importance sampling technique for their compressed
data structure.

Heidrich et al. [HKSS98] presents a technique to efficiently render virtual complex light
sources by precomputing their field of light of which a discretized version is stored. With
this field of light, the light source acts as a black box during the rendering process, as the
lamp’s geometry is abstracted away which for example reduces the required path depth
when path tracing.

Velázquez-Armendáriz et al. [VDWG15] presents another approach to render complex
luminaires efficiently with anisotropic virtual point lights (APLs) and a radiance volume.
APLs are used to compute the illumination of the scene by the light source, whereas
the radiance volume is used for the illumination of the light source itself. Both, the
APLs and the radiance volume, are precomputed for a specific light source with particle
tracing starting from the lamp in the luminaire, similar to Instant Radiosity as presented
by Keller [Kel97], until the particles either leave the structure of the luminaire or the
traced path reaches a certain depth. All exiting particles are then clustered into APLs,
which have a radiant intensity distribution matching the radiance by the particles in the
cluster. For the radiance volume, the radiance by all particles inside the luminaire is
considered and stored in voxels as spherical harmonics. The precomputation step can
take long (up to 3 hours per luminaire for 1 billion particles), but the resulting data is
scene independent and can therefore be easily reused. Their implementation requires up
70MB per luminaire (with a radiance volume resolution of 323 and 512 APLs).
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CHAPTER 4
Real-Time Direct Lighting by

Photometric Area Lights

The main topic of this thesis is the real-time evaluation of direct lighting in the context
of photometric area lights.

This chapter discuss the real-time evaluation of direct lighting in more detail as this thesis
is concerned with this in the context of photometric area lights. While the mathematical
foundation for direct lighting and its computation is presented in Section 2.6, this chapter
goes into further detail regarding direct lighting in real time and with photometric area
lights.

Direct lighting can be derived using one of the direct lighting integrals presented in
Section 2.6, Equation 2.46 and Equation 2.48. Accurate results can be computed with
Monte Carlo integration by using the corresponding estimators. However, Monte Carlo
integration is not feasible for real-time applications even with the presented importance
sampling approaches, as a large number of samples is needed.

To address this problem, various approximations were developed that create visually
plausible results in real time for area lights with a diffuse or Phong-like emission charac-
teristic (see Section 3.2). Techniques as presented by Drobot [Dro14] and Lagarde and
De Rousiers [LR14] use a small number of well-chosen samples to approximate the direct
lighting by area lights. Other techniques analytically compute the direct lighting by area
lights, e.g., irradiance tensors as developed by Arvo [Arv95a] and further improved by
Lecocq et al. [LDSM17], which allow approximating direct lighting by area lights with a
Phong-like emission characteristic in real-time.

These approximations, however, are not developed for area lights whose emission char-
acteristics are defined by far-field photometric profiles, i.e., photometric area lights.
The additional complexity when handling them, compared to area lights with a diffuse
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or Phong-like emission characteristic, comes from the fact that they are derived from
real-world luminaires. Thus, there is a wide variety of emission characteristics, which are
not limited in their complexity. Because of the lack of fast, high-quality approximations
for photometric area lights, modern lighting-design software resorts to simpler approxi-
mations, which may show noticeable artifacts, or more expensive approximations, which
allow interactive, but not real-time frame rates (see Section 2.4). For example, DIALux
[Gmb18] uses a single photometric point light to approximate luminaires in real time
(see Figure 1.2). While this approach is fast, the errors are noticeable at short distances
to illuminated surfaces. Relux [web18d], on the other hand, uses a large collection of
point lights, which results in a visually plausible approximation, however, it can not be
used in real time.

We believe that the issues regarding quality or performance of the interactive sampling-
based approaches used by the mentioned lighting-design software is caused by either too
few poorly chosen samples (e.g., only the centroid) or by using too many samples although
a smaller number would suffice. In this thesis, we show that good approximations can be
generated with a small number of samples such that rendering in real time is possible, if
the samples are positioned such that the illuminance can be sampled sufficiently as it is
done in structured sampling as presented by Lagarde and De Rousiers [LR14] and with
the most representative point as presented by Drobot [Dro14].

We deem analytical approaches not suitable, as the existing ones are currently restricted
to diffuse area lights or area lights with a Phong-like emission (see Section 3.2). While
sampling can be used with photometry without further adjustments by just using the
luminance at the sampled position instead of a constant value, analytic approaches require
a mathematical model that allows describing the arbitrary emission characteristics of
luminaires. Besides the complexity of defining such a model, developing an algorithm
which allows evaluating direct lighting with this model in real time is also a complex
problem.

In the context of real-time sampling-based techniques, structured sampling and the most
representative point are interesting as they are currently used in modern game engines
and return visually plausible results. As game engines have a hard real-time constraint,
it can be assumed that these techniques are computationally cheap and stable enough for
production, which means that they provide a reasonable starting point to develop a fast
and stable real-time approximation for photometric area lights. Therefore, we explain
these two approaches in more detail in the following two sections and analyze them in the
context of photometric area lights. Section 4.1 presents and analyzes structured sampling.
Section 4.2 presents and analyzes the most representative point in a generalized way, to
which we refer to as dynamic samples.

4.1 Structured Sampling
Structured sampling is a technique presented by Lagarde and De Rousiers [LR14] to
approximate direct lighting by diffuse area lights. The technique is an approximation
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(a) Reference (b) Structured sampling

Figure 4.1: Structured sampling as presented by Lagarde and De Rousiers [LR14] returns
good approximations for diffuse area lights. The reference solution is rendered with
20,000 samples. The images are tone mapped as explained in Section 6.2.

of Monte Carlo integration, where direct lighting is computed with the estimator given
in Equation 2.47 and a constant set of well-selected samples. The samples are selected
a priori such that only a small number of samples is needed to compute a plausible
approximation. An approximation rendered with scattered sampling is shown in Figure
4.1.

Given is the estimator for direct lighting in Equation 2.47. As this thesis is only concerned
with diffuse light transport, we will use a diffuse BRDF fr(x, ω̂o, ω̂i) = ρ/π, which results
in the simplified estimator:

Ld,N = Le(L) ρ

πN

N∑
i=1

(ω̂i · n̂x)
p(ω̂i)

. (4.1)

Instead of using many randomly chosen samples as is done in Monte Carlo integration,
Lagarde and De Rousiers use a small number of well-selected samples, which cover the
integration domain, i.e., the area of the light source, sufficiently. These are the four corner
points and the barycenter for a rectangular light source. Lagarde and De Rousier use
them as if they were drawn randomly form a uniform distribution p(ω̂i) = 1/ΩL, because
these samples are placed uniformly on the light source. The final scattered sampling
estimator with the uniform PDF for a diffuse area light is given by

Ld,N = ΩLLe(L) ρ

πN

N∑
i=1

(ω̂i · n̂x). (4.2)
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Using this estimator with the 5 well-selected samples results in a visually plausible
approximation without artifacts, which hardly differs from the reference. It is efficient
to evaluate due to the small number of samples, which allows it to be used in real-time
applications. Selecting the samples a priori, however, means that the form of the light
must also be known before. This method is therefore not flexible, since it can only handle
known light forms.

Structured sampling can also be used with photometric area light sources. To achieve
this, the estimator has to be adopted and suitable samples need to be selected. To use
this estimator with photometric data, the incoming light Le(xω̂i ,−ω̂i) has to be placed
back into the sum, since it no longer emits a constant luminous intensity:

Ld,N = ΩL
ρ

πN

N∑
i=1

Le(xω̂i ,−ω̂i)(ω̂i · n̂x). (4.3)

The selection of the samples is crucial for the accuracy and visual quality of the ap-
proximation. Lagarde and De Rousiers use the corners and the barycenter of an area
light, which yields good results for diffuse emitters. But as soon as the emission profile
of a light becomes less diffuse, sample patterns become visible. Figure 4.2 shows the
technique with ARCOS (see Section 6.3), a luminaire with a high directionality. It can
be seen that the samples can be distinguished based on the illumination near the light
source. This shows that sampling the corners and the barycenter is not a reasonable
choice for arbitrarily emitting area lights.

One approach to solve this is to use a low-discrepancy sample set with more samples.
The Poisson Disk Distribution is often used to generate low-discrepancy samples, because
it is not prone to aliasing and artifacts [Coo86]. Poisson sampling is based on uniform
sampling [DW85]. It differs in that there is a minimum distance constraint on the
samples.

Figure 4.3 shows the result of using a fixed Poisson sample set with various numbers
of samples. It can be seen that for a small number of samples, similar sample patterns
appear as when the samples proposed by Lagarde and De Rousiers are used. While
increasing the number of samples reduces the artifacts, the still remain visible.

4.2 Dynamic Samples

Instead of using several well-chosen samples, Drobot [Dro14] approximates area lights
with a single sample. This is a form of importance sampling where only the most
important sample is used to approximate the whole function. The position of this sample
on the light source is referred to as the most representative point (MRP) [LR14]. Its
position depends on the spatial relation between the illuminated point and the light
source. To generalize this approach, we refer to samples positioned at dynamic points
like the MRP as dynamic samples.
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(a) Reference (b) Structured sampling

Figure 4.2: Structured sampling as presented by Lagarde and De Rousiers [LR14] with
ARCOS (see Section 6.3), a luminaire with a directional emission. It can be seen that
the sample positions are visible. The reference solution is rendered with 20,000 samples.
The images are tone mapped as explained in Section 6.2.

(a) 16 Samples (b) 32 Samples (c) 64 Samples (d) 128 Samples

Figure 4.3: Structured sampling using a fixed Poisson sample set of various sizes with
ARCOS (see Section 6.3), a luminaire with a directional emission. Sample patterns
remain visible, even with 128 samples. The images are tone mapped as explained in
Section 6.2.
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The MRP is derived from spatial heuristics. Given is a point x with a diffuse BRDF that
is illuminated by a diffuse area light L that is totally visible from x. The illuminance of
p by L can be computed with a simplified form of Equation ??:

Ld(x, L) = Le(L)
∫
x′∈SL

(ω̂i · n̂x)(−ω̂i · n̂L)
‖x′ − x‖2

dA(x′). (4.4)

The BRDF term is omitted for simplicity and the geometry term can be removed because
the light source is assumed to be fully visible. Because the light source is diffuse, the
luminance is constant, which means that Le can be moved out of the integral.

To find a single sample that best approximates the integral in Equation 4.4, the position
on the light source has to be found which maximizes the term inside the integral on the
domain of the surface SL of the area light. Drobot deemed the exact calculation too
expensive, which is why he uses heuristics instead to approximate the maximum.

Firstly, the term can be simplified by assuming that the term (−ω̂i · n̂L) is roughly
constant. By moving it out of the integral, the term which needs to be maximized
becomes

(ω̂i · n̂x)
‖x′ − x‖2

. (4.5)

The maximum of this term is approximated by finding the maximum of the numerator
and the minimum of the denominator respectively and combining the results. We refer
to the position of the sample which maximizes the numerator as normal point pN and
the position of the point which minimizes the denominator as Closest Point pC . The
position which results by the combination of these two is referred to as the MRP pM .
The corresponding illustration is given in Figure 4.4.

Normal point (NP) pN The numerator (ω̂i · n̂x) is maximized when ω̂i = n̂x. Geo-
metrically, this means that a sample maximizes the numerator when its positioned at the
intersection point of the normal n̂x and the light plane. It is, however, not guaranteed
that the sample lies inside the area SL. If the sample is positioned outside, its position
has to be clamped to the closest point on SL. Moreover, it is possible that n̂x · n̂L ≥ 0,
which means that the light plane of L is either parallel to or turned towards n̂x. In the
first case, there would not be an intersection. In the second case, the intersection would
be below x, which would minimize the function. To handle this issue, it is necessary to
skew n̂x towards the light plane if n̂x · n̂L ≥ 0 is given.

Closest point (CP) pC The denominator can be minimized by projecting x onto the
light plane. As with the NP, it can occur that the projected point does not lie inside SL.
So it may also need to be clamped to the closest point on the area of the light source.
After the clamping, it can occur that the resulting point is below the horizon of x, which
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Figure 4.4: The 3 dynamic points: normal point pN , closest point pC and the most
representative point pM . The position of the points on the area light L depends on the
spatial relation to x.

means that it would not be visible. In this case, the clamped point needs to be projected
on the intersection line of the light plane and the horizon plane of x.

Most representative point (MRP) pM Drobot states that computing the MRP
as the intersection point of the light plane and the half-vector of −→xpC and −→xpN returns
generally good results with a small error. This statement is based on observations and
empirical tests. He also proposes a faster method to compute the MRP, which does not
clamp the CP and the NP to the area light but the resulting half-vector. This, however,
results in a larger error.

The MRP is designed such that a single sample at this position provides a plausible
approximation for a diffuse area light. As can be seen in Figure 4.5, a single sample
position at the MRP returns a good approximation. The image is rendered using the
same Monte Carlo estimator as used by structured sampling (Equation 4.3), but with
just one sample.

This, however, is not the case for photometric area lights, as shown in Figure 4.6b. The
illumination starts noticeably further away from the area light source as in the reference
image. Still, the MRP as well as its construction points, the closest point and the normal
point, appear to be interesting choices, since each of these points maximizes a term in
the direct lighting equation given in Equation ??. Of these 3 dynamic points, the closest
point appears to be especially interesting in the context of photometric area lights. As
shown in Figure 4.6c, sampling its position approximates the illumination near the area
light well. The worst approximation is given by using the normal point (Figure 4.6d).
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(a) Reference (b) MRP

Figure 4.5: Sampling at the MRP as presented by Drobot [Dro14] returns good approxi-
mations for diffuse area lights. The reference solution is rendered with 20,000 samples.
The images are tone mapped as explained in Section 6.2.

This, however, does not mean that the normal point is not an interesting dynamic sample
position. It just means that it is not an interesting choice if only one dynamic sample is
used.
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(a) Reference (b) MRP

(c) Closest point (d) Normal point

Figure 4.6: Sampling at the MRP, closest point and nomal point with ARCOS (see
Section 6.3), a luminaire with a directional emission. The reference solution is rendered
with 20,000 samples. The images are tone mapped as explained in Section 6.2.
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CHAPTER 5
Scattered Sampling

This chapter presents scattered sampling, our new approach to approximate the direct
lighting by a photometric area light in real time with a small number of samples.

Scattered sampling is the result of combining structured sampling (see Section 4.1), a
technique presented by Lagarde and De Rousiers [LR14], with sample points like the
most representative point (see Section 4.2), presented by Drobot [Dro14], which is a point
whose position depends on the spatial relation between the shaded surface point and the
area light source. We propose to combine these techniques, as they appear to complement
each other. While a dynamic sample, e.g., positioned at the most representative point,
allows sampling pattern-free approximations of photometric area lights, it does not cover
the integration domain sufficiently, which, in contrast, is done by structured samples.

We combine these techniques by using both types of samples together to approximate the
direct lighting. We refer to sample sets consisting of both types of samples as scattered
samples. We borrow the term from Freeden at al. [FNS15], who refer to scattered samples
as irregularly distributed samples. Since the resulting sample sets are neither random
nor structured, we deem the term scattered to be fitting.

Scattered sampling is designed such that it can be implemented in a fragment shader.
The algorithm consists of two steps:

1. Generate a scattered sample set Each frame, a dynamic sample is computed
and added to the structured sample set, resulting in a scattered sample set.

2. Approximate direct lighting with the sample set Given the scattered samples
from Step 1, the incoming irradiance by a photometric area light is computed.

For the scattered sampling set we use the corners of the area light as structured samples
and the closest point as dynamic sample. We use the closest point because it already
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generates plausible approximations on its own (see Section 4.2) and add the corner
samples because they cover the light source well.

To compute an approximation for the incoming irradiance with a scattered sample set in
the second step, the Monte Carlo estimator in Equation 4.3 cannot be used as it is done
by structured sampling. This is because by adding a dynamic sample to a structured
sample set, the uniformness of the sample set, which is required to justify the use of the
Monte Carlo estimator with a uniform PDF, is lost. As the dynamic sample’s position
can be anywhere on the light source, it can come close to structured samples or even
overlap them. Therefore, another integration technique is required.

Instead of Monte Carlo integration, we use a cubature technique currently used in
Geomathematics [FNS15] based on the Delaunay triangulation to integrate with scattered
samples. Given the scattered samples as normalized directions, we create a Delaunay
triangulation based on them on the unit sphere and use the areas of the resulting triangles
to weigh the samples in the cubature technique. This process is explained in more detail
in the following sections.

Section 5.1 explains how scattered samples given as directions can be integrated on the
sphere and why we decided to use a cubature technique based on the Delaunay triangula-
tion. The following Section 5.2 goes into more detail regarding the implementation of
the cubature technique on the GPU and how a Delaunay triangulation can be derived in
real time.

Throughout this chapter, we will assume that the area light is rectangular for simplicity.
Our technique, however, can also be used with arbitrary convex polygons. Moreover,
we will provide exemplary images for the presented techniques as well as our approach,
which we will evaluate briefly based on the visual appearance. A detailed analysis of the
performance of the technique with regards to errors is provided in Chapter 6.

5.1 Numerical Integration with Scattered Samples

Given are scattered samples, which are a collection of structured samples and dynamic
samples. Each set of scattered samples is deterministic and unique for each surface point
in a scene. Scattered samples are similar to structured samples, however, by also using
dynamic samples, the integration technique used in structured sampling is no longer
applicable.

Structured sampling is an approximation of Monte Carlo integration and uses an estimator
to compute the illuminance by an area light. The approximation results from using the
Monte Carlo estimator and a uniform PDF with the deterministic structured samples.
This approach is justified by assuming that the manually distributed samples are randomly
drawn from a uniform PDF. This assumption, however, does not hold for scattered samples,
as the generated sample sets can vary much and are not guaranteed to be approximately
uniformly distributed. While there can be sets with a roughly uniform distribution, there
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can also be sets where dynamic samples come close to other samples, or even overlay
them.

As the Monte Carlo estimator is not suitable, another cubature technique is required that
works on the sphere, as the sample positions are defined as normalized directions. One
cubature technique which works without random samples and distribution assumptions
is cubature based on partitioning the sphere [FNS15, p. 1195]. This technique is used in
Geomathematics to integrate functions on the unit sphere with arbitrarily distributed
samples that are not structured (e.g., in a grid).

Cubature Based on Voronoi Tesselation

One way to partition the sphere is Voronoi tessellation [FNS15, p. 1205]. Voronoi
tessellation refers to partitioning a space based on the cells of a Voronoi diagram, which
is first defined. The definition by Aurenhammer [Aur91] is used adapted for spherical
geometry. Given is the unit sphere S2 := {x ∈ R3 : ‖x‖ = 1} and a set of points XN on
this sphere. The Dominance of a point p ∈ S2 over a point q ∈ S2 is given by

dom(p, q) = {x ∈ S2|dist(x, p) ≤ dist(x, q)} (5.1)

where dist is the geodesic distance function:

dist(p, q) = arccos(p · q) ∈ [0, π]. (5.2)

The dominance separates all points closer to p from the ones closer to q. The Region of
p consists of all elements of the sphere over which p has dominance with regard to the
other points:

reg(p) =
⋂

q∈S\{p}
dom(p, q). (5.3)

All points inside the region of p are closer to p than to any other point q ∈ S2. The points
lying exactly on the line between two regions are equidistant to both the associated
points of the regions. This partition of a sphere is called a Voronoi diagram V and the
regions are referred to as Voronoi cells T (p).

Given is a function f(x) defined on the unit sphere, a set of samples XN ∈ S2 and the
Voronoi cells T (xi) = Ti ∀xi ∈ XN . An estimate for the integral of f(x) is given by
[FNS15, p. 1205]

QN =
N∑
i=1
|Ti|f(xi) (5.4)
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where |Ti| is the surface area of Ti.

This cubature technique can be used to estimate the illuminance by a photometric area
light Ld(x, ω̂o) for a surface point x because the function is already defined on S2. Since
Ld(x, ω̂o) returns only values in ΩL ∈ S2 and 0 elsewhere, it is enough to apply this
cubature only the ΩL.

While the cubature is basically a sum of weighted samples, the complexity of this technique
comes from the Voronoi diagram. It has to be derived for each set of scattered samples,
and the area of each resulting Voronoi cell has to be computed. This has to be done every
frame due to the real-time constraint of this thesis. Moreover, the algorithm to generate
the Voronoi diagram has to be implemented in a fragment shader, which further reduces
the allowed complexity and available memory. Assuming that a scene is rendered with a
resolution of 1920× 1080, 2, 073, 600 Voronoi diagrams would need to be computed per
area light (occlusion ignored) in less than 16 milliseconds (60 FPS)1.

There exist several solutions to utilize the GPU to efficiently compute Voronoi dia-
grams ([RT06][RT07][YRGW11][RLW+11]). But besides not being designed for spherical
Voronoi diagrams, the main issue with these techniques is that they utilize the whole
GPU to compute a single Voronoi diagram in real time, not several. So even newer
solutions like the approach presented by Scheider et al. [SKW09], which only needs
2.5ms to derive a crude approximation of a single Voronoi diagram, are too slow and
memory consuming for our use case.

Since computing a Voronoi diagram per fragment in real time is not feasible, another
approach would be to precompute |Ti|, save the values in a texture and read the corre-
sponding values during the rendering process. We implemented this approach with a set
of scattered samples for a rectangular area light containing 5 structured samples (corners
and barycenter) and a dynamic sample, the closest point. An exemplary illustration is
shown in Figure 5.1.

The areas of the Voronoi cells per sample |Ti| can be precomputed for various positions
of the dynamic sample with any Voronoi algorithm. We store the results in two textures,
where each color channel holds |Ti| for a sample. Our textures are shown in Figure 5.2.

During rendering, the position of the dynamic sample on the area light is then used as a
UV coordinate to lookup the Voronoi area for each sample. To store the Voronoi areas,
an HDR texture is used. The accuracy of the technique during rendering depends on
the resolution of the texture. The technique is shown in Figure 5.3. It can be seen that
although only 6 samples are used, no sample patterns are visible near the area light.

While this technique is computationally efficient, it has several drawbacks. Firstly, an
error is introduced by precomputing the surface area of the Voronoi cells on the area
light, visible in Figure 5.3b as irregularities at the borders of the illuminated surface. The
surface areas |Ti| are derived from the Voronoi tessellation on the rectangular area light,

1Actually less than 16 milliseconds, assuming that other rendering techniques and effects may also be
used, which also require computation time.
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Figure 5.1: Voronoi tessellation of a rectangular area light with a scattered sample set:
The 4 corners c1 . . . c4, the barycenter b and a dynamic point p. The tessellation depends
on the position of p.

not from the tessellation of the projected area light. Secondly, this approach is not usable
for practical applications. For example, if the area light comes from below the horizon of
an illuminated point, it needs to be clipped at the horizon. This clipping process results
in another convex area light, which has, depending on its position and orientation, only
3 or up to 5 corners. The precomputated values for the rectangular area light can no
longer be applied. Additional precomputations would be required for arbitrary clippings
of the area light. One approach to achieve this would be to use the Hesse normal form to
parameterize cuts in the 2D-space of area light. This introduces 2 more dimensions (the
normal vector of the clipping line and its distance from a prior chosen origin in the area
light plane), which leads to a total 4 dimensions. However, creating a 4D-lookup texture
that stores up to 7 values per entry (3 - 5 corners, barycenter and dynamic point) is a
complex problem.

Cubature Based on the Delaunay Triangulation

Since Equation 5.4 is not practical to use due to the issues arising by deriving the Voronoi
cells Ti, we instead propose to use another cubature technique based on the Delaunay
triangulation. It is a relatively uniform triangulation which means that it avoids thin
triangles if possible. This property makes the Delaunay triangulation a suitable choice
when interpolating data from samples. [Ren97]

A triangulation is referred to as Delaunay when the empty circumcircle interior property
is valid for all triangles in a triangulation [Ren97]. This property states that there must
not be a vertex inside the circumcircle of a triangle. An example is shown in Figure 5.4.
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Figure 5.2: Textures storing the areas of the Voronoi cells |Ti|. The left texture stores
the area of a corner cell per channel. The right stores the area of the barycenter cell
and the dynamic cell in the first two channels. The color variance in the second texture
occurs because we also store the UV-coordinates in the blue and the alpha channel for
debugging reasons. The UV-coordinate of the dynamic point p is used to look up the
Voronoi cell areas for each sample.

(a) Reference (b) Cubature based on Vornoi tessellation

Figure 5.3: Approximating the illuminance by ARCOS (see Section 6.3) using the
cubature based on Voronoi tesselation with a scattered sample set consisting of the
corners, the barycenter and the closest point. The reference solution is rendered with
20,000 samples. The images are tone mapped as explained in Section 6.2.
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The circumcenter for the spherical triangle 4ijk is given by Equation 5.5. [Ren97]

vijk = (xk − xi)× (xj − xi)
‖(xk − xi)× (xj − xi)‖

(5.5)

Figure 5.4: The left triangulation is not Delaunay due to the violation of the empty
circumcircle interior property. The triangulation on the right is Delaunay because both
circumcircles do not contain a vertex.

The Delaunay triangulation is the dual to Voronoi diagrams. This means that one can
be created from the other. Given a point in a Delaunay triangulation, the corresponding
Voronoi cell is given by circumcenters of the triangles containing the vertex. On the
contrary, if a Voronoi diagram is given, the corresponding Delaunay triangulation can be
derived by connecting the points of neighbouring cells that share more than one vertex.
[Ren97]

The cubature technique utilizing the Delaunay triangulation is given by

Q =
∑
4ijk∈D

f(xi) + f(xj) + f(xk)
3 | 4ijk | (5.6)

where D is the Delaunay triangulation of a sample set consisting of the spherical triangles
4ijk ∀i, j, k. [FNS15, p. 1206] The samples xi, xj and xk do not lie on a common line
and are in counterclockwise order looked at from the center of the sphere (see Figure
5.5), i.e., det(xi, xj , xk) ≤ 0. | 4ijk | is the spherical excess of the triangle:

| 4ijk | = αi + αj + αk − π (5.7)

where αi, αj and αk are the angles of 4ijk.
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Figure 5.5: Illustration of a spherical triangle as used by the spherical cubature based on
the Delaunay triangulation. The vertices are ordered in counterclockwise order relative
to the center of the sphere.

Compared to the cubature based on Voronoi tessellation, this cubature uses each sample
several times. The exact number is given by the number of triangles which contain the
corresponding vertex [FNS15, p. 1206]. Moreover, the result of the cubature techniques
differ. While the cubature based on Voronoi tessellation uses the area of the corresponding
Voronoi cell, this cubature technique computes an average value and weighs it with the
area of the corresponding triangle.

Using the cubature technique based on a Delaunay triangulation solves several problems
encountered by using the cubature based on Voronoi tessellation. First of all, a Delaunay
triangulation can be generated fast and accurately with the Flip-Algorithm [BE70], which
transforms an arbitrary triangulation into an Delaunay triangulation in O(N2). The
algorithm can be easily implemented on the GPU due to its simplicity and allows some
optimizations based on precomputations. Secondly, since the Delaunay triangulation can
be derived correctly per fragment, no additional error is introduced since no approxi-
mations are required. Thirdly, computing the excess of a spherical triangle is cheaper
(see Equation 5.7) than computing the surface area of an arbitrary Voronoi cell. The
Flip-Algorithm is explained in Section 5.2 together with our GPU implementation of the
algorithm and the cubature technique.

5.2 Real-Time Delaunay Triangulation

This section explains how we derive a Delaunay triangulation of the projected area
light based on scattered samples such that we can use the cubature technique shown in
Equation 5.6 to compute the illuminance of a surface point by the respective photometric
area light. The reasons for using this approach as well as the definition of the Delaunay
triangulation are given in Section 5.1.

We use the Flip-Algorithm [BE70] to generate a Delaunay triangulation per fragment per
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frame. The algorithm starts with an arbitrary triangulation. For every edge e = (xi, xj)
that is not part of the convex hull we check whether the empty circumcircle interior
property is valid for the triangles 4ijk and 4ilj on each side of e. If the property is
not fulfilled, e is removed and replaced by e′ = (xk, xl), which creates the new triangles
4klj and 4kil. Replacing e by e′ is referred to as flipping the edge e. Hence the name
Flip-Algorithm. If edge e is flipped, the other edges of 4klj and 4kil have to be checked
again if they already have been checked and are not part of the convex hull. This
algorithm creates a Delaunay triangulation with a complexity of O(N2), where N is the
number of samples.

Practically, this algorithm can be implemented using a stack as shown in Algorithm 5.1.
The algorithm has several properties which make it suitable for a real-time application.
First of all, it works with the topology of the triangulation rather than the form of the
area light. It works the same whether the light has 3, 4 or 5 corners and is independent
of any distortions of the light caused by the projection onto the unit sphere. Another
advantageous property is that the empty circumcircle interior property can be checked
with a single formula based on Equation 5.5 for the quadrilateral formed by the two
triangles 4ijk and 4ilj [Ren97]:

det(xi − xj , xl − xj , xk − xj) = (xi − xj) · ((xl − xj)× (xk − xj)) < 0. (5.8)

Algorithm 5.1: Flip-Algorithm
Data: A sample set XN and any triangulation of XN

Result: Delaunay triangulation of XN

1 Initialize empty edge stack S
2 forall e in edges /∈ convex hull do
3 Push e on S
4 Mark e as unchecked
5 end
6 while S is not empty do
7 Pop e = (xi, xj) from S
8 if Empty circumcircle interior property not valid for 4klj or 4kil then
9 Flip e and mark e as checked

10 forall e′ in 4klj ∪4kil \ e do
11 if e′ is checked then
12 Mark e′ as unchecked
13 Push e′ on S
14 end
15 end
16 end
17 end
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(a) Reference (b) Cubature based on Delaunay triangulation

Figure 5.6: Approximating the illuminance by ARCOS (see Section 6.3) using the
cubature based on Delaunay triangulation with a scattered sample set consisting of the
corners and the closest point. The reference solution is rendered with 20,000 samples.
The images are tone mapped as explained in Section 6.2.

The last property which makes this algorithm and therefore the cubature based on De-
launay triangulation so practical is that the initial triangulation can be chosen arbitrarily.
This means that initial triangulations can be predefined for various cases (unclipped light
or clipped light), which will most likely require no flip at all, which results in a simple
process where the stack is emptied without any manipulation of the topology.

An image rendered with our implementation of this technique is shown in Figure 5.6.
The used scattered sample set consists of the four corners and the closest point. The
figure shows that this technique returns a stable approximation with a small number of
samples. Artifacts are less visible compared to our implementation of the cubature based
on the Voronoi tessellation shown in Figure 5.3, although the Delaunay cubature uses
one sample less.

We explain our implementation of the algorithm in the following two sections. We start
with explaining the used data structure in Section 5.2.1. Then, in Section 5.2.2, we go
into more detail regarding the implementation of the algorithm.

5.2.1 Data Structure

This section describes the data structure we use for the cubature theoretically and
explains how we implemented it. We go into more detail on where the data structure
is created and filled in the following section. The data structure used for the cubature
based on Delaunay triangulation (see Section 5.1) and Flip-Algorithm should meet the
following requirements:
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1. Direct access to the quadrilateral given by the triangles of an edge. This is required
so that the empty circumcircle interior property can be checked efficiently. Moreover,
the direct access allows a fast local transformation in the case of a flip.

2. Direct access to the vertices of the final triangles for the cubature. By granting
this access, Equation 5.6 can be implemented efficiently as a summation over a list
where all needed values are instantly accessible.

While there exist several data structures which are commonly used to handle triangle
meshes ([Bau72], [Hop98], [BSBK02], [TM06]), we decided to implement a custom data
structure. This decision was based on the real-time constraint of this thesis and the
requirement that the algorithm should be implemented in a fragment shader and run
efficiently on the GPU. Although existing data structures can also be used, they do not
perfectly fit the requirements listed above, which are rather specific for our use case. And
since performance is crucial, using a tailored data structure seemed more sensible.

The data structure we are using focuses on the topology of the triangulation. Edges are
described implicitly by their quadrilateral, which helps meeting requirement 1. Each
edge has access to all the vertices and edges of the quadrilateral. Faces are described by
their vertices and their edges. This means that by iterating over the faces, the vertices
(samples) are directly available, which fulfills requirement 2. Vertices themselves only
store their position on the unit sphere and the function value of the corresponding sample.
They have no outgoing relation to edges or faces. This is not required since vertices are
never transformed and are read-only constants.

The data is stored in 6 arrays, where the index of an entry is mapped to the index of the
object it holds the data for:

• Vertices (V) Each vertex v stores a sample x, which has a position and luminance
value derived from sampling the sample. This data is required by the Flip-Algorithm
and the cubature.

• Edge Vertices (EV) Each edge stores the indices of its two end-vertices and the
third vertex of each of its triangles, to which we refer to as opposite vertices (o).
This vertices are stored in counterclockwise order in the form: {v0, o0, v1, o1}.

• Edge Edges (EE) Additionally to the vertices, each edge stores indices of the
edges of its quadrilateral in counter clockwise order, starting with the edge between
v0 and o0: {e0, e1, e2, e3} The neighbor edges are needed in case of a flip, where
their respective quadrilaterals have to be updated.

• Edge Meta Data (EM) This data is required by the flip algorithm. Each edge
stores whether it is checked or unchecked, and whether it is an inside edge or not.

• Face Vertices (FV) The indices of the vertices defining a face in counterclockwise
order: {v0, v1, v2}. Edges reference faces by their vertices.
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• Face Edges (FE) The indices of the edges defining a face in counterclockwise
order: {e0, e1, e2}. The first edge is the edge between v0 and v1.

An example is illustrated in Figure 5.7.

Figure 5.7: Illustration of the representation of the triangle to the right in the data
structure, shown as set of arrays to the left. The vertices array stores the samples x,
which have a position and a luminance value.

The edges are self-contained with direct access to the indices of the vertices and edges of
the corresponding quadrilateral. Faces have direct links to their vertices and edges. To
reference a face from an edge, the face needs to be searched that has the same vertices
as the corresponding triangle of the edge. This means that the relation from face to
edge can be resolved in O(1) while edge to face relations are resolved in O(nf ), where
nf is the number of faces. We accept the additional cost by the second relation because
the number of faces is usually relatively low. Using this kind of relation reduces the
complexity of the data structure.

There exist several possibilities to implement this data structure, with the most trivial
being a set of 6 arrays holding vectors with various dimensions. For example, EV and
EE can be stored in arrays consisting of 4D integer vectors, where each entry in a vector
holds an index. Yet, as the memory for the data structure is allocated in the fragment
shader, it should be implemented as compactly as possible. A compact implementation
results in less memory usage and better performance since more data can be held in the
cache.

Instead of using an integer per index, we write several indices into one integer. This is
possible as we use a relatively small number of samples, which results in a small number
of triangles and edges. Consider the example of 5 samples: the 4 corners of an area light
and a point in the middle of the light. By connecting these samples with 8 edges, the
area light would be triangulated with 4 triangles. The biggest index would be given by
an edge with 7, which means that all edges can be encoded with only 3 bits.
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Instead of using a 32 bit integer to store a single index, we use 1 byte, which allows us
to store up to 4 indices in a single integer. The EM array only holds two booleans per
edge, which can be encoded with a single bit. Therefore, we use single integers to encode
the EM array, where each integer can store information for up to 16 edges. Given the
compact representation, the topology of the example can be stored with only 100 bytes.
The vertex array V stores the positions as 3D vectors and values of samples as floats,
which, in the case of 5 samples, results in a size of 100 bytes.

5.2.2 Algorithm

We implemented the Flip-Algorithm (Algorithm 5.1) and the data structure in a fragment
shader. Our implementation of the Flip-Algorithm consists of two parts. The first part is
generating the initial triangulation (Lines 1-5). The second part is given by the flipping
process (Lines 6-18). We use a scattered sample set consisting of the corners of an area
light and a dynamic point, in this case the closest point, to explain our implementation,
since this is the sample set we use in our reference implementation. At the end of this
section, we explain why we chose this sample set and how more complex sample sets
could be used.

Since the algorithm as well as our data structure is mainly concerned with the topology,
we statically define a set of initial triangulations and stacks in the shader. During the
rendering process, we evaluate the relative positions of the samples in the fragment shader
and choose the fitting triangulation. The fitting triangulation is then copied from the
constant memory and used for the flipping algorithm, with exception of the V array,
which is not copied but created dynamically for each fragment.

Disregarding clipping without loss of generality2, there are 3 cases that can occur due to
the relation of the dynamic sample to the structured samples:

1. The dynamic sample is inside the area light source.

2. The dynamic sample is on an edge of the area light source.

3. The dynamic sample lies in a corner of the area light source.

Figure 5.8 shows our initial triangulations for the 3 cases mentioned above. To ensure
generality, we order the sample set such that the dynamic sample is always the first
sample, followed by the structured samples in counterclockwise order. This order has to be
respected when the scattered sample set is generated, otherwise the initial triangulation
cannot be used.

The initial stack contains all edges which are not part of the convex hull (inside edges).

There are two steps required to determine which initial triangulation should be used.
The first step is to check the number of corners of the area light after clipping it with the

2An area light clipped at the horizon only differs in the number of corner points.
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Figure 5.8: Initial triangulations based on the topological relation of the dynamic sample
x0 to the structured samples.

horizon. In the case of a rectangular area light, the result can be 3, 4 or 5 corners. The
second step is to derive the relative position of the dynamic sample to the corner points.

To do this accurately, we use a clamping function that not only returns the clamped
point, but also information regarding the clamping process. It returns an integer that
encodes whether the point was not clamped (it was already inside the area light) or the
point was clamped to an edge or a corner. In the latter cases, it also returns which edge
(defined by two corners in counterclockwise order) or which corner the point was clamped
to.

Before using the initial triangulation, it has to be ensured that the structured samples are
in the correct order. Depending on the edge or corner the dynamic sample was clamped
to, this can mean that a reordering of the structured samples is required.

After the initial triangulation is set up, we start with the flipping process (Algorithm
5.1 Lines 6-18). Since the data structure stores all vertices of the quadrilateral of an
edge in the EV array, the empty circumcircle interior property can efficiently checked
with Equation 5.8. In case a flip is required, we flip an edge in the data structure with
Algorithm A.1 in Appendix A.

After the triangulation is Delaunay, the cubature in Equation 5.6 can be evaluated by
iterating over the FV array.

We use the scattered sample set consisting of the corners and one dynamic sample because
adding another sample, structured or dynamic, which is inside the area light raises the
complexity significantly and introduces numerical issues we were not able to handle. The
new complexity arises due to the several possible relations that can occur. For example,
the second point can either be in an inside triangle, which means a further triangulation
of that triangle, or it can lie on an inside edge, which requires splitting that edge (vertices
must not lie on one line as explained in Section 5.1). Moreover, the second inside sample
can overlay not only the structured corner samples, but also the first inside sample.

Issues arise due to the determination of the relations, which can yield numerical problems.
For example, determining whether a dynamic sample overlaps with a corner sample can
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Figure 5.9: Patterns become visible when evaluating the cubature at large distances due
to numerical issues.

be determined accurately with our clamping function. But deciding whether two points
overlap inside the area light is prone to numerical inaccuracies. This is also the case
when deciding whether the second inside sample lies on an inside edge or not.

We tried to use more complex sample sets by using the initial triangulations from above
and then dynamically adding additional samples while updating the triangulation (the
required algorithms to further triangulate a triangle and split an edge are given in
Appendix A by Algorithm A.4 and A.5). Besides the additional computation costs, which
reflected negatively in the frame rate, we were not able to achieve numerically stable
results without artifacts. For this reason, we use the scattered sample set mentioned
above.

5.2.3 Handling Numerical Issues

When the subtended solid angle of the light source becomes small, our implementation
for computing the spherical excess is prone to numerical inaccuracies. The same goes
for our clamping function at large distances, which still has numerical problems when
the closest point is close to an edge of the light source. These issues are visible as line
patterns as shown in Figure 5.9.

We address these problems by using the form factor, which can be analytically computed
as presented by Baum et al. [BRW89]. Ignoring occlusion, the form factor for the energy
the surface Sj receives by the surface Si is given by

FSi→Sj = 1
Si

∫
xi∈Si

∫
xj∈Sj

cos θi cos θj
π‖xi − xj‖2

dSj(xj)dSi(xi) (5.9)
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Figure 5.10: No patterns are visible when direct lighting is evaluated by using the
analytical evaluation of the form factor as presented by Baum et al. [BRW89].

and can be approximated with

FSi→Sj =
∫
xi∈Si

cos θi cos θj
π‖xi − xj‖2

dSi(xi) = 1
π

∫
Ωi

(ω̂i · n̂Sj )dω̂i (5.10)

if the distance is large compared to the area of the surface Sj [BRW89]. With the method
presented by Baum et al. [BRW89], Equation 5.10 can be solved analytically, which
allows computing the form factor FSL→x of a light L for a point x efficiently and in a
numerically stable way.

This technique can be utilized by transforming Equation 2.46 as follows:

Ld(x, ω̂o) =
∫
ΩL fs(x, ω̂o, ω̂i)Ls(xω̂i ,−ω̂i)(ω̂i · n̂x)dω̂i

1
π

∫
ΩL(ω̂i · n̂x)dω̂i

1
π

∫
ΩL

(ω̂i · n̂x)dω̂i

= πLs,ΩL(x)FSL→x,
(5.11)

which results in the direct lighting being the product of the cosine weighted mean of
fs(x, ω̂o, ω̂i)Ls(xω̂i ,−ω̂i) and the form factor of the light source. By computing the mean
with the cubature based on Delaunay triangulation and the form factor as presented by
Baum et al. [BRW89], we remove the patterns visible in Figure 5.9 as shown in Figure
5.10.
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5.2. Real-Time Delaunay Triangulation

Figure 5.11: Approximating the illuminance by ARCOS (see Section 6.3), which is clipped
at the horizontal plane and is normal to it. As some samples lie in the horizontal plane
after the clipping process, they cannot contribute any illumination, which results in
noticeable errors. The image is tone mapped as explained in Section 6.2.

5.2.4 Handling Clipping

To ensure that all samples are placed on the area light above the horizon, we first clip
the area light at the horizontal plane3, before the positions of the samples are computed.
The positions of the structured samples are implicitly given by the corners of the clipped
area light, and the closest point is ensured to be on the upper hemisphere as it is clamped
to the clipped area light.

However, when the light is clipped, 2 corner samples may lie inside the horizontal
plane. Depending on the orientation of the light, the closest point can also lie inside
the horizontal plane. Due to the term ω̂i · n̂x in the rendering equation (see Equation
2.43), these samples cannot contribute any illumination, which means that the number
of contributing samples is reduced significantly. The result can be seen in Figure 5.11.

We address this issue by tilting the horizontal plane slightly for the clipping process, such
that the clipped area light does not intersect with the horizontal plane. We generate a
new, tilted horizontal plane by elevating the horizontal plane slightly by a value ε (in
the case of our implementation ε = 0.1), intersecting it with the light plane and then
choosing two distinctive points p0 and p1 on the intersection line. The new clipping
plane is then defined by these two points and the illuminated surface point. By doing
the tilting as described, the introduced error has a negative correlation to the distance

3Assuming that the calculations are done in tangent space.
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5. Scattered Sampling

Figure 5.12: Approximating the illuminance by ARCOS (see Section 6.3), which is clipped
at the slightly tilted horizontal plane. The image is tone mapped as explained in Section
6.2.

from the area light because the tilting decreases with the distance. The improved result
can be seen in Figure 5.12.
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CHAPTER 6
Results and Evaluation

In this chapter we evaluate the performance of scattered sampling (see Chapter 5) with
our reference implementation, which uses the corner points as structured samples and
the closest point as dynamic sample. To provide a reference frame for the results, we will
compare the results with Monte Carlo integration, where we use a fixed set of Poisson
samples each frame to evaluate the direct lighting by a light source.

Starting in Section 6.1, we present the renderer we use to create the reference solutions.
It evaluates direct lighting with Monte Carlo integration and light-source importance
sampling as explained in Section 2.6. Section 6.2 explains our normalized evaluation setup
used to evaluate the quality of an approximation in relation to our reference solutions.
It is normalized such that we ignore the corresponding light-emitting object for each
photometry, which defines the area or volume from which a luminaire emits light, and
instead use a rectangular area light with the dimensions of 1× 1, which illuminates a
ground plane from a fixed set of predefined positions. By doing this, the quality of the
approximations can be better compared for various photometric profiles with the focus
on the luminous intensity distribution. In Section 6.3, the luminaires we use for the
evaluation are presented. Section 6.4 shows the results of scattered sampling, which are
then compared to the results of Monte Carlo integration with Poisson samples in 6.5.
This chapter is concluded in Section 6.6, where the results are discussed.

6.1 Reference Rendering

To generate the reference solutions to which we compare our approach to, we implemented
a renderer which accurately renders scenes that are illuminated by photometric area
lights. The renderer only handles the diffuse light transport and unblocked direct lighting,
which means that it ignores any occlusions between a surface point and a light source.

61



6. Results and Evaluation

The reference images are rendered by computing the direct lighting given by a photometric
area light for each surface point in a scene with Quasi-Monte Carlo integration (see Section
2.5.5). Because this renderer was used during the research process, we implemented it
iteratively. Instead of computing the illumination once with a large number of samples,
we use a small number of samples each frame and accumulate the results in a buffer. This
enables to see rough approximations early, which speeds up the research process. Over
time, the image in the accumulation buffer converges to the correct solution. When the
view matrix is modified, said accumulation buffer is cleared and the process starts anew.

The renderer executes two passes each frame. The first pass, explained in Section 6.1.1, is
the sampling pass, where the direct lighting is evaluated with a small number of samples.
The second pass adds the result of the first pass to an accumulation buffer, which equals
a rendered image where all previously used samples are taken into account. Section 6.1.2
explains the second pass in further detail.

6.1.1 1st Pass: Sampling

This pass is the sampling pass, where the direct lighting by a photometric area light is
evaluated with a small number of samples (e.g., N = 8) per area light. To reduce the
error and increase the convergence speed, Quasi-Monte Carlo integration is used (see
Section 2.5.5), where the Halton sequence is used to create low-discrepancy samples. The
renderer utilizes light-source importance sampling by generating samples only on the
light source with the PDF p(x′) = 1/SL.

The first step is to create 2N new Halton samples ξ1 and ξ2, which are loaded onto
the GPU with a uniform buffer. Because all fragments use the same random numbers,
patterns would become visible. To counter this effect, each fragment modifies the random
variables with the jitter function

J(ξ, τ) = (ξ + τ)− bξ + τc (6.1)

where τ is a unique jitter value per fragment per random number.

Our renderer uses a hash function for floating point numbers presented by Sharpe [Bri11]
to compute a unique τ per fragment.

The jittered random variables J(ξ1, τ1) and J(ξ2, τ2) are then used to generate a sampling
direction ω̂i. The directions towards the subtended solid angle of the light source are the
only directions which return radiance. Therefore, we use light-source importance sampling
to generate the sampling directions. Using uniform sampling or BRDF importance
sampling 1 would create many samples that would miss the light and therefore return 0
radiance.

1Importance sampling the BRDF would be importance sampling the cosine falloff as explained in
Section ??, because this thesis is only concerned with the diffuse light transport.
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6.1. Reference Rendering

We implemented light-source importance sampling as suggested by Shirley et al. [SWZ96],
where samples are generated directly on the light source with the PDF p(x′) = 1/SL.
and evaluated using the estimator shown in Equation 2.49 without the geometry term, as
this thesis is only concerned with the unblocked light transport without occlusion. More
sophisticated solutions like sampling the subtended solid angle as proposed by Ureña et
al. [UnFK13] would result in a slightly faster convergence speed, but would also lead to
problems as some light sources emit light in the plane of the area light, while the solid
angle is 0 for all points in the plane. If directions should be sampled for a point lying in
the plane of a planar area light, the subtended solid angle of the light would be 0. Using
the approach by Ureña et al. would require to sample the nonexistent subtended solid
angle, which again would result in visible artifacts due to numerical problems.

We therefore decided to generate the samples uniformly on the bounding rectangle of the
light, which is defined by a corner point x0 and two vectors v1 and v2:

x′ = x0 + ξ1 ∗ v1 + ξ2 ∗ v2. (6.2)

If the generated sample lies inside the light source, it is used to sample the light. Otherwise
the sample returns the constant value 0. After all samples are evaluated, the estimate
can be computed with

Ld,N = SL
N

N∑
i=1

fs(x, ω̂o, ω̂i)Le(xω̂i ,−ω̂i)(ω̂i · n̂x)(−ω̂i · n̂x′)
‖xω̂i − x‖2

. (6.3)

6.1.2 2nd Pass: Blending

Since each iterative rendering uses a small number of samples, all the iterative renders have
to be combined into one image by averaging them such that the rendering converges. This
is achieved by using a second framebuffer where the iterative renderings are accumulated
with blending. Assume that the current accumulated estimate is given by Ld,k∗N , where
k is the number of accumulated renderings:

Ld,k∗N = A

kN

kN∑
i=1

fs(x, ω̂o, ω̂i)Le(xω̂i ,−ω̂i)(ω̂i · n̂x)(−ω̂i · n̂x′)
‖xω̂i − x‖2

= 1
kN

kN∑
i=1

Li. (6.4)

This estimate can be updated with Ld,N (estimate of a sampling pass, see Equation 6.3)
with the following procedure:
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6. Results and Evaluation

Ld,(k+1)∗N = k

k + 1Ld,k∗N + 1
k + 1Ld,N

= k

k + 1

(
1
kN

kN∑
i=1

Li

)
+ 1
k + 1

 1
N

(k+1)N∑
i=kN+1

Li


= 1

(k + 1)N

(k+1)N∑
i=1

Li.

(6.5)

To achieve this with blending, the estimator Ld,N is multiplied with 1/(k+ 1) before it is
written into the iterative buffer. Moreover, the term k/(k + 1) is written into the alpha
channel of the iterative buffer. The blending is then achieved with

C = 1.0 ∗ S + S.A ∗D (6.6)

where S is the source color taken from the iterative buffer with the alpha value S.A and
D is the destination color taken from the accumulation buffer.

Example results are shown in Figure 6.1 and Figure 6.2. Both images were rendered with
approximately 20.000 samples.

Figure 6.1: Plane illuminated by MIREL (see Section 6.3). Image generated with
approximately 20.000. The image is tone mapped as explained in Section 6.2.

6.2 Evaluation Setup
To evaluate the performance of our technique, we implemented an evaluation process
that tests the technique with various photometric profiles under normalized conditions.
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6.2. Evaluation Setup

Figure 6.2: Plane illuminated by INTRO (see Section 6.3). Image generated with
approximately 20.000. The image is tone mapped as explained in Section 6.2.

Normalized means in this context that we ignore the physical dimensions given by the
photometric profile for the luminaire and instead use the same light-emitting object for
all photometric profiles. While this means that the resulting setup may not reflect the
real world (e.g., the emission profile of a spot light on a large, rectangular area light),
it makes the results better comparable, as the focus shifts to the luminous intensity
distribution.

The scene consists of a ground plane g = {p | ng · p = 0, ng = (0, 0, 1)} and a planar,
rectangular area light with a dimension of 1 × 1 units and the normal n̂L. The light
illuminates the ground plane from above. An illustration is shown in Figure 6.3. Starting
with nL = (0, 1, 0), the light is rotated downwards during the evaluation process until
nL = (0, 0,−1). At fixed rotation steps (cos−1(nL · ng) = π/2, 5π/8, 3π/4, 7π/8, π), an
orthographic camera takes an image of the ground plane from above. An example
is shown in Figure 6.4. The light source is not rendered to avoid occlusions of the
illuminated surface. These images are then used to evaluate the quality of the technique.
The rotation process enables us to observe the illumination for various spatial relations
between illuminated surface points and the area light.

The evaluation is executed for vertical light translations of 0.1 units, 1.1 units, 3.1 units
and 5.1 units. We do not evaluate the light directly on the ground, as this is a case which
hardly occurs in the real world.

The evaluation process consists of two parts, where the first part is the rendering part,
which we implemented with the Aardvark Platform developed by the VRVis. Images
rendered with our implementation are HDR images with a resolution of 2048 × 2048
pixels. The second part, which evaluates these images, is implemented in Matlab. Our
scripts return the following output per rendering technique per photometry:
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6. Results and Evaluation

Figure 6.3: The test scene consists of a rectangular, planar area light which is rotated
towards the ground plane with an infinite width.

Figure 6.4: The ground plane illuminated by MIREL (see Section 6.3), which is rotated
downwards with 5 iteration steps. This is a combined image of 5 images, where each is
taken with an orthographic camera from above looking downwards.

• Normalized Mean Squared Error (NMSE)

• Upper Error Bound (UEB)

• Lower Error Bound (LEB)

• Tone-mapped Images

• Error Images

The normalized mean squared error is computed as shown in Equation 6.7, where N is
the numbers of pixels, xR and xA are corresponding pixels in the reference rendering and
approximation rendering and R̄ and Ā are the means of reference and approximation
renderings.

NMSE = 1
N

N∑
i

(xR,i − xA,i)2

R̄Ā
(6.7)

We use Equation 6.8 to tonemap the images.

Ld(x, y) = L(x, y)
1 + L(x, y) (6.8)
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6.2. Evaluation Setup

Ld(x, y) is the tone-mapped value of the pixel at position (x, y) and L(x, y) = (a/L̄w) ∗
Lw(x, y), where Lw(x, y) is the value of pixel (x, y), a is a constant and L̄w is the log
average luminance of the picture [RSSF02]. Since the average illuminance on the ground
plane varies for the same photometry due to approximation errors, which means a variance
in the average luminance L̄w, we decided to replace the scale value (a/L̄w) with a fixed
value (= 10.0) for all images so that the different approximations are better comparable.

The errors are computed by comparing the results with our reference solution (see Section
6.1). In addition to the error measures, error images are generated that visualize the
spatial deviations of the approximations relative to the reference. An example is shown
in Figure 6.5. Orange areas are too bright, blue areas are too dark. The saturation
encodes the magnitude of the error, where white means no error. The magnitude of the
error for fully saturated areas is given by the respective upper and lower error bounds.

Figure 6.5: Example error image. Orange areas are too bright, blue areas are too dark,
where the magnitude of the error is given by the saturation. The magnitudes of fully
saturated areas are given by the respective upper and lower error bounds.
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6. Results and Evaluation

6.3 Light Selection
To evaluate the performance with different photometries, we selected a representative set
of luminaires from the luminaire catalogue of Zumtobel [Zum18] with a high variance
regarding the emission characteristics. On the following pages, each luminaire is presented
with the following information:

• Name: A shortened name which we use to refer to the luminaire in this thesis.

• Product Name: The full name of the luminaire with which it can be found in
the Zumtobel catalogue [Zum18].

• Luminous Intensity Distribution: An illustration of the luminous intensity
distribution (see Section 2.2) taken from [Zum18], which shows the emission char-
acteristic in a polar plot.

• Reference Table: A table of references images for the luminaire generated with
our evaluation setup (see Section 6.2), which shows the illumination profile of the
luminaire for various relations to the ground plane.
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6.3. Light Selection

ARCOS

ARC3 1/28W LED927-65 LDO 3CD
SP WHM

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6. Results and Evaluation

PANOS

PANOS INF Q140HF 22W LED927-65
LDE WH

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6.3. Light Selection

SLOTLIGHT

SLOIN A SL IP54 LED2800-840 L2040
PCO

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6. Results and Evaluation

PERLUCE

PERLUCE O LED5200-840 Q620 LDE
IP50 WH

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6.3. Light Selection

MIREL

MIRL NIV LED2800-830 M625Q LDO

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6. Results and Evaluation

INTRO

INT LED2800-940 LC 3CV BK

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6.3. Light Selection

LINETIK

LINETIK-S D/I LED8000-830 SC WH
SR2 IL

Height cos−1(nL · ng)
π/2 5π/8 3π/4 7π/8 π

0.1

1.1

3.1

5.1
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6. Results and Evaluation

6.4 Results

In this section we discuss the performance and quality of scattered sampling. To evaluate
the performance, we used a Nvidia GeForce GTX 1080 and rendered with a resolution
of 1920 × 1080. The measured performance values are presented in Table 6.1. The
table shows the FPS for scattered sampling with flipping and without flipping. We
implemented and measured the latter because we did not observe flipping in our setup
(rectangular area light with closest point as dynamic sample). Discarding flipping allowed
further optimizations.

Inside Edge Corner Average
SCT w/ flipping 240 260 310 300
SCT w/o flipping 370 390 410 400

Table 6.1: Measured FPS for scattered sampling (SCT) with and without flipping. Inside,
edge and corner describe the relation of the clamped closest point to the light source,
i.e., whether it is clamped to a corner, an edge or not clamped at all (inside). The values
were measured such that the relation of the clamped closest point to the light source was
the same for all fragments. The average value is derived by placing the camera above
the illuminated plane directed downwards, as in our evaluation setup, such that all cases
occur.

The computational cost of the technique for a fragment depends on the relation of the
clamped closest point (CCP) to the polygon of the light source, as this defines the number
of edges which have to be checked for flipping and the number of triangles which have to
be evaluated for the cubature. The CCP can either be inside the polygon, sit on an edge
or be in a corner (see Section 5.2.2).

The performance when navigating the scene naturally, i.e., all cases occur on the screen,
depends on several factors: the size of the light source, its position and orientation in
the scene and the position of the camera. These factors define the number of fragments
for each case and hence the resulting performance. To measure an average value, we
positioned the camera like the camera in the evaluation setup (see Section 6.2) and
rotated the light directly downward such that all cases occur.

The error measurements for scattered sampling for all luminaires presented in Sec-
tion 6.3 are given in Appendix B. An example table is given by Table 6.2. Each
table shows tone-mapped renderings for various rotation degrees (cos−1(nL · ng) =
{π/2, 5π/8, 3π/4, 7π/8, π}) with corresponding reference and error images (see Section
6.2). Additionally to the tables in Appendix B, the error images are shown enlarged in
Appendix C.

In the following we analyze the quality results for each luminaire. To describe the results,
we define areas on the illuminated ground plane based on the position of the unclamped
closest point relative to the area SL on the light plane of the area light L:
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6.4. Results

• The Outside Area contains all points on the ground plane where the corresponding
closest point lies outside of SL.

• The Inside Area contains all points where the closest point lies inside SL.

• The Border Area contains all points where the closest point lies on the border of
SL. We define this area in a fuzzy way, meaning that it also contains points of the
outside and inside area, where the closest point is close to the border.

• Corner Areas are subsets of the border area, and contain all points where the
closest point is near a corner of SL.

The error in the outside area is expected to become smaller with increasing distance to
the area light, because the error introduced when using a far-field photometric profile at
a different distance than the profile was generated from becomes smaller with increasing
distance to the light source (see Section 2.3). Therefore, the following analysis will mainly
focus on the border area and the inside area:

ARCOS (Tables B.1, B.2, B.3 and B.4) is a directional luminaire with a maximal
luminous intensity of 3921cd, which is relatively bright compared to the other selected
luminaires. Visually, the approximation is without artifacts and hardly distinguishable
from the reference solution. The main difference can be seen at the heights 0.1, 1.1 and
3.1, where the border area is more rectangular than the reference solution. The reason
can be seen in the error images and plots, where it shows that the border area is generally
too bright.

The high illuminance is caused by using too few samples in combination with a strong,
directional luminaire. At the border area, where the dynamic sample comes close to
the static corner samples, the illumination of the border area is computed with 2 to 3
samples2 with a large luminance and and 2 to 3 samples with no luminance. Since the 0
luminance samples can hardly outweigh the high luminance samples, a high illuminance
is computed. As the light is rotated downwards at height 0.1, the error images show that
the under-illumination on the inside turns to an over-illumination, as the closest point
for each surface point in the inside area starts to return a high illuminance.

PANOS (Tables B.5, B.6, B.7 and B.8) is, in contrast to ARCOS, generally too dark
in the inside area. This is because of the more diffuse emission pattern, where a larger
area of SL contributes to the illumination. Because the number of samples is too small,
the illumination is too low. There are not enough samples around the closest point that
can contribute luminance, as it is the case in the border and corner areas.

The evaluation data shows that the NMSE is smaller compared to ARCOS. The strong
difference, however, is mainly due to the smaller maximal luminous intensity. However,

22 if in the border area but not a corner area, 3 otherwise.
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comparing the visual quality, the approximation is also hardly distinguishable from the
reference solution.

SLOTLIGHT (Tables B.9, B.10, B.11 and B.12) is even more diffuse than PANOS and
also has the same issues. The too low illumination can also be seen in the tone-mapped
renderings, especially noticeable at the height 5.1. Again, this is due to the small number
of samples. The pattern and form of the illuminated area, however, is accurate and
without artifacts.

PERLUCE (Tables B.13, B.14, B.15 and B.16) is approximated especially well. The
NMSE is relatively small compared to the other luminaires. The luminous intensity
distribution is almost uniform, which means that it can be considered a diffuse area light.
Since scattered sampling is based on structured sampling, and structured sampling is
developed to approximate diffuse area lights accurately, the small error is expected.

The main error is introduced by the non-diffuse luminous intensity distribution at the
back of the area light. This error, however, is small and not noticeable in the tone-mapped
images.

MIREL (Tables B.17, B.18, B.19 and B.20) is similar to PANOS and SLOTLIGHT
with regards to its luminous intensity distribution. Therefore, the approximation results
are similar. The illumination is generally too dark in the border areas.

has a emission profile where the most light is not emitted forwards. At height 0.1, the
approximation results are similar to PANOS and SLOTLIGHT. But starting at height
1.1, an over-illumination appears in the center. This is caused by the structured samples
in the corners. Because MIREL emits the most light slightly sidewards, the central points
of the inside area receive a lot of illumination from each of the four corner points.

INTRO (Tables B.21, B.22, B.23 and B.24) is an asymmetric luminaire, where an
artifact is visible where the plane of the area light intersects the ground plane. This
artifact shows itself as a fine dark line, which appears due to a contradiction between
the luminous intensity distribution and the used cubature technique. While the first
one states there is a luminous flux in the direction of θ = π/2, the cubature technique
based on the Delaunay triangulation computes the weights based on the spherical excess
of spherical triangles, which is 0 for all points in the light plane (meaning that the
computed illuminance is 0). Because of this contradiction, the darkened line appears
due to numerical issues where the plane of the area light intersects the ground plane.
Moreover, the closest point appears to be not the best choice for this luminaire. It can
be seen that the border area is not smooth but instead has light bumps. These artifacts
are shown in Figure 6.6.

Another noticeable difference is the small spike away from the large illuminated area.
While it is a single spike in the reference solution, the small number of samples leads to
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Figure 6.6: The figure shows two of the artifacts generated by SCT when approximating
INTRO. To the left, light bumps are visible instead of a smooth border area which is
caused by using not enough samples. The black dotted line is an artifact resulting from
numerical issues of SCT, as INTRO emits light inside the light plane where the subtended
solid angle of the light source is 0.

an appearance of two spikes in the approximation. This is especially noticeable for the
rotation step {5π/8, 3π/4, 7π/8}.

Besides these three artifacts, the approximation is close to the reference solution with
regards of the illumination with a relatively small NMSE.

LINETIK-S (Tables B.25, B.26, B.27 and B.28) has the most complex luminous
intensity distribution of all presented luminaires. Yet, the approximation with only 5
samples is close to the reference solution. There are no artifacts and hardly any visual
differences.

Otherwise, it has the same problems as PANOS and SLOTLIGHT. Due to the small
number of samples, contributions from a larger area of SL are missing, which leads to a
too low illumination.

While the error images show differences in certain areas for various luminaires, it can
be seen that differences can hardly be seen in the tone-mapped images. Apart from
artifacts, as in the case of INTRO, scattered sampling approximates direct lighting by
photometric area lights well. The approximations are visually plausible and match the
illumination profiles of the reference solution such that differences can hardly be seen in
the tone-mapped images. While scattered sampling is not suitable for exact evaluations
of photometric area lights due to the errors in the inside area, it shows to be a good
technique to provide fast and visually plausible approximations of them.
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PANOS
Height NMSE UEB LEB

5.1 0.0026777 0.026367 -0.13672
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table 6.2: Table showing the results for the PANOS at height 5.1. The table shows the
normalized mean squared error (NMSE), the upper and the lower error bounds (UEB
and LEB).80



6.5. Comparison to Monte Carlo Integration

6.5 Comparison to Monte Carlo Integration

To provide a reference frame for the quality results of scattered sampling in Section 6.4,
we compare them with Monte Carlo integration with light-source importance sampling as
done by our reference renderer (see Section 6.1). However, instead of creating the images
iteratively with a small number of Halton samples each frame, we use a constant set of
Poisson samples and compute the direct lighting each frame with the same samples. The
number of Poisson samples is chosen such that the performance of the reference renderer
matches our scattered sampling reference implementation. To match scattered sampling
with flipping (~300FPS), we use 40 Poisson samples. To match scattered sampling
without flipping (~400FPS), we use 24 Poisson samples. The rendering performance
of the reference renderer remains constant and independent of the scene and camera
position because the same constant sample set is used for all fragments.

The plots in the Figures 6.7, 6.8, 6.9 and 6.10 show the NMSEs for each light and each
technique for various heights, where each entry is the NMSE over all rotation steps.
Scatterd sampling is abbreviated with SCT and Monte Carlo integration with light-source
importance sampling with Poisson samples with MCI-N, where N denotes the number of
Poisson samples. Scattered sampling without flipping will not be addressed separately, as
we observed no flipping with our reference implementation, which means that the error
of scattered sampling without flipping is equal to the error of scattered sampling with
flipping.

The plots show that MCI-24 and MCI-40 generally perform better for all heights regarding
the NMSE. This is expected as MCI-24 and MCI-40 use more samples. The exception is
PERLUCE, an almost diffuse luminaire, where SCT always returns the smallest NMSE.
The corners used with closest point show to be a good choice for a diffuse light source.

While MCI-24 and MCI-40 perform better in terms of NMSE than SCT (excluding
PERLUCE), SCT performs better regarding artifacts at close distances. Artifacts
become visible with MCI-24 and MCI-40 when the light source is close. An example
for these artifacts, we refer to them as light bumps, is shown in Figure 6.11. Although
MCI-24 and MCI-40 have a small NMSE, their approximations are visually not plausible
due to the noticeable bumps. SCT, on the other hand, creates an illuminated area which
is similar to the reference solution because of the dynamic sample.

The problem with light bumps is given at short distances and occurs due to the fixed
sample set used by MCI-24 and MCI-40. When the light source comes close, the subtended
solid angle of the light source increases quadratically and the density of the samples in
the subtended solid angle decreases. As a result, some illuminated points receive less
illumination and some receive more illumination depending on their relative position to
the light source.

The dynamic sample used by SCT counters this efficiently. The closest point defines a
position which returns a high illumination for luminaires with a Phong-like emission where
the main emission direction is forward. For each illuminated point the corresponding
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6. Results and Evaluation

Figure 6.7: Normalized mean squared error of various techniques over all rotation steps
with the light being 0.1 units above the ground.

Figure 6.8: Normalized mean squared error of various techniques over all rotation steps
with the light being 1.1 units above the ground.

closest point is used, which means that at least one sample exists for each point which
returns a significant amount of illuminance, even if the distance between the samples
becomes large.

How strongly these light bumps appear depends on several factors: the luminous intensity
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6.5. Comparison to Monte Carlo Integration

Figure 6.9: Normalized mean squared error of various techniques over all rotation steps
with the light being 3.1 units above the ground.

Figure 6.10: Normalized mean squared error of various techniques over all rotation steps
with the light being 5.1 units above the ground.

distribution and its magnitude, the dimension of the light source and the spatial relation
of illuminated surfaces to the light source. We observed that directional and brighter
luminaires lead to more noticeable artifacts. MCI approximations of ARCOS, which is
the strongest and most directional luminaire in our evaluation, have noticeable artifacts
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6. Results and Evaluation

(a) Reference (b) SCT (c) MCI-24 (d) MCI-40

Figure 6.11: Border area of ARCOS at height 0.1 with an angle of 3π/4 for various
approximations. It can be seen that MCI-24 and MCI-40 show light bumps in the border
area while SCT creates a border area similar to the reference solution.
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Table 6.3: Approximations of ARCOS and the corresponding error images generated
with the scattered sampling (SCT) and Monte Carlo integration (MCI-24, MCI-40). H
defines the height and R the rotation state. The images are tone mapped as described in
Section 6.2 with a fixed scaling value of 0.1.

at close distances as shown in Table 6.3.

If the luminaires have a less directional luminous intensity distribution, like PANOS
and SLOTLIGHT, the artifacts are weaker, yet still noticeable. This is shown in Table
6.4. However, the images show that these artifacts already start to vanish at slightly
larger distances compared to ARCOS. The distance of the closest point increases due to
the light source rotating around its center. At a rotation of 3π/4, the shortest distance
between the ground plane and the light source, which has had an initial height of 0.1, is
~0.246 units. Table 6.4 shows that the artifacts become barely visible for PANOS and
SLOTLIGHT at this distance and vanish at further rotation steps. However, artifacts
remain visible for ARCOS even after a rotation by π radians, where the shortest distance
to the ground plane is 0.6 units when the light source had an initial height of 0.1 units.
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6.5. Comparison to Monte Carlo Integration

PANOS
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Table 6.4: Approximations of PANOS and SLOTLIGHT and the corresponding error
images generated with the scattered sampling (SCT) and Monte Carlo integration (MCI-
24, MCI-40).H defines the height and R the rotation state. The images are tone mapped
as described in Section 6.2 with a fixed scaling value of 0.1.
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PERLUCE
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Table 6.5: Approximations of PERLUCE and the corresponding error images generated
with the scattered sampling (SCT) and Monte Carlo integration (MCI-24, MCI-40).H
defines the height and R the rotation state. The images are tone mapped as described in
Section 6.2 with a fixed scaling value of 0.1.

PERLUCE is the most diffuse luminaire. Table 6.5 shows that there are no noticeable
artifacts, even when the light source is close. While the error images show overexposed
spots near the light source, they are so weak that they cannot be seen in the tone-mapped
images.

MIREL emits light approximately Phong-like, yet differs such that the strongest emission
direction is not forward. The approximations generated with MCI-24 and MCI-40 have
bump artifacts at short distances similar to PANOS due to the directionality as shown in
Table 6.6. SCT creates a border area similar to the reference solution. However, as the
distance increases, the images show that artifacts appear in the border area with SCT,
while the MCI approximations become more stable. The error images in Table 6.6 show
that the illumination variance in the border area increases with an increasing distance
for SCT, whereas the variance decreases for MCI.

The LINETIK approximations also have artifacts for all approximation techniques. Table
6.7 shows that MCI suffers from bump artifacts in the border area, while SCT differs
noticeably from the reference solution in the inside area. As the light source moves
further away, the bump artifacts with MCI vanish while the artifacts in the inside area
remain noticeable with SCT.

All techniques create artifacts when approximating INTRO, which is the only luminaire
where the main emission direction is to the side. Table 6.8 shows the approximations.
The error images show that there are light bumps with MCI-24 and MCI-40 near the light
plane when the light source is close, which can be seen in the tone-mapped images near
the light source. SCT also creates visible artifacts inside the illuminated area. Moreover,
all techniques fail to approximate the light emitted to left correctly and instead render
a light spike, especially prominent with SCT. With increasing distance, all techniques
render more plausible approximations. However, the light spike remains with SCT.
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6.6. Discussion
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Table 6.6: Approximations of MIREL and the corresponding error images generated with
the scattered sampling (SCT) and Monte Carlo integration (MCI-24, MCI-40).H defines
the height and R the rotation state. The images are tone mapped as described in Section
6.2 with a fixed scaling value of 0.1.

6.6 Discussion

The results show that scattered sampling creates plausible approximations with a small
number of samples when the light source is close. While errors remain because of the
small number of samples, they can only be seen in direct comparison to the reference
solution or in the error images. This is because of the error being consistent, which means
that there is no high-frequent alternation of over- and under-illumination. Therefore the
approximations look plausible.

Monte Carlo integration, on the other hand, suffers of such a high illumination alternation
at close distances which shows as visible light bumps in the border area. How visible these
light bumps are depends on the luminous intensity distribution and the distance of the
illuminated surface to the light source. The results show that there is a direct correlation
between the directionality of a luminaire and the light bumps. As the luminaire emits
light more diffusely, the light bumps are less prominent at closer distances (e.g., ~0.246
units with SLOTLIGHT and 0.1 units with PERLUCE), while they remain visible even
at large distances for highly directional luminaires (e.g.,0.6 units with ARCOS). Another
important factor besides the form of the luminous intensity distribution is tone mapping.
Depending on the tone mapping, bump artifacts may not be visible even at close distances.

However, scattered sampling suffers also from visible errors if the luminous intensity
distribution is not Phong-like, like in the case of MIREL, LINETIK or INTRO. Our
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6. Results and Evaluation
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Table 6.7: Approximations of LINETIK and the corresponding error images generated
with the scattered sampling (SCT) and Monte Carlo integration (MCI-24, MCI-40).H
defines the height and R the rotation state. The images are tone mapped as described in
Section 6.2 with a fixed scaling value of 0.1.

reference implementation uses the closest point, which proves to be an important sample
for luminaires with a Phong-like light emission, as the most light is emitted forwards by
Phong-like luminaires. This is not the case for MIREL, LINETIK or INTRO. Therefore,
errors appear inside the illuminated area, whereas Monte Carlo integration approximates
the illumination accurately. While light bumps vanish with Monte-Carlo integration
at larger distances, the errors of scattered sampling become less prominent but remain
visible.

The choice of the dynamic sample has a large influence on the results because the only
other samples in our reference implementation are the structured samples in the corners.
As there are no other samples inside the area light, the dynamic sample has to be
positioned such that it compensates this lack of samples. While this is the case with
the closest point for luminaires with a Phong-like emission, it does not work for other
luminaires as our results show.
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6.6. Discussion
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Table 6.8: Approximations of INTRO and the corresponding error images generated with
the scattered sampling (SCT) and Monte Carlo integration (MCI-24, MCI-40).H defines
the height and R the rotation state. The images are tone mapped as described in Section
6.2 with a fixed scaling value of 0.1.

Another issue, which is independent of the used dynamic sample, becomes visible with
INTRO. The photometry of INTRO states that light is emitted inside the light plane.
Scattered sampling, however, uses a cubature technique based on the Delaunay triangu-
lation. The spherical excess of a triangle on the light source is 0 inside the light plane,
which means that the illumination has to be zero by definition. This contradiction is a
problem for which we currently do not have a solution. As a result, luminaires with a
lateral emission prove to be an issue for scattered sampling at its current state.

Regarding performance, our implementation of scattered sampling with 5 samples (~300
FPS with flipping, ~400 FPS without) is as fast as our reference renderer with 40 Poisson
samples (~300 FPS) or 24 Poisson samples (~400 FPS). This frame rate difference is due
to Monte Carlo integration being less complex than scattered sampling, which allows
a larger number of samples. While direct lighting can be evaluated with Monte Carlo
integration by only summing over a list of samples, scattered sampling requires the
modification and evaluation of a complex data structure.

89



6. Results and Evaluation

To summarize: The results show that scattered sampling performs well when the light
source is close, while Monte Carlo integration performs well when the light source is
further away. What close and further away means depends on the luminaire. While a
diffuse luminaire like PERLUCE can be approximated with Monte Carlo integration at
close distance without artifacts, light bumps remain visible at large distances for highly
directional luminaires like ARCOS.

A solution to generally avoid artifacts could be to combine scattered sampling and
Monte Carlo integration with blending. For surface points where the light source is close
scattered sampling could be used to create a plausible border area. As the distance
of the points to the light source increases, the illumination could be blended to the
value computed with Monte Carlo integration until only Monte Carlo integration is
used. The results show that 24 Poisson samples are already enough to create a plausible
approximation with Monte Carlo integration for a rectangular luminaire with the size of
1× 1 units after a certain distance.
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CHAPTER 7
Conclusion and Future Work

In this thesis, we have presented scattered sampling, a novel approach to evaluate the
direct lighting from photometric area lights in real time. The technique, which is based on
structured sampling and the most representative point (both techniques currently used in
game engines), allows rendering visually plausible approximations of scenes illuminated
by photometric area lights with a small number of samples. While visible errors remain
when used with complex, asymmetric luminaires, the approximations are visually close
to the reference solutions in tone-mapped images.

An issue we observed when using Monte Carlo integration with a small and constant
sample set for photometric area lights is that their arbitrary luminous intensity distribution
can lead to bump artifacts. These bumps, especially noticeable at the border of the
illuminated area, appear due to a sampling pattern on the light source that is not dense
enough. Scattered sampling, which combines structured samples with dynamic samples
(samples whose positions depend on the spatial relation of the area light to the illuminated
point, e.g., the most representative point), addresses this issue effectively, as the dynamic
sample covers the regions of the area light which are not covered by the structured
samples without increasing the number of samples. The border areas are, as a result,
close to the reference solution for luminaires that do not emit light inside the light plane.
The latter shows to be a problem as the used cubature technique for scattered sampling
depends on the subtended solid angles of triangles on the light source, which is 0 for
points the light plane. This results in a contradiction, which again results in an erroneous
illumination for all surfaces intersecting with the area light’s plane.

The combination of sampling techniques comes at the cost of added complexity. Instead
of simply computing a Monte Carlo estimate with a list of samples, scattered sampling
requires the handling and managing of a triangle data structure on the GPU. Per
fragment, the GPU must fill this data structure, manipulate it and derive a value from
it. This added complexity and increase of required memory shows as the frame rate of
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7. Conclusion and Future Work

our reference implementation of scattered sampling with 5 samples is comparable to the
frame rate of Monte Carlo integration with 40 Poisson samples.

Besides this added complexity and additional computational costs, our implementation of
scattered sampling is currently limited regarding the number of samples inside the area
light due to numerical issues we were not able to solve. Deciding whether two samples
are on the same position or whether a sample lies exactly between two samples is prone
to numerical errors, yet needed to fill the data structure correctly. These issues arise
when several samples are placed inside an area light, independent of them being dynamic
or static.

Aside of the mentioned issues, the technique shows great potential, as scattered sampling
with 5 samples creates visually plausible approximations. Moreover, it outperformed
Monte Carlo integration with 40 Poisson samples when approximating a luminaire with
a diffuse emission characteristic. Finding more efficient and numerically stable solutions
for scattered sampling such that more samples can be used would allow the technique to
show its full potential.

During the evaluation, we observed that the choice of the dynamic sample is crucial.
We chose the closest point, which showed to be a good choice for luminaires with a
Phong-like or diffuse emission. For luminaires with other emission characteristics, the
closest point does not have such an important role, which increases the error as the
number of contributing samples decreases. Finding more dynamic samples which fit other
emission characteristics well remains future work.
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APPENDIX A
Algorithms on the Data Structure

This appendix lists algorithms for the data structure described in Section 5.2.1.

We use two notations to denote array accesses of EV, EE, EM and so on. For example,
reading v0 from edge e can be written either as EV[e].v0 or as EV[e][0]. The general
notation relation for EV is given by { EV[j][0], EV[j][1], EV[j][2], EV[j][3] } == { EV[j].v0,
EV[j].o0, EV[j].v1, EV[j].o1 }. The notation is equivalent for all arrays and used to notate
value readings by index.

Algorithm A.1: Edge Flip
Data: Index of edge to flip: e; Edges: EV, EE, EM; Faces: FV, FE; Stack: S
Result: EV, EE, EM, FV, FE and S where edge e is flipped

1 UpdateQuadrilateralEdges(e, EV, EE, EM, S)
// Store original face edges of e before it is flipped

2 f0 = { EV[e].v0, EV[e].o0, EV[e].v1 }
3 f1 = { EV[e].v1, EV[e].o1, EV[e].v0 }
// Flip e by leftshifting the indices with rotation.

4 EV[e] = { EV[e].o0, EV[e].v1, EV[e].o1, EV[e].v0 }
5 EE[e] = { EV[e].e1, EV[e].e2, EV[e].e3, EV[e].e0 }
6 UpdateFaces(e, f0, f1, EV, EE, FV, FE)
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A. Algorithms on the Data Structure

Algorithm A.2: Update Quadrilateral Edges
Data: Index of edge to flip: e; Edges: EV, EE, EM; Stack: S
Result: EV, EE, EM and S where quadrilateral edges of e are updatet

1 for i = 0 to 3 do
// Update all edges of the quadrilateral of e

2 e’ = EE[e][i]
3 if i mod 2 == 0 then

// e’ is an edge going to an opposite vertex
4 if EV[e’].o0 == EV[e][(i + 2) mod 4] then
5 EV[e’].o0 = EV[e][(i + 3) mod 4]
6 else
7 EV[e’].o1 = EV[e][(i + 3) mod 4]
8 end
9 EE[e’][i] = e

10 EE[e’][i + 1] = EE[e][(i + 3) mod 4]
11 else

// e’ is an edge coming from an opposite vertex
12 if EV[e’].o0 == EV[e][i -1] then
13 EV[e’].o0 = EV[e][(i + 2) mod 4]
14 else
15 EV[e’].o1 = EV[e][(i + 2) mod 4]
16 end
17 EE[e’][i - 1] = EE[e][(i + 1) mod 4]
18 EE[e’][i] = e
19 end
20 if e’ == inside edge ∧ e’ != marked then
21 Mark e’
22 Push e’ on S
23 end
24 end
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Algorithm A.3: Update Faces
Data: Index of edge to flip: e; Vertices of faces to update: f0, f1, Edges: EV,

EE; Faces: FV, FE
Result: FV and FE where faces of edge e are updatet

1 for i = 0 to length of FV do
2 if FV[i] has vertices f0 then
3 FV[i] = [EV[e].v0, EV[e].o0, EV[e].v1]
4 FE[i] = [EE[e].e0, EE[e].e1, e]
5 end
6 if FV[i] has vertices f1 then
7 FV[i] = [EV[e].v1, EV[e].o1, EV[e].v0,]
8 FE[i] = [EE[e].e2, EE[e].e3, e]
9 end

10 end

95



A. Algorithms on the Data Structure

Algorithm A.4: Triangulate Face
Data: Index of vertex to insert: v; Index of face to triangulate: f; Edges: EV,

EE, EM; Faces: FV, FE;
Result: EV, EE, EM, FV and FE where f is triangulated based on v

1 e = next free edge id
2 f’ = next free face id
3 for i = 0 to 2 do
4 e’ = e + i

// Insert new edge
5 EV[e’][0] = FV[f][(i + 0) mod 3]
6 EV[e’][1] = FV[f][(i + 1) mod 3]
7 EV[e’][2] = v
8 EV[e’][3] = FV[f][(i + 2) mod 3]
9 EE[e’][0] = FE[f][(i + 0) mod 3]

10 EE[e’][1] = e + (i + 1) mod 3
11 EE[e’][2] = e + (i + 2) mod 3
12 EE[e’][3] = FE[f][(i + 2) mod 3]
13 Mark e’ as inside

// Update face edge
14 ef = FE[f][i]
15 if EV[ef ].o0 == FV[f][(i + 2) mod 3] then
16 EV[ef ].o0 = v
17 EE[ef ][0] = e + (i + 1) mod 3
18 EE[ef ][1] = e’
19 else
20 EV[ef ].o1 = v
21 EE[ef ][2] = e + (i + 1) mod 3
22 EE[ef ][3] = e’
23 end
24 Mark ef

// Insert new face
25 FV[f’ + i] = { EV[e’][0], EV[e’][1], EV[e’][2] }
26 FE[f’ + i] = { EE[e’][0], EE[e’][1], e’ }
27 end
28 Remove face f
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Algorithm A.5: Split Edge
Data: Index of vertex to insert: v; Edge to split: e; Edges: EV, EE, EM; Faces:

FV, FE;
Result: EV, EE, EM, FV and FE where f is triangulated based on v

1 e’ = next free edge id
2 f = next free face id
3 Remove faces of e
4 for i = 0 to 3 do
5 if EV[e][i] exists then // Insert new edge
6 e” = LID2GID(e, e’, i) // Map Local to Global ID
7 EV[e”][0] = EV[e][i]
8 EV[e”][1] = EV[e][(i + 1) mod 4]
9 EV[e”][2] = v

10 EV[e”][3] = EV[e][(i + 3) mod 4]
11 eO0IsEmpty, eO1IsEmpty = true
12 if EV[e][(i + 1) mod 4] exists then
13 EE[e”][0] = EE[e][i]
14 EE[e”][1] = LID2GID(e, e’, (i + 1) mod 4)
15 eO0IsEmpty = false
16 end
17 if EV[e][(i + 3) mod 4] exists then
18 EE[e”][2] = LID2GID(e, e’, (i + 3) mod 4)
19 EE[e”][3] = EE[e][(i + 3) mod 4]
20 eO1IsEmpty = false
21 end
22 e” is inside = ¬eO0IsEmpty ∧ ¬eO1IsEmpty
23 if ¬eO0IsEmpty then // Update edge going from v0 to o0
24 ei = EE[e][i]
25 if EV[ei].o0 exits ∧ EV[ei].o0 == EV[e][(i + (i == 1 ∨ i == 3 ? 3 :

2)) mod 4] then
26 EV[ei] = { EV[ei][0], v, EV[ei][2], EV[ei][3] }
27 EE[ei] = { LID2GID(e, e’, (i + 1) mod 4), e”, EE[ei][2], EE[ei][3] }
28 else
29 EV[ei] = { EV[ei][0], EV[ei][1], EV[ei][2], v }
30 EE[ei] = { EE[ei][0], EE[ei][1], LID2GID(e, e’, (i + 1) mod 4), e” }
31 end

// Add new face
32 FV[f] = { EV[e][i], EV[e][(i + 1) mod 4], v }
33 FE[f] = { ei, LID2GID(e, e’, (i + 1) mod 4), e” }
34 f = f + 1
35 end
36 end
37 end
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A. Algorithms on the Data Structure

Algorithm A.6: Map Local to Global ID (LID2GID)
Data: Freed ID: fid, Next free ID: nid, localId: id
Result: Global ID to access edge arrays

1 if id == 0 then
2 return id
3 else
4 return nid + id - 1
5 end
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APPENDIX B
Results Scattered Sampling

This chapter presents the result for approximations generated with our reference imple-
mentation of scattered sampling for the luminaires listed in Section 6.3. The images and
error measurements are generated with our evaluation setup presented in Section 6.2.
Each table shows the normalized mean squared error (NMSE) over all rotation steps and
the upper error bound (UEB) and lower error bound (LEB) for the error images. For
each rotation step, a reference image, an approximation and an error image is given.
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B. Results Scattered Sampling

ARCOS
Height NMSE UEB LEB

0.1 565.1048 160.25 -8.4375
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.1: Table showing the results for ARCOS at height 0.1.
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ARCOS
Height NMSE UEB LEB

1.1 27.9669 27.125 -11.8125
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.2: Table showing the results for ARCOS at height 1.1.
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B. Results Scattered Sampling

ARCOS
Height NMSE UEB LEB

3.1 1.0217 2.3984 -4.0313
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.3: Table showing the results for ARCOS at height 3.1.
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ARCOS
Height NMSE UEB LEB

5.1 0.1487 0.58594 -1.3281
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.4: Table showing the results for ARCOS at height 5.1.

103



B. Results Scattered Sampling

PANOS
Height NMSE UEB LEB

0.1 32.6394 10.5625 -36.375
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.5: Table showing the results for PANOS at height 0.1.
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PANOS
Height NMSE UEB LEB

1.1 1.7118 1.1563 -6.5313
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.6: Table showing the results for PANOS at height 1.1.
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B. Results Scattered Sampling

PANOS
Height NMSE UEB LEB

3.1 0.029584 0.10156 -0.60938
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.7: Table showing the results for PANOS at height 3.1.
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PANOS
Height NMSE UEB LEB

5.1 0.0026777 0.026367 -0.13672
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.8: Table showing the results for PANOS at height 5.1.

107



B. Results Scattered Sampling

SLOTLIGHT
Height NMSE UEB LEB

0.1 10.681 8.4375 -49
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.9: Table showing the results for SLOTLIGHT at height 0.1.
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SLOTLIGHT
Height NMSE UEB LEB

1.1 0.308 1.5625 -6.0625
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.10: Table showing the results for SLOTLIGHT at height 1.1.
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B. Results Scattered Sampling

SLOTLIGHT
Height NMSE UEB LEB

3.1 0.006882 0.25 -0.53125
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.11: Table showing the results for SLOTLIGHT at height 3.1.
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SLOTLIGHT
Height NMSE UEB LEB

5.1 0.00085754 0.082031 -0.14844
Reference Scattered sampling Error

π
/
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/
8
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7π
/8

π

Table B.12: Table showing the results for SLOTLIGHT at height 5.1.
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B. Results Scattered Sampling

PERLUCE
Height NMSE UEB LEB

0.1 0.2382 18.7969 -4.25
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.13: Table showing the results for PERLUCE at height 0.1.
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PERLUCE
Height NMSE UEB LEB

1.1 0.0007229 0.64453 -0.25391
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.14: Table showing the results for PERLUCE at height 1.1.
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B. Results Scattered Sampling

PERLUCE
Height NMSE UEB LEB

3.1 2.0194e-
05

0.074219 -0.17834

Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.15: Table showing the results for PERLUCE at height 3.1.
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PERLUCE
Height NMSE UEB LEB

5.1 9.5972e-
06

0.19495 -0.16321

Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.16: Table showing the results for PERLUCE at height 5.1.
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B. Results Scattered Sampling

MIREL
Height NMSE UEB LEB

0.1 56.2119 30.2813 -129.75
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.17: Table showing the results for MIREL at height 0.1.
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MIREL
Height NMSE UEB LEB

1.1 3.0891 5.625 -23.1875
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.18: Table showing the results for MIREL at height 1.1.
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B. Results Scattered Sampling

MIREL
Height NMSE UEB LEB

3.1 0.11569 1.625 -2.8906
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.19: Table showing the results for MIREL at height 3.1.
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MIREL
Height NMSE UEB LEB

5.1 0.014999 0.47656 -0.73438
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.20: Table showing the results for MIREL at height 5.1.
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B. Results Scattered Sampling

INTRO
Height NMSE UEB LEB

0.1 38.2276 39.4688 -129.625
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.21: Table showing the results for INTRO at height 0.1.
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INTRO
Height NMSE UEB LEB

1.1 2.6359 17.2813 -33.25
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.22: Table showing the results for INTRO at height 1.1.
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B. Results Scattered Sampling

INTRO
Height NMSE UEB LEB

3.1 0.13794 4.375 -3.9375
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.23: Table showing the results for INTRO at height 3.1.
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INTRO
Height NMSE UEB LEB

5.1 0.027428 1.5889 -1.9375
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.24: Table showing the results for INTRO at height 5.1.
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B. Results Scattered Sampling

LINETIK-S
Height NMSE UEB LEB

0.1 17.6828 28.9531 -105
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.25: Table showing the results for LINETIK-S at height 0.1.

124



LINETIK-S
Height NMSE UEB LEB

1.1 1.4551 7.1563 -18.125
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.26: Table showing the results for LINETIK-S at height 1.1.
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B. Results Scattered Sampling

LINETIK-S
Height NMSE UEB LEB

3.1 0.044154 0.89063 -1.5781
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.27: Table showing the results for LINETIK-S at height 3.1.
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LINETIK-S
Height NMSE UEB LEB

5.1 0.0055244 0.27539 -0.40625
Reference Scattered sampling Error

π
/
2

5π
/
8

3π
/4

7π
/8

π

Table B.28: Table showing the results for LINETIK-S at height 5.1.
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APPENDIX C
Error Image Comparison

This chapter presents the error images of scattered sampling (SCT) and Monte Carlo
integration with light-source importance sampling with 24 or 40 Poisson samples (MCI-24,
MCI-40) next to each other for comparison. The error images visualize the approximation
errors for the luminaires presented in Section 6.3 for various heights and rotation steps
(see Section 6.2). The error bounds for the error images of each approximations are given
by the upper error bound (UEB) and the lower error bound (LEB).
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C. Error Image Comparison

ARCOS Height: 0.1

SCT MCI-24 MCI-40

UEB 1.60e+02 3.10e+01 1.88e+01
LEB -8.44e+00 -4.02e+01 -2.91e+01

π
2

5π
8

3π
4

7π
4

π

Table C.1: Table showing the error images for ARCOS at height 0.1.
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ARCOS Height: 1.1

SCT MCI-24 MCI-40

UEB 2.71e+01 5.12e+00 3.77e+00
LEB -1.18e+01 -1.54e+01 -1.01e+01

π
2

5π
8

3π
4

7π
4

π

Table C.2: Table showing the error images for ARCOS at height 1.1.
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C. Error Image Comparison

ARCOS Height: 3.1

SCT MCI-24 MCI-40

UEB 2.40e+00 6.56e-01 5.08e-01
LEB -4.03e+00 -2.44e+00 -1.47e+00

π
2

5π
8

3π
4

7π
4

π

Table C.3: Table showing the error images for ARCOS at height 3.1.
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ARCOS Height: 5.1

SCT MCI-24 MCI-40

UEB 5.86e-01 2.11e-01 1.68e-01
LEB -1.33e+00 -6.72e-01 -3.91e-01

π
2

5π
8

3π
4

7π
4

π

Table C.4: Table showing the error images for ARCOS at height 5.1.
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C. Error Image Comparison

PANOS Height: 0.1

SCT MCI-24 MCI-40

UEB 1.06e+01 1.60e+01 9.38e+00
LEB -3.64e+01 -2.81e+01 -1.80e+01

π
2

5π
8

3π
4

7π
4

π

Table C.5: Table showing the error images for PANOS at height 0.1.

134



PANOS Height: 1.1

SCT MCI-24 MCI-40

UEB 1.16e+00 1.53e+00 9.38e-01
LEB -6.53e+00 -2.81e+00 -1.81e+00

π
2

5π
8

3π
4

7π
4

π

Table C.6: Table showing the error images for PANOS at height 1.1.
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C. Error Image Comparison

PANOS Height: 3.1

SCT MCI-24 MCI-40

UEB 1.02e-01 2.23e-01 1.07e-01
LEB -6.09e-01 -2.89e-01 -1.88e-01

π
2

5π
8

3π
4

7π
4

π

Table C.7: Table showing the error images for PANOS at height 3.1.
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PANOS Height: 5.1

SCT MCI-24 MCI-40

UEB 2.64e-02 7.42e-02 3.12e-02
LEB -1.37e-01 -7.81e-02 -4.69e-02

π
2

5π
8

3π
4

7π
4

π

Table C.8: Table showing the error images for PANOS at height 5.1.
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C. Error Image Comparison

SLOTLIGHT Height: 0.1

SCT MCI-24 MCI-40

UEB 8.44e+00 3.36e+01 2.09e+01
LEB -4.90e+01 -4.85e+01 -3.15e+01

π
2

5π
8

3π
4

7π
4

π

Table C.9: Table showing the error images for SLOTLIGHT at height 0.1.
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SLOTLIGHT Height: 1.1

SCT MCI-24 MCI-40

UEB 1.56e+00 2.64e+00 1.67e+00
LEB -6.06e+00 -5.25e+00 -3.12e+00

π
2

5π
8

3π
4

7π
4

π

Table C.10: Table showing the error images for SLOTLIGHT at height 1.1.
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C. Error Image Comparison

SLOTLIGHT Height: 3.1

SCT MCI-24 MCI-40

UEB 2.50e-01 3.28e-01 1.84e-01
LEB -5.31e-01 -4.84e-01 -2.81e-01

π
2

5π
8

3π
4

7π
4

π

Table C.11: Table showing the error images for SLOTLIGHT at height 3.1.
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SLOTLIGHT Height: 5.1

SCT MCI-24 MCI-40

UEB 8.20e-02 1.13e-01 5.86e-02
LEB -1.48e-01 -1.25e-01 -7.03e-02

π
2

5π
8

3π
4

7π
4

π

Table C.12: Table showing the error images for SLOTLIGHT at height 5.1.
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C. Error Image Comparison

PERLUCE Height: 0.1

SCT MCI-24 MCI-40

UEB 1.88e+01 4.75e+01 2.85e+01
LEB -4.25e+00 -4.75e+01 -3.08e+01

π
2

5π
8

3π
4

7π
4

π

Table C.13: Table showing the error images for PERLUCE at height 0.1.
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PERLUCE Height: 1.1

SCT MCI-24 MCI-40

UEB 6.45e-01 2.66e+00 1.56e+00
LEB -2.54e-01 -4.88e+00 -2.88e+00

π
2

5π
8

3π
4

7π
4

π

Table C.14: Table showing the error images for PERLUCE at height 1.1.
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C. Error Image Comparison

PERLUCE Height: 3.1

SCT MCI-24 MCI-40

UEB 7.42e-02 3.59e-01 1.72e-01
LEB -1.78e-01 -4.53e-01 -2.50e-01

π
2

5π
8

3π
4

7π
4

π

Table C.15: Table showing the error images for PERLUCE at height 3.1.

144



PERLUCE Height: 5.1

SCT MCI-24 MCI-40

UEB 1.95e-01 1.17e-01 5.47e-02
LEB -1.63e-01 -1.09e-01 -6.25e-02

π
2

5π
8

3π
4

7π
4

π

Table C.16: Table showing the error images for PERLUCE at height 5.1.
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C. Error Image Comparison

MIREL Height: 0.1

SCT MCI-24 MCI-40

UEB 3.03e+01 3.71e+01 2.38e+01
LEB -1.30e+02 -6.98e+01 -4.02e+01

π
2

5π
8

3π
4

7π
4

π

Table C.17: Table showing the error images for MIREL at height 0.1.
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MIREL Height: 1.1

SCT MCI-24 MCI-40

UEB 5.62e+00 3.56e+00 2.39e+00
LEB -2.32e+01 -6.00e+00 -4.12e+00

π
2

5π
8

3π
4

7π
4

π

Table C.18: Table showing the error images for MIREL at height 1.1.

147



C. Error Image Comparison

MIREL Height: 3.1

SCT MCI-24 MCI-40

UEB 1.62e+00 6.56e-01 3.67e-01
LEB -2.89e+00 -6.56e-01 -5.00e-01

π
2

5π
8

3π
4

7π
4

π

Table C.19: Table showing the error images for MIREL at height 3.1.
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MIREL Height: 5.1

SCT MCI-24 MCI-40

UEB 4.77e-01 2.27e-01 1.17e-01
LEB -7.34e-01 -1.95e-01 -1.48e-01

π
2

5π
8

3π
4

7π
4

π

Table C.20: Table showing the error images for MIREL at height 5.1.
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C. Error Image Comparison

INTRO Height: 0.1

SCT MCI-24 MCI-40

UEB 3.95e+01 3.77e+01 1.79e+01
LEB -1.30e+02 -5.74e+01 -3.39e+01

π
2

5π
8

3π
4

7π
4

π

Table C.21: Table showing the error images for INTRO at height 0.1.
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INTRO Height: 1.1

SCT MCI-24 MCI-40

UEB 1.73e+01 7.00e+00 2.76e+00
LEB -3.32e+01 -1.29e+01 -7.81e+00

π
2

5π
8

3π
4

7π
4

π

Table C.22: Table showing the error images for INTRO at height 1.1.
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C. Error Image Comparison

INTRO Height: 3.1

SCT MCI-24 MCI-40

UEB 4.38e+00 8.28e-01 2.20e-01
LEB -3.94e+00 -1.56e+00 -1.16e+00

π
2

5π
8

3π
4

7π
4

π

Table C.23: Table showing the error images for INTRO at height 3.1.
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INTRO Height: 5.1

SCT MCI-24 MCI-40

UEB 1.59e+00 3.05e-01 6.25e-02
LEB -1.94e+00 -4.14e-01 -3.44e-01

π
2

5π
8

3π
4

7π
4

π

Table C.24: Table showing the error images for INTRO at height 5.1.
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C. Error Image Comparison

LINETIK-S Height: 0.1

SCT MCI-24 MCI-40

UEB 2.90e+01 2.68e+01 1.78e+01
LEB -1.05e+02 -5.65e+01 -3.35e+01

π
2

5π
8

3π
4

7π
4

π

Table C.25: Table showing the error images for LINETIK-S at height 0.1.
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LINETIK-S Height: 1.1

SCT MCI-24 MCI-40

UEB 7.16e+00 3.33e+00 2.42e+00
LEB -1.81e+01 -4.94e+00 -3.44e+00

π
2

5π
8

3π
4

7π
4

π

Table C.26: Table showing the error images for LINETIK-S at height 1.1.
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C. Error Image Comparison

LINETIK-S Height: 3.1

SCT MCI-24 MCI-40

UEB 8.91e-01 4.73e-01 2.89e-01
LEB -1.58e+00 -4.84e-01 -3.28e-01

π
2

5π
8

3π
4

7π
4

π

Table C.27: Table showing the error images for LINETIK-S at height 3.1.
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LINETIK-S Height: 5.1

SCT MCI-24 MCI-40

UEB 2.75e-01 1.52e-01 7.42e-02
LEB -4.06e-01 -1.09e-01 -7.81e-02

π
2

5π
8

3π
4

7π
4

π

Table C.28: Table showing the error images for LINETIK-S at height 5.1.
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