FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Profiling und Optimierung GroBer
Biomolekularer Szenen

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science
im Rahmen des Studiums
Medieninformatik und Visual Computing
eingereicht von

Felix Kugler
Matrikelnummer 01526144

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Associate Prof. Dipl.-Ing. Dr.techn. lvan Viola
Mitwirkung: Dipl.Ing Tobias Klein

Wien, 23. August 2018

Felix Kugler Ivan Viola

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Profiling and Optimization of
Large Biomolecular Scenes

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Media Informatics and Visual Computing
by

Felix Kugler
Registration Number 01526144

to the Faculty of Informatics
at the TU Wien

Advisor: Associate Prof. Dipl.-Ing. Dr.techn. Ivan Viola
Assistance: Dipl.Ing Tobias Klein

Vienna, 23 August, 2018

Felix Kugler Ivan Viola

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

Erklarung zur Verfassung der
Arbeit

Felix Kugler
Getreideweg 4, 7062 St. Margarethen im Burgenland

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. August 2018

Felix Kugler

Kurzfassung

Informationsvisualisierungen und Unterhaltungsmedien verlangen nach Méoglichkeiten
zum effizienten Rendern immer gréflerer Szenen. Dank ihrer hoch-parallelen Architektur
sind GPUs in der Lage diesen Bedarf zu decken. Mit ihrem Potential steigt jedoch
auch ihre Komplexitdt. APIs wie OpenGL stellen mit jeder weiteren Version mehr
Schnittstellen zur Verfiigung, um dieses Potential zu nutzen. Diese Schnittstellen effizient
zu benutzen wird jedoch immer schwieriger fiir Programmierer und Anwendungsdesigner.
Diese Arbeit versucht eine Hilfestellung im Design solcher Anwendungen darzustellen
indem mehrere existierende Methoden und Variationen beschrieben und implementiert
und ihre Auswirkungen auf eine praktische Anwendung gemessen werden. Auch wenn
einige Methoden zum Rendern von statischer Geometrie im Allgemeinen verwendet
werden konnen, liegt der Fokus auf dem Rendern von biomolekularen Daten als Kugeln
auf Billboards.

vii

Abstract

Scientific visualizations and entertainment purposes demand ways to quickly render larger
and larger virtual scenes. Through their highly parallel architecture, GPUs are capable
of providing for that demand. But with their processing capabilities, their complexity
increases too. With each new version, APIs like OpenGL provide an increasing amount
of interfaces to harness the available capabilities. However, using them efficiently can be
difficult for programmers and application designers. This work attempts to guide the
design of such applications by describing and implementing different existing methods
and variations and measuring their impact on the performance of a real-world application.
While some techniques are applicable to rendering of static geometry in general, the focus
lies on rendering biomolecular data as spheres using billboards.

ix

Contents

Kurzfassung vii
Abstract ix
Contents xi
1 Introduction 1
1.1 Motivation e e 1
1.2 GPU Rendering 1
1.3 _Biomolecular Scenes 3
1.4 Contribution 4
2 Profiling GPU Programs 5
3 Rendering Optimization 9
3.1 Reducing Overdraw| 10
3.2 Loop-Invariant Code Motion| 12
3.3 Memory Bandwidth Utilization 14
3.4 Levelof Detail 15
4 Results 25
5 Future Work 27
5.1 Occlusion Culling/ 27
5.2 Simplifying Primitives at a Distance| 28
5.3 Pre-Ordering Objects|. 28
Bibliography 31

X1

CHAPTER

Introduction

Rendering large and complex scenes in real-time is the task of many applications, whether
it is to visualize large amounts of scientific data or to display detailed virtual worlds for
entertainment in video games. As the available processing power increases, so do the
demands for increasingly larger scenes. However, GPUs also become increasingly more
complex and fully utilizing them can be challenging.

1.1 Motivation

GPU architectures provide an increasing amount of functionality which can be used to
process and display data on the screen. This process is called rendering. Some steps of
this process are programmable and others are built into hardware. Application developers
have to decide how to use, and sometimes abuse, the available functionality. Interactive
applications need to be able to generate a new image within a few milliseconds (commonly
less than 16ms). Therefore, reducing the time it takes to generate a new image is the
main goal and the sole measure of performance in the context of this work.

Efforts have been made to design useful models to estimate the performance of algo-
rithms analytically for limited cases|ZO11]. However, this work focuses on empirical
measurements in a real-world application.

1.2 GPU Rendering

Rendering is the task of generating an image of what a camera in a virtual scene would
see. When using APIs like OpenGL or DirectX, this involves one or several draw calls
and sometimes additional processing steps. The OpenGL nomenclature used here differs
from that of DirectX but the functionality is similar. A draw call is the transformation
of a numeric description of the scene in terms of points, called vertices, with arbitrary

1.

INTRODUCTION

per-vertex information, into the pixel of an image, with arbitrary per-pixel information,
usually color. This transformation is split up into multiple steps. Each step processes a
stream of input elements into a stream of output elements. The first step’s input and last
step’s output are the per-vertex and per-pixel information respectively. Some steps are
programmable, others are fixed, implemented in hardware. Efficient design of rendering
applications requires making good use of the available resources and functionality of the
GPU. A short overview of the stages of the pipeline follows.

Vertex Shader A programmable transformation of the input vertices. Given the
attributes of a vertex it produces a new set of attributes to send to the next stage.

Tessellation Control Shader An optional programmable stage that allows splitting
up input primitives using tessellation by determining the number of primitives to
generate over the surface of the input primitive.

Tessellator An optional fixed step to subdivide input primitives into smaller ones. Each
output vertex has an additional attribute storing its position on the input primitive.

Tessellation Evaluation Shader An optional programmable stage to determine arbi-
trary attributes for each vertex of the primitives the input was split into.

Geometry Shader An optional programmable stage to transform each input primitive
into an arbitrary, but limited number of primitives.

Vertex Post-Processing A fixed step that clips primitives to the screen and transforms
them into screen space.

Rasterization A fixed step to transform all primitives into the pixel they cover on
screen. The per-vertex attributes of the previous step are interpolated over the
surface of the primitive. These points on the surface are called fragments.

Fragment Shader A programmable step to transform the interpolated attributes into
the attributes to be written to the image.

Depth An optional fixed step that tests a fragments depth against the depth of the
output image to reject fragments occluded by others.

An important aspect of how GPUs work is the fact that they highly parallelize work. Each
step is intended to be performed on thousands of elements. For this, GPUs implement
wide single instruction multiple data (SIMD), meaning that most instructions for the
GPU operate on vectors of data. For example, where processors without SIMD might
have an instruction to calculate the sum of a number a and a number b, GPUs have an
instruction to calculate the sums of multiple pairs of numbers at once. For this purpose
the arithmetic units are present multiple times, each working in parallel. To allow this
parallelism, the calculations must not depend on each other. This can be ensured by
having shaders process elements independently of each other.

1.3. Biomolecular Scenes

In contrast to CPUs, optimizing GPU programs is about finding bottlenecks. Modern
GPUs consist of many parallelized components and as such, dependencies between them
can lead to underutilization, and as a result, performance loss. As the latency of some
processes may be completely hidden by the GPU’s pipelining, while others may cause
severe stalls, it is important to identify the latter. Although the shading stages depend
on each other, this dependency only exists per element. In other words, it is entirely
possible, and even likely, that some elements are already being processed by the fragment
shader while others are still being processed by the vertex shader. To hide latency,
resources underutilized by one stage can be used by other stages. Therefore, optimizing
one shading stage may produce no measurable improvement when another stage causes
pipeline stalls. Profiling tools are able to measure the utilization of each component and
the communication between them, and thereby help to find these bottlenecks.

1.3 Biomolecular Scenes

A scene can be described as a collection of objects. Each object has a position, orientation,
and arbitrary, application specific, properties, as well as a mesh. The mesh defines the
shape of the object as a list of primitives. Most frequently, these primitives are triangles,
but lines or points are common as well. They are stored in terms of positions, relative to
the objects center and arbitrary, application specific, properties, like color for example.
Multiple objects may use the same mesh but draw them at different positions and
orientations. The goal is to render the scene, that is, to simulate what a camera placed
at a specific position and orientation in the scene would see. The largest scene examined
here contains tens of thousands of unique meshes and hundreds of thousands of objects,
resulting in tens of millions of primitives.

Some objects like fluids can change their shape and, more importantly, the topologies of
their mesh between frames. These present additional challenges. Dynamic shapes were
not considered in this work. The topology of the meshes is assumed to be static.

Correct rendering of semi-transparent surfaces may require sorting at the level of primitives
or fragments. This is outside of the scope of this work. The scenes examined here only
contain opaque objects, as semi-transparent surfaces present additional challenges when
determining visibility and occlusion of objects.

In this work various methods for rendering such scenes are described and compared, as
well as a number of ways to improve the performance of these methods. The results
are demonstrated on the Marion framework [MKS™17], a C++ implementation of
CellView [MAPV15], which itself is an application to visualize large biomolecular datasets.
In the context of this work, the protein instances of Marion are the objects and the
protein types are the meshes. The primitives are spheres, rendered as triangle billboards
with correct per-fragment depth for accurate occlusion when zoomed at atomic level.
The unaltered version of this program will here be referred to as the baseline version. All
results are compared to that version.

1.

INTRODUCTION

While many tasks can be performed much faster on GPUs than on CPUs, the additional
overhead of transferring input data to the GPU and results back to the CPU over the bus
can outweigh the advantage in processing speed[GH11]. This work focuses on applications
that are able to transfer the entire scene to the GPU memory once, at start-up, and
then render it many times from different views and with different settings. Displaying
the result on screen does not require a transfer back to the CPU either. Therefore
communication overhead is negligable in this application.

Level of Detail (LOD) is used to adjust the amount of detail in each object based on its
distance to the camera. Objects closer to the camera are rendered with more detail than
objects further away. If the geometry can be described procedurally it can be generated
for each frame in the desired amount of detail. It is also possible to pre-compute or
create multiple versions of each mesh with varying amounts of detail and switch between
them. The latter has been implemented in Marion. Each protein type consists of multiple
point-clouds with varying number of points.

The methods outlined here are applicable to scenes of comparable size and, although
only billboards are rendered, are applicable to arbitrary geometry unless noted otherwise.
Additionally, while only OpenGL was used here, DirectX offers all relevant functionality.

1.4 Contribution

This work aims to assist the decision processes during the design of rendering applications
by taking a real-world application and comparing the render time between different
variations in the process. The work explors different configurations of the depth test for
billboard rendering, the cost of per-fragment attributes, the cost of redundant calculations
and different ways to implement a level of detail system.

CHAPTER

Profiling GPU Programs

Zhang and Owens [ZO11] have presented a model of the GPU architecture in a way
that allows assessing performance bottlenecks through code analysis, simplifying the
process of optimizing code. Stephenson et al. [SSHL™ 15| present a profiling tool based on
code instrumentation. While useful, both approaches are only concerned with individual
computations (as CUDA or OpenCL kernels) and ignore the interactions with the fixed
hardware functions provided for graphic rendering.

By comparing the time of rendering a test scene through different APIs, Dobersberger
[Dobl15] performs a similar role in the design of rendering applications as this work.
By performing measurements on a real-world application this work can be seen as an
extension of some of the work performed by Dobersberger. In contrast to Dobersberger,
this work does not focus on CPU time, as it has been found to be negligible compared to
the GPU time for the Marion application. Neither are texture look-ups examined here.

Modern GPUs provide a large number of built-in measurements that can be used to
find performance issues. Some of these can be read using tools like Nvidia Nsight [nsi]
and RenderDoc [ren] or through the OpenGL implementation [RSR13]. This work only
focuses on these measurements.

RenderDoc provides information about the duration of calls on the GPU, the number
of invocations of each shader, and the number of primitives and fragments generated.
Optimizing the operations with the largest GPU time and the shaders with the most
invocations leads to the highest amount of expected performance gain. It should be noted
that although the documentation does not explicitly say so, experiments show that the
number of pixel shader invocations includes fragments discarded by the depth test.

2.

ProrILING GPU PROGRAMS

Texture

Primitive Distributor | Vertex Attrib Fetch
[— [I—

ZROP SOL

Rasterizer

@ Speed of Light (SOL)

Figure 2.1: Screenshot of the pipeline overview in Nvidia Nsight. The different components
of the GPU are shown as rectangles. The green bars represent the ratio between the
amount of work processed by a unit compared to the theoretical amount of work it can
process, called the speed of light. In this example, most units are underutilized suggesting
that they spend a lot of time waiting on each other. Additionally, a pie chart shows the
percentage of time the streaming multiprocessors spend on each program stage. Here the
majority of the time is spent on the fragment shader.

Additionally to the number of invocations, Nsight also provides information about the
load of each hardware component. Among others, these components are the streaming
multiprocessors (SM) performing the calculations within a shader, the render output
units (ROP) performing per-sample tests, and writing out the results of the fragment
shader, and the components of the memory-subsystem consisting of the texture unit
(TEX), cache (L2) and DRAM. A diagram of these components, as it is visualized in
Nsight, can be seen in Figure 2.1. They display the ratio between the amount of work a
component has to process compared to the theoretical amount it could process, called
the speed of light, as a percentage (SOL%). Generally, components with a low SOL%
are under-utilized. By moving work from a component with high load to one with small
load the performance can be improved.

Load can be moved from the streaming multiprocessors to the memory-subsystem by
storing results of calculations where possible and reading them from memory rather than
re-calculating them. Vice versa, it is possible to move load from the memory-subsystem
to the streaming multiprocessors by re-calculating values instead of storing them. Note
that the render output units too can be memory bound, therefore reducing the number
and size of values written by the fragment shaders can have the same benefits. This
approach is explained further in Section |3.3.

Another way to reduce the load on the render output units, as well as memory, is to avoid
overdraw by rendering fragments front to back and thereby allowing more fragments to
be discarded. Where an early depth test is possible, this can also reduce the load from
the fragment shader. More information on this solution can be found in Section [3.1.

All of the available values can aid in the discovery of bottlenecks. When comparing
the performance of different versions, only GPU durations are presented here. These

are generally different from the duration of calls as seen by the CPU as modern GPUs
perform pipelining and batching to increase throughput. That is, calling APT functions
only puts tasks into a queue. The GPU duration is measured by the GPU and only
includes the time actually spent processing.

CHAPTER

Rendering Optimization

The methods and variations in the rendering process that were tested are described in the
following sections. Their effect on the GPU duration of the molecule rendering in Marion
were measured. A summary of all improvements is provided in Chapter 4. Throughout
this work, a small test scene as well as a large scene of a biomolecular dataset were used
to analyze the effect of different aspects of the scene.

43>

Figure 3.1: The "stack" scene has the virtual camera look onto a stack of 10,000 primitives
in front of each other, leading to a large amount of overdraw.

Figure 3.2: The "HIV" scene has the virtual camera look at a cutaway view of an HIV
cell in blood plasma.

3.

RENDERING OPTIMIZATION

10

The first scene, the "HIV" scene shows an HIV cell in blood plasma. It consists of 35
thousand objects and a total of 2.8 million primitives. A screenshot of this scene can be
seen in Figure [3.2. This scene was used as a starting point for further investigation, as it
represents a real-world use case of the Marion application.

Early profiling showed a large amount of overdraw, that means the same pixels are being
set multiple times by different invocations of the fragment shader. To measure the impact
of overdraw, as well as methods to avoid it, the "stack" scene was created. It shows a
stack of 10,000 spheres orthogonal to the view plane such that they occlude each other
and only one sphere is visible (see Figure 3.1). This arrangement causes a large amount
of overdraw.

All measurements were performed using a Nvidia GeForce GTX 970 GPU on a machine
running Windows 10. All renderings were done in a resolution of 1920 by 1080 pixels in
full-screen mode.

3.1 Reducing Overdraw

When multiple opaque triangles occupy the same pixel, the fragment shader may need to
be evaluated once for each triangle even though only the one closest to the camera will
be visible in the final result. This is called overdrawing. Performance gains are possible
if it can be determined beforehand whether a fragment will be occluded by others.

3.1.1 Depth Sorting

Rendering geometry such that primitives closer to the camera are rendered before
primitives further away from the camera (front to back) can allow the GPU to discard
fragments as they can be tested against fragments already written. This is called
early depth test. Ideally, only a single fragment needs to be evaluated for each pixel.
Unfortunately, the order at which primitives would have to be rendered depends on the
camera position and may change between frames. Sorting the primitives every time may
be unfeasible for large scenes.

3.1. Reducing Overdraw

back-to-front front-to-back

default depth 9.9 ms 5.1 ms
per-fragment depth 9.9 ms 5.5 ms
+ conservative depth 9.6 ms 5.5 ms

Table 3.1: Effect of the order of elements on the GPU duration for the protein program
in Marion when rendering the stack scene.

Figure 3.3: A triangle, completely covering the area of the implicit object for the virtual
viewer, is drawn. For each fragment of the triangle, the visibility and depth of the implicit
object behind it are calculated.

To evaluate the potential of this approach, the "stack' scene, a simple test scene with
10,000 primitives at the center of the screen and varying depth, was rendered once
front-to-back and once back-to-front. The GPU durations are compared in Table 3.1/

When rendering objects front-to-back the GPU duration is reduced by 43%. Although
this is an extreme example, it suggests that sorting the objects can provide a performance
gain. In combination with the approach outlined in Section 3.4.2, the order can be
trivially communicated to the draw call, as commands are rendered in the order they are
placed in the buffer storing the draw commands.

3.1.2 Early Depth Test for Implicit Objects

Spheres and other round objects are difficult or expensive to render as triangle meshes
but can be defined implicitly. For these objects it is possible to render them precisely and
relatively cheaply using the fragment shader. The Marion application depicts proteins
as clouds of spheres. These can be drawn by drawing a triangle that fully contains
the sphere on screen (called the impostor) and calculating a ray-sphere-intersection, or
approximation thereof, to discard fragments outside of the sphere and get the depth for
fragments inside of it.

When the depth values are only known after the fragment shader it is not possible to
perform the depth test before the fragment shader. However, it is possible to specify a
hint to the GPU, specifying that the fragment shader will only ever increase the depth
of the fragment relative to its default depth, making it safe to discard fragments whose
default depth already fails the depth test. This is called conservative depth test. Care
must be taken to ensure that the actual object is completely behind the impostor, that

11

3.

RENDERING OPTIMIZATION

12

GPU duration

default depth 162 ms
per-fragment depth 170 ms
per-fragment depth, conservative depth 170 ms
default depth, no discard 23 ms

per-fragment depth, no discard 190 ms

Table 3.2: GPU duration for the protein program in Marion for the "HIV" scene with
different variations of the fragment shader.

is, every fragment of the object has a greater depth than the corresponding fragment of
the impostor. To achieve this when rendering spheres, radius of the sphere is applied as
an offset to the z position of the triangles. A visualization of the implicit sphere and the
corresponding triangle can be seen in Figure 3.3.

The depth values stored by the GPU are understood to be in normalized device coordinates,
that is, they are in the range [—1,1] and not linear. The default depth is calculated from
clip space coordinates (z,y, z,w) and clipping planes near and far as

z. (far —near) - 0.5 + (near + far) - 0.5
w

Rendering the "stack" scene both front-to-back and back-to-front shows that the latter
takes almost twice as long. When rendering back-to-front all fragments always pass the
depth test, independent of whether the default depth was used or not. However, when
rendering front-to-back, using non-default depth does incur a performance penalty as
fragments can only be discarded after their depth has been calculated. In this scene the
penalty amounts to a 8% increase in render time. Using conservative depth does not lead
to a large performance gain. All timings can be seen in Table 3.2

The "HIV" scene shows similar results. Rendering with non-default depth is slightly
slower than rendering with default depth. The rendering time is increased by 5%. Using
conservative depth does not significantly change the rendering time.

Discarding fragments in the fragment shader seems to be very costly. Avoiding it reduces
render time by 86%. However, without it, the triangle shape of the primitives becomes
visible. Instead of discarding fragments, the same effect can be achieved by setting the
depth of all fragments outside of the implicit object to infinity. This, however, is slower
than every other attempt. 12% slower than the baseline version.

3.2 Loop-Invariant Code Motion

A simple way to reduce the amount of processing required is to remove unnecessary
computation. A simple way of achieving this is to move code out of loops. These

3.2. Loop-Invariant Code Motion

calculations, that do not depend on any calculation inside the loop, are called loop-
invariant.

OpenGL programs consist of a sequence of shaders that perform some kind of trans-
formation on elements. Generally, each consecutive shader operates on a larger set of
elements than the one before. The vertex shader operates on vertices or patches, the
tessellation evaluation shader on vertices on the patch, the geometry shader transforms
each vertex into an arbitrary number of vertices and the fragment shader operates on
the fragments making up the primitives. This structure can be seen as a series of nested
loops where each shader is one nesting level. As such, loop-invariant code motion can be
applied between the shaders by moving calculations from later shaders to earlier ones.

Many operations used in 3D rendering are linear, such as matrix multiplication and
linear interpolation. Shaders perform matrix multiplications to transform values. These
values are then linearly interpolated by the tessellation evaluation shader and before the
fragment shader. Therefore, linear transformations after the interpolation can be moved
before the interpolation to reduce the number of calculations necessary.

To calculate the correct depth, Marion passes the view space coordinates to the fragment
shader, adds an offset to the position and transforms the result into clip space. As the
addition of the offset is a linear operation it is possible to move the transformation into
clip space to the previous shader stage, the geometry shader. This is possible because
when given view space position v, view space offset o and projection matrix P the
following formular holds true:

P-(v+o0)=P-v+P-o

The result of P - v can be calculated in the previous shader stage and be linearly
interpolated. As the offset o is 0 for all components but z, the matrix multiplication P - o
can be reduced to py 3 - 0 where p, 3 is the third column of the matrix P. Thereby the
amount of computation is reduced.

In the geometry shader, Marion generates triangle billboards for each input vertex. Here
the same logic can be applied. Instead of calculating the positions of the three vertices
making up the triangles in view space and then transforming them individually into clip
space, it is possible to transform the center into clip space and then apply offsets to it.

13

3.

RENDERING OPTIMIZATION

14

clip space transformation GPU time

per fragment 170 ms
per billboard vertex 47 ms
per billboard center 40 ms

Table 3.3: GPU time of the protein program in Marion when rendering the "HIV" scene.
The projection of point coordinates into clip space was performed at different steps in
the pipeline.

Performing the transformation for each fragment is very slow. By moving it out of the
fragment shader and into the geometry shader the render time is reduced by 72%, a
speed up by a factor of more than 3. Calculating the positions of the billboard vertices
in clip space instead of view space reduces the render time by another 15%. All timings
can be seen in Table 3.3.

3.3 Memory Bandwidth Utilization

GPUs allow rendering an arbitrary number of per-pixel information. Additionally to
color this may include object ids or surface normals. Different data types are available for
these per-pixel values. They differ in the number of components, value range, precission
and their size in memory. The speed at which data can be read from memory is limited.
By reducing the size of this per fragment information, the memory bandwidth can be
better utilized. This has shown to yield a large improvement in performance in the
Marion application. Suggestions on how to store commonly required information follow.

3.3.1 Trade-Off between Storage and Accuracy

The size of values in memory can be reduced by storing them with less precision. However,
doing so can lead to visual artifacts in the final result. Different types can be tested to
find the lowest precision that still yields acceptable results.

When the range of the values is known beforehand, fixed point formats make better
use of the available precision than floating point formats. The components of normal
vectors for example only have values in the range of -1 to 1 which makes them a perfect
candidate for values that should be stored as normalized integers. These are integer
values that are implicitly scaled to the range of [—1,1] by the GPU. Depending on the
required precision one can use 8, 16 or 32 bit integers.

3.3.2 Redundancy

If the memory access is the bottleneck, it can be beneficial to trade memory access for
computation. If a value can be calculated from other values, it is not necessary to store
it. For example, when storing unit vectors on a hemisphere it is enough to store two

3.4. Level of Detail

atom id instance id position normal size GPU time

4x 32 bit float 4x 32 bit float 4x 32 bit float 4x 32 bit float 64 byte 170 ms
16 bit integer 16 bit integer 4x 32 bit float 4x 32 bit float 36 byte 105 ms
16 bit integer 16 bit integer 3x 32 bit float 2x 32 bit float 24 byte 105 ms
16 bit integer 16 bit integer 3x 16 bit float 2x 8 bit integer 12 byte 56 ms
16 bit integer 16 bit integer not stored not stored 4 byte 45 ms

Table 3.4: GPU time in Marion for different output types when rendering the HIV scene.
The output size is per fragment.

components as the third one can be calculated using the following equation:

z2=14/1—x22—92

A comparison of the encoding error and performance impact of more advanced methods
to store unit vectors has been conducted by Zina et al. [CDE™14]. Additionally, storing
fragment normals can be avoided completely as they can be approximated using the
derivatives of the depth buffer if the accuracy is sufficient for the task.

Another example for redundant information are world positions of fragments. Instead of
storing them explicitly they can be calculated from a pixel’s position in screen space, its
depth and the view properties.

It is not always necessary to store positions as 4-component homogeneous coordinates.
3-component Cartesian coordinates suffice if the fourth component is always 1. A similar
reasoning can be applied to color, where it may not be necessary to store an alpha
channel. Although this does reduce the memory requirements, it did not measurably
increase the performance of Marion.

The baseline implementation of Marion exclusively uses 4-component 32 bit float vectors.
Atom and instance ids are each stored in the first component of a vector. The first
step is to replace them with 16bit integers. This already yields an improvement of 38%.
Reducing the number of components in the positions and normals does not yield an
improvement. However, by reducing their accuracy from 32 bit float to 16 bit float an
additional reduction in render time by 47% is measured. Removing the position and
normal outputs completely, as they can be calculated from fragment positions, fragment
depth and the parameters of the camera, reduces the render time by another 20%.
Compared to the existing implementation of Marion, an improvement of 74% is achieved.
Exact timings can be seen in Table 3.4. These measurements are taken on the HIV scene.

3.4 Level of Detail

It can become infeasible and also unnecessary to always render all objects at full detail.
In the case of visualization it is sometimes even unwanted to keep too much detail, as

15

3.

RENDERING OPTIMIZATION

16

Vertex Positions // // //»

L

Mesh Vertex Offsets

Mesh Vertex Counts

——
—_—
T
—_—
e

| |
Object Mesh Offsets /F

][
Object Positions //
[N

Figure 3.4: Visualization of the memory layout of a scene in Marion. For each mesh, the
index of the first vertex and the number of vertices is stored. Similarly, as each object
can have several meshes, depending on the LOD, the index of the first mesh for each
object is stored. Both the vertices for each mesh and the mesh for each object need to be
stored continuously to allow efficient addressing.

it increases the amount of visual clutter. Level of Detail (LOD) methods are used to
change the amount of detail in an object depending on its distance to the camera. As
the camera changes, the desired amount of detail in each object changes.

For geometry that can be described as a collection of mathematical surfaces or curves
the GPUs tesselator can be used to generate a view dependent number of triangles or
lines. It is also possible to store different versions of each mesh and select the appropriate
one per object. Selecting an appropriate mesh for each object is an additional step that
needs to be taken during rendering. This can be performed by one or several compute
shaders before the draw call.

Before going into how the scene is rendered, an overview of how the scene is stored is
given. As the scene in Marion is static, it is uploaded to GPU memory once and resides
there over the runtime of the application. All information about the scene is stored in
several buffers. The vertex positions of each mesh are stored consecutively in a single
buffer. An additional buffer stores the index of the first vertex and the number of vertices
for each mesh. A third buffer stores for each object the index of its mesh. Two more
buffers store object positions and orientation. See Figure |3.4.

The naive approach is to select the mesh for each object on the CPU and issue an individual
draw call for each. In this approach, a call to the OpenGL function glDrawArrays
with the appropriate parameters is issued once for each object. By using fewer (usually
more complex) calls instead of many small ones, the performance can be improved as
each call has a certain amount of overhead[Dob15].

3.4. Level of Detail

3.4.1 Tessellation

One method that can be used to change the geometry within a draw call based on the
current view is tessellation. Although this technique is designed to render procedural
surfaces that can be arbitrarily interpolated, it can also be used to implement mesh
slection[LMPSV14]. This approach is implemented in the baseline version of Marion
with some variations.

When using tessellation, the primitives submitted to the GPU are patches. A patch
consists of an arbitrary but constant number of vertices. For each patch vertex, the
tessellation control shader is executed to perform transformations on the vertex attributes,

and determine the tessellation level, the number of primitives generated for the patch.

Then, for each primitive generated, the tessellation evaluation shader is executed to
determine the attributes of the primitives to be passed to the next shader. Generally,
patches define 2-dimensional surfaces. The tessellation control shader determines the
number of vertices to generate along the two surface dimensions, and the tessellation
evaluation shader determines the properties for each point on the surface given its two
dimensional position on the patch.

The type of the patch defines how primitives are generated from that surface. It is
not possible to directly control the topology of the mesh generated for the patch. The
topology is irrelevant when rendering points. In isoline mode the tessellator generates
u - (v+ 1) points for a patch with tesselation levels u and v along the two dimensions of
the patch.

To use tessellation to switch between meshes, a patch for each object is created. The
tessellation control shader selects the mesh and sets the tessellation level. The number
of tessellation steps across the two dimensions of the patch is set to [y/n] with n being
the number of vertices in the mesh. This ensures the generation of a sufficient number
of vertices. The vertices are spread evenly over the surface. Therefore, it is possible
to determine a unique index for each vertex based on its surface position. Using that
position, the tessellation evaluation shader looks up the appropriate vertex attributes
from a buffer.

An advantage of this method is that all objects can be drawn with a single draw call,
keeping the driver overhead small. However, the number of primitives that can be
generated for a single patch may be insufficient for some applications. The specification
only requires support for a tessellation level of up to 64 for both dimensions, resulting in
a maximum of 64 - 65 = 4,160 vertices. This limitation can be bypassed by generating
more than one sphere in the geometry shader[LMPSV14]. Another solution is to split up
objects that exceed that limit before the draw call. The latter is implemented Marion.

The splitting of objects can be solved using a compute shader as a preprocessing step.
This shader is called for each object, performs the mesh selection, and groups the resulting
stream of vertices into batches, small enough for the tessellation shader to handle. Each
batch represents a range of vertices by storing the index of the first and the number
of vertices. Additionally, an object id is stored for each batch. Each shader invocation

17

3. RENDERING OPTIMIZATION

determines the number of batches needed for its object and uses an atomic add operation
on a shared variable to determine a starting index to write its batches to. The following
GLSL function performs this step:

void main () {
int objectld = int (gl GloballnvocationID .x);
int lod = determineLod ();

int meshOffset = objectMeshOffsets[objectld];
int meshld = meshOffset + lod;

int vertexOffset = meshVertexOffsets [meshld];
int vertexCount = meshVertexCounts[meshld];

int batchCount = 1 + (vertexCount — 1) / MAX BATCH_ SIZE;
int batchOffset = atomicCounterIncrement (batchCount);

int batchStart = 0;
for (int i = 0; i < batchCount; i++) {
batchSize = min(
MAX BATCH_SIZE,
vertexCount — batchStart
)
batchVertexOffsets [batchOffset + 1] =
vertexOffset + batchStart;
batchVertexCounts[batchOffset + i] = batchSize;
batchObjectlds [batchOffset + i] = objectld;
batchStart += MAX BATCH_SIZE;

}

After the batching process, the scene can be rendered. The following tessellation control
shader sets the tessellation level according to the batches:

layout (vertices = 1) out;
in int batchld [];

patch out int vertexOffset;
patch out int vertexCount;
patch out int objectld;

void main(void) {
vertexOffset = batchVertexOffsets[batchld [0]];
vertexCount = batchVertexCounts[batchId [0]]

)

18

3.4. Level of Detail

objectld = batchVertexObjectlds|[batchId [0]];

gl TessLevelOuter [0] = ceil (sqrt(count));
gl TessLevelOuter [1] = ceil (sqrt(count)) — 1;

}

As this tessellation control shader will only produce a square number of vertices, it
generally generates too many. The superfluous vertices can be discarded by the geometry
shader later. How to calculate the actual vertex id from the patch coordinates can be
seen in the following tessellation evaluation shader:

layout (isolines , point_mode) in;

patch in int vertexOffset ;
patch in int vertexCount;
patch in int objectld;

void main() {
vec2 tessCoord = gl TessCoord.xy;
int x = int(round(tessCoord.x * gl _TessLevelOuter[1]));
int y = int (round(tessCoord.y % gl TessLevelOuter [0]));
int vertexlId =
vertexOffset + x + y * int(gl TessLevelOuter [1] + 1);

// write shader outputs wusing vertexld and objectld

3.4.2 One Draw Command per Object

OpenGL offers an API to specify a list of draw commands residing as a buffer on the GPU,
allowing an arbitrary number of meshes to be drawn with a single CPU call. This is called

multi draw and can be achieved using the function glMultiDrawArraysIndirect.

Further, this list can be generated using a compute shader before the draw call. This
is very similar to the approach of using multiple calls to glDrawArrays but makes it
possible to select the mesh appropriate for the object’s distance on the GPU, and thereby
avoid the driver overhead. It also does not have any of the limitations of tessellation.

The commands are structs of four values of type uint. The first and second value store
the number of primitives and the number of instances to be drawn, respectively. The
third and fourth represent the index of the first primitive and the index of the first
instance, respectively. Essentially, a draw command stores two ranges of indices. The

Vertex shader will be executed once for each combination of indices in these two ranges.

The number of instances can be set to zero to omit rendering of a command. This can
be used to apply culling. The buffer of draw commands is defined in GLSL as follows:

19

3.

RENDERING OPTIMIZATION

20

Vertex Positions

L
—
T
—

IIT Il

| |
Draw Commands //
[

Object Positions //
I

Figure 3.5: The draw command buffer has one entry for each object and stores the index
of the first and number of vertices in the vertex buffer, according to the level of detail
selected during preprocessing.

struct DrawCommand {
uint count;
uint instanceCount;
uint first;
uint baselnstance;

b

buffer DrawCommands {
DrawCommand drawCommands [] ;

}s

The DrawCommand struct can be replaced with a uvec4. Although it should not make
a difference, it seems as if the GLSL compiler is not able to reliably optimize memory
writes to structs, causing the shaders with such writes to sometimes, but not always, be
slower by a factor of 20. In all tests, a uvec4 was used.

A simple way to generate the buffer of draw commands is to execute a compute shader
that writes a draw command for each object. The draw command contains the index
of the first and the number of primitives of the mesh in the vertex array. The result
of this step is visualized in Figure 3.5. These values can be set to point to the mesh
appropriate for the distance between the object and the camera by running the following
GLSL function for each object:

void main () {
int objectId = int (gl _GloballnvocationID .x);
int lod = determineLod ();
int meshOffset = objectMeshOffsets[objectId];
int meshld = meshOffset + lod;

drawCommands [objectId |. count =
meshVertexCounts [meshld |;
drawCommands [objectId |. first =

3.4. Level of Detail

meshVertexStarts [meshld |;
drawCommands[objectId]. instanceCount = 1;
drawCommands[objectId]. baselnstance = objectld;

}

This approach faces none of the limitations caused by the tessellation shader and also
achieves good performance.

3.4.3 One Draw Command per Mesh

A single draw command may specify multiple instances of the same mesh. Therefore,
instead of having a draw command for each object, it is possible to have one for each
mesh with one instance for each object using that mesh. As the actual mesh of each
object depends on its distance to the camera, this requires additional compute shaders
before the draw call.

Simiarly to per-vertex information, per-instance information for each mesh is written
consecutively into a buffer. This allows addressing the instances of a mesh using the index
of the first instance and the number of instances of that mesh. This is implemented in
three stages. At first, a compute shader runs once per object to determine the appropriate
mesh depending on the objects distance to the camera. Atomic increment operations are
used to count the number of objects per mesh. The second compute shader is executed per
mesh and uses atomic increment operations to calculate an offset at which the instances
of the mesh can be written to. A third compute shader runs per object and writes its
index in the aforementioned buffer. The last two steps essentially perform a stream
compaction. Afterwards, it is possible to look up an object’s position and orientation
from a buffer using the index.

21

3. RENDERING OPTIMIZATION

Vertex Positions /
/

Draw Commands I‘ ‘ ‘ //7

Instance Object IDs /
1

Object Positions ” i
1|

Object Instance Offsets JI
|
-l

Object Mesh IDs

| Iy /| Y /
Mesh Offsets <// // // //>
/ 1 I M

Figure 3.6: Visualization of the memory layout of the auxiliary buffers used for rendering.
Draw commands refer to ranges of vertices and instances. For each instance, the
corresponding object id is stored. For each object the id of the appropriate mesh for
the current frame is stored. Buffers already shown in Figure [3.4] are shown in gray for

context.

22

3.4. Level of Detail

This method requires some additional buffers. First of which stores the id of the lod-
appropriate mesh for each object as an integer. A second buffer maps instance ids to
object ids to allow the vertex shader to look up object information using the instance id.
Lastly, a single integer value to determine the instance offset for each mesh is stored. A
visualization of the additional buffers can be seen in Figure 3.6

Before preprocessing, the draw command buffer as well as the instance offsets are cleared
to zero. Afterwards, stage one, determining the mesh for each object and counting the
occurrences of each, can be achieved by running the following GLSL function for each

object:

void main () {
int objectld = int(gl_GloballnvocationID .x);
int lod = determineLod ();
int meshOffset = objectMeshOffsets[objectId];
int meshld = meshOffset + lod;

objectMeshlIds [objectId] = meshld;
objectInstanceOffset [objectld] =
atomicAdd (drawCommands [meshld | . instanceCount , 1);

}

The instance count member of the draw commands is used for counting. Whether the
improved locality from using an additional buffer for it improves performance has not
been tested.

Secondly, to determine the instance offset for each mesh, this GLSL function is run for

each mesh:

void main() {
int meshld = int (gl _GloballnvocationID .x);

int offset = atomicAdd(
instanceOffset , drawCommands[meshld]. instanceCount

);

drawCommands [meshId | . baseIlnstance = offset;
drawCommands [meshId]. first = meshVertexOffsets [meshld |;
drawCommands [meshId | . count = meshVertexCounts [meshld |;

}

Lastly, the object ids are written into the instance object id buffer by running the
following GLSL function for each object:

void main() {
int objectId = int(gl_GloballnvocationID .x);

23

3.

RENDERING OPTIMIZATION

24

version preprocessing rendering
tessellation 0.03 ms 170 ms
one draw command per object 0.09 ms 152 ms
one draw command per mesh 3.2 ms 148 ms

Table 3.5: GPU duration of the preprocessing and the protein program in Marion for
different rendering methods.

int meshld = objectMeshld [objectld |;
int instanceld =
drawCommands [meshId | . baseInstance +
objectInstanceOffset [objectId |;

InstanceObjectld [instanceld]| = objectld;

}

Using instancing, Dobersberger is able to reduce the render time of a test scene from 13
ms to less than 1 in their setup. [Dobl5] However, it should be noted that they used a
much simpler fragment shader than Marion. This amount of speed-up is not expected in
the scenario where the fragment shader dominates the render time.

When rendering the HIV scene using the multi-draw API, it was possible to reduce the
render time by 11% compared to the version using tessellation. The improvement is
slightly diminished by the increased time required to preprocess the scene. The atomic
operations in the preprocessing steps can harm parallelism. Algorithms for stream
compaction that make better use of parallel hardware exist. However, this has been left
for future work. In many cases, having one draw call per object is probably the best
solution as it is almost as fast as the fastest method but also very simple to implement
and maintain. Timings for each method can be found in Table 3.5

CHAPTER

Results

The methods described in Chapter [3| were implemented and tested both individually and
in every combination. In total the render time in the Marion application for the HIV
scene was reduced from 170 ms to 35 ms, that is, by 79%. The timings for each version
is shown in Table 4.1.

FEach optimization shows a large improvement on its own, but the improvements are not
cumulative. After optimizing the fragment shader, either by moving the projection out
of it or by reducing the size of the per-fragment information, the other optimizations
only produce minor gains. This is to be expected, as most of the load is caused by the
fragment shader.

version preprocessing protein program
baseline <0.1 ms 170 ms
reduced output (Section 3.3) <0.1 ms 45 ms
multi draw (Section [3.4.2) <0.1 ms 152 ms
instanced rendering (Section 3.4.3) 3 ms 148 ms
early projection (Section 3.2) <0.1 ms 40 ms
reduced output + instanced rendering 3 ms 41 ms
instanced rendering + early projection 3 ms 74 ms
reduced output + early projection <0.1 ms 40 ms
reduced output + multi draw + early projection <0.1 ms 35 ms
reduced output + instanced rendering + early projection 3 ms 40 ms

Table 4.1: GPU duration for the preprocessing step(s) and the protein program, using
the methods described in Section [3. These measurements are taken from the HIV scene.

25

4. RESULTS

Interestingly, when combined with the optimized protein program, having one draw
command per object is actually faster than having one per mesh. This is still true when
ignoring the larger time required for preprocessing which could be avoided through the
use of a parallel stream compaction algorithm. This may be caused by the additional
indirection in the vertex shader, as object ids need to be looked up in the instance object
id buffer. Therefore, this method is not only straight forward to implement but also
very efficient. This also supports what has been found by Dobersberger[Dob15]. For
best performance, applications should render all their objects with as few multi-draw
commands as possible.

26

CHAPTER

Future Work

These are additional methods and ideas that can improve the performance but are not
implemented.

5.1 Occlusion Culling

A method to remove the number of primitives being rendered that is left unexplored is to
determine whether they are occluded by others. Whereas the depth test rejects occluded
fragments, occlusion culling removes entire primitives or objects based on whether they
are occluded by others. One way of achieving this is by partitioning the scene into
subspaces and issuing occlusion queries for the bounding boxes of each partition against
an estimated depth map. Occlusion queries are an API provided by OpenGL to test
the visibility of objects. The estimated depth map can be generated from the previous
frame combined with information about the camera movement[GKM93|. If the bounding
box of a subspace is completely invisible, every object within is completely invisible as
well. As the reverse does not hold true, this only allows culling of some objects. Grottel
et al. [GRDEIO] use this approach to render large numbers of particles. Another way
to generate such an estimated depth map is to render all objects in a pre-pass with a
simplified fragment shader.

The estimated depth map can also be used to discard more fragments during the early
depth test in the final render pass. As the fragment shader is the most costly operation
in Marion, allowing more fragments to be discarded early could increase performance.

5.1.1 Frustum Culling

It can be determined that an object is completely outside of the view frustum and,
therefore, has no effect on the final image. This can be done by storing simple bounding
volumes, one for each object, that can be tested against a frustum. Popular choices are

27

d.

FUTURE WORK

28

cuboids and spheres as they can be tested with very few calculations. Assarsson and
Moller [AM99] explore various algorithms for achieving this. When using a LOD method,
the frustum test can be combined with the mesh selection for little additional cost.

The performance gain achieved with this method depends on the number of objects that
can be culled. When exploring a scene from inside, as it is common in video games, a
large portion of the scene can be culled, as the camera frustum is only a small subspace.
If the objects are almost all in front of the camera, few objects can be culled.

As the GPU already does not generate fragments for primitives outside the view frustum,
this method only helps to reduce the number of vertex shader invocations. Little gains
are expected in Marion, since the fragment shader takes up the majority of the render
time.

5.2 Simplifying Primitives at a Distance

The number of primitives for objects at a distance can be reduced using LOD. Additionally,
it is possible to simplify the primitives themselves when viewed from far away, as their
precise shape and appearance will not be as important. The per-fragment depth allows
correct occlusion between intersecting primitives. This effect is barely noticeable at a
distance and could therefore be turned off to reduce the amount of necessary processing
in the fragment shader. For the same effect, primitives can be replaced with simpler ones.
Impostors can be replaced with simple triangles, triangles can be replaced with points.

5.3 Pre-Ordering Objects

Rendering can be sped up by avoiding overdraw. If it can be estimated beforehand how
users gonna interact with the scene, it is possible to order the objects such that ones that
are more likely to be in front of others appear first in the list of objects. For example,
the objects of the HIV scene could be ordered such that objects further away from the
center are rendered first, as they tend to occlude objects closer to the center.

29

[AMO99]

[CDE*14]

[Dob15]

[GH11]

[GKM93]

[GRDEL10]

[LMPSV14]

[MAPV15]

[MKS*17]

Bibliography

Ulf Assarsson and Tomas Moéller. Optimized view frustum culling algorithms.
Technical Report 99-3, Chalmers University of Technology, Sweden, 1999.

Zina H. Cigolle, Sam Donow, Daniel Evangelakos, Michael Mara, Morgan
McGuire, and Quirin Meyer. A survey of efficient representations for inde-
pendent unit vectors. Journal of Computer Graphics Techniques (JCGT),
3(2):1-30, 2014.

Simon Dobersberger. Reducing driver overhead in opengl, direct3d and
mantle. University of Applied Sciences Technikum Wien, pages 2—-32, 2015.

Chris Gregg and Kim Hazelwood. Where is the data? why you cannot
debate cpu vs. gpu performance without the answer. In (IEEE ISPASS)
IEEE International Symposium on Performance Analysis of Systems and
Software, pages 134-144, 2011.

Ned Greene, Michael Kass, and Gavin Miller. Hierarchical z-buffer visibility.
In Proceedings of the 20th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH 93, pages 231-238. ACM, 1993.

Sebastian Grottel, Guido Reina, Carsten Dachsbacher, and Thomas Ertl.
Coherent culling and shading for large molecular dynamics visualization.
Computer Graphics Forum, 29(3):953-962, 2010.

Mathieu Le Muzic, Julius Parulek, Anne-Kristin Stavrum, and Ivan Viola.
[lustrative visualization of molecular reactions using omniscient intelligence
and passive agents. Computer Graphics Forum, 33(3):141-150, 2014.

Mathieu Le Muzic, Ludovic Autin, Julius Parulek, and Ivan Viola. cellview:
a tool for illustrative and multi-scale rendering of large biomolecular datasets.
In Katja B editor, Eurographics Workshop on Visual Computing for Biology
and Medicine, 2015.

Peter Mindek, David Kouril, Johannes Sorger, David Toloudis, Blair Lyons,
Graham Johnson, Meister Eduard Groller, and Ivan Viola. Visualization
multi-pipeline for communicating biology. IEFEE Transactions on Visualiza-
tion and Computer Graphics, 24(1), 2017.

31

[nsi]

[ren]

[RSR13]

[SSHL*15]

[ZO11]

32

NVIDIA Nsight Graphics | NVIDIA Developer. https://developer.
nvidia.com/nsight-graphics. [accessed 10-September-2018|.

RenderDoc. https://renderdoc.org/. [accessed 10-September-2018].

Daniel Rakos, Graham Sellers, and Christophe Riccio.
ARB_ query_ buffer object. https://www.khronos.org/registry/
OpenGL/extensions/ARB/ARB_query_buffer_object.txt, 2013.
[accessed 16-September-2018].

Mark Stephenson, Siva Kumar Sastry Hari, Yunsup Lee, Eiman Ebrahimi,
Daniel R. Johnson, David Nellans, Mike O’Connor, and Stephen W. Keckler.
Flexible software profiling of gpu architectures. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ISCA ’15, pages
185-197. ACM, 2015.

Yao Zhang and John D. Owens. A quantitative performance analysis model
for gpu architectures. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, pages 382-393, 2011.

https://developer.nvidia.com/nsight-graphics
https://developer.nvidia.com/nsight-graphics
https://renderdoc.org/
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_query_buffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_query_buffer_object.txt

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	GPU Rendering
	Biomolecular Scenes
	Contribution

	Profiling GPU Programs
	Rendering Optimization
	Reducing Overdraw
	Loop-Invariant Code Motion
	Memory Bandwidth Utilization
	Level of Detail

	Results
	Future Work
	Occlusion Culling
	Simplifying Primitives at a Distance
	Pre-Ordering Objects

	Bibliography

